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Acoustic estimation of seafloor parameters: A radial basis
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A novel approach to the estimation of seafloor geoacoustic parameters from the measurement of the
acoustic field in the water column is introduced. The approach is based on the idea of approximating
the inverse function that links the geoacoustic parameters with the measured field through a series
expansion of radial basis functions. In particular, Gaussian basis functions are used in order to
ensure continuity and smoothness of the approximated inverse. The main advantage of the proposed
approach relies on the fact that the series expansion can be computed off-line from simulated data
as soon as the experimental configuration is known. Data inversion can then be performed in true
real time as soon as the data are acquired. Simulation results are presented in order to show the
advantages and limitations of the method. Finally, some inversion results from horizontal towed
array data are reported, and are compared with independent estimates of geoacoustic bottom
properties. ©1996 Acoustical Society of America.

PACS numbers: 43.30.Ma, 43.30.;MBP]

INTRODUCTION The background model can sometimes be established
using historical data or independent measurements. How-
Geoacoustic seafloor properties are an essential requisiggzer, when a confident background model cannot be estab-
to properly predict acoustic propagation, especially in shallished, the inverse problem is strongly nonlinear. In this
low water wave guides and/or at low frequencies. Howevermore general case, the estimation of the geoacoustic param-
their measurement or estimation with traditional techniquesters is usually stated as an optimization problem and global
requires the deployement of instrumentation on or within thesearch strategies have to be employed. Collins and co-
seafloor(such as geophone stations, coring, cone penetronworkers have successfully shown how the simulated anneal-
eters, etg, resulting in costly and time-consuming proce-ing algorithm can be employed to estimate bottom
dures. For this reason, there has been a growing interest parameter§.’ Further applications of the simulated anneal-
recent years in methods able to identify geoacoustic modelsg search have been reported by Dossal. and Chapman
from the measurement of the acoustic field in the water colet al®®°
umn. This approach, that can be regarded as acoustic remote Another global search approach, the so-called genetic
sensing of the seafloor, is characterized by two major asalgorithms, was more recently introduced to the underwater
pects: one is experimental, and is concerned with the suitablecoustic community by Gerstdff Applications of this inver-
design of sensors, sources, and at-sea procedures to acsipn strategy to field data have also been repoited Refs.
rately measure the acoustic field structure. The other is conitl and 12.
putational, and consists in the determination of a stable in-  Although fairly general, a global search approach may
version algorithm able to uniguely recover the geoacousti@lso show some drawbacks. In particular, it requires time-
parameters from the measured field. This article is mainly}consuming computations and it is more difficult to determine
concerned with the computational part of the estimatiorthe reliability of the solution found. Efforts to increase the
problem, i.e., with the inversion strategy. computational efficiency of global search algorithms are re-
Realistic attempts at geoacoustic characterization fronported in recent studies using eigenvalue/eigenvector
the acoustic field were started by Frisk and co-workefs. analysist® adaptation of the search intervafs:® combina-
From the computational viewpoint, they mainly used a perdion of global and local algorithm€. Comparison of error
turbative inversion approach, i.e., a linearization of the in-estimates of linear inverse theory with those of genetic algo-
verse problem in the neighborhood of anpriori known  rithms was reported in Ref. 17, while the importance of
background geoacoustic model. If the background model i€ramer—Rao bounds to assess the resolution/robustness of
sufficiently close to the true model, powerful methods ofthe inversion strategy and the eventual need of reparametri-
linear inverse theory can be employed and the true solutio@ation of the search space was emphasized in Ref. 18. An
can be found. ingenious attempt to reduce the nonlinearity of the problem
by a suitable selection of the cost function to be minimized
dElectronic mail: andy@dist.unige.it was proposed by Rajarat the price of decreased resolution
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on the determination of aapproximatedinverse function the approximation has validity over the whole domain of
from a set of known correspondences of geoacoustic paranmterest; hence the global solution will be found. Moreover,
eters and acoustic fields. To fix the ideas, let us cathe if several data sets are recorded with the same experimental
vector of geoacoustic parameters that we wish to identifyconfiguration, the network coefficients do not need to be
and let us calk the vector of measured acoustic datdnere  changed, and the same network can be used to invert the
the elements irx can be complex or replLet us also sup- whole set of data(in contrast, a global search approach
pose that all the other parameters influencing acoustic propavould require a new search for each new data véctor
gation (water depth, sound speed in the water, source- The use of nested network schemes with sigmoid basis
receiver configuration, etcare known. Ideally, one would functions was recently proposed for seismic inverSiand
like to have available a closed forfrof the inverse function, for acoustic tomography probleri%In this work we pro-
such that pose and illustrate the use of radial basis functiG®BF9 of
the Gaussian kind. The theoretical foundation of RBFs has

