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The Solow growth model significantly impacts growth econometrics. How-

ever, its primary issue arises when applied to OECD samples. While incorpo-

rating human capital accumulation improves the model’s goodness-of-fit, it 

remains low for this subset. Furthermore, augmenting the model with vari-

ous technology variables leads to different results. In light of doubts regard-

ing multicollinearity within the frequentist framework, this study aims to de-

termine which modified model specification well explores the OECD growth 

pattern. By employing Monte Carlo simulation within the Bayesian panel 

non-linear framework, our findings suggest that the human capital-aug-

mented Solow growth model with homogeneous technology best elucidates 

economic growth in OECD countries, aligning with the productivity conver-

gence hypothesis. 
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INTRODUCTION 

Understanding economic growth, one of the oldest and most significant research agendas, is crucial 

for the well-being of future generations. That is why growth economists endeavor to explain the process of 

economic growth and cross-country differences in average income. The most basic but popular growth 

model, Solow model (Solow, 1956), representative of the first period of modern growth theory, posits that 

economic growth through physical capital accumulation is constrained by diminishing returns over time, 

leading to a steady state. At the steady state, per capita income increases at the speed of exogenous 

technical progress. The main critique of the Solow model is its low explanatory power for the set of OECD 

countries, where the capital share in income is high (MRW, 1992). Many subsequent studies have attempt-
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ted to enhance the canonical Solow model by incorporating various explanatory variables (MRW, 1992; 

Knowles and Owen, 1995; Park and Prat, 1996; Felipe and McCombie, 2005; Abu-Qarn, 2019). MRW 

(1992) introduced human capital as an independent predictor in the model, while others augmented it 

with technology variables (Islam, 1995; Nonneman and Vanhoudt, 1996; Lee et al., 1997; Felipe and 

McCombie, 2005; Abu-Qarn, 2019). 
 

Nevertheless, including new independent variables in the frequentist analyses poses challenges due 

to highly correlated predictors. The intricate relationship between fixed investment and technology is influ-

enced by various factors such as positive correlation and reverse causality (Lucas, 1988; Romer, 1990; 

MRW, 1992; Islam, 1995; Jones, 1995; Acemoglu, 2008; Jing Liu et al., 2022). Physical investments en-

hance the adