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1. Introduction

Throughout, assume H is a real Hilbert space with the inner product -, -) and the norm || - |.
Assume () # C C H is a closed and convex set. Let S : C — H be an operator and ® : C X C — R be
a bifunction. Use Fix(S) to mean the fixed-point set of §.

Recall that the equilibrium problem (EP) is to search an equilibrium point in EP(®), where
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EP(®) ={xe C:0(x,y) >0, Yy e C}.

Under the theory framework of equilibrium problems, there exists a unified way for exploring a broad
number of problems originating in structural analysis, transportation, physics, optimization, finance,
and economics [1,8,10,17,20,24-26,35]. In order to find an element in EP(®), one needs to make the
hypotheses below:

H1) 6W,v)=0, YveC;

H2) O(w,v) + O(v,w) <0, Yv,we C;

(H3) lim_o+ O((1 — D)v + Au,w) < O(v,w), Yu,v,w € C,

(H4) For every v € C, ©(v, ) is convex and lower semicontinuous (l.s.c.).

In order to solve the equilibrium problems, in 1994, Blum and Oettli [1] obtained the following
valuable lemma:

Lemma 1.1. [1] Assume that ® : C X C — R fulfills the hypotheses (H1)—(H4). I[f Vx € H and € > 0,
let T? : H — C be an operator formulated below:

1
TO(x) :={yeC: @(y,z)+z<z—y,y—x> > 0,Yz € C}.

Then, (i) Ty is single-valued and satisfies ||Tyv — TPwl* < (TPv — TPw,v —w), Yv,w € H; and (ii)
Fix(Tf)) = EP(0), and EP(®) is convex and closed.

In particular, in case of ®(x,y) = (Ax,y — x), Yx,y € C, and the EP reduces to the classical
variational ineqiality problem (VIP) of seeking x € C such that

(Ax,y—x)>0, VyeC.

The solution set of the VIP is denoted by VI(C, A).

An effective approach for settling EP and VIP is the Korpelevich’s algorithm [15]. The Korpelevich
extragradient technique has been adapted and applied extensively; see e.g., the modified extragradient
method [11, 29, 34], subgradient extragradient method [3, 13, 16, 28, 31, 32], relaxed extragradient
method [7], Tseng-type method [22,23,33], inertial extragradient method [14,27], and so on.

In 2010, Ceng and Yao [6] investigated the system generalized equilibrium problems (SGEP) of
finding (x,y) € C x C satisfying

{®l(x,u)+(Bly,u—x)+i(x—y,u—x)ZO, VueC, 0

@23, V) + (Box,v = y) + 2y —x,v=y) 20, VveC,
where By, B, : H — H are two nonlinear operators, @;,0, : C X C — R are two bifunctions, and
aq, @y > 0 are two constants.

If ©®; = ®, = 0, then the SGEP comes down to the generallized variational inequalities considered
in [5]: Find (x,y) € C x C satisfying
(@ Byy+x—y,u—x)>0, YueC,
(@Byx+y—x,v—y)>0, Vved(,
with constants a¢, @, > 0.

To solve problem (1.1), the authors in [6] used a fixed point technique. In fact, the SGEP (1.1) can
be transformed into the fixed-point problem.
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Lemma 1.2. [6] Suppose that the bifunctions @,,0, : C X C — R satisfy the hypotheses (HI)-
(H4) and By, B, : H — H are p-ism and o-ism, respectively. Then, (u*,v*) € C X C is a solution of
SGEP (1.1) ifand only if u" € Fix(G), where G := To'(I—aB)To>(I— a3 B,) and v* = To>(I— a2 By)u'*
in which a; € (0,2p) and a; € (0,20).

On the other hand, in 2018, Cai, Shehu, and Iyiola [2] proposed the modified viscosity implicit rule
for solving EP and a fixed-point problem: for x; € C, let {x;} be the sequence constructed below:

up = opxg + (1 = o)y,

Vi = Pc(uy — axBauy),

Yk = Pc(vi — a1Biwy),

Xer1 = Pelpef(x) + (I = praF)S*y, Vi = 1.

Under suitable conditions, Cai, Shehu, and Iyiola [2] proved x; — u* € Fix(S) N Fix(G), which solves
the hierarchical variational inequality (HVI):

{(aF — fu,v —u) >0, Yv € Fix(S) N Fix(G).

Moreover, Ceng and Shang [4] suggested an algorithm for solving the common fixed-point problem
(CFPP) of finite nonexpansive mappings {S,}" ., an asymptotically nonexpansive mapping S and VIP.

r=1°
Algorithm 1.1. [4] Let x,,xy € H be arbitrary. Lety > 0, € € (0,1), v € (0, 1), and x; be known.
Calculate xi1 via the following iterative steps:
Step 1. Set p, = Sixi + (S xr — Sixi1) and calculate y, = Pc(pr — (Apr), where (. is the largest
£ €y, vty l, ..} fulfilling {|Apr — Ayill < viip = yill.
Step 2. Compute 7 = Pc,(pi — i Ayi) where Cy :={y € H : {p; — {Apr — Y yk — y) = O}.
Step 3. Compute xi.1 = pi.f (xp) + oexi + (1 — o) — praF)S ¥z

Let k := k + 1 and return to Step 1.

Motivated and inspired by the work in the literature, the main purpose of this article was to design
two modified inertial composite subgradient extragradient implicit rules for solving the SGEP with
the VIP and CFPP constraints. The suggested algorithms consisted of the subgradient extragradient
rule, inertial iteration approach, and hybrid deepest-descent technique. We proved that the proposed
algorithms converge to a solution of the SGEP with the VIP and CFPP constraints, which also solved
some HVI.

2. Preliminaries

Let C be a nonempty, convex, and closed subset of a real Hilbert space H. For all v,w € C, an
operator T : C — H is called

e asymptotically nonexpansive if I{w,,}>_, C [0, +o0) satisfying @,, — 0 (m — o) and
Ty — T"w|| < @llv—wl| +|lv=-w|, Ym> 1.
In particular, in the case of @w,, = 0, Ym > 1, and T is known as being nonexpansive.
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a-Lipschitzian if o > 0 such that ||Tv — Tw|| < a|lv — w|;

monotone if (Tv—Tw,v—w) > 0;

strongly monotone if there is p > 0 such that (Tv — Tw,v — w) > pllv — w]||%;

pseudomonotone if (Tv,w —v) >0 = (Tw,w—v) > 0;

o inverse strongly monotone (o-ism) if there is o > 0 such that (Tv—Tw,v—w) > o||Tv—Twl|/*;
sequentially weakly continuous if V{v;} c C,v; = v = Tv; — Tv.