fo)=m. (1) been extensively described by Poggio and Gifoahd by
Note, incidentally, that in the global search approach a clasBowell?? The use of RBFs for the interpolation of sparse,
of possible inverse functions is specified as scattered marine sediment data was reported in Ref. 23. An
application of RBFs in the context of an elastic inverse prob-
lem was described in Ref. 24, while in the context of geoa-
coustic parameter estimation, some preliminary results on
whereE is a suitable cost function arx{m) is the replica this line of work were presented in Ref. 25.
field associated with the choige of geoacoustic parameters The article is organized as follows. In Sec. | the basic
and computed with an appropriate forward model. Note als&RBF approach to the approximation of the inverse function is
thatf does depend on the specific choicestoind on the described in more detail the insertion of physical constraints
model for the replica field computation. is discussed, and the acoustic data model is introduced. In
_ Sincef is not known, we want to find an approximation Sec. Il inversion results on simulated data are reported, both
f, where the approximating function has a prespecified strugn the wave number and in the pressure versus range domain.
ture. For instancd, may be a series of known basis functions In Sec. Ill inversion results on field data are reported and
with unknown coefficients. Let us call the vector of un- compared with estimates of the geoacoustic parameters ob-
known coefficients of the approximating function. Then wetained with traditional methods. Finally, advantages and
have thatf=f(x,w). The determination of(x,w) is a para- drawbacks of the method are discussed and conclusions are
metric problem, while the determination of the true inversegiven.
functionf is a functional problentand, as such, much harder
to solve. Let us also suppose that we have available a set of
N vector pairsix, m N , such that, for each paif(x)=m;, " RBF APPROXIMATION OF INVERSE FUNCTIONS
or, equivalentlyX(m;)=x;. Then we can use thid pairs to  A. Basic theory
identify the coefficientsv of the approximating function, for
instance by imposing

f(x)=m=arg[[nin E(x,x(M))}, 2

meM

Let us suppose that we are given a kndiarward rela-
tion that links the model parametersto the measured data
N x: .7 (m)=x. Note that in our specific case the operafbiis
W=arg{ min 2 If(x; , W) —myli2}, (3  given by the wave equation. We also assume that all the
wew 't other environmental and geometric parameters that define the
Oz?coustic propagation are known. Our goal is to determine an

o~

where the norm is the usual Euclidean norm. The accuracy functiorf such thaf(7(m))=m f bel
the approximatiori will depend on many factors such as the INVErse functiort such thal{.#{m))=m for everym belong-

particular structure imposed, the set of known pairs, the abil"d o the space of physically admissible geoacoustic models,

ity of identifying the coefficient vectow, etc. In Sec. | we As often happens in the case of inverse problems, the above
will discuss these issues in detail ' requirement is not sufficient to uniquely determifijeand

In recent literature, approximation schemes that take thgddmonal constraints on the gtruc_:ture fohave to be im-
form of series expansion, eventually nes(eé., of the form posed. The common regularization approach to inverse
' ' problem$® prescribes the inverse to be bounded and continu-

f(x,w)zzjwj #i(X), ous in order to also guarantee some robustness with respect
to data perturbation. So the inverse function can be deter-
mined as the minimizer of the following cofinctionat

f(XaW):EJ‘Wj%{’j(Ekaﬁbk('")), J(H)=[f(Z(m))—m|]2+ \H(f), (4)

are referred to as a neural network, or learning networlkwhere H is a smoothness constraining operator anag
schemes, since they can be implemented in hardware in laagrange multiplier. Note the similarity of the above equa-
network fashion. This usually leads to very efficient compu-tion with those usually appearing in linear inverse thedry.
tations once the coefficients are determined. However, Eq.(4) is minimized by a function, and not by a
The advantage of a network approximation scheme ofiector, and its analytical solution is not known except for in
the kind just described over global search or linearized ina very few special cases. Let us now suppose we have avail-
version is that, by suitable selection of the basis functionsable thetraining setof input—output pairgx; ,m;}\;, with

or
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FZ(m)=x;, i=1,...N. We may use this set to find an ap- sion of the algorithm: the centers have been randomly se-
proximationf of the inverse functiori with the obvious re- lected, and the variances have been tuned by trial and error,
quirement thaf(x;) should be close tm; . So we impose taking advantage of the fact that, at least for this specific

problem, the approximation is not sensitive to the variance

N
fzarg{min[ D f(xi)_mi”2+7\H(f)J ] 5) value but only to its order of magnitude.
f i=1

