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Abstract—This work examines the numerical fixed-point per-
formance of a new multichannel lattice RLS filtering algo-
rithm using data from two underwater acoustic communication
experiments. The algorithm may be an appealing choice for
underwater equalization due to its robust numerical behavior and
linear scaling of the computational complexity with filter order.
Simple modifications to widely-used methods for carrier/timing
synchronization and symbol slicing in transversal equalizers are
proposed. Experimental results show that the algorithm is as
accurate as the similarly array-based QR-RLS, tolerating word
lengths as low as 16-20 bits with minor degradation relative to
floating-point benchmarks. These features, coupled with a very
modular and regular structure, are highly desirable in energy-
efficient hardware or embedded implementations.

I. INTRODUCTION

Recently, the implementation of signal processing algo-
rithms in dedicated hardware has gained new momentum due
to the availability of (i) large-capacity FPGAs that incorporate
hardware multipliers and other useful features for mathemati-
cal computation, and (ii) tools that can automatically generate
reasonably-efficient HDL code from block diagrams or other
high-level descriptions. Such power-efficent and potentially
highly-parallel solutions are certainly appealing for equaliza-
tion of underwater channels, where the number of adjustable
parameters in the adaptive filter may be large due to long
impulse responses and the use of multiple hydrophones at the
receiver for improved diversity.

Attaining fast convergence and tracking with high filter
orders requires efficient adaptive algorithms such as recursive
least-squares (RLS) or adaptive step-size least-mean-squares
(SLMS) [1]. Currently, the latter seems to be more popular
in underwater communications due to its lower computational
complexity with only a modest degradation in performance
relative to RLS. In fact, the complexity scales linearly with
filter order in SLMS, whereas it increases quadratically in
basic versions of RLS. Moreover, the input covariance matrix
in plain RLS tends to be ill-conditioned when fractional
sampling or multiple receivers are used, especially with high
filter orders, and in turn this leads to high dynamical ranges in
its internal variables. Accomodating such numerical excursions

in fixed-point arithmetic requires large word lengths, and
hence more FPGA real estate and power consumption.

Research into efficient RLS algorithms has a long history,
and numerous fast variants are known where the complexity
scales linearly rather than quadratically [1], [2]. Many of
these, particularly fast transversal forms, tend to exhibit even
poorer numerical behavior than plain RLS under moderate-
to-low numerical precision. Within the class of lattice forms,
however, there exist efficient algorithms that exhibit much
more favorable performance. While they require more oper-
ations per computed output than transversal forms do, their
robustness and simple modular structure make them attractive
for hardware or embedded implementations. Arguably, the
most stable lattice algorithms currently available are those
where the time/order recursions in each module are written
in square-root array form and updated using unitary trans-
formations (typically, Givens rotations). Actually, square-root
formulations via Givens-based QR decomposition are not
restricted to lattice forms; the QR-RLS algorithm derives from
the general RLS problem through the same approach, and its
numerical properties are similar to those of QR-based lattice
filters.

The main goal of this paper is to examine the behavior of a
recently-proposed multichannel RLS lattice algorithm [3], [4]
in the context of coherent underwater communications. The
algorithm is based on a modular decomposition approach that
enables unequal channel orders to be specified and leads to
a filter that is structured as an array of interconnected scalar
units which operate similarly to those found in conventional
single-channel lattice filters. This avoids cumbersome matrix
operations that are difficult to implement in hardware and not
easily parallelizable. Each scalar unit autonomously performs
input-output mapping and internal updating, so that a fully-
parallel implementation may be obtained by adding pipeline
registers between units.

The input/output mapping of lattice filters is somewhat
more complex than the inner products found in transversal
filters, which makes it difficult to apply some popular methods
for timing and carrier and recovery based on joint MMSE
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optimization of equalizer and synchronization parameters [5].
This work examines alternative strategies and, in particular,
proposes a technique for implementing the rotating slicer
that is found in the quasi-standard (transversal) DFE+PLL
architecture. A low-complexity method for slicing symbols
in decision-directed mode (i.e., when operating beyond the
training period) is also presented.

