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Endocrine factors play an essential role in the formation and turnover of the skeleton in vertebrates. In
the present study sea bream vertebral bone transcripts for PTH1R and PTH3R were identified and the
action of intermittent administration of parathyroid hormone related protein (PTHrP) on the proteome
of vertebral bone was analysed. Treatment of immature sea bream (Sparus auratus, n = 6) for 5 days with
homologous recombinant PTHrP(1–125; 150 ng/g body weight) modified bone metabolism and caused a
significant (p < 0.05) reduction in both tartrate resistant acid phosphatase (TRACP) and alkaline phospha-
tase (ALP) in relation to control fish. However, the ratio of TRACP: ALP in PTHrP treated fish (1.3 to 2.2 cf.
control) suggested it had an anabolic response. A sea bream vertebral bone proteome of 157 protein spots
was generated and putative identity assigned to 118 (75.2%) proteins of which 72% had homology to pro-
teins/transcripts from teleosts many of which have not previously been reported in teleost bone. Classi-
fication of bone proteins using gene ontology revealed those with protein or metal/ion (e.g., calcium,
magnesium, zinc) binding (�53%) activities were most abundant. The expression of eight proteins was
significantly (p < 0.05) modified in the vertebra of PTHrP treated compared to control fish; three were
up-regulated, betainehomocystein S-methyltransferase, glial fibrillary acidic protein, parvalbumin beta
and five were down-regulated, annexin A5, apolipoprotein A1, myosin light chain 2, fast skeletal myosin
light chain 3, troponin C. In conclusion, intermittent administration of PTHrP to sea bream is associated
with an anabolic response in vertebral bone metabolism and modifies calcium binding proteins in the
proteome.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Skeletal tissue in vertebrates is a dynamic and highly special-
ized connective tissue and an important reservoir of minerals such
as calcium (Ca), phosphorus (P) and magnesium (Mg). Teleost
bone, is generally acellular and consists of hydroxyapatite embed-
ded in a protein matrix in which, in contrast to the cellular bone of
other vertebrates, the apatite crystals are smaller and poorly crys-
tallized (Moss, 1961). In teleost fish the contribution of bone turn-
over to Ca homeostasis is uncertain as Ca is taken up from food and
the surrounding water via the intestine and gills (see review by
Guerreiro et al. (2007)). This is one of the reasons why a phospho-
rous rather than Ca-driven mineral homeostasis has been proposed
for teleost fish (Hall, 2005; Lall, 2002; Witten and Huysseune,
2009). The regulatory mechanisms of Ca homeostasis in teleosts
are complex and involve several factors, including stanniocalcin
(STC), calcitonin (CT) and 1,25-dihydroxycholecalciferol and para-
thyroid related protein (PTHrP) (Bonga and Pang, 1991; Fuentes
et al., 2010).

One of the calcitropic effects of PTHrP is likely to be through its
actions on bony tissue as it stimulates osteoclast-specific tartrate-
resistant acid phosphatase (TRACP) activity in fish scales through
PTH1R (Rotllant et al., 2005) and it also modifies transcription of
genes involved in matrix production and mineralization (Redruello
et al., 2005). In teleost fish, PTH and PTHrP isoforms are products of
duplicated genes and bring about their effect by interacting with
two different G-protein-coupled receptors (GPCRs), known as
PTH1R and PTH3R. Pharmacological characterization of the zebra-
fish (Danio rerio) receptors (Rubin et al., 1999) indicates that PTH
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and PTHrP both activate PTH1R (Rubin et al., 1999), which is the
principal receptor in the vertebrate skeleton (Juppner et al.,
1991; Karaplis and Deckelbaum, 1998; Rotllant et al., 2005).
PTH3R, which has no orthologue in mammals, is activated by
PTHrP with similar potency the PTH1R (Rubin and Juppner,
1999). In mammals, depending on the physiological status of the
animal and regime of administration (e.g., continuous or intermit-
tent), PTH and PTHrP can have both anabolic and catabolic effects
on bone in vivo (Swarthout et al., 2002). The response of mamma-
lian bone to PTH has been characterized at the level of the tran-
scriptome and proteome (Li et al., 2007; Sun et al., 2009;
Swarthout et al., 2002). Studies of PTHrP are restricted to the tran-
scriptome of chondrocytes (growth plate, hypertrophic) and in
mammals responsive genes include components of the extracellu-
lar matrix and molecules implicated in signal transduction and
regulation of transcription (Hoogendam et al., 2007, 2006).

In teleost fish PTHrP rather than PTH mobilises Ca from bony
tissue and the present study reports for the first time its action
on the skeleton by analysing changes in the proteome. Post-cranial
dermal skeleton is suggested to be most susceptible to turnover
(Witten and Huysseune, 2009) and so vertebra from sea bream ex-
posed to biologically active sea bream recombinant PTHrP(1–125)
(Anjos et al., 2005) were studied. Bone turnover in response to
PTHrP was assessed by measuring markers of osteoclasts and oste-
oblasts, respectively, TRACP and ALP. A partial sea bream (Sparus
auratus) vertebral bone proteome was established using 2D elec-
trophoresis coupled to MALDI-TOF analysis and proteins modified
by intermittent treatment with PTHrP were identified.
Fig. 1. X-ray of a juvenile sea bream revealing the calcified skeleton. The region
from which vertebra were removed for protein extraction is boxed in white and a
photograph shows a lateral view of the vertebra with associated neural and haemal
arches at a higher magnification (�20).
2. Methods

2.1. Experimental procedure and sampling

Maintenance and manipulation of animals used in the study
was carried out in accordance with Portuguese legislation for the
use of laboratory animals under a Group-1 license from the Di-
recção-Geral de Veterinária, Ministério da Agricultura, do Desen-
volvimento Rural e das Pescas.