Poggio and Girosi have shown, using variational argumentss. Choice of the forward model
that, if H(f)=||Rf|?>, whereR is a linear, rotationally and

};ans;?ril]c.)nally invariant operator, thénakes on the follow- be applied to different data setbroadband/narrow-band

sources, vertical/horizontal receivers, gtén order to gen-
f(x)zccp(xl,___,xN :X) +Kg(X), (6) erate the training set, however, a specific forward model

has to be selected. This situation is identical to that encoun-
where® is aN-dimensional vector, whoséh component is  tered in the global search approaches, where one has to select
given by the functiong(|x;—x|)), i.e., a radial basis function, 3 forward model and determine the best fit to the data using
C is amXN coefficient matrix, with elements;; , andmis  hat specific model. It has to be clear that the inversion re-
the dimension of the vectan; kg is am-dimensional vector  gyjts strongly depend on the choice of the forward model,
function whose components span the null space of the opergghatever specific algorithr(RBFs, global/local search, trial
tor R. Moreover, the functionp is Green’s function of the  and erroy is used. If the forward model is incorrectly chosen
self-adjoint operatoR*R.?* The expression of equatid®)  (if, for instance, it neglects scattering effects, and the source
can be shown to be theest approximanto the true inverse frequency is in the range of tens of kHzhe inversion re-
function given the knowledge of the training $&t. sults will certainly be dubious.

A most useful property of RBF theory is that, for several | the simulated and field data applications presented in
constraint operators, the analytic form of Green’s funcifon gecs. |1 and 11l we have supposed that acoustic propagation
is known. In particular, whenR=3%{_,4'/ox', we have takes place in a horizontally stratified range-independent en-
Gaussian RBFs, i.eq(r)=exp(—r%o?); in this case also, yironment. The seafloor is treated as a viscoelastic stratified
the termkg can be ignored. Other cases are discussed ifhedium.
detail in Ref. 21. The saFARI codé® was used for the computation of the

From the point of view of the inversion, Gaussian RBFsforward problem. The deterministic sound pressure at the
are particularly appealing because they automatically put thgaceiver location ,z), r being the range from the source
approximated inverse in a smoothness class that enforces thqz the depth with respect to the sea surface, is given as the

use Gaussian RBFs. It has to be clear, however, that thisgyrce:

choice may be debatable: If one would like the inverse func-
tion to belong to a different smoothness class, a different
choice of RBFs would be required. An example of such an
instance, althou.gh in a different conte.xt, may be found ir\/\/herew is the source frequencyn is the vector of geo-
Ref. 24, where it is shpwn hqw Ga}u33|an RBF.S are able t coustic parameters,is a known vector of all the quantities
recover the shape of rigid objects in contact with an elas“(fnfluencing the acoustic propagatigsound speed profile in
surface, except for the case of objects with discontinuou}ehe water column, source depth, gfcc is the horizontal
edges, where sigmoid-based networks give better results. Nave number and() is Green's fljnction of the depth sepa-

that case, the regularity of the Gaussian basis functions is Ated wave equation. In testing the RBF’s inversion we have

drawback mstead_ of an ao_lvantage. . used as acoustic data vectoeither one of the following:
As a last point, it is important to emphasize that the

RBF's expansion is fully nonlinear, but, in contrast with ~ X,=[|p(@,r1,z,m,9)|,....|p(,r4,z,m,s)[17, 9
other network schemes, imear in the coefficientsThis
property allows for easy identification of the mati By
imposing the relations xg=[19(x1,0,m,9)|,... |g(x; ,0,m,9)[]T, (10

The development of Sec. | A is fairly general, and it can

p(w,r,z,m,s)zJ:g(x,w,m,s)\]o(xr)x dx, (8

or

7) i.e., the amplitude of the pressure field sampleq katcations

in range, or the amplitude of Green’s function sampled at
one gets a system of linear equations in the unknown coefpoints in the horizontal wave number space. The superscript
ficientsc;; that can easily be solved with standard methodsT stands for the vector transpose.