The fixed-point performance of the array-based multichan-
nel lattice is illustrated using data from two underwater
communication experiments:
• The MREA’04 (Maritime Rapid Environmental Assess-

ment) sea trial was conducted in the continental shelf off
the west coast of Portugal in April 2004. Symbol rates of
200 and 400 baud were used, and data transmitted over
ranges up to 2km, resulting in relatively mild intersymbol
interference (ISI).

• The MAKAI’05 experiment took place off the island of
Kauai, Hawaii, in September/October 2005. Data were
transmitted over ranges of 1 to 4 km at a symbol rate of
2000baud. For a multipath structure comparable to that of
MREA’04, this leads to longer ISI and more challenging
equalization.

The proposed lattice algorithm is shown to exhibit robust
behavior under fixed-point arithmetic, even for word lengths as
short as 16–20 bits. Its performance is on a par with a generic
array-based formulation of RLS (QR-RLS), but for a given
number of input channels the complexity increases linearly
with the filter order, rather than quadratically. Plain RLS
requires far greater precision than both of these algorithms
to avoid numerical instability.

II. MULTICHANNEL FILTERING

Throughout, vectors and matrices will be represented by
lowercase boldface and uppercase boldface letters, respec-
tively. The notations (·)T and (·)∗ stand for transpose and
complex conjugate transpose (hermitian).

In the multichannel setup L input channels convey discrete-
time signals u(i), 1 ≤ i ≤ L, that are observed over a period
of time and linearly combined to approximate a desired output
(reference signal) d at time n as d̂(n) = w∗u(n), where the
input sample vector u(n) is given by

u(n) =

u(1)(n)
· · ·

u(L)(n)

 , u(i)(n) =

 u(i)(n)
· · ·

u(i)(n−mi + 1)

 , (1)

and the filter order mi need not be the same for all channels.
The optimal coefficient vector w minimizes the exponentially-
weighted least-squares (LS) cost function

J(n) =
∥∥d(n)−U(n)w

∥∥2
, (2)

with

d(n) = Λ
1
2 (n)

d∗(0)
· · ·
d∗(n)

 , U(n) = Λ
1
2 (n)

u∗(0)
· · ·

u∗(n)

 , (3)

and Λ(n) = diag(λn, . . . λ0). RLS algorithms take advantage
of the structure of U(n) to incrementally adjust w at each
time step.

III. MODULAR FILTER STRUCTURE

The multichannel filter structure has been presented in [3],
[4], and will only be briefly reviewed here. In the scalar case
unit m in the lattice addresses the LS problem Jm(n) =∥∥d(n)−Um(n)wm

∥∥2
for input vectors containing the m

most recent samples at each time instant. Order recursions
are derived by partitioning the input matrix Um in different
ways to separate its columns containing the most recent
or oldest samples. The desired LS projection of d is then
expressed in terms of the one performed by unit m − 1, as
well as forward and backward linear prediction residuals of
the leftmost/rightmost columns of the input matrix [2].

The same reasoning can be directly extended to multiple
input channels by considering multichannel linear prediction.
When formulated using QR decomposition this approach is
known to yield array algorithms that bear strong similarities
to the one described here [6], [7], including the same block
layout (see Fig. 1a). The present work follows the alternative
modular decomposition approach of [8], whereby a sequence
of L parallel chains of scalar units interact over lattice blocks
comprising L stages. In each stage the prediction order is
increased by 1 in one of the input channels in such a way that
after L stages the overall filter order is increased in all chan-
nels. Fig. 1b depicts the structure of one of these multichannel
lattice blocks for L = 3. The interconnections between these
elementary units follow directly from the decomposition, as
explained next.