Immature sea bream (body weight 70.6 ± 9.8 g; total length
15.1 ± 0.7 cm) were obtained from a fish farm (TIMAR, Cultura de
Águas, Olhão, Portugal). Fish were acclimated for several months
in Ramalhete Marine Experimental Station (Universidade do Al-
garve, Faro, Portugal) in 500 L tanks supplied with a continuous
flow of oxygenated sea water of 35% salinity, under a 12:12 h
light–dark photoperiod and at a water temperature of 12 ± 1 �C.
Fish were fed once a day with 1% body weight commercial dry pel-
lets (PROVIMI, Portugal).

To establish if PTH1R and PTH3R are transcribed in vertebral tis-
sue two immature sea bream were killed by decapitation after
anaesthesia with 2-phenoxyethanol in seawater (1:10,000 v/v; Sig-
ma–Aldrich, USA). Fish were rapidly dissected and vertebra cen-
trum collected and immediately frozen at �80 �C for subsequent
RNA extraction.

For PTHrP treatments, sea bream (n = 6/tank) were randomly
assigned to two 200 L tanks and maintained for one week prior
to the start of the experiment under the same conditions as those
indicated above. Fish in one tank (body weight 69 ± 5.7 g; total
length 15.1 ± 0.5 cm) were given daily intra-peritoneal (ip) injec-
tions over 5 days of physiological saline containing 150 ng/g body
weight of recombinant homologous PTHrP(1–125) in 100 ll saline
(Anjos et al., 2005). The dose, duration and mechanism of adminis-
tration of PTHrP(1–125) was chosen based on previous studies in
mammals (Kim et al., 2005; Sun et al., 2009) and in vitro studies
of PTHrP in teleosts (Redruello et al., 2005; Rotllant et al., 2005,
2003) and sea bream bone responsiveness to SERMs in vivo (Vieira
et al., 2012). In the other tank control fish (body weight
72.3 ± 3.7 g; total length 15.2 ± 0.9 cm) received ip injections of
physiological saline only. Twenty-four hours after the last hor-
mone injection the fish were anaesthetized as indicated above,
weighed and measured. Fish were killed by decapitation and verte-
bra 16 and 17, localized in the region below the last dorsal fin ray
(Fig. 1), were dissected out, immersed in ice cold 1� PBS (137 mM
NaCl, 2.7 mM KCl, 100 mM Na2HPO4, 2 mM KH2PO4, pH 7.4) con-
taining protease inhibitor cocktail (1 ml/20 g tissue; Sigma–Al-
drich, US) and dissected free of soft tissue. Cleaned vertebras
were snap-frozen in liquid nitrogen and stored at �80 �C until
analysis.
2.2. RNA extraction, cDNA synthesis and RT-PCR

Total RNA extractions were carried out using the Maxwell�16
System (Promega, USA) following the manufacturer’s instructions
after pulverization of the frozen vertebra (n = 2) using a mortar
and pestle in the presence of liquid nitrogen. Quantification and
quality of RNA was determined by spectrophotometry (NanoDrop
1000 Spectrophotometer, Thermo Fisher Scientific, USA) and elec-
trophoresis on 1.5% agarose gels. Total RNA (2–3 lg) was treated
with DNase using a DNA-free kit (Ambion, UK) and cDNA synthesis
was carried out as described in Vieira et al. (2012).

Sea bream PTH1R and PTH3R cDNA (GeneBank ID: AJ619024 and
AY547261) were amplified using specific primer pairs: PTH1Rafw
(50-TCACCAACGTCACTGCCAGAGGA-30 and PTH1Rbrv (50-TGTCCC
GACGAGGGTATCGAGTT-30) and PTH3Rfw1 (50-ACATCCACAT
TCACTTCTTCAC-30)/PTH3Rrv2 50-GATGAGGGCCACAGGTAGT-30).
The cycling conditions were: 3 min at 95 �C, 32 cycles of amplifica-
tion (20 s at 95 �C, 20 s at 55–53 �C and 30 s at 72 �C) and a final
elongation step of 5 min at 72 �C in a T100™ Thermal Cycler
(Bio-Rad, Portugal) (Rotllant et al., 2005). This protocol runs a
non-saturated product amplification of 142 bp and 250 bp for
PTH1R and PTH3R, respectively. Amplified products (15 ll) were
run on a Tris–borate-EDTA (1.3%) agarose gel containing ethidium
bromide. Beta actin (b-actin), which has a constant expression in
vertebra, was chosen as the reference gene and a 250 bp product
was amplified. The reaction conditions were the same as those
for PTH1R and PTH3R with the exception of the annealing temper-
ature (60 �C) and the number of cycles (22). The reaction products
were sequenced to confirm their identity.
2.3. Plasma analysis

Calcium and PTHrP levels were determined in individual plas-
ma samples from sea bream of PTHrP treated and control fish. A
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colorimetric assay adapted to microplates was used to measure to-
tal plasma calcium (Ca kit procedure no. 587, Sigma–Aldrich) in
duplicate 2.5 ll plasma samples. Circulating levels of PTHrP were
measured in the same plasma samples using a piscine-specific
RIA as described by Rotllant et al. (2003).

2.4. Tartrate-resistant acid phosphatase (TRACP) and alkaline
phosphatase (ALP) activity

To assess if PTHrP modified sea bream vertebral bone metabo-
lism, TRACP and ALP were measured using a modification of the
method initially developed for fish scales by Persson et al. (1995)
and Suzuki et al. (2000) and previously detailed for sea bream
(Guerreiro et al., 2002; Rotllant et al., 2005). Briefly, 50–70 mg of
frozen vertebra from individual fish (n = 6 per group) were pulver-
ised into a fine powder in liquid nitrogen using a mortar and pestle.
The powdered vertebra was resuspended in 0.5 ml of cold 0.1 M
sodium acetate buffer (pH 5.0), sonicated, centrifuged at 7000g
for 20 min at 4 �C and the supernatant removed and used to mea-
sure the enzyme activity. Assays to determine TRACP and ALP
activity in vertebra were carried out in duplicate. TRACP activity
was determined by adding 50 ll of vertebral extract to 350 ll of
10 mM para-nitrophenyl-phosphate (pNPP; Sigma–Aldrich, USA)
and 20 mM tartrate in NaAc buffer (0.1 M, pH 5.3) and incubating
for 30 min at 22 �C. The reaction was stopped by adding 200 ll of
2 M NaOH and the solution was centrifuged for 5 min at 3600g and
the absorbance measured at 405 nm. The quantity of para-nitro-
phenol (pNP; Sigma–Aldrich, USA) produced was determined using
a standard curve for pNP. ALP activity was measured using the
same procedure as for TRACP with the exception that an alkaline
buffer (100 mM Tris–HCl, pH 9.5; 1 mM MgCl2; 0.1 mM ZnCl2)
was used.