Recall that the metric (or nearest point) projection from H onto C is the mapping Pc : H — C which
assigns to each point x € C the unique point Pc(x) € C satisfying the property

llx = Pc(0)ll = inf ||lx — yl|.
yeC

The following results are well-known ( [12]):
(@) IPc(y) = Pc@I* < (y — 2, Pc(y) = Pc(2)), Vy.z € H;
b)z=Pc(y) & {(x—-2y-20<0, Vye H xeC;
©) lly =2l = llz = PcO)I? + Ily = PcII*, Yy € H,z € C;
() Ily =zl = Iyl = 2¢y = z,2) = llII*>, ¥y, z € H;
(@) lley + (1 = x> = dllyll* + (1 = DlIxl* — e(1 = Dlly — xII*, ¥x,y € H,1 € [0, 1].

Lemma 2.1. /6] Suppose B : H — H is an n-ism. Then,
(I = aB)y = (I = aB)zl* < |ly — 2l - a(2n — )||By - Bzl*, Yy, z € H,Ya = 0.

When 0 < a < 2n, we have that I — aB is nonexpansive.

Lemma 2.2. [6] Let By, B, : H — H be p-ism and o-ism, respectively. Suppose that the bifunctions
0,0, : C x C — R satisfy the hypotheses (HI)—-(H4). Then, G := TOC?I1 - alBl)Tf?;(I —arBy) is
nonexpansive when 0 < ay <2pand 0 < a; < 20.

In particular, if ®; = ®, = 0, using Lemma 1.1, we deduce that Tf?l‘ = Tf?zz = Pc.

Corollary 2.1. [5] Let By : H — H be p-ism and B, : H — H o-ism. Define an operator G : H — C
by G := Pc(I — a1By)Pc(I — asB;). Then G is nonexpansive when 0 < a; < 2p and 0 < a; < 20.

Lemma 2.3. [9] If the operator A : C — H is continuous pseudomonotone, then v € VI(C,A) if and
only if (Aw,w —v) >0, Yw € C.

Lemma 2.4. [30] Suppose {a;} C [0,0) s.t. a1 < (1 — w)a; + wvy, Yl > 1, where {w;} and {v;}
satisfy: (i) {w;} € [0, 1]; (ii) 212, w; = oo, and (iii) limsup,_,, v < 0 or 3,2, lwvi| < co. Then, we have
lim;,. a; = O.

Lemma 2.5. [I8] Let X be a Banach space with a weakly continuous duality mapping. Let C be a
nonempty closed convex subset of X and T : C — C an asymptotically nonexpansive mapping such
that Fix(T) # Q. Then I — T is demiclosed at zero.

Lemma 2.6. [19] Suppose that the real number sequence {I',,} is not decreasing at infinity: I, } C
(T} s.t. Ty < Dpps1, Yk > 1. Let {¢(m)} s, be an integer sequence defined by

¢(m) = max{k <m: Ty <y}
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Then,
(i) p(my) < dp(mg + 1) < - -+ and p(m) — o0 as m — oo;
(ll) For all m > my, F¢(m) < F¢(m)+1 and Fm < F¢(m)+1.

Lemma 2.7. [30] Let A € (0,1], S : C — C be a nonexpansive operator, and F : C — H be a
k-Lipschitzian and n-strongly monotone operator. Set S*v := (I — AaF)Sv, Yv € C. If0 < a < %, then

1S4 = S| < (1 = A7)y = wll, Yv,w € C, where T = 1 — y/1 — a(2n — ax?) € (0, 1].

3. Algorithms and convergence theorems

Let the operator S, be nonexpansive on H forallr = 1,..., Nand S : H — H be a w,-asymptotically
nonexpansive operator. Let A : H — H be an L-Lipschitz pseudomonotone operator satisfying ||Ax|| <
liminf,_ |[[Ax,|| when x, — x. Let ®;,0, : C x C — R be two bifunctions fulfilling the hypotheses
(H1)—(H4). Let By : H — H be p-ismand B, : H — H be o-ism. Let f : H — H be ¢-contractive and
F : H — H be k-Lipschitz n-strongly monotone with 6 < 7 :=1 — \/ 1 — a(2n — ax?) for a € (0, %).
Suppose that the sequences {€,} C [0, 1], {£&,} C (0, 1], and {p,}, {0,} C (0, 1) satisfy

(i) lim, e p, =0and °, p, = 0;

(ii) lim,,_, 7;— =0and sup,, f)— < 00}

(i) O < liminf, , 0, < limsup,_, o, < 1;

(iv) limsup,_, &, < 1.

Lety >0, ve(0,1), £€(0,1), a; € (0,2p), and a, € (0,20) be five constants. Set S, := S and
G :=TO'(I — a1 BT (I — a2 B,). Suppose that A := (Y, Fix(§,) N Fix(G) N VI(C, A) # 0.

Algorithm 3.1. Let x|, xo € H be arbitrary. Let x,, be known and compute x,., below:
Step 1. Set g, = S"x, + £,(8S"x, — S"x,_1) and calculate

Pn = gnQn + (1 - fn)un,
Vn = T(l®22(pn - QZszn)’
Uy = To! (v — @1 B1vy).

Step 2. Compute y, = Pc(p, — (yAp,), where £, is the largest [ € {y, yC, y{?, ...} s.t.

LA, = Ayull £ VIpy — yall. (3.1)

Step 3. Compute t, = opx, + (1 — 0,)z, with z, = P¢c,(py — {,Ayy) and

C,:= {y €H: <pn - {nApn ~Yn,Y _yn> <0}

Step 4. Compute

Xn+l = pnf(xn) +U _pnaF)Sntm (32)

where S, is constructed as in Algorithm 1.1. Let n := n + 1 and return to Step 1.
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Lemma 3.1. [2]] min{y,v{/L} <, <.

Lemma 3.2. Let p € Aand g = T(?Zz(p — ayByp). Then,

llzs = pIP < llgn = pIP = @1(@1 = 20)IB1v, = Bigll* = (1 = €Dl = pall?
— (1 =W)llyn = zll® + Iy = pull’] = @2(@2 = 20)1B2p, = Bapll*l,

where v, = Ty>(pn — @2Bapy).

Proof. According to Lemma 2.2, there exists the unique point p,, € H satisfying p,, = &,9,+(1-£,)Gp,.
Since p € C,, we have

22 = PIP < {Pn = LuAYn = P20 — P)

1
= 5(Ipa = PIF = 1za = pull® + llza = PIP) = LAYy 20 = P

which implies that
”Zn - P||2 < ||pn - P||2 - ”Zn - pn”2 - 2§n<Aym Zn — P>

Noting that z, = Pc,(pn — &AY,), we have (p, — LAPy — YnsZn — Yoy < 0. Owing to the
pseudomonotonicity of A, by (3.1), we get

o = PIP < W1pa = PIP = llzw = pall® = 25:(AY, Y0 = P + 20 — V)
<Ipn = PIF = 120 = Pull® = 28:(AYn, 20 = Vi)
=11pn = PIP + 2{pu = 1Vn = Pull® = LAY = Y 20 = V) = llzn = yul P
=11pn = PIP = llzw = Yull® + 2Pu = LeAPw = Yus 20 = Yu) = lvn = pall®

+ 20,(Apn = AYns Zn = Yn)

< lpa = pIF + 2V11pn = yallllza = yall = lzw = Yall® = llyn — pall®
< pn = PIP = 1lyn = pall® + v(Ipn = yall®* + llzs = yall®) = llzs = yull?
=Ipa = pIF = (L = W)lllyn = pull® + llyn — zall*1-

(3.3)

Observe that u,, = Tg)l' v, — a1 Byvy), v, = TOC?;(p,1 —ayB;yp,), and g = T((Zz(p —ayB,p). Then u, = Gp,.
Applying Lemma 2.1 to get

l, = plI* < v = gl + a1(@; = 20)I1B1v, — Bigll’

and
v, = gl* < llp. = pIF + az(@z — 20)|Bap, — Bapll*.