Note, however, that the linearity in the coefficients as-  These two specific data vectors, and 8#&ARI model
sumes that the RBF centers and variances have been defingsklf, were chosen because they perfectly suit the experi-
a priori. If one wants to determine the optimal position of mental configuration treated in Sec. lll, that is, they are a
the centers and the optimal variance, the RBF approximatiohorizontal array of receivers at a relatively short distance
also becomes nonlinear in the parameters, posing nontrivigless than 1000 jnfrom the source. The short source—
computational problems. In the algorithm described in thisreceiver distance is emphasized because it justifies the as-
article, we have employed the linear-in-the-coefficient versumption of a range-independent environment and also the

f(xj)=CCI>(x1,...,xN Xp)=m;, j=1,...N,
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fact that in our simulations and in the field data inversionD. Selection of the training set
noise is not an issue, being the signal to noise r@NR) is
always particularly favorable. In the field experiment, for
instance, SNR was estimated to be approximately 20 d
Note that, if the noise level is much higher, it would be bette
to use a training set which is also corrupted by ndsse the
discussion in Ref. 24

The accuracy of the RBF approximatiéndepends, in
rinciple, only on the number of pairs in the training set.
pecifically, there are several convergence results that show

rthat, under certain regularity assumptions on the function to
be approximated—f asN—».?2 However, these results are

mainly of theoretical interest. For the purpose of the present
article, there are two considerations that need to be taken into
account. The first is that the pairs in the training set do not

In the sequel we assume that the seafloor can be disteed to be taken in any particular order: RBFs are good

cretized inl layers of known thickness. In general layer interpolants of scattered data points in multidimensional
thickness is not known, however the environment can bepaces. This makes it possible to select the model vegtors
discretized in layers of equal thicknesseach, selecting,,  in the training set through random generation.

as the minimum thickness that can be resolved at the fre- The second, more important, consideration is that,
guencyw. Also, the number of layers can be selected by through the training set, we can impose additional physical
taking into account the maximum penetratiag,, of the  constraints on the approximated inverse. This can be
acoustic field into the bottom at the given frequenrgyand  achieved in several different ways and depends on the spe-
then choosing=z,,,/z,,. Note that, theoretically, the acous- cific a priori knowledge, if any. One can bias the random
tic field lasts to infinity; however, it is well known in practice generation of models by forcing some specific structure, like
that, for a given frequency, the measured acoustic field in tha positive gradient of some of the parameters as a function of
water is not sensitive to variation of the geoacoustic propereepth, or by allowing only weak negative gradients etc. It is
ties of the layers below the cutoff depth . up to the designer of the network to choose what sort of

One problem in fixing the thickness priori is that the  constraints, if any, is best suited for the specific problem he

effective resolution and penetration of the acoustic field, dehas at hand. Note in particular that, depending on the param-
pending on the wavelength, are not known, and must betrization chosen, known correlations among the parameters
fixed accordingly to some preliminary sensitivity study. can also be inserted at this stage.

However, as specified later, a sensitivity study is in any case In some of the simulations presented in Sec. Il we have
required for a meaningful selection of the geoacoustic paimposed the additional constraint of a positive gradient of
rameters to be estimated. One advantage of fixing the thickeompressional and shear velocity with respect to depth. This
ness is that, in some cases, this information is indeed knownyas in fact the situation expected for the field test described
then it can be easily incorporated in the inversion strategy.later. In the simulations it will also be shown how, for the

The geoacoustic parameter veaowith M elementsis  cases considered, a training set consisting of 800 pairs is

in general given by sufficient to achieve a certain degree of accuracy.

m=[c}.c¢.ay.al,p']", (11

C. Selection of the geoacoustic parameters

E. Test set: Checking the accuracy of the

wherec, and &, are the subvectors of compressional wave O
approximation

speed and attenuatioq, and «; are the subvectors of shear
wave speed and attenuatigm,is the subvector of density. Once the geoacoustic vectars of the training set have
Each subvector has, in generaklements, and each element been generated, the corresponding acoustic field calcu-

in positionj refers to the corresponding parameter of ttte  lated by a suitable forward modé&arari in our casg¢ The
layer. training set thus obtained is used to identify the coefficients

It must be emphasized that not all of the above paramef the RBF network. In order to check the accuracy of the
eters have the same influence on the acoustic field. This r@pproximation, another set of pafeg ,mj}]K:l, the test set, is
flects the physical fact that, in a given situation, not all thegenerated accordingly to the same rules employed in the gen-
geoacoustic parameters need to be known accurébelat  eration of the training set.
all) to predict the acoustic propagation. For instance, depend- The computed acoustic field in the test set is given as
ing on the source frequency, unconsolidated marine sedinput to the RBF network, and the corresponding moda;ls
ments may be treatedé%s a fluid medium, and shear propertiesmputed as
can be safely neglected. A~ 2 .