Let ui,0 denote the input vector corresponding to the LS
problem solved at the output of the previous lattice block in
the i-th chain. The actual number of samples in any of the L
input channels that make up ui,0 is unimportant for deriving
the lattice recursions. This vector is assumed to be updated up
to time n in channels 1, . . . i, but only up to time n−1 in the
remaining ones,

ui,0(n) =
[
u(1)T (n) . . . u(i)T (n)

u(i+1)T (n− 1) . . . u(L)T (n− 1)
]T

. (4)

Unit (i + 1, 1) in the first stage of the current lattice block
solves a LS problem whose input vector ui+1,1(n) is ob-
tained from ui,0(n) by incorporating the most recent sample
u(i+1)(n), which increases the filter order by 1 in channel
i+ 1. The same holds in general when going from ui,l−1(n)
to ui+1,l(n) for any stage l of the lattice block. As in a
scalar lattice, update recursions for cell (i, l) are based on
forward and backward linear prediction of selected elements
of ui,l(n) from ui−1,l−1(n) and ui,l−1(n). Specifically, the
forward prediction (f ), backward prediction (b) and reference
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Fig. 1: Modular decomposition-based multichannel lattice fil-
ter (a) Filter structure for channel orders m1 = 4, m2 = 3,
m3 = 1 (b) Internal connections of a lattice block for L = 3
(L[3])

filtering (e) a posteriori errors turn out to satisfy the recursions

bi,l(n) = bi−1,l−1(n) + κb ∗i,l (n)fi,l−1(n) , (5)

fi,l(n) = fi,l−1(n) + κf ∗i,l (n)bi−1,l−1(n) , (6)

el(n) = el−1(n)− κ∗l (n)bL,l−1(n) , (7)

where the various κ denote reflection coefficients. The follow-
ing conclusions can be drawn from an analysis of (5)–(7) and
a set of time update expressions:

1) The modular decomposition approach dictates which
variables appear in each of the above equations, and
hence how a lattice block is structured into scalar
units and how these are interconnected. As mentioned
previously, Fig. 1b follows from (5)–(6).

2) The generic update recursions carried out by a single
unit turn out to be algebraically equivalent to those
in a single-channel lattice unit. This implies that any
of several known sets of equivalent update recursions
may be selected. In [8] a mixed a priori/a posteriori
scheme with error feedback was proposed, whereas [3]
opted for QR-array-based adaptation which, similarly to
the single-channel case, turns out to provide superior
numerical performance.

This kind of separation between filter structure and update
relations has been noted in [9] under fairly general conditions.

Regarding the overall structure shown in Fig. 1a, it assumes
that input channels are sorted in descending filter order, such
that the total number of lattice blocks equals the order of
the first one. Lower orders in other channels are attained by
incorporating them later in the processing chain; if order mi

is required in channel i, then it should pass through a total of
mi blocks. For seamless integration of an input channel into
the lattice at a given point of the chain the signal must be
uncorrelated with the underlying LS data matrix at the output
of previous blocks. As it turns out, this can be achieved by
actually incorporating a prediction residual that is calculated
in exactly the same manner as the el for the reference signal.
Accordingly, at each point of the cascade Fig. 1a shows that
the reference (bottom) and all yet-unmerged channels are
filtered by a set of identical ladder blocks D[·].

A. Array Algorithm

The update recursions for individual units are written in
array form, i.e., forward or backward (2 × 2) prearrays are
built from each unit’s internal variables, a Givens rotation
is applied to create a postarray where a specific element is
zeroed-out, and time-updated variables are read from other
entries in the array. The array algorithm uses so-called angle-
normalized errors εfi,l, ε

b
i,l, εl, that equal their a posteriori

counterparts divided by the square-root of the associated
conversion factors [2]. In the forward case, for example,
εfi,l(n) = γ

−1/2
i−1,l (n)fi,l(n). Reflection coefficients are similarly

normalized, yielding variables pfi,l, p
b
i,l and pl. The backward

array of the first chain is augmented with an additional line
that propagates the conversion factor needed to regenerate a
priori or a posteriori errors throughout the reference chain.
Table I summarizes the array-based modular QR-RLS algo-
rithm (abbreviated as MQR below), where F , B represent
forward/backward prediction error energies, and Θ denote
2 × 2 complex Givens matrices. Explicitly computing the
Givens matrices of Tab. I requires evaluating inverse square-
roots [2]. In fixed-point arithmetic this can be accomplished
by the Newton algorithm, which typically converges in about 5
iterations [3]. Alternatively, CORDIC processors can carry out
Givens rotations without explicitly computing the sine/cosine
parameters [10]. The CORDIC algorithm is well suited to
simple hardware implementations, as it enables Givens rota-
tions to be iteratively performed using only basic add/shift
operations. The extension of CORDIC to complex data used
here is described in [4].