Then,
llin, = pI* < llpa = PIP + @1(@r = 2p)II1B1v, — Bigll® + aa( — 20)|1Bopy — Bapll.

Besides, thanks to p, = &,q, + (1 — &)u,, we get [|p, — plI* < &(qn — p, pn — P) + (1 = EDlIpa — PIF,
which results in ||p, — plI* < (g, — p. P — P) = 3lllgn = PIF + lpa — PI? = llga — pall*]. So,

1P =PI < 11gn =PI = llgn — pall*. (3.4)
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Then,

Ipn = pIP < (1 = EDlluy — pIP* + &g — pIP
< &llgn — pIP + (1 = EDllIpa — pIF + a1 (@1 = 20)1B1vs — Bigll®
+ ar(@y — 20)|1B2p, — BopllP]
< &llgn — pIP + (1 = EDIgn = pIF = llgn — pull® + a2(az — 20)
X |1Bpn = Bopll* + 1 (a1 = 20)[|B1vy, — BiglI’]
=lign — pI* = (1 = EDlIgn — pull® — @1 (@1 = 2p)||Bv, — Bigll®
— ax(@ = 20)|1B2p, — Baplll,

which, together with (3.3), yields
lz, = pIF < lpn = PIF = (L = W)y = pall® + llyn — zal]

< lgn = pII* = (1 = EDINIGn — pull® = @1y = 20)|1B1v, — Bigll
— ax(ay = 20)1Bapn — BapllF1 = (1 = Wyn = pull® + 1lyn — zall*.

This ensures that the conclusion holds. O
Lemma 3.3. Assume that

(i) the sequences {p,},{q,},{yn}, and {z,} are bounded;
(”) hmn—>oo(-xn+1 - xn) = hmn—wo(qn - Zn) = limn—wO(-xn - yn) = limn—>00(Sn+1xn - Snxn) =0.

Then w,(x,) C A, where w,,(x,) = {z € H, and there is some {x,,} C {x,} such that x,, — z}.

Proof. Take an arbitrary fixed z € w,({x,}). Then, there is some {n;} C {n} such that x,, — z and
Yn, — z2 € H. Next, we show z € A. Using Lemma 3.2, we deduce

i

(1 = &DMgn — pall* = @1(ay = 2p)1B1v, — BiglI* — ax(az — 20)||B2p, — Bapll*]
+ (1 - V)[”yn - pn”2 + ”yn - Zn”2]
< |gn = pIF = Iz = PI* < 11gn — zall(llgn = Pl + llza = pII)-

Because g, —z, = 0, v € (0, 1), a; € (0,2p), a; € (0,20), and 0 < liminf,_ (1 —&,), we deduce that

lim [|B,p, = Bupll = lim [1B1v,, = Bigl| = 0, (3.5)
and

,}il?o Iy — zall = ,}E?o g, — pall = ,}ii?o [yn = pall = 0.
Hence,

1 = @ull < 110 = Yull + |lyn = zall + |z = gull = 0 (n — 00),

”xn - pn” < ”xn - qn” + ”(Zn - pn” - 0 (I’l - Oo),

”pn - Zn” < ”pn _yn” + ”yn - Zn” - 0 (l’l - OO),
and

”xn - Zn” < ”xn - qn” + ”(Zn - pn” + ”pn - Zn” -0 (I’l - OO)
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Note that
llgn — S"xull = €lIS" X = S" X1l < (1 + @)X — Xall = 0.
Therefore,
1%, = S"Xall < 1%2 = gull + llgn = S"x4ll > 0 (n — ©0).
Note that

11260 = S 2all < 1125 = ™25l + 1S 20 = S™ | + 1S, — S x|
< oty = S"xll + 1S "%, = S™ xll + (1 + @IS ", — x,ll (3.6)
= 2+ @)lx, = S"xll + 1S"x, = S™ x| - 0.
Observe that
lltn =PI < (Vo = Gty — p) + @1(B1g — Byvy, ty — p)
< 210 = gl = v =16+ p gl + Iy~ P
+ a1l|B1q = Byvallllu, — pll,
which arrives at
it = I < 11v = P = v, =, + p — gl + 2111 ~ Byv, ik, — pll.

Similarly, we get
Ve = qII* < 1Ipn = PIP = lpu = va + g =PI + 2a2l|Bap — Bopyllllve — 4l
Combining the last two inequalities, we deduce that

lun — pII* < 11pw = PIF = lpn = v + g = PIF = Ve — un + p = qII”
+ 2a1l|B1q — Bivllllu, — pll + 2a:||Bap — Bapallllv, — ¢l

Hence,

Iz = PIF < llpa = PIP < &llgn — pIP + (1 = Elluy — pIP
<&llgn — pIF + (1 = EDUGn = PIF =P — v + g = pIF = llva — tn + p — gl
+ 2a1||B1q — Byvallllu, — pll + 2as||Bap — Bapullllve — 4ll]
<lign = pIF = (A = EDIPn = v + g = PIF + Ve — un + p — qlI’] + 202(|B2p — Bap,|
X |lvi = gll + 2a,1||B1g — Bivallllu, — pll.

This immediately implies that

(1 - fn)[”pn —Vpntqg-— p”Z + ||Vn —U,+p-— Q||2]
< |Ign = pIF = llza = pIF + 2a2lIBop = Bapallllve — gll + 2a11Big — Biv,llllu, — pll
< lgn = zall(lgn — Il + llzn = pII) + 2a2l|B2p = Baopullllve — gll + 21(|B1g — Byvallllu, — pll.

Since ¢, — z, — 0, and 0 < liminf,_,,(1 — &,), from (3.5) and the boundedness of {u,}, {v,}, {g.}, and
{z.} we get that

,}Lrilollpn—vn+q—pll = ’}ngollvn—un +p—4ll =0,
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which hence yields
1P = Gpull = lIpn = tall < llpn = v + g = pll + Vo —tty + p = gll = 0 (n — 00).
This immediately implies that
Xy — Gxull < M1xn = pull + lpn = GPull + 1G Py — Gxll < 201X = pall + 1lpw = Gpall = 0 (n — 00). (3.7)
Next, we prove lim,,_ |[x, — S ,x,|| = 0. In fact, we have
ltw = xull < [lxn = zall = 0,

and

”Sntn - xn” = ||xn+l — Xn _pn(f(xn) - a'FSntn)”
< 1 = Xall + (Il f DI + @ FS 2,11) — 0.