2.5. Vertebra proteome analysis

2.5.1. Protein extraction
Optimization studies for protein extraction and resolution by 2-

dimensional electrophoresis (2-DE) guided the selection of experi-
mental conditions utilized. Preliminary optimization of protein ex-
tracts and protein concentration was carried out using 340 or
700 lg of total protein with IPG strips in a pH range of 3–10 or
4–7 and the latter was selected together with 340 lg of total pro-
tein. Demineralizing acid extraction (Jiang et al., 2007) and non-
demineralizing (Fan et al., 2005) methods were tested and the lat-
ter selected as it yielded a higher number of proteins, which were
better resolved by 2-DE. In brief, total protein was extracted (200–
300 mg of frozen tissues) from pulverised vertebra (n = 6 per
group, the same individuals as in TRACP and ALP analysis) ressus-
pended in 0.5 ml of ice-cold extraction buffer (30 mM Tris–HCl, pH
7.4 containing 7 M urea, 2 M thiourea, 4% CHAPS) containing a pro-
tease inhibitor cocktail (1 ml/20 g tissue, Sigma–Aldrich, USA). The
homogenates were sonicated twice for 10 s, incubated on ice for
1 h with gentle agitation, centrifuged at 45,000g for 45 min at
4 �C and the supernatant removed. The protein content of the ver-
tebral bone extract was quantified using the Bradford method (Bio-
Rad, USA).

2.5.2. Two-dimensional gel electrophoresis (2-DE)
For two dimension gel electrophoresis (2-DE), vertebral bone

extracts (340 lg total protein) were centrifuged for 30 min
(22,000g, 4 �C) to remove insoluble aggregates, and the protein ex-
tract precipitated with acetone and ressuspended in 350 ll of
rehydration buffer (7 M urea, 2 M thiourea, 4% w/v CHAPS,
0.002% bromophenol blue, 10 mM DTDE, 2% v/v IPG buffer pH 4–
7). Isoelectric focusing (IEF) was performed using a Multiphor II
Electrophoresis System (GE-Healthcare Life Systems, UK), accord-
ing to the manufacturer’s instructions with 18 cm IPG strips with
a pH range of 4–7 (Amersham Biosciences, Spain). Samples were
loaded onto the IPG strips covered by immobiline DryStrip Cover
Fluid and rehydrated for 20 h at room temperature in a re-swelling
tray channel (Serva, Portugal). Subsequently, IEF (first dimension)
was performed at 20 �C using the following electrophoresis proto-
col: 0.01 h at 500 V and 0.001 KVh; 6 h at 500 V and 3 KVh; 1.30 h
at 3500 V and 3 KVh; 8 h at 3500 V and 20 KVh. IPG strips with
fractionated proteins were then equilibrated and reduced for
15 min (50 mM Tris–HCl pH 8.8, 100 mM DTT, 6 M urea, 30% v/v
glycerol, 2% w/v SDS, 1% w/v bromophenol blue) followed by alkyl-
ation for 15 min in the same buffer without DTT and supplemented
with 135 mM iodoacetamide.

Second dimension electrophoresis was performed using an ET-
TAN DALT six vertical system (GE Healthcare, Germany) following
the manufacturer’s instructions. Equilibrated IPG strips were trans-
ferred to 12.5% SDS–PAGE gels (24 � 18 cm) and proteins sepa-
rated by applying 10 mA/gel for 30 min followed by 40 mA/gel
for a further 6 h at 20 �C. A pre-stained Protein Ladder (PageRul-
er,Fermentas, US) was included in all electrophoresis. The resolved
proteins were fixed for 30 min in 40% v/v methanol containing 10%
v/v acetic acid and stained overnight using Coomassie blue R (40%
v/v methanol; 10% v/v acetic acid; 0.1% w/v Coomassie blue R 250,
Sigma–Aldrich, USA). The gels were destained in 10% v/v acetic acid
and 40% v/v methanol for 12 h before image analysis.

2.5.3. Gel image analysis
Coomassie blue stained gels were scanned in a calibrated Imag-

eScanner™ III densitometer (GE Healthcare, Germany) and digital
images (at 300 dpi resolution) captured using Labscan 6.0 software
(GE Healthcare, Germany). The images were saved as uncom-
pressed TIFF or MEL files. Differential gel image analysis was car-
ried out using ImageMaster™ 2D Platinum software, version 6.0
(GE Healthcare, Sweden). Three gels, each containing a pool of ver-
tebral extracts from 2 fish, were analysed per group (control and
PTHrP). Pooled extracts were required to attain an adequate con-
centration of protein for electrophoresis. A consensus proteome
was obtained by matching proteins on the 3 gels using the auto-
matic setting of the software followed by manual matching and
editing to remove artefacts. Normalized values of protein spot area
(% total area of spots), intensity (% total spots intensity) and vol-
ume (% total spots volume) were obtained.

Differential expression of proteins between PTHrP treated or
control fish was obtained as the difference in normalized protein
spot values between the two groups. A 2-fold difference in the
average protein spot volume ratio between control and treated ani-
mals was considered significant. For unmatched protein spots be-
tween PTHrP treatment and control those with an intensity >0.5%
compared to background were included in the analysis. To enhance
resolution, manual spot-by-spot supervision was carried out to
correct over- or under-detected spots, and to validate candidate
protein spot localisation and relative abundance on each of the
triplicate gels.