Finally, note that for a least-squares problem with L chan-
nels and M adjustable coefficients per channel the filter
complexity is proportional to ML2, the number of scalar
lattice units, rather than (ML)2 as in plain RLS.

IV. LATTICE-BASED EQUALIZATION

As in other feedforward lattice filters all intermediate es-
timation errors are readily available along the block cascade,



TABLE I: Summary of the modular multichannel QR-RLS
algorithm in array form (MQR)
Initialization: Determine lattice/ladder block sizes Ls according to Sec. III
and choose 0 < λ ≤ 1. For unit (i, l) in lattice block s set

pf ∗
i,l (−1) = pb ∗

i,l (−1) = 0 , F
1/2
i,l−1(−1) = B

1/2
i−1,l−1(−1) =

√
δ ,

for small δ > 0. Set Θb
1,l(−1) = I2, εbLs,l−1(−1) = 0 throughout chain 1

and p∗l (−1) = 0 in the units of all ladder blocks.

Update recursions: At time n set the filter input as

εfi,0(n) = εbi,0(n) = u(i)(n) , 1 ≤ i ≤ L1 ,

ε0(n) = u(i)(n) , L1 + 1 ≤ i ≤ L ,

ε0(n) = d′(n) , γ
1/2
L1,0(n) = 1 , reference .

In lattice block s > 1 incorporate new channels as described in Sec. III.
Lattice update: Compute Givens matrices and update lattice units as"

λ1/2F
1/2
i,l−1(n− 1) εfi,l−1(n)

λ1/2pb ∗
i,l (n− 1) εbi−1,l−1(n)

#
Θf

i,l =

"
F

1/2
i,l−1(n) 0

pb ∗
i,l (n) εbi,l(n)

#
"
λ1/2B

1/2
i−1,l−1(n− 1) εbi−1,l−1(n)

λ1/2pf ∗
i,l (n− 1) εfi,l−1(n)

#
Θb

i,l =

"
B

1/2
i−1,l−1(n) 0

pf ∗
i,l (n) εfi,l(n)

#
In chain i = 1 use the precomputed (delayed) Givens matrix to update
the second row of the backward prediction postarray above, then update the
Givens matrix, prediction energy and conversion factor as"
λ1/2B

1/2
Ls,l−1(n− 1) εbLs,l−1(n)

0 γ
1/2
Ls,l−1(n)

#
Θb

1,l =

"
B

1/2
Ls,l−1(n) 0

× γ
1/2
Ls,l(n)

#
Ladder update: Ladder arrays share their first row with chain 1. Use the
updated Givens matrix Θb

1,l to compute the second rowˆ
λ1/2p∗l (n− 1) εl−1(n)

˜
Θb

1,l =
ˆ
p∗l (n) εl(n)

˜
Filter output: Obtain the a priori or a posteriori filter output from the final
ladder block in the reference chain as ξL(n) = γ

−1/2
L,L (n)εL(n) or eL(n) =

γ
1/2
L,L(n)εL(n), respectively.

which is very useful for solving the often overlooked, but prac-
tically relevant, problem of selecting an appropriate equalizer
order for a particular channel whose characteristics are not
known beforehand. Decision-feedback equalizers (DFE) may
be accommodated with this structure by inserting previously-
decoded symbols into an additional input channel. Allowing
for different channel orders turns out to be very useful because
the required filter orders for acoustic inputs and previous
symbols (processed by feedforward and feedback filters, re-
spectively, in the usual transversal DFE architecture) can be
quite disparate.