In order to obtain a meaningful result out of the inver- my=fw.x), j=1...K. (12
sion(whatever strategy is usgd preliminary analysis of the The results of the RBF inversion are then compared to the
problem is required in order to select a parametrization of thérue valuesm; . As a figure of merit, we have used, for each
seafloor environment that is significant with respect to theof the parameters in the vectan, the mean relative error
problem at hand. The discussion of this kind of sensitivity|m, —m;|/|m;| averaged over the test set, and its variance. It
analysis is beyond the scope of the present article. Exampleés important to evaluate the accuracy in retrieving every
can be found elsewhet&®3!|n the examples of Sec. Il it single parameter since not all the parameters may, or need to,
will be shown how the accuracy of the estimate is affectecbe determined with the same precision.
by the influence of the various parameters on the acoustic In this phase, it is possible to determine the effect of
field. varying some of the network parameters on the accuracy of
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the results. In particular, the variance of the Gaussian RBFSABLE |. Geometric and environmental information for example 1. The
can be tuned. In our specific case, the Gaussian variance Wg%ta vector to be inverted is the amplitude of the undersampled Green's

. . . . __function. The geoacoustic parameters to be retrieved are the compressional
tuned manually, that IS, W'th.OUt any a_nalytlcal or numerlca‘lwave velocities in five layers of equal thickness. The search interval is
attempt to determine the optimum variance value. However;s00-2000 mis for each layer.

we have noted the following properties.

(1) Different variances need to be used depending on the Water depth(m) 140
specific subset of geoacoustic parameters cqnsidered; We  source frequencyHz) 100
have used the variance value of*¥0r the P velocities, 16
for the S velocities, and 1bfor P attenuations. Source deptiim) 100

(2) The inversion result is sensitive only to the order of Receiver depttm) 100

magnitude of the variance value chosen.

The test set has to be generated over the whole param-
eter search space since we wish to evaluate the RBF approxi- Layer thicknesgm) 5
mation over its global domain. We remark again that the
figure of merit of the RBF inversion is the ensemble average
over the errors of each single element in the test set. Thg the horizontal wave number space. The undersampling of
mean error thus obtained can be considered as the low&reen’s function has been considered to resemble the ap-
bound of the mean estimation error when the RBF inversiolproach of Collinset al.” In the generation of the training and
is applied to real data, and the error variance a measure off the test sets, the sound speed in every layer is allowed to
the stability of the result. In the examples reported, the sizgary between 1500 and 2000 m/s. A positive gradient of

Sound speed in watém/s) 1500

K of the test set has been fixed at 100. compressional velocity versus depth is forced, so that the
velocity in layeri is always greater than or equal to the
F. Summary of the RBF inversion scheme velocity in layeri—1. Training sets consisting of 50, 100,

. . .., 200, 400, and 800 pairs, were considered; the same test set of
We give here a brief summary of the steps needed in th‘ioo pairs was used in all the above examples

RBF Inversion proced.ure. i . In evaluating the inversion result, it is important to re-
(1) Fix the experimental configuration, choose a data

representation. a geoacoustic model vectar and a for- member that we report, for each geoacoustic parameter, the
P X, a g N ' mean error over the whole test set. For this reason, the usual
ward acoustic model such that#(m)=x.

(2) Generate the training s& =.7(m;) m N . by ran- representation of the resultStrue” versus ‘“estimated”)
1 " 171 =

. . . would not be feasible or even significant in this case.
domly selecting the vectoms; in the search space of physi- . S
cally admissible parameters. If additiorsapriori knowledge In Fig. 1 the mean approximation error over the test set
y P : g is reported for each layer as a function of the number of pairs

IS available in terms of certain fegt_ures of the expected SOlui'n the training set. It can be seen that, as expected, the mean
tion, force each elemem; to exhibit these features.