2.6. MALDI-TOF analysis

2.6.1. In-gel trypsin digestion
To establish the proteome of sea bream vertebra, differentially

expressed protein spots and randomly picked protein spots were
excised from the gel, taking a mix of spots representing proteins
with different expression levels, molecular mass and isoelectric
point. Excised protein spots were washed, reduced, dehydrated
and alkylated and subject to in gel tryptic digestion using 2 ll of
trypsin solution (10 ng/ll trypsin in 50 mM NH4CO3pH 7.8, Roche
Applied Science, US) for 30 min at 4 �C. Subsequently, 10 ll of
50 mM NH4CO3 (pH 7.8) buffer was added to each sample, and
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the digestion was performed at 37 �C overnight. Digestions were
stopped by addition of 10 ll of extraction buffer (0.5% v/v trifluo-
roacetic acid, 0.2 mM n-octylglycopyranoside) and samples were
analysed by MALDI-TOF mass spectrometry (MS, BrukerDaltonics,
Germany) using automated procedures.
2.6.2. Protein identification
MALDI sample preparation was performed on MALDI 600–384

AnchorChip sample plates (BrukerDaltonics, Germany). The trypsin
digested samples (1 ll) were deposited onto pre-formed micro-
crystalline layers of the MALDI matrix a-cyano-4-hydroxycinnamic
acid. Mass spectra of positive ions in the m/z range 640–4000 were
recorded on an Ultraflex LIFT and a Reflex III MALDI-TOF mass
spectrometer (BrukerDaltonics, Germany) operated in the reflector
mode using delayed ion extraction. Fragment ion mass spectra of
selected peptides were used for verification of uncertain identifica-
tion results. Selection of the first monoisotopic signals in the spec-
tra was performed using the signal detection algorithm SNAP
implemented in the FlexAnalysis software (BrukerDaltonics, Ger-
many). The spectra was calibrated and filtered, based upon a com-
bination of external (using polyethanolglycol) and internal
calibration using the signal from tryptic autodigestion products
(monoisotopic masses (MH+)) and two peptide standards (human
angiotensin I and human ACTH-(18–39); 1296.6853 and
2465.1989 Da, respectively).
2.6.3. Database search
Protein identification was performed with the MASCOT data

base search engine (version 1.8; http://www.matrixscience.com)
using combined PMF and MS/MS peak list data sets via BioTools
2.3 software (BruckerDaltonics, Germany). Searches were carried
out against the GenBank non-redundant (nr) (http://
www.ncbi.nlm.nih.gov/) and SwissProt (http://www.ebi.ac.uk/uni-
prot/) Actinopterygii sequences assuming the following parame-
ters: (1) fixed and variable modifications were carbamidomethyl
of cysteine and oxidation of methionine, respectively; (2) forma-
tion of single charged peptides with up to 1 missed cleavages;
(3) peptide tolerance of 100 ppm and 0.25 Da, respectively, for
MS and MS/MS spectra. To increase the number of protein matches
searches were also performed against sea bream (taxid: 8175) and
sea bass (taxid:13489) ESTs from GenBank (assessed December
2009). PMF and MS/MS spectra were accepted as valid when the
E-value was below 0.05.

Further analysis of the proteome of sea bream vertebra was car-
ried out by assigning Gene Ontology (GO) classifications through
UniProt and GeneCards (http://www.genecards.org/) to identified
proteins. The GOSlim Viewer (http://www.agbase.msstate.edu/in-
dex.html) was used to analyze assigned function.
Fig. 2. Transcript abundance of PTH1R and PTH3R receptors in sea bream vertebra.
Specific RT-PCR was used to amplify sea bream PTH1R and PTH3R in mRNA extracts
from the vertebra of two individuals (V1 and V2). Beta actin (b-actin) was used as a
reference to control the quantity cDNA included in PCR reactions. Control samples:
c1 – cDNA synthesis reactions lacking reverse transcriptase, and c2 – PCR reaction
lacking cDNA. Molecular sizes in base pairs (bp) are indicated on the left hand side.
2.7. Statistical analysis

Plasma parameters and TRACP/ALP activity was analyzed by
one-way analysis of variance (ANOVA) (SigmaStat Software V3.5)
after assessing normality and homogeneity of variance. Statistical
significance was considered at p < 0.05 and data are presented as
mean ± standard error of the mean (SEM). For proteomics the
mean, standard error of the mean (SEM) and mean square devia-
tion (MSD) were determined for all selected normalized protein
spots. Comparison between protein spot volume of control and
PTHrP treated samples was carried out using a Student’s t-test
and a level of significance of 5%. The statistical tests for proteomics
were performed within the ImageMaster™ 2D Platinum software
and using SigmaStat Software V3.5.
3. Results

3.1. PTHrP tissue responsiveness

3.1.1. Expression of PTH1R and PTH3R in vertebra tissue
RT-PCR revealed that sea bream vertebral bone contains tran-

scripts for both PTH1R and PTH3R (Fig. 2) and confirm that it is a
target tissue for PTHrP action. None of the control reactions (ab-
sences of cDNA or absence of reverse transcriptase in cDNA synthe-
sis) gave a reaction product (Fig. 2).

3.1.2. Effects of PTHrP on plasma parameters
The circulating levels of PTHrP and total calcium (Ca) were mea-

sured 24 h after the last treatment of PTHrP(1–125). Plasma PTHrP
was not significantly different in PTHrP(1–125) treated fish
(0.370 ± 0.025 ng/ml) compared to control fish (0.379 ± 0.029 ng/
ml). Similarly, plasma Ca was not significantly modified between
PTHrP(1–125) treated fish (2.702 ± 0.0423 mM) and control fish
(Ca- 2.491 ± 0.157 mM).