Hence,
1 = Sl < M0 = Sutull + 1S 220 = Sutull < |y = Sutall + 12X, — 2]l — O.
Now, we show x, — S ,x, — 0,¥re {1,...,N}. For 1 <[ < N, it holds that
%2 = S neiXaull < %0 = Xsatll + 1S nssXner = S nriXall + [1Xnss = S nas Xl
< 2xn = Xl + X047 = S i Xl
This, together with assumptions, implies that x,, — S ,..,x, = 0,1 <[ < N. So,

lim [|x, =S, x,/|=0,1 <r <N. (3.8)

Now, we show z € VI(C,A). If Az = 0, then z € VI(C,A). Next, we suppose that Az # 0. By
the condition, we conclude that 0 < ||Az|| < liminf; ||Ay,,|| because y,, — z. Observe that y, =
Pc(pn — §Apy). 1t follows that (p, — {,Ap, — Vi, Yy — yu) < 0, Yy € C. Therefore,

1
Z(pn — Y Y = Yn) AP, Yn — Pn) S ADw,Y — Pn), Yy €C. (3.9)

Since {Ap,} and {y,} are all bounded, from (3.9) and Lemma 3.1, we obtain liminf; ,..(Ap,,, y —
pni> > 0, Yy € C. Meanwhile, <Aymy - yn> = <Ayn —Apn,y — pn> + <Apnay - pn> + <Ayn’ Pn — yn)-
Using p, — v, — 0 and the uniform continuity of A, we get Ap, — Ay, — 0, which hence attains
liminf, (A, y —yn) = 0, Yy € C.

To attain z € VI(C, A), let {4;} € (0, 1) be a sequence such that A; | 0(i — o). For every i > 1, let ;
be the smallest positive integer satisfying

(AVupy =) + 4,20, Vj=k (3.10)

Putyy, = ”AAjﬁ, and hence get (Ayy,, vy,) = 1, Vi > 1. So, from (3.10), one gets (Ay,, y+ vk, — i) = 0,

Vi > 1. Since A is pseudomonotone, we have (A(y + A;vy,),y + vy, — yi,) = 0, Vi > 1. So,

(Ay,y = yi) 2 (Ay — Ay + 4ivg,), y + Aivg, — Yi,) — AiAy, v), Vix> 1. (3.11)
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Let us show that lim; ., 4;v, = 0. In fact, note that {y;,} C {y,} and 4; | 0 as i — oo. So it follows
that 0 < limsup,_,, llwgll = limsup;_,, A/;ik 7 < nﬁﬁfﬂﬁiin = 0. Therefore, one gets vy, — 0 as
i — oo. Thus, letting i — oo in (3.11), we deduce that (Ay, y —z) = liminf;,(Ay,y—yi,) = 0, Yy € C.
We apply Lemma 2.3 to conclude z € VI(C, A).

Finally, we prove z € A. Note that x,, — z and x,, —S,x,, = 0, Vr € {1,..., N} (due to (3.8)). Since
I-S§,(1 <r < N)is demiclosed by Lemma 2.5, we attain z € ﬂf’:l Fix(S,). By (3.6) and (3.7), we
have x,, — Sx,, = 0 and x,, — Gx,, — 0, respectively. Similarly, / — S and I — G are all demiclosed at
zero, and we have z € Fix(S) N Fix(G). Therefore, 7 € ﬂ’rvzo Fix(S,) N Fix(G) N VI(C,A) = A. O

Theorem 3.1. We have the following equivalent relation:

+1
S™x, —S"x, — 0,

X, o u eN &
xn+l_-xn_)0,

where u' € A solves the HVI: {(aF — f)u',p—u’) >0, Vp € A.

Proof. According to the condition, we assume that @, < ’@ and {o,} C [a,b] C (0,1) foralln > 1.
Vx,y € H, by Lemma 2.7, we obtain

I1Pa( = @F + f)(x) = PA(I = aF + [l < [1 = (7 = &)]llx = yll,

which implies that Po(I — «F + f) is contractive. Set u" = Po(I — aF + f)(u"). Therefore, there is the
unique solution u" € A = ﬂ’rvzo Fix(§,) N Fix(G) N VI(C, A) of the HVI:

(@F = PHu',p—u'y>0, VpeA. (3.12)
If x, — u' € A, then we know that u' = Su' and

1S ™2, — S™ x|l < (1S, — ul|| + [’ — S™ x|
<A +a)x, —u'll + A+ @p)llu’ — x|
= (2 + Wy + ZD'n+l)||-xn - MT” - O

Note that
i1 = Xall < llu® = X1l + [Ix, — '] — 0.

Now, we prove the sufficiency.
Step 1. Let p € A. Then Gp = p, p = Pc(p — {,Ap), S,p = p, Yn > 0, and the inequalities (3.3)
and (3.4) hold, i.e.,

l1z0 = PIP < llpw = pIP = (1 = Wy = pall® = (A = Wllyn =zl (3.13)

and

1P = PI* < 11gn = PIP = llgn — pall*. (3.14)

Combining (3.13) and (3.14) guarantees that
lz. — pll < llpn — pll < llgn — pII- (3.15)
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Observe that
lg, — pll < IS"x, — pll + &,llS" X, — S" x4l

< (1 + wn)[”xn - P” + En”xn - xn—l”] (316)

&n
= +@)llx, — pll + o, - p—||xn = Xp-1ll].

n

Since sup,., %len — X,—1|| < oo, there is a constant M; > 0 satisfying

= il < M. (3.17)
Combining (3.15)—(3.17), we get
lizn = pll < llpw — Pl < llgn — pll < (1 + @)X, — pll + puMi],  Yn 2 1. (3.18)
Also, it is readily known that
It = pll < oullx, = pll + (1 = opllze — pll < (1 + @w)lllx, — pll + M ]. (3.19)

Thus, using (3.19) and @, < @ Vn > 1, from Lemma 2.7, we receive

1Xns1 = Pl = llonSf (x0) + (I = ppaF)S 1, — pli
= |loa(f(xn) = f(p) + (I = pu@F)S ut, — (I — ppaF)p + pu(f — aF)pl|
< pudllx, = pll + (1 = paDllt, = pll + pall(f — aF)pll
< pu0llx, = pll + (1 = p, )1 + @)X, = pll + paM1] + pall(f — aF)pll
< paollxy = pll+ [(1 = pu7) + @alllxs — pll + pu(l + @) M1 + pull(f — @F)pl|

(r-9)

< pa0llxn = pll + [(1 = por) + 22 s = pll + 20.M, + pall(f = @F)pl|

2
o p(T—0) (T =8) 202M; +II(f — aF)pl)
S/ (Ch )l TSI ~ .
2 2 T-96
Hence,
202M1 + ||(f — aF)pl|
e, — pll < max{lln — pif, 22 ZeB)pD, =y oy