(3) For each parameten, in the vectorm, identify the error decreases at an increasing in the training set, and that,
RBE coefficientspc b Esin the knc;wn relations in the case of a training set of 800 pairs, the error for every
(M) =SN ¢, exp(||>l?-—x->|/|2/ ) .g_ 1. N.A system ofN layer is below 0.7%. In looking at the result, one has to take
ki =1k i~ Xil7ow, ) =L N A SY into account that, by generating the solution at randbat
linear algebraic equations has to be solved for each geoa-. . " :

. with the constraint of positive gradient versus deptine
coustic parameter.

. relative error is of the order of 10%.
(4) Generate a test set, and compute the mean relative 0

error and variance of the RBF inverse solution on the test set.
If not satisfied, go to stef?) and increase the numbgk of 25
pairs in the training set.

(5) Apply the RBF inversion to the data.

2.251

Il. SIMULATED DATA INVERSION

~
3l
T

Some results of the RBF approach were reported 3 15+

earlier®>*2Here we report two illustrative examples, one to
show the decrease in the approximation error as the number
of pairs in the training set is increased, the second to illus-
trate the network design employed on the field data in Sec. o7
lll. In both cases acoustic propagation at low frequency in a
shallow water channel is considered.

125+

Mean relative error (%)
T

Q.51

In the example 1, the geoacoustic parameter vaot®s 251
formed by the compressional velocities of a five-layer seaf- e o .
loor, where each layer has a 5-m thickness. All the other no. of elements in the training set

parameters are assumed known and are reported in Tablell
. . , . IG. 1. Example 1. Mean percentage error over the test set for each layer as
The data vectox is the amplitude of Green’s function a't a function of the number of pairs in the training set. The number on each
a frequency of 100 Hz, sampled at 64-equally spaced pointsurve is referred as to the layer number.
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FIG. 2. Experimental configuration of the field experiment.

We note, incidentally, that a number of training data of The results of this simulative test show that, at least in
the order of 16 of magnitude is not critical either from the this case, the accuracy of the RBF inversion is physically
point of view of the network coefficient determination or consistent with the relative influence of each parameter on
from the required forward model runs. The generation of theacoustic propagation. One would especially expect the
training set of 800 pairs always required lesaitah on our  acoustic field to be most sensitive to the compressional ve-
nonoptimized implementation on an HP 735 workstationlocity, to be fairly sensitive to any shear velocity of the order
with multiple users. of magnitude of 400 m/s and above, and possibly to show

Example 2 was part of a preliminary assessment of thesome sensitivity to the compressional attenuation. By look-
technique for application to the experimental data reported ifng at the results in Table IV, one can see that compressional
Sec. lll. This explains some of the similarities with the ex-velocities are all estimated with a mean error of less than
perimental situation. An horizontal towed array of 40 ele-1%; the shear velocity of the third layer, being on the aver-
ments, at 4-m spacing, is the receiving system, so the datge higher than those of the first two layérsmember that
vector x is in the amplitude of the pressure field at the re-the shear velocity is forced to have a positive gradient w.r. to
ceivers position. The experimental situation is conceptuallydepth, is also better retrieved. As for compressional wave
similar to that of the sea trial, and is reported in Fig. 2. Theattenuation, the standard deviation values show that, in this
source is transmitting a 100-Hz tone signal; the other relcase, the RBF approximation is not able to produce any
evant geometrical and environmental parametiatightly  meaningful result, confirming the expectation that the acous-
different from those of the experimerdre reported in Table tic field is least sensitive to this parameter.

Il

The bottom was discretized in three layers of 5-m thick-

ness each, the geoacoustic model vector to be retrieved Wg

in the compressional and shear velocities for the three layers, \We will now describe the results obtained with the RBF-
and the compressional wave attenuation of the first two laybased inversion on towed array data in a shallow water en-
ers, for a total of eight parameters. The search spaces feironment. This data set was acquired during an experiment
each parameter are reported in Table III. that took place in February and March 1995 in the Adventure
A training set of 800 pairs was generated, forcing a posiBank area of the Strait of Sicily in the Mediterannean Sea.
tive gradient versus depth for both compressional and shedthe experiment focused on at-sea testing of operational pro-
speeds. No assumptions were made for the attenuation. Thedures to estimate geoacoustic parameters in shallow water
results over a test set of 100 pairs, generated with the samg@ith a moderate aperture towed array. A 40-hydrophone,
assumptions used for the training set, are reported in Tablg-m spaced, horizontal array was employed, together with a
V. flextensional sound source operated at low frequency in cw
mode. Both source and receivers were towed from the same
TABLE Il. Geometric and environmental information for example 2. The platform at 4 knots, with the geometric configuration of Fig.
data vector to be inverted is the amplitude of the pressure field on a 402. The relative position of the source-receiving array geom-

element horizontal array. Elements spacing is fixed at 4 m. The geoacoustic itored at lar int Is b ti
parameters to be retrieved are the compressional and shear wave velocity(?i]fry was monitored at regular intervals by acoustic means.