3.1.3. TRACP and ALP activities in sea bream vertebra
TRACP activity in vertebra was significantly suppressed by inter-

mittent treatment with PTHrP(1–125) (p < 0.05, n = 6; Fig. 3). TRACP
activity dropped from 8.8 ± 1.83 nmolpNP produced/mg/h in control
fish to 3.6 ± 0.66 nmolpNP produced/mg/h in PTHrP treated fish. ALP
activity was also significantly reduced (p < 0.05, n = 6; Fig. 3) in ver-
tebra of PTHrP treated fish and was 2.7 ± 0.24 nmolpNP produced/
mg/h compared to 4.0 ± 0.40 nmolpNP produced/mg/h in control
fish. The ratio of TRACP:ALP in vertebra from control fish was 2.2
and in vertebra from PTHrP treated fish was 1.3 suggesting it pro-
voked a shift to an anabolic state.

3.2. Partial characterization of sea bream vertebra proteome

A large proportion of the proteins extracted from sea bream ver-
tebral bone were acidic and had a pI between 4–7 and a molecular
weight range between 10–100 kDa (Fig. 4). Approximately 300
protein spots were detected after Coomassie blue staining. Of
157 protein spots identified by 2-DE and analysed by MALDI-TOF
(see Supplementary Table 1), the peptide mass fingerprint (PMF)
and mass peak spectra obtained for 32 (20.4%) were of low resolu-
tion and could not be identified. Of the remaining 125 proteins, 75
(60%) gave a positive match (e�5) against the NCBI non-redundant
nucleotide database. The remaining 50 proteins (40%) were puta-
tively identified from database searches of PMF and MS/MS mass
peak spectra against the SwissProt and sea bream and sea bass

http://www.matrixscience.com
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
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Fig. 3. TRACP and ALP activity in the vertebra of immature sea bream after 5 days of
intermittent treatment with sea bream recombinant PTHrP(1–125) (150 ng/g body
weight) or saline (control). Data represent the mean ± SEM of six biological
replicates measured twice independently with two technical replicates per
measurement and the results are expressed as nmol pNP produced h�1 mg�1 of
vertebra. ⁄ Indicates that a statistically significant difference exists (p < 0.05).
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ESTs. Overall, 118 (94.4%) proteins matched named proteins
and the remaining (5.6%) were unnamed and 72% of the proteins
identified were homologous to proteins/transcripts identified in
fish.

In general, the proteins extracted from the sea bream vertebra
were more acidic than their mammalian homologues. Notable dif-
ferences in pI between fish and mammalian proteins were found
for myosin-binding protein H (spot 114; pI predicted 12.3 and
determined 5.6), phosphatidylethanolamine-binding protein 1
(spot 7E; pI predicted 12.5 and determined 5.6), fibrinogen alpha
chain precursor (spot 1I; pI predicted 12.7 and determined 6.5)
and annexin A5 (spot 50; pI predicted 12.6 and determined 5.3)
(see Supplementary Table 1). Approximately 20% of the proteins
detected in the sea bream vertebral bone proteome corresponded
to isoforms of the same protein with differing MW and pI (e.g., glial
fibrillary acidic protein).
Fig. 4. Representative 2-DE gel images of proteins extracted from the vertebra of gilthe
proteome from control sea bream; (B) 2-DE gel showing the bone proteome from fi
administered daily over 5 days. The protein extracted from the vertebral bone of two in
were fractionated by 12.5% SDS–PAGE. Gels were stained with Coomassie blue as describ
PTHrP treated fish that were analysed by MALDI-TOF/TOF (MS/MS) are boxed and numbe
are enlarged and presented in Fig. 6. Molecular weight markers (Mw) are indicated (kD
3.3. Grouping of protein by putative function

Classification by molecular function of proteins identified in the
bone proteome (Fig. 5A and Supplementary Table 1) revealed that
the main category was proteins with binding activity (53%). Bind-
ing activity was subdivided into: general binding (13%), which in-
cluded lipocalin precursor and S-adenosylhomocysteine hydrolase
and binding of: calcium (9%); proteins (9%); nucleotides (9%); actin
(6%); lipids (5%); carbohydrates (1%) and receptor binding (1%).
These categories contained annexin A5, 40S ribosomal protein
S24, Profilin-2, Calmodulin, Beta-soluble NSF attachment protein,
14-3-3-like protein, Protein S100-A11, Apolipoprotein A-I Precur-
sor and retinol binding protein 1a. The second most abundant cat-
egory was catalytic activity (13%), hydrolases (8%) and structural
molecule activities (8%). The latter categories included ubiquitin
carboxyl-terminal hydrolase, betaine-homocysteine S-methyltans-
ferase, caldecrin precursor and collagen alpha-2(I) chain precursor.

In consideration of the importance of ion binding proteins in
bone a more detailed evaluation of this group was made. This cat-
egory contained 28% of the total proteins identified in the bone
proteome (Table 1) and Ca binding proteins were most abundant
(57%) and included parvalbumin beta, protein S100-A11 and an-
nexin A3. The second most abundant proteins in this group bound
magnesium (20%) and included for example, the enzyme Phospho-
glucomutase 1. A lower percentage of proteins were classified as
‘‘other metal binding proteins’’ (14%) and zinc binding proteins
(9%) and these last categories included for example, transferrin,
selenium-binding protein 2 and two forms of Carbonic anhydrase,
respectively (Fig. 5B and Table 1).
3.4. PTHrP induced differential expression of proteins

Eight protein spots extracted from the vertebra had reproduc-
ible and statistically significant (p < 0.05) differences in abundance
(>2-fold change) between PTHrP treated and control sea bream
(Figs. 4 and 6). Proteins up-regulated by PTHrP were betaine-hom-
ocystein S-methyltransferase, glial fibrillary acidic protein and par-
valbumin beta and those down-regulated were annexin A5,
apolipoprotein A1, myosin light chain 2, fast skeletal myosin light
ad sea bream in control (A) and treated (B) experiments. (A) 2-DE gel of the bone
sh treated with sea bream recombinant PTHrP(1–125) (150 ng/g body weight),

dividuals (340 lg) was loaded onto non-linear IPG strips pH 4–7 and following IEF
ed in the methods. Candidate proteins differentially expressed between control and
red (see Table 2). The boxed areas on the three gels analysed per experimental group
a).