In addition to mitigating ISI, practical equalizers should
include a number of auxiliary subsystems for synchronization
(symbol and carrier) and slicing of the equalizer output when
operating in decision-directed mode. This section discusses
some issues where the technical solutions that are commonly
used for transversal filters must be adapted to the lattice
structure.

A. Carrier Recovery

A popular technique for carrier recovery in coherent un-
derwater communications jointly optimizes the equalizer co-

efficients and estimated carrier phase offset to minimize the
output MSE [5]. A phase rotator is placed at the output of the
DFE feedforward filter, and iterative optimization of carrier
phase is performed by computing the gradient of the MSE
with respect to this parameter and using it as a phase error
driving a first- or second-order PLL. The positioning of this
phase rotator leads to expressions where the output of the
feedforward filter appears explicitly, a requirement that is easy
to meet in transversal DFEs but much less so in a lattice
implementation where acoustic signals and previous decisions
are mingled together.

A more suitable alternative is to turn the slicer into a
rotating one, i.e., to allow the equalizer output to rotate
freely, perform phase compensation before formulating symbol
decisions (slicing), and then rotating the decisions back before
feeding them to the DFE. Formally,

d̃ = Q{z exp−jθ} , d′ = d̃ejθ , (8)

where θ is the estimated carrier phase, z denotes the equalizer
output, d̃ is the symbol decision using slicer mapping Q{·},
and d′ is the rotated symbol fed back to the DFE. Assuming
correct decisions, d̃ = d, the angle θ is adjusted by stochastic
gradient descent of the MSE cost function

J(θ) = E{∣∣d− z exp−jθ∣∣2} , (9)
dJ

dθ
= −Im{E{d∗z} exp−jθ} . (10)

Similarly to [5], a practical second-order PLL update is then
given by

θ(n+ 1) = θ(n) +KPΦ(n) +KI

n∑
i=0

Φ(i) (11)

Φ(n) = Im{d∗(n) z(n) exp−jθ(n)} . (12)

Other variants for the PLL phase detector (12) are discussed
in [11]. Throughout this work the loop filter proportional and
integral constants were empirically set to KP = 10−1, KI =
1.7 × 10−3. Using (8), again assuming perfect decisions, a
slightly more convenient expression is obtained for the phase
detector in a lattice filter that computes the error e, rather than
z,

Φ = Im{zd′∗} = Im{(d′ − e)d′∗} = −Im{ed′∗} . (13)

B. Slicing

In a transversal equalizer operating in decision-directed
mode the a priori output is computed from the previous
coefficient vector, and then the closest point of the signal
constellation is chosen as the current decision to update the
coefficients. In an array-based lattice equalizer this is not
quite possible because the adaptation algorithm of Tab. I only
computes the a priori output error ξ(n) at the end of the
iteration at time n. This would seem to create a kind of
chicken-and-egg problem, as the current external reference
d′(n) must be externally supplied before computing the error.

As the reference chain does not influence the state of lattice
blocks, a simple workaround would be to update the lattice



for the current set of multichannel inputs, then sequentially
apply all points of the signal constellation to the reference
input, commit to the one producing minimum a priori or a
posteriori output error, and update the internal units in the
reference chain accordingly. Note that this can be done because
the reference chain is memoryless, i.e., once the feedback
errors on which it operates are fixed the output becomes an
instantaneous function of the reference input. This strategy
can be further improved because the output error is actually a
linear function of the reference. To see this remark that for a
(complex) Givens rotation matrix of the form

Θ =
[
c −s
s∗ c

]
, (14)

where c ∈ R and s ∈ C are the cosine and sine parameters
[1], the expression for order-updating εl(n) in Tab. I reads

εl(n) = clεl−1(n)− λ1/2slp
∗
l (n− 1) . (15)

Applying it recursively to all blocks and stages in the reference
chain produces the input/output mapping, for ε0(n) = d′(n)
(recall (8)),

ε(n) = gd′(n) + h . (16)

Determining the constants g and h above would only require
applying two distinct values to the reference chain. However,
the slope parameter in (16) satisfies g =