T—0
We deduce that the sequences {x,}, {p.}, {q.}, (Vs {20} {8} {f ()}, S w1}, and {S"x,} are bounded.
Step 2. Observe thatt, — p = o,(x, — p) + (1 — 0,)(z, — p) and

Xn+l — P = pn(f(xn) - f(P)) + (I _pnaF)Sntn - (I - PnCYF)P +pn(f - CZF)p
Utilizing Lemma 2.7, we attain

1 = PIP < lloa(f () = f(P)) + (I = paaF)S ut, — (I = puaF)pll*
+ 20,((f — aF)p, Xp+1 — )
< [pudllx, = pll + (1 = puDlltn = Pl + 20u((f — @F)p, Xu1 — p)
< pa6llx, = pII* + (1 = pu DIty = pIP + 20,4(f = @F)p, Xus1 — P)
= pu6llx, = pII* + (1 = pDleallx, — pIF + (1 = o)lizs — pIP
— o1 = alIxn = zall’] + 204((f = @F)p, Xps1 — P)
< padllx, = pl* + (1 = p, D[ allx, = pIIF + (1 = o)llz, — pIF]
— (1= py0)ou(1 = TlIx, — zall* + P,

(3.20)
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where M, > 0 is a constant such that sup,., 2[|(f — aF)pllllx, — pll £ M,. By (3.20) and Lemma 3.2,
we have

%001 = pIP < pudlloen = pIF + (1 = pyDloalls = pIF + (1 = a)llzy = pIP]
— (1 = pu0)n(l = )% = zl* + puMs
< publlx, = pIP + (1 = peDtaallx, = plP + (1 = o)l — plI (3.21)
— (1 =&Dlgn = pall® = (1 = v)Ulyn = zall® + llyn = pal 1}
— (1 = pu0)n(1 = T)ln = zl* + pu M.

Taking (3.18) into account, we obtain

llgn = pIP < (1 + @) (llx, = pll + M)
= (I = pll + puM1)* + @2 + @))%, = pll + paM1)?

@2+ @) (3.22)

= |y = pI* + pud My Qllx, = pll + puMy) + (lx, = pll + pud1)*}

n

< |lx, = plP* + p. M3,

where M3 > 0 is a constant such that sup,,. {(2[|x, — pll + p.M)M, + @(Hxn —pll+paM)?} < Ms.
Based on (3.21) and (3.22), we get

%01 = PIP < padllx, = pII* + (1 = puoaallx, = pIIF + (1 = o )llIx, = pII* + puMs
— (L= &Dlgn = pall® = (L = )llyn = zal* + llyn = a1
— (1 = p0)on(1 = T)IIxs = zll* + P>
<[1=pu(r = OlIxy — pIF = (1 = )1 = I = EDlgn — Pull’* + pu M5
+ (L= )lyn = 2l + llyn = palD] = A = pu0)ou(1 = T)IIx0 = zall” + pu Mo
< |lxa = plIP = (1 = pu0)(1 = DI = EDlIgn = pull” + (1 = v)(lyn — zall?
+1vn = a1 = (A = pu D)o u(1 = Tl = zall® + puMa,

where M, := M3 + M,. This immediately implies that

(1 =, )1 = )1 = EDlgn = pall® + (A =)(lys = zl* + llyn = pall®)]

) 5 5 (3.23)
+ (1 = pp0)o, (1 = ap)llx, — zll” < lxn = plI” = X041 = pII” + oM.
Step 3. Note that
||qn - P||2 < (1 + wn)z(”xn - P” + 8n||xn - xn—l”)z
= (1 + @,)°||Ix, = plI* + (1 + @,)*&ullxy — X1 |lIxn = Pl + EullXs — X
( ) llxn = plI” +( )&ll 112llx. = pll | i) (3.24)

= (1 +@,2 + @)X, = pIP + (1 + @, &l = 2,112l = pll

+ 8n||xn - xn—l”)'
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Combining (3.18), (3.20), and (3.24), we receive

%041 = PIP < publly = pIP + (1 = pu)[oall, = plI* + (1 = o)z, — pIF]

+20,{(f — aF)p, Xys1 — p)

< [1 = pu(m = OIA + @) (1%, — pll + &allxy = X))
+2p,{(f — @F)p, Xus1 — p)

<[1 - pu(r = O + @, 2 + @))%y — pIF + (1 + @) &1 — Xac
X Qllxy = pll + &nllxy = x0-1ID} + 20,(f — @F)p, Xp11 — p)

< {1 = pu(@ = O)lxs = pIF + €alln = XalI(1 + @,)* 21y = Pl (3.25)
+ &llx = Xootl) + @2 + @)%, — Pl + 200((f = @F)p, Xop1 = p)

< [1 = pu(@ = O)llxs = pIP + (Eallxs — %021 3(1 + @,)° + @2 + @) )M
+ 20u((f = @F)p, Xue1 = P)

2f —aF el —
= [1 = pu(7 = O)lIx, = pIF + pu(r = S ((f —aF)p, X1 — D)

T—0
M &y wn(z + wn)
+ Té(_”xn - xn—l” X 3(1 + 73-:2)2 + p—)]a

where M > 0 is a constant such that sup, ,{llx, — pll, &.llx, — Xu1ll, lIx, = pIF} < M.
Step 4. Taking p = u', by (3.25), we have

A(f = aF)u', x,1 — u')

T—0
(3.26)
M &, w,2 + @,)
+ —— (2 = %1 B + @,)* + ——)].
T—0 pn On

101 = u' I < [1 = pu(t = )lloy = u'IP* + pulT = )]

SetT, = ||x, — u'|]*.
Case 1. There is an integer ny > 1 such that {I',;} is nonincreasing. In this case, lim,_,., [, = 7 < +co.
From (3.23), we have

(1 = ) = DI = EDlIgn — pall” + (1 = )lyn = zall” + llyn — PallP)]
+ (1 = pyDa(l = b)lx, -zl

< (1= po D)1 = o)A = ENgn — Pall® + A = )Ulyn = zall* + Iy — palP)]
+ (1 = p)oa(1 = op)llx, = zall?

< 1% = P = s = u'IP + puMy = Ty = Tt + puMy.

Noticing 0 < liminf, (1 = &,), 0, = O0and I, - T,,; — 0, for v € (0, 1) one has lim,_,«, ||g, — p.ll =
lim,, ”yn — Z,|l = 0, and lim,,_,o, ||yn - pn” = lim,_,o [|x, — 24|l = 0. Thus, we get

”-xn - yn” < ||—xn - Zn” + ”yn - Zn” - 0, (327)
and
lgn = zall < lgn = Pull + [P0 = Yull + llyn = 2all > 0 > 0 (n — o0). (3.28)
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Since {x,} is bounded, there is a subsequence {x,,} of {x,} satisfying x,, — X and

limsup((f — aF)u', x, —u') = lim((f - aF)u', x, —u'). (3.29)

n—oo

In the light of (3.29), one gets

lim sup((f — aF)u’, x, = u'y = im((f = aF)u’, x, —u') = ((f —aF)u',X - u'). (3.30)

n—oo

Since X, — %, = 0, y,—x, = 0, 2z, — g, — 0and S"*'x, — S"x, — 0, applying Lemma 3.3, we
conclude that x € w,,({x,}) € A. Combining (3.12) and (3.30), we get

limsup{(f — aF)u',x, —u") = {(f —aF)u’,x—u')y <0. (3.31)

n—oo

Since x,, — x,.1 — 0, we have

lim sup{(f — aF)u', xp —u')

= limsup[{(f — aF)u’, X1 — X,) + ((f — aF)u', x, — u")]
< limsup[lI(f — aF)u' %1 = Xl + ((f — aF)u’, x, —u')] < 0.