Fig. 5. The 125 proteins identified in the sea bream vertebral bone proteome were categorized using Gene Ontology analysis via GeneCards and UniProt with the GOSlim
Viewer. The proteins identified in the proteome of sea bream vertebra were analyzed within 2 categories: (A) molecular function and (B) ion binding. The latter group (B)
contained 28% of all the proteins identified in the vertebral proteome. Pie charts show the distribution of proteins between the main subdivisions in each category. Note that
the most frequently represented molecular function in the sea bream bone proteome was binding and catalytic activity. In relation to ion binding (B), proteins with Ca (57%)
and Mg (20%) binding capacity were the most abundant and the proteins within this category are summarized in Table 1.
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chain 3 and troponin C (Table 2). With the exception of annexin A5
all the identified proteins matched deduced proteins from genes
identified in teleosts. GO analysis of the molecular function of
PTHrP responsive proteins indicate involvement in calcium ion
binding, collagen binding, metabolism, lipid transport, methionine
anabolism and structural molecule activity.
4. Discussion

Exploring the bone proteome is an important and challenging
task for understanding mechanisms underlying the endocrinologi-
cal control of its turnover. In this context a partial proteome of sea
bream vertebra was generated. Intermittent PTHrP administration
caused a significant reduction in both TRACP and ALP activity,
although the shift in the ratio of TRACP:ALP was congruent with
anabolism. Vertebra is a target tissue for PTHrP action presumably
through its receptors PTHR and short-term (5 days) intermittent
PTHrP administration provoked a change in the vertebra proteome
and significantly (p < 0.05) modified the expression of eight
proteins.
4.1. The sea bream bone proteome

Proteomics of bone tissue is not straight forward because of
the structure of bone that makes protein extraction difficult
(Lammi et al., 2006). For this reason studies of the bone prote-
ome have mainly focused on in vitro systems using mammalian
bone cells such as osteoblasts and osteoclasts (Salasznyk et al.,
2005; Wang et al., 2004). Recently, proteomic analysis of pro-
teins extracted directly from mammalian bone has been reported
(Fan et al., 2005; Jiang et al., 2007; Pastorelli et al., 2005; Schrei-
weis et al., 2007). Non-demineralization extraction methods like
the one used in the present study (Fan et al., 2005) applied to
mammalian bone extract acid-soluble proteins and also
maximize the extraction of abundant matrix proteins such as
collagens and proteoglycans which probably reduces the identifi-
cation of low abundance proteins (Hermansson et al., 2004).
However, in the sea bream normally abundant mineralized
matrix proteins of bone including collagens, osteonectin and
osteocalcin were not detected. The failure to detect normally
abundant bone proteins in the fish proteome may be because
not all protein spots were analysed and/or because of differences



Fig. 6. Enlarged view of candidate protein spots boxed in Fig. 4 that are regulated by sea bream PTHrP(1–125) treatment. The three gels analysed per experimental group;
PTHrP treated fish (A–C) and the saline controls (a–c) are presented. The small black arrows indicate significantly altered protein spots in the vertebral proteome of PTHrP
treated and control fish; the numbers correspond to the spots indicated in Table 2. The thick black arrows on the left-hand side of the image indicate proteins with increased
or reduced expression after PTHrP treatment.

Table 1
Ion binding proteins categorized by gene ontology analyses.

Ion bindinga GO nodea Protein identity/UniProtKBb Spotsc

Calcium GO:0005509 Alpha-actinin-3/O88990 2H,3H
Annexin A13/P27216 12L
Annexin A3/P12429 7 M
Annexin A5/P17153 50,130,152
Calmodulin/P62155 10 J
Fucolectin-4/Q9I928 9E
Myosin light chain 1/Q9IB33 1L
Myosin light chain 2/P02608 61
Parvalbumin beta/P02618, P59747, Q4QY6 7 J,4F
Protein S100-A11/P31949 1 J
Troponin C fast skeletal muscle/Q9I8U8 65
Annexin 11b/A0F047 235A
Putative transient receptor protein 2/Q64210 8F
Fast skeletal myosin light chain 3/Q9PUT0 64
Transketolase/Q6B855 3I

Magnesium GO:0000287 Beta-enolase/P25704 9
Phosphoglucomutase-1/Q9D0F9/Q7SXW7 5I,20
Enolase A/A4ZDY2 12H
Enolase 1, (alpha)/Q4TBD1/Q6PC12 8,14,16

Zinc GO:0008270 Carbonic anhydrase 2/Q8UWA5 5 M
Carbonic anhydrase/Q92051 76A
Betaine homocysteine S-methyltansferase/A2TF10 12

Others GO:0008430 Selenium-binding protein 2/Q63836 1O
GO:0046872 Transketolase/Q6PB855 3I
GO:0046872 Glyoxalase 1/Q6P696 10F
GO:0008199 Putative transferrin/Q6UPC0 6H,7H

a Ion binding molecular function and GO node given by Gene ontology analysis using the GOSlim Viewer (http://www.agbase.msstate.edu/).
b UniprotKB is a protein knowledgebase used to obtain further biological process information (http://www.uniprot.org).
c Spot ID numbers refers to proteins listed in Supplementary Table 1 of the manuscript.
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in bone characteristics such as its lower Ca content and smaller
apatite crystals (Horton and Summers, 2009; Moss, 1961) and its
higher lipid content (Hall, 2005; Lall and Lewis-McCrea, 2007).
Moreover, the predicted pI of proteins in sea bream bone tend
to be more acid than the mammalian homologue (Bastone
et al., 2009; Fan et al., 2005).

http://www.agbase.msstate.edu/
http://www.uniprot.org


Table 2
Identification of differentially expressed proteins regulated by PTHrP treatment on sea bream vertebra. Proteins separated by 2DE were identified by peptide mass fingerprint
(PMF) and MALDI-TOF/TOF (MS/MS) using the mass peaks spectra of tryptic peptide to search the NCBInr/SwissProt database with MASCOT via BioTools 2.3 software.