each layer, plus the compressional wave attenuation in the first two layers.

g. FIELD DATA INVERSION

TABLE Ill. Parameter search space for example 2. The training set has
Water depth(m) 140 generated by randomly selecting the geoacoustic parameter values in inter-
vals noted with the constraint of positive compressional and shear velocity

Source frequencyHz) 100 gradients versus depth.
Source depttfm) 100

P velocity S velocity P attenuation
Receiver deptiim) 100 Layer No. (m/s) (m/9 (dB/N)
Source—1st receiver distantm) 200 1 1500-1900 80-400 0.1-1
Sound speed in watém/s) 1500 2 1500-2000 80-600 0.1-1
Layer thicknesgm) 5 3 1600-3000 150-1500
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TABLE IV. Mean relative error and standard deviation of the RBF inversion result over the test set for example

2.
P velocity S velocity P attenuation
Layer No. Mean (%) s.d. (%) Mean (%) s.d. (%) Mean (%) s.d. (%)
1 0.4 0.3 4.0 6.5 24 86
2 0.7 0.8 7.2 12.8 22 37
3 0.8 1.6 33 4.1

The deformation of the towed array was constantly moni-depth and range source depti40 m) and source-first re-
tored in real time by means of nonacoustic sensors. Grounceiver distanc€535 m), a RBF inversion network was built
truth information was obtained by independent measurewith the methodology described in Sec. | and with the same
ments through gravity cores, geophone data, and a shallodiscretization and training rules of example 2 in Sec. Il. Note
seismic survey, integrated with Hamilton’s tabulaffband  that, although known, we have not included the true layer
geological information on the area. The independent geoahickness in order to have a sort of “blind” or semiblind
coustic model thus obtained is reported in Table V, togetheapplication of the method.
with the relevant water column information. It is important Each of the 15 snapshots was inverted by the same net-
to underline that the information on the last sediment layework. The results of the inversion for each snapshot were
was derived through the use of Hamilton regression equaaveraged, and the average values, together with the standard
tions, and not by direct measurements. The sediments in thideviation, are reported in Table VI. These results can be
area are generally described as sandy sediments rich in catirectly compared with those of the independent Hamilton-
bonate content. based geoacoustic model. Moreover, the standard deviation
A detailed description of the experiment, including the gives an indication on the variability of the estimates. Note
system setup, will be described elsewhere. A cruise and dataat this variability can be due both to the approximation
report can be found in Ref. 32. For the purpose of the presenibherent in the RBF approach and to the variability of the
article, we are satisfied in reporting the results obtained indata themselves.
verting a subset of the whole data set that can be directly It can be noted that the results obtained are fairly close
compared with the geoacoustic model of Table V. For thisto that of the independent geoacoustic model, taking into
set of data, the acoustic source was transmitting at 110 Haccount the differences in methodology. The compressional
As mentioned earlier, the SNR during the experiment wawelocities estimated with the RBF inversion are higher than
estimated of the order of 20 dB. those of the Hamilton-based model, particularly in the last
The data set to be inverted consisted of 15 “snapshots,’layer. Note, however, that the RBF estimate is closer to what
each one the amplitude of the 110-Hz pressure field as renay be expected for a carbonate sand sediment, and that in
ceived at the 40 hydrophones. The snapshots were collectéde same area it was already reported, at least for shear ve-
at different instants in time during the tow. Before the inver-locity, that there was a discrepancy between Hamilton-based
sion, the data were smoothed with a 4-point moving averageexpectations anih situ measured values.
The smoothed data set is reported in Fig. 3.
The 15 snapshots were acquired over a range of 600 m,
in an environmental situation that could be fairly described
as range independent. However, as can be seen, the data 4 . D wlusedloremesen :
show some relevant variability from one snapshot to the

44

)
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¥

dependent measurements and Hamilton’s regression curves. Depth is as-
sumed 0 at the water surface.
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521 A" r‘,’ 4
Depth P velocity S velocity oA .,( ‘
(m) (m/9) (m/9) Description bar \‘;{‘Q[ﬁ’“““ T
' if
0-118 1508 0 water column 561 ‘.
118-124 1550 230 recent sediments—sand =]
124-126 1585 275 transition—sand 80 : : L : L L L
o} -3 10 15 20 25 30 35 40
126-136 1610 290 guaternary sediments—sand Fivarephona rio.
=136 1700 360 quaternary sediments—sand FIG. 3. Amplitude of the pressure field as received at the hydrophones for

the fifteen snapshots.
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a0 : : : . ‘ ; . : . can be classified as a low porosity coarse sand.