Note that
2(f —aF)u’, x,.1 —u' M e, (2 + @,
limsup[ = Z W X m ) | M By B e 22T
oo T—0 T—0 Py Pn

According to (3.26) and Lemma 2.4, we deduce that lim,,_,, ||x, — u'||> = 0.
Case 2. Suppose that I, } C {I,}s.t. T, <T,41, Yk € N. Let ¢ : N — N be a mapping defined by

¢(n) :=maxik <n: Ty <Ty).
Based on Lemma 2.6, we have
Loy £ Tpyr1 and Ty < Tyyer.
Putting p = u', from (3.23), we have

(1 = poyD)(1 = D)L = Egllgam = Poawll” + A = VUYgtm) = 2ol
+ Vot — Pl + (1 = pammall = b)l1xsm — zomll*

< (1 = pynyD = T = Exlqsm = Pownll* + (1 = V)UIYgt) — 2o’ (3.32)
+ [Yom) — p¢(n)||2)] + (1 = Py T gy (1 = g Xpn) — Z¢(n)||2

< xginy — w1 = g1 = u'IP + ponsMs = Ty — Tpme1 + Poiny M,

which immediately yields lim,,_,c [|gg) — Poonll = 1Moo [[Ygin) — 2ol = 0 and limy, oo [[Ypr) =Pl =
lim, e [1X4(n) — Zgmll = 0. Therefore,

111_)11; 1Xp0) = Yol = }LII.}O g6y — 2ol = O, (3.33)
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and

lim sup{(f — @F)u', xpu1 —u') < 0. (3.34)

n—oo

At the same time, by (3.26), we known that

2(f — aF)u', Xpyer —u')
T—90

P (T = gy < Ty = g1 + Py (T — )1

M Eym 2 W) (2 + Do)
( 1Xpy = Xp-1113(1 + @yn)” + )]
T—=0 Py Pon)
2(f —aFu', xpme1 —u') M E4m)
< Pony(T = 0)[ + ( 1Xg(n) — Xpm)-1ll
T— 6 T— 6 ,O¢(n)
Wem (2 + @)
2 Do o(n)
X 3(1 + w(ﬁ(n)) + )]’
Pen)
which hence arrives at
o T _t
lim supl s, < lim sup[2Y QF)Z_’;"’("’” “
n—00 n—00
" ) (2+@ p(n))
M (A )||X¢(n) = Xpmy-1113(1 + wq&(n))z + M)] <0.

=0 " Pg(n) Po(n)

Thus, lim,, e [|xs) — 4> = 0. Also, note that

2 2 T 2
||X¢(n)+1 - MTH - ||x¢(n> - MT|| = 2<X¢(n>+1 — Xp(n)s Xp(n) — u') + ||X¢(n)+1 - X¢(n)||

<9 + 5 (3.35)
< 2fxpmy+1 = Xponll1Xpey = u'll + [xpm+1 = Xgnll™
Since I, < Tyny+1, we have
12 = 1> < Nlotggmr — u'lIP
< xgmy — MT||2 + 2/Xgm+1 = XpmlllXgm) — MT|| + [Xpey+1 — X¢(n)||2 -0 (n— o).
So, x, — u'. O

According to Theorem 3.1, we have the following corollary.

Corollary 3.1. Suppose that S : C — C is a nonexpansive mapping. For two fixed points x, xy € H,
let the sequence {x,} be defined by

Gn = S X + &x(S X, — S X-1),

Pn = &nqgn + (1 = &y,

vy = To2(py — @2Bapy),

u, = Tq, (v, — @1 B1v,),

Yn = Pc(pn — $iApn),

Zn = Pc,(pn — §iAYn),

th = Xy + (1 = 070)2,

Xne1 = puf (X)) + (L = ppaF)S uty,  ¥n 21,

(3.36)

where C, and ¢, have the same form as in Algorithm 3.1. Then, x, — u' € A & x,,1 — x, — 0, where
u' € A is the unique solution of the HVI: {(aF — fiu',p—u') >0, Vp € A.
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Next, we put forth another modification of the inertial composite subgradient extragradient implicit
rule with line-search process.

Algorithm 3.2. Let x1,xy € H be two fixed points. Let x, be given. Compute x,,, via the following
iterative steps:
Step 1. Set g, = S"x, + £,(8"x, — S"x,_1) and calculate

Pn = &g + (1 = EDuy,

Vo = To2(pn — a2 Bapy),

U, = Ta®11 (vn - alBlvn)-
Step 2. Compute y, = Pc(p, — (,Ap,), with £, being chosen to be the largest { € {y, yt, y{?, ...} s.t.

CNAp, — Ayl < Vlpn = yall-

Step 3. Compute t, = 0,2, + (1 — 0,)S ut,, with z, = Pc,(pn — {Ay,) and

C,:= {y €H: <pn - gnApn —Yn Y _yn> < O}

Step 4. Compute
Xn+l = pnf(-xn) + (I - pna'F)Sntn,

where S, is constructed as in Algorithm 1.1. Set n :== n+ 1 and go to Step 1.

Theorem 3.2. Let the sequence {x,} be generated by Algorithm 3.2. Then

i { Sy, —S"x, — 0,
X, > u e o
Xn+1 — Xp ™ O,
where u' € A is the unique solution of the HVI: {(aF — f)u’,p—u'y >0, Vp € A.