∏
l cl, and can readily

be shown to coincide with the final value γ
1/2
L,L computed

by the first lattice chain. Hence, all that is really needed to
complete the characterization of this linear mapping is to apply
0 at the reference input and read h at the output. Then, for
a (rotated) constellation C′, the symbol decision is formulated
as

d̃′(n) = arg min
d′∈C′

∣∣gd′ + h
∣∣2 (17)

or, in a more familiar form with nonrotated constellation,

d̃(n) = Q

{
−h
g

exp−jθ
}
. (18)

C. Timing Recovery

Jointly-optimal MMSE-based timing recovery, as proposed
in [5], presents challenges to lattice filters similar to those
mentioned in Sec. IV-A; acoustic signals and previous de-
cisions become tangled as they cross the lattice section,
and computing gradients with respect to a subset of them
is difficult. Furthermore, such schemes incorporate a highly
complex equalizer transfer function inside the timing recov-
ery loop, thus creating serious instability problems. A better
approach in practice is to perform symbol synchronization as
a preprocessing step using low-delay methods [11].

In this work the time scaling factor due to Doppler was
directly estimated by measuring the duration1 of packets
and then resampling them prior to equalization as described
in [12], [13]. This procedure also compensates a common

1In practice this is often accomplished by detecting a known preamble and
postamble in each packet by crosscorrelation, and measuring their time offset.

Fig. 2: [MREA’04] Averaged impulse response estimates

Doppler-induced rotation of constellations in all acoustic sig-
nals, making it easier for the lattice DFE+PLL to subsequently
track residual phase variations. Once the correct symbol
rate was attained, fractionally-spaced sampling ensured near-
perfect insensitivity to the actual choice of sampling phase,
and no further synchronization refinements were needed.

V. EXPERIMENTAL RESULTS

A. MREA’04

The MREA’04 (Maritime Rapid Environmental Assess-
ment) sea trial was conducted in the continental shelf off
the west coast of Portugal in April 2004, in an area to the
north of the Setúbal Canyon [14]. The receiver was an 8-
element drifting array with hydrophones placed at depths 10,
15, 55, 60, 65, 70, 75, 80 m, and in the experiment reported
here the acoustic source was suspended from the surface at
a depth of about 60 m. During a period of approximately 90
minutes modulated data were transmitted over a distance of
about 2km, using a carrier frequency of 3600Hz, symbol rates
of 200 or 400baud, and both 2-PSK and 4-PSK constellations.
Throughout much of the experiment the transmitter was being
towed along an approximately 110 m-deep range-independent
trajectory, at speeds of up to 2 m/s, thus inducing significant
Doppler scaling in received waveforms. Environmental surveys
at the test site revealed the presence of a 1.5 m-thick silt and
gravel sediment layer over a hard uniform sub-bottom.

Received signals were passband filtered, sampled at
20080 Hz and converted to baseband, then match-filtered
(using a fourth-root raised-cosine pulse) and resampled at
L = 2 times the symbol rate. Packet synchronization was
performed by crosscorrelation with the beginning of the known
transmitted sequence. Preprocessing for Doppler compensation
was performed as described in [12]. The signals from the upper
2 hydrophones were discarded to match the conditions of Sec.
V-C, resulting in a 12-channel external input to the DFE (6
hydrophones, each generating 2 symbol-rate-sampled streams).

This work focuses on the last 18 transmitted 2-PSK packets
at 400 baud, each having a duration of 20 s, that span a
total interval of about 25 minutes with variable inter-packet
delays of 1 s or 277 s. Fig. 2 depicts averaged estimates of
the (Doppler-corrected) impulse responses for these packets,
showing a fairly stable multipath profile with two strong
arrivals at 0 and 4 ms, and secondary arrivals up to about
50 ms. Analysis of the data using MATLAB floating-point



algorithms showed that the best performance is obtained for
a short DFE with 2 causal and 1 anticausal coefficients in
each feedforward channel (abbreviated as (2, 1) henceforth),
7 feedback coefficients, and forgetting factor λ = 0.95 em-
pirically adjusted to minimize the residual error variance. The
low value of λ and shortness of the feedback filter suggest that
there is significant nonstationarity that prevents the coherent
combination of multipath energy from late arrivals.