T IV. DISCUSSION AND CONCLUSION

The RBF approach to geoacoustic inversion was intro-
duced, and has proved feasible on simulated data. The first
attempt to use this inversion technique on field data has
1 given results that are in qualitative and, to a certain extent,
also in quantitative agreement with independent estimates of
the same quantities. It has also to be noted that we have not
attempted any particular optimization of the RBF procedure

LR ] tailored to the specific experimental situation. Our purpose

sk . }. e fresand 1 here is to show the results of the technique in its standard
formulation. We are currently exploring optimization proce-

e 4 & 8 10 iz 1% 15 18 =20 dures with the goal of not loosing, or loosing only in part, the

Dapth {m} generality and the simplicity of the method.

G 4 C onal chear velocity ratio as a function of deoth From the point of view of computational efficiency, the
Dott'ed.IingTvﬁ[le:tS;?g:ain\\//:z?osn results, togei/her with error bars due to Ft)hé'nvers'On of the fifteen data sets required Q0.0.I’UHS of the
uncertainty in the estimate. Continuous line: typical profile for fine sandforward model(as many as needed by the trainiagd the
(from Ref. 34 and Table JI Dotted line: typical profile for silt clayfrom  test sel, plus the solution of the linear algebraic systems for
Ref. 34 and Table)! the coefficient identification. If one wants to compare this
with the number of forward model iterations needed for a

The high values of the standard deviation for the sheaglobal search strategy, one has to consider that a new global
velocity are an indication of a poor performance of the in-search should be done for each of the fifteen snapshots in the
version scheme or of a strong lateral variability of sheardata set. By using, for instance, the amount of forward model
properties in the areéor both. It has to be taken into ac- computations reported for typical runs of the genetic
count that the data do display variability, and that perhapslgorithms!® one gets 10 000 runs of forward models for a
even averaging the estimates on a relatively short path masingle search with the standard algorithm, and 1000 runs
lead to incorrect conclusions. (still for a single searchwith the hybrid version.

For sediment classification purposes, it may be interest- The saving in computational time may seem evident;
ing to compare the estimatd® velocity versusS velocity  however care should be taken in comparing the two methods
ratio to those reported by HamiltdA This was done by con- only on the basis of numerical efficiency. The RBF approach
sidering the ratio of the mean estimates and the maximuris well suited for all applications in which the same experi-
and minimum ratio compatible with the standard deviationamental configuration is used to survey different areas, and
reported. The results are reported in Fig. 4, together witlparticularly if the experimental setup is known in advance. In
Hamilton’s curves. Note that we estimate interval velocitiesthis case, the network coefficient can be identified before the
for a three-layer model, where each layer has a thickness @fxperiment, and the inversion can be performed in real time.
5 m. Note also that again Hamilton’s tabulation holds for fineGeophysical surveys with a towed array, like the one of the
sand, since he had insufficient data to examine soft, unlithiexperiment in Sec. Ill, are an example of such a situation.
fied calcareous sedimentsFor consolidated and/or lithified However, one has to remember that, even in the best
bottoms, Hamilton reports velocity ratios between 1.71 anctase, the RBF scheme is inherentlyapproximation When
2.06, with only one exception at 2.66ee Ref. 33, Table Il accuracy in the result is a critical parameter, global search
Looking at Fig. 4, it is possible to see that our estimatedstrategies should still be preferred.
ratios, even taking into account the relevant standard devia-
tion in the shear velocity, allow for an unambigous classifi- A ckNOWLEDGMENT
cation of at least the second and third layers as unconsoli-
dated sediment, slightly harder than water saturated fine This work was supported by European Economic Com-
sand. By combining this information with the compressionalMission under Contract No. MAS2-920022.
velocity estimates alone and the data in Ref. 34, the sediment
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