Proof. The necessity is obvious. Next, we prove the sufficiency.
Note that

”tn - p” < O-n”Zn - P” + (1 - O-n)”Sntn - P” < O-n”Zn - P” + (1 - O-n)”tn - P”

This, together with (3.18), ensures that

ltn = Pll < M|z = Pl < llpw = Pl < llgn = pll < (L + @)X = pll + puM1],  Yn 2 1. (3.37)

By (3.37) and Lemma 2.7, we have

X1 = Pl = lloa(f(x0) = f(p) + U = puaF)S ut, — (I — ppaF)p + p,(f — aF)pl|
< pu0llx, = pll + (1 = p, DIty = pll + pall(f — aF)pll

< padllx, = pll + (A = p,7)(1 + Wg)z[HXn = pll + paMi] + pull(f — aF)pl|
n T—0 n -0 M —aF
<[l- F%)]”xn —pll+ p (2 ) X 1+!(—f6 wlD

2Q2M +I(f—aF)pl)

It follows that ||x, — pll < max{|lx; — pl|, = } ¥n > 1. Therefore, {x,}, {pa}, {gn}, {yn}, {2},

{t.}, {f(x)}, {Sut,}, and {S"x,} are bounded.
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According to Lemma 2.7, we get

%01 = PP < loa(f () = () + (I = pu@F)S uty — (I = puaF)plf®
+20,((f — aF)p, Xps1 = p)
< pa6llx, = pIF + (1 = pu DIty = pIF + 20,((f = @F)p, Xu1 — P)
= pa0llx, — pl* + (1 = p, D[ allze — pIF + (1 = oIS ot — I (3.33)
— (1 = o)llzn = Sutall’] + 20,((f = @F)p, Xps1 — P)
< padllx, = plP* + (1 = p,D[ellzy — pIF + (1 = o), — pIF°]
— (1 = pu0)T (1 = Tllzn = S utull® + puMa,

where M, > 01is a constant such that sup,., 2|/(f —aF)pll|llx,—pll £ M. Using Lemma 3.2, from (3.37)
and (3.38), we have

%01 = PIP < publlx, = pIIP + (1 = puDliza — pIP
- (1 _pnT)o-n(l - O-rt)”Zn - Sntn”2 +PnM2

) 5 5 (3.39)
< publlx, = plI” + (1 = palgn — pI" = (1 = EDlgn — pull” = (1 = v)
X (”yn - Zn”2 + ”yn - anZ)} - (1 _pnT)O-n(l - O-n)”Zn - Snl‘n”2 +pnM2-
Also, using the same inferences as those of (3.22) of Theorem 3.1, we have
llgn =PI < llxu = pI + puM3, (3.40)

where sup,.. (M, 2llx, — pll+p, M) + 2222 (||x, - pl|+p,M))?} < M for some constant M3. By (3.39)
and (3.40), we attain

2041 = pIP < pullx, = pIP + (1 = pu O, = pIP + puMs = (1 = EDlgn = pall?
- (1 - V)(”yn - Zn”2 + ”yn - Pn||2)} - (1 _pnT)O-n(l - a-n)llzn - Sntn”2 +pnM2
< [1 = pu(T = O)lx, = pIP = (1 = DI = EDNgn = pull® + (1 = V)(lyn = zall®
+ ”yn - pn||2)] - (1 _pnT)O-n(l - O-n)”Zn - Snl‘n”2 +pnM3 +pnM2
<l = pIP = (0 = puD)(1 = EDNIgn = pull® + (1 = v)(Ulyn = 2l
+ ”yn - pn||2)] - (1 _pnT)O-n(l - O-n)”Zn - Sntn”2 +pnM4,

where M, := M5 + M,. Hence, we attain the assertion.

By the same argument as those of (3.24), we have
llgn = PIP < (1 + @02 + @)y = pIPP + (1 + @) 8allxs = 20 ll21x, = pll + €ally = il (3.41)

By (3.37), (3.38), and (3.41), we obtain
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%41 = PIP < pudllxa = pIP + (1 = p, D1 = T)lltw = pIF + oullzs — pIF]
+20,{(f — aF)p, Xp+1 — p)
< [1 = pa(t = OI + @) (lIxs — pll + &4l — X511
+20,{(f — aF)p, Xp11 = p)
< [1 = pu(@ = O)lxs = pIF + €alln = X0t lI(1 + @,)* 21, = (3.42)
+ &llXn = Xt ) + @2 + @)X — Pl + 205((f — @F)p, Xue1 — p)

U(F = aF)p. xps1 —
<11 = pule = O, = piP + pyfx = S L — XL et 2 )

T—90
n n 2 n
b 2 — X 31+ @)+ 2Ty
T-6 Pn Pn

where sup,.{llx, = pll, &ll%, = x,-11l, [1x, — I’} < M for some constant M.
Setting p = u', by (3.42), we have

—aF)u’ xp—u'
601 — uf]? < [1 = pu(T = )l — P + pu(r — §)[ B2 1 )

+ & 2 2 T—0
. I + @n Wy
T/i‘( ”-xn xn_]||3( w’1) + ( ))l-

Pn Pn

SetT, = |Ix, — u'|]%.
Case 1. Assume {I',} is nonincreasing when n > ny. Then, lim,_,., I, = # < +00. Choosing p = u',
from (3.38), we have

(l _pnT)[(l - é‘:n)”qn - Pn||2 + (1 - V)(”yn - Zn||2 + ”yn - pnllz)]
+ (1 _pnT)a(l - b)”Zn - Snl‘n”2

< (1 = paD[A = EDlgn = pall* + (1 = V)lyn = zall* + lyn = Pul®)]
+ (1 _pnT)O-n(l - O-n)”Zn - Sntn”2
< ”xn - lﬂ”2 - ||xn+1 - uT”2 +pnM4 = 1—‘n - Iﬂn+l +pnM4-

SinceI',, = I',;; = Oforv e (0, 1), lim,,_, ”qn - pn” = lim, ”yn — Zyll = 0, and lim,,_, ”yn - pn” =
lim,, e ||z, — S ut,ll = 0. Observe that

”Zn - xn” < ”Zn - Sntn” + ”Sntn - xn”
= ”Zn - Sntn” + ”xn+l — Xn _pn(f(xn) - a'FSntn)”
< lzw = Satall + 1xnr1 = Xall + pu((lf DI + l@FS utl)) = 0 (n — o).

By the similar arguments as those in Theorem 3.1, we deduce lim,,_,, ||x, — u'||* = 0.
Case 2. Assume I, } C {[,} s.t. T, < T 41, Yk € N. Let ¢ : N — N be a mapping defined by

¢(n) =maxik <n: T <)

By Lemma 2.6, we have
Ly <Dy and - Ty < Ty

Set p = u'. Then,
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(1 —P¢(n)T)[(1 - §¢(n))||CI¢(n) - p¢(n)||2 +(1 - V)(||)’¢(n) - Z¢(n)||2
+ Vo) = Poal)] + (1 = pgamIa(l = D)llzowy — S g lom I
< (1 = sy = Ega)llGom) — P¢(n)||2 + (1 =»)Ulysm — Z¢(n)||2
+ 1o = Pol] + (1 = pon DT s (1 = Tsm)llzaem = S st
< Ixgm) — MTHZ = [ Xpmy+1 — MT”2 + PsyMa = Ugy — Upmys1 + PopnyMa,
which immediately yields lim, . [|ggm) — Pomll = iMoo Vo) — Zomll = 0 and limy, e [[Yg) —Poonll =
lim,, 0 [1Zg() = S gy fgwyll = 0. Therefore, lim,, . [|Zg(n) — Xs(ll = 0. Finally, using the similar arguments
to those in Theorem 3.1, we get the conclusion. O

Remark 3.1. Compared with the corresponding results in Cai, Shehu, and lyiola [2], Ceng and
Shang [4], and Thong and Hieu [28], our results improve and extend them in the following aspects:

(1) The problem of finding an element of Fix(S ) NFix(G) (with G = Pc(I =1 B1)Pc(I — 2 B3)) in [2]
is extended to develop our problem of finding an element of ﬂf’zo Fix(S,) N Fix(G) N VI(C, A) where
G = Tf?,‘(] — ulBl)ng (I — 1 B) and S is an asymptotically nonexpansive mapping. The modified
viscosity implicit rule for finding an element of Fix(§) N Fix(G) in [2] is extended to develop our
modified inertial composite subgradient extragradient implicit rules with line-search process for finding
an element of ﬂlrvzo Fix(S,) N Fix(G) N VI(C, A), which is on the basis of the subgradient extragradient
rule with line-search process, inertial iteration approach, viscosity approximation method, and hybrid
deepest-descent technique.