Spotsa Protein identity Molecular functionb GI number/species Mw/pI
theoreticalc

Mw/pI
determinedd

Sequence
coverage (%)

Mascote
score

p-
Valuee

sbPTHrP down-regulated proteins
50 Annexin A5 Calcium ion binding/ protein binding/

Collagen binding protein
gi|113959/Gallus gallus 32.4/12.6 34/4.9 34 166 2.5�17

52 Apolipoprotein A1 Metabolism lipid transport gi|6686379/Sparus
auratus

29.6/5.1 25/5.0 66 285 3.2�29

61 Myosin light chain 2 Calcium ion binding/myosin complex
(cytoskeletal)

gi|5852838/Sparus
auratus

19.2/4.4 17/4.7 91 300 1�30

64 Fast skeletal myosin
liht chain 3

Calcium ion binding/myosin complex gi|5852836/Sparus
auratus

17/4.2 16.9/4.2 68 193 5.0�20

65 Troponin C Calcium ion binding/response stress gi|1885949/Danio rerio 18.3/3.8 18.3/4 37 135 3.2�14

sbPTHrP up-regulated proteins
12 Betaine homocystein

S-methyltransferase
Methionine anabolism/ Zinc ion binding gi|124020700/

Paralichthys olivaceus
44.8/8.7 44/6.9 6 142 6.3�15

232 Glial fibrillary acidic
protein

Structural molecule activity gi|20977259/Danio rerio 42.2/4.9 49/5.5 23 72 6.3�8

237 Parvalbumin beta Calcium ion binding gi|32363220/Scomber
japonicus

29.8/12.1 13/5 16 87 2�9

a The spot ID numbers refers to proteins listed in Figs. 4 and 6.
b Molecular function of proteins (in some cases several are listed) given by gene ontology analysis using the UniProt database, (http://www.uniprot.org).
c Theoretical molecular weight and isoelectric point determined by MASCOT analysis.
d Observed molecular weight and isoelectric point determined from the localisation of the spots in 2DE.
e p-value calculated as 10�0.1⁄score.
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Nonetheless a significant number of the proteins identified in sea
bream bone were related to bone metabolism, cytoskeleton and en-
ergy metabolism. Moreover, ion binding properties of proteins in sea
bream vertebra classified and categorized using GO is in general
agreement with their high content of calcium, phosphate and car-
bonate and smaller amounts of magnesium, sodium, strontium,
lead, citrate, fluoride, hydroxide, and sulfate (Lall and Lewis-McCrea,
2007). For example, calcium binding proteins were most abundant
followed by those binding magnesium and a low percentage of pro-
teins bound zinc and other metals such as selenium. Several of the
proteins identified in the sea bream bone proteome have also been
described in mammalian bone, these include enolase, apolipopro-
tein A-1, transferrin, myosin light chain, annexin, S-100 and transke-
tolase (Giner et al., 2007; Jiang et al., 2007; Lammi et al., 2006;
Pastorelli et al., 2005; Schreiweis et al., 2007). As expected and in
common with the proteome of other teleost tissue many of the pro-
teins identified had a structural function and included, fast skeletal
muscle a-actin, fast skeletal muscle myosin heavy chain, tropomyo-
sin, keratin type I cytoskeletal 13, a-actin, creatine kinase, tubulin
(Reddish et al., 2008; Schiavone et al., 2008; Sveinsdottir et al.,
2008). The only other study of the bone proteome in a teleost is mal-
formed vertebra of white sea bream (Diplodus sargus) but of the 28
proteins differentially expressed compared to normal vertebra, 13
were unidentified limiting its usefulness for the present study (Silva
et al., 2010). However, three of the modified proteins (parvalbumin
beta, apolipoprotein A1 and myosin light chain 2) identified in mal-
formed vertebra were also modified by PTHrP treatment, and taking
into the consideration the importance of this hormone for bone for-
mation, it raises interesting questions about its possible involve-
ment in the aetiology of fish malformations.

The proteins in the sea bream bone reveal the metabolic and
functional aspects of fish acellular bone and also its similarity with
mammalian bone. For example, collagen a-2 type I (COL1A2) and
the osteoclastogenesis enzyme related carbonic anhydrase 2
(CAHZ) identified in sea bream bone have well characterized func-
tions in mammalian bone (Cohen, 2006). Similarly, type I collagen
a major structural component of the extracellular matrix of mam-
malian bone, skin and tendons is also present in sea bream (Wahl
and Czernuszka, 2006). In mammalian bone COL1A2 is expressed
during differentiation to the osteoblastic lineage and during osteo-
blast maturation and is involved in matrix maturation and miner-
alization (Cohen, 2006). Mutations in COL1A2 cause bone disease
such as osteogenesis imperfect, Ehlers-Danlos syndrome, osteopo-
rosis and Marfan syndrome (Dalgleish et al., 1987; Gajko-Galicka,
2002). The acidifying microenvironment necessary for bone
resorption by osteoclasts results from the action of several en-
zymes, including carbonic anhydrase 2 in humans (Teitelbaum,
2000) and its expression is also increased during chondrogenesis
(Lammi et al., 2006; Lee et al., 2004). Furthermore, creatine kinase
(CK) that is involved in mammalian bone growth and differentia-
tion (Nogami and Oohira, 1987) is also expressed in sea bream
bone and one putative CK1 and two putative isoforms of CKM2
(muscle-type creatine kinase) were identified.