B. Fixed-point performance

This section presents equalization results using fixed-point
implementations for RLS, QR-RLS (see, e.g., [1]), and the
MQR algorithm of Tab. I. QR-RLS and MQR both use
the Newton method to compute Givens matrices. Additional
results are also provided for MQR using CORDIC to carry out
Givens rotations, as discussed in Sec. III-A. Like RLS, the
computational complexity of QR-RLS scales with the square
of the total equalizer order. The particular implementation of
RLS used here is the one designated by version II in [15, Tab.
13.2], which exhibits improved numerical behavior at the cost
of moderate added redundancy.

The algorithms were coded in C targetting a 32-bit Intel pro-
cessor (thus limiting to 32 bits as well the maximum numerical
precision that can be specified, for reasons of code efficiency),
with native compiler support (GCC) for complex data types,
and using custom-made low-level arithmetic functions that
operate in true fixed-point format with parametrizable integer
and fraction lengths.

The integer/fractional part lengths to be used in each al-
gorithm were determined by running the MATLAB prototype
algorithms in floating point, examining the numerical range
of internal variables, and choosing appropriate integer lengths
to accomodate them. The global integer part lengths for RLS
and QR-RLS, were set to IRLS = 11 bits and IQR-RLS = 6 bits,
respectively. While integer part lengths can be individually
specified for each block of the multichannel lattice filter,
globally setting them to IMQR = 6 proved to be appropriate.
Fig. 3 shows the output (a priori) MSE attained by MQR over
all the packets for 16, 24 and 32 bit resolutions, and also the
lower bound obtained with a floating-point implementation.
Also depicted are the output constellations for one of the
packets, showing how the MSE degradation due to finite
numerical precision impacts the scattering of points at the
slicer input. Fig. 4 more explicitly shows the average increase
in MSE for the full set of packets as a function of the nu-
merical precision for all considered algorithms. QR-RLS and
MQR with Newton-based Givens rotations exhibit very robust
numerical behavior and comparable performance up to 16-bit
resolution. CORDIC rotations are seen to be more sensitive
to numerical roundoff, and this conclusion actually applies
not only to MQR but to all other examined algorithms based
on Givens rotations (not shown). Finally, RLS breaks down
for less than 24 bit resolution, which is not surprising given
the much larger range, and hence coarser quantization, of its
internal variables. These results are in line with the abundant
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technical literature devoted to exposing and analyzing the
numerically unstable behavior of RLS.

C. MAKAI’05

The MAKAI’05 experiment took place off the island of
Kauai, Hawaii, in September/October 2005, in an area that
is part of the Pacific Missile Range Facility (PMRF) [16].
MAKAI’05 was specifically planned to support the High-
Frequency initiative, whose goal is to gain a better under-
standing of acoustic propagation at frequencies on the order
of tens of kHz. A large number of teams from various countries
and institutions were involved, each focused on a specific set
of objectives related to its equipment and scientific goals. The
data examined in this paper pertains to an experiment designed
by the University of Algarve, Portugal, in which 2-PSK data
were transmitted at 2000 baud (3 kHz bandwidth) around a
carrier frequency of 10 kHz. Both moored and towed sources
were used, and source-receiver ranges were on the order of
1 to 4 km. The drifting receiver array was similar to the one



Fig. 5: [MAKAI’05] Averaged impulse response estimates

used in MREA’04, but only the lower 6 hydrophones were
functional at the time.

The reported results focus on 3 bursts of 6 packets, each
packet lasting for 15s followed by a 2.9s gap. The burst cycle
was repeated every hour, for a total of 18 packets collected
over a 2-hour period at the start of Drift 5 [16], when the
receiver array was drifting eastward along a range-independent
path of approximately 100 m depth. The transmitter was
mounted on a vertical towfish and deployed at a depth of
about 25m. During the period under analysis the towed source
remained essentially stationary, at a range of little more than
1 km from the receiver.