(i1) The problem of finding an element of Fix(S) N VI(C, A) with a quasi-nonexpansive mapping S
in [4] is extended to develop our problem of finding an element of ﬂlrvzo Fix($,) N Fix(G) N VI(C, A)
with an asymptotically nonexpansive mapping S. The inertial subgradient extragradient method with
line-search process for finding an element of Fix(S) N VI(C,A) in [28] is extended to develop our
modified inertial composite subgradient extragradient implicit rules with line-search process for finding
an element of ﬂ],V:O Fix(S,) N Fix(G) N VI(C, A), which is on the basis of the subgradient extragradient
rule with line-search process, inertial iteration approach, viscosity approximation method, and hybrid
deepest-descent technique.

(ii1) The problem of finding an element of Q2 = ﬂ’,\lzo Fix(S,) N VI(C, A) is extended to develop our
problem of finding an element of Q = N, Fix(S,) NFix(G) N VI(C, A) with G = Ty (I — 1 B)) T2 (I -
2 B>). The hybrid inertial subgradient extragradient method with line-search process in [4] is extended
to develop our modified inertial composite subgradient extragradient implicit rules with line-search
process.

4. Examples

In this section, we give an example to show the feasibility of our algorithms. Put ®; = ©, = 0,
a =2, a = a = %,y: 1, v=¢-= %, o, = & = %,andsn = P, = 3(nlJrl),forallnzO.

Now, we construct an example of A = ﬂlrvzo Fix(S,) N Fix(G) n VI(C,A) # 0 with §¢ := S and
G =T (I — BT (I — a3B,) = Pe(I — @y B)Pc(I — a3 B,), where A : H — H is pseudomonotone
and a Lipschitz continuous mapping, By, B, : H — H are two inverse-strongly monotone mappings,
S : H — H is asymptotical nonexpansive, and each S, : H — H is nonexpansive for r = 1,..., N.

Let H = R and use {a,b) = ab and || - || = | - | to denote its inner product and induced norm,
respectively. Set C = [-2,4] and the starting point x; is arbitrarily chosen in C. Let f(x) = F(x) = %x,
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Yx € H with

1 11
§=5<7=1- Vi-a@n-a®)=1- \/1—2(25—2(5)2)=1-

Let Bjx = Byx := Bx=x— %sin x, Yx € C. Let the operators A, S, S, : H — H be defined by

1 1 3
Sx:=-sinx, S,x:=Sx=sinx(r=1,---,N),VYx € H.

AXZ: - - s
1+ |sinx] 1+ |x 4

We have the following assertions:
(i) A is 2-Lipschitz continuous, in fact, for each x,y € H, we have

|Ax — Ay| < Y = I ‘ | siny| — | sin x]

(1 +1lyDCL+ [xDT - [(1 + [siny(1 + | sin x[)
lx =yl | sin x — sin y|

T+ DM+ D) A+ ]sinx])(1 + |siny])

< |x—y|+|sinx —siny|

< 2lx =yl

(i1) A is pseudomonotone, in fact, for each x,y € H, if

! L \y-m>o,

Aa - = . -
Aey=0 =G~ T

then

1 1
- —x) > 0.
1+ [siny| 1+|y|)(y %)z

(Ay,y = x) = (

(iii) B is -inverse-strongly monotone. In fact, since B is 3-strongly monotone and 3-Lipschitz

continuous, we know that B is %—inverse—strongly monotone with p = o = %.

Moreover, it is easy to check that S is asymptotically nonexpansive with @, = (%)", V¥n > 1, such
that [|S™'x, — S"x,|| = 0 as n — oo. In fact, note that

3. . 3.,
IS"x = S"yll < ZIIS" x=-8"lyll << (Z) llx =yl < (1 + @,)llx =yl
and 3 3 3 3 3
1S oy = 8" x| < (Z)"_lllSzxn = Sx|l = (Z)H|Z sin(S x,,) — 1 sin x| < 2(4—1)" - 0.
It is obvious that Fix(S) = {0} and

fim 2% = fim —o/
n—eo p,  noeo 1/3(n+1)

Accordingly, A = Fix(§) N Fix(S) N Fix(G) N VI(C,A) = {0} # 0. In this case, noticing G =
Pc(I — ayB)Pc(I — a3 B,) = [Pc(I — 1B)]?, we rewrite Algorithm 3.1 as follows:
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Gn = 8" %0 + 35515 (8 " X0 = 8" X1),
Pn = 3qn + $uy,

Va = Pc(pn — 3Bpy)s

up, = Pc(v, — %an),

Yn = Pc(pn = §APy)s

Zn = Pc,(pn — §uAyn),

fy = 52X, + 320,

- _1 1 __1
Xp+el = 3D zxn + (1 3(n+1))Sltn, VYn > 1,

where C, and ¢, are chosen as in Algorithm 3.1. Then, x, — 0 € A.

In particular, since Sx := 3sinx is also nonexpansive, we consider the modified version of

4
Algorithm 3.1, that is,

qn = S-xn + 3(n1+1)(an - S-xn—l)’

Pn = 3qn + 3uy,

Vo = Pc(py — $Bpw),
Uy = Pc(v, — %an),
Yu = Pc(pn = AP,
Zn = Pc,(pn = £nAyn),

_ 2 1
I, = §xn + §Zna

— 1 1 _ 1
Xn+1 = 3(n+1) zxn + (1 3(n+1))S1tn, Yn > 1,

where C,, and ¢, are chosen as above. Then, x, — 0 € A.

5. Conclusions

In a real Hilbert space, we have put forward two modified inertial composite subgradient
extragradient implicit rules with line-search process for settling a generalized equilibrium problems
system with constraints of a pseudomonotone variational inequality problem and a common fixed-point
problem of finite nonexpansive mappings and an asymptotically nonexpansive mapping, respectively.
Under the lack of the sequential weak continuity and Lipschitz constant of the cost operator A, we
have demonstrated the strong convergence of the proposed algorithms to an element of the studied
problem. In addition, an illustrated example was provided to demonstrate the feasibility of our
proposed algorithms.

In the end, it is worthy to mention that part of our future research is aimed at acquiring the strong
convergence results for the modifications of our proposed rules with a Nesterov inertial extrapolation
step and adaptive stepsizes.
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