Four annexin (ANX) family members (A3, A5, A13, A11b) and 3
isoforms of A5 are identified for the first time in teleost bone. The sig-
nificance of annexins in bone has not been studied in detail but they
are a family of structurally related Ca binding proteins with numer-
ous biological functions. In humans, 12 annexins exist and have a
broad tissue distribution including cartilage (A2, A5, A6) and matrix
vesicles isolated from chondrocytes where they are proposed to
influence matrix mineralization (Giner et al., 2007; Wang et al.,
2003). During bone mineralization in mammals, annexin and so-
dium-phosphate co-transporter 3 (NaPi3) promote accumulation
of Ca and Pi in matrix vesicles (Kirsch and Claassen, 2000) and A1,
A2, A4 and A5 have been implicated in osteoblast differentiation in
proteomic studies (Mohiti et al., 1995; Zhang et al., 2007). In addi-
tion, A2 enhances osteoclast formation and bone resorption (Takah-
ashi et al., 1994). The function of annexins in fish are poorly
characterized but they are implicated in a variety of biological pro-
cesses and several annexin genes (1–6, 11 and 13) with a wide
spread tissue distribution have been identified (Spenneberg et al.,
1998; Yeh and Klesius, 1818). A13 is present in the notochord and
head rudiment of developing zebrafish (Ozerova and Minin, 2008)
and is proposed as the probable common ancestor of all vertebrate
annexins and in human it is mainly expressed in kidney and intesti-
nal epithelial cells where it has acquired a highly differentiated
intracellular transport function (Choi et al., 2009; Iglesias et al.,
2002).

http://www.uniprot.org
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4.2. PTHrP and bone homeostasis

Intermittent administration of PTHrP in vivo to sea bream over
5 days did not modify plasma Ca levels but caused a significant
reduction in TRACP and ALP activity, with a shift in the TRACP:ALP
ratio from 2.2 in the Control to 1.3 in the PTHrP group indicative of
a shift towards anabolism. The results in sea bream are in agree-
ment with in vivo and in vitro studies in mammals that indicate
that prolonged or intermittent exposure to PTH or PTHrP has an
anabolic action (Castro et al., 2011; Dobnig and Turner, 1995;
Kim et al., 2005; Li et al., 2007; McManus et al., 2008; Schiller
et al., 1999; Swarthout et al., 2002). In mammals the mid-region
and C-terminus of PTHrP are most anabolic (Castro et al., 2011;
Toribio et al., 2010) and if region specific effects of PTHrP occur
in fish remains to be established.

Despite the observed effects of intermittent PTHrP on TRACP
and ALP enzyme activity, neither of the proteins was modified in
the bone proteome, and they were presumably among the >50%
proteins which were not characterised. However, five proteins
were down-regulated by sea bream PTHrP(1–125): annexin A5
(ANX5); apolipoprotein A1; myosin light chain 2; fast skeletal
myosin light chain 3; troponin C and 3 proteins were up-regulated:
betaine-homocystein S-methyltransferase; glial fibrillary acidic
protein; parvalbumin beta. A common feature of these proteins is
their Ca binding function and in mammals annexins play an impor-
tant role in bone development (Mohiti et al., 1995; Wang et al.,
2003; Zhang et al., 2010). For example, ANX5 expression increases
during osteogenesis and serves as a Ca channel in the plasma
membrane and in matrix vesicles and increases the influx of Ca
which is critical for initiation of mineralization of cartilage and
perhaps even bone (Kirsch and Claassen, 2000). A possible conse-
quence of the down-regulation of ANX5 in sea bream bone may
be the decrease in ANX5 mediated Ca influx into matrix vesicles
of chondrocytes to reduce matrix mineralization. This seems to
be coherent with the apparent fall in bone turnover indicated by
the reduction of both ALP and TRACP activity in response to 5 days
PTHrP administration. Moreover, it may explain the surprisingly
low number of differentially expressed proteins caused by inter-
mittent PTHrP exposure in sea bream.

Glial fibrillary acidic protein (GFAP) assembly into intermedi-
ate filaments is indirectly blocked by ANX (Arcuri et al., 2002;
Garbuglia et al., 1999) and is up-regulated in sea bream bone
by PTHrP treatment. In mammalian osteoblasts, PTH also affects
the expression of intermediate filaments such as vimentin, a-ac-
tin and tubulin which are implicated in both, bone resorption and
formation (Kim et al., 2005; Lomri and Marie, 1988, 1990). Of the
other proteins modified, betaine-homocysteine S-methyltransfer-
ase (BHMT) is a zinc metallo-enzyme involved in the regulation
of methionine biosynthesis and it is predominantly expressed in
liver and kidney of mammals (Pajares and Perez-Sala, 2006).
However, in human chondrocyte cell cultures BHMT is an early
target gene down-regulated by continuous PTHrP treatment,
although its function in chondrocytes has not been established
(Hoogendam et al., 2006).

The functional relevance of the remaining proteins regulated by
PTHrP in sea bream vertebral bone is unclear but all are Ca ion
binders (myosin light chain 2, fast skeletal myosin light chain 3,
troponin C, parvalbumin beta) and have previously been detected
in vertebrate bone (Fan et al., 2005; Lammi et al., 2006; Silva
et al., 2010; Toury et al., 1996; Zhang et al., 2007). In mouse, myo-
sin light chain 2 is present in the bone proteome and is increased
by estrogen deficiency (Fan et al., 2005). In mammals, parvalbumin
is present in bone cells and the extracellular matrix, principally in
calcifying zones of cartilaginous and osseous tissues (Celio et al.,
1984; Toury et al., 1996). From the preceding consideration it is
clear that to understand how PTHrP acts more studies directed at
understanding the biological function of the responsive proteins
in bone are required.

In conclusion, a partial proteome of the gilthead sea bream ver-
tebra was characterized and revealed that the most abundant pro-
teins are involved in the binding of proteins and metal/ions (e.g.
calcium, magnesium and zinc). In sea bream intermittent
PTHrP(1–125) for 5 days did not modify total plasma Ca but caused
a reduction in bone turnover as indicated by reduced TRACP and
ALP and modified the bone proteome. Most of the 5 proteins
down-regulated and 3 proteins up-regulated by intermittent
PTHRP are Ca binding proteins which have been implicated in bone
development and homeostasis (e.g. ANX5) in mammals. The re-
sults of the study unmask novel PTHrP regulated pathways in fish
bone and future studies should extend and further validate the
results.
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