Received signals were preprocessed as described in Sec.
V-A, and Fig. 5 depicts the resulting averaged impulse re-
sponse estimates. Two closely-spaced main arrivals of com-
parable magnitude can be seen, as well as significant contri-
butions from several secondary paths with delays as long as
40ms. Preliminary (floating-point) equalization results showed
that best results are obtained for (5, 3) feedforward coefficients
in each of the 12 input channels, 30 feedback coefficients,
and λ = 0.98. This suggests that the time span of the
feedback filter should extend to the group of arrivals starting
at delay 10 ms, which are likely to be sufficiently stable for
coherent combining. As usual in a DFE, the time span of the
feedforward filter is much shorter than the duration of ISI, its
main goal being to capture most of the available input energy
and cancel the precursor interference.

D. Fixed-point performance

As in Sec. V-B, fixed-point equalization results are pre-
sented in Figs. 6 and 7. The most striking difference with
respect to the results for MREA’04 is that the least-squares
problem solved by the adaptive equalizers is now considerably
more ill-conditioned. This seems to stem from (i) the larger
filter order, as is frequently the case when multichannel
data and fractional sampling are used, and (ii) the improved
temporal stability of the acoustic channel, as manifested in
the larger value of λ. The latter results in weaker statistical
fluctuations of the data covariance matrix, whose effect is akin
to an additional noise source. In the case of plain RLS, which
explicitly updates the inverse of the covariance matrix, it was
found that 28 bits in integer parts were now needed to repre-
sent the range of internal variables observed in the floating-
point algorithm. For the word lengths shown in Fig. 7 this
left too few fractional bits for accurate quantization, resulting
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in numerical divergence. A floating-point implementation of
RLS in MATLAB with pseudo-quantization (i.e., truncation
to a specified word length after floating-point operations)
successfully converged only for a minimum precision of 48
bits, with 32 bits allocated for integer parts. In contrast, QR-
type algorithms were able to continue operating with integer
part lengths of 6 bits, as in Sec. V-A.

In spite of the improved numerical stability relative to RLS,
QR-type algorithms now require 4 additonal fractional bits
for acceptable performance (note the difference in the legend
of the upper curves of Figs. 3a and 6a). MQR still provides
almost identical performance to QR-RLS using Newton iter-
ations, and the CORDIC implementation again exhibits less
robust behavior.

VI. CONCLUSION

The main goal of this work was to evaluate the performance
of a new multichannel lattice RLS filtering algorithm (MQR)
using data from underwater acoustic communication experi-



ments and fixed-point arithmetic. This type of filter may be
well suited for channel equalization in underwater receivers
due to the linear scaling of its computational complexity with
filter order and robust numerical behavior. Practical aspects
related to equalization, such as timing/carrier recovery and
slicing of symbol estimates, were also addressed.

Data sets from the MREA’04 and MAKAI’05 experiments
were examined, the former having mild ISI and noticeable time
fluctuations, whereas the latter had stronger ISI but appeared to
be more stable. Experimental results showed that the algorithm
retains the same desirable numerical robustness characteristics
of other square-root RLS variants, namely, QR-RLS. Minor
degradations in output MSE were observed down to word
lengths of 16 bit in MREA’04 and 20 bits in MAKAI’05.
These values for fixed-point precision are well within the reach
of current technology for embedded or hardware implementa-
tions of signal processing algorithms. By contrast, plain RLS
was found to require higher precision for adequate operation,
as much as 48 bits in MAKAI’05 data. The variant of MQR
using Newton iterations for computing Givens rotations was
found to tolerate shorter word lengths than the one based on
CORDIC.

Given the availability of intermediate-order filtering residu-
als throughout the lattice filter, practical methods for automat-
ically choosing a suitable equalizer order may be considered
in future work. Developing alternative lattice-like multichannel
decompositions that allow the order in a single input channel
to be gradually increased may also be useful in practical DFEs
for underwater receivers, where the (single) feedback filter is
typically longer than the (multiple) feedforward filters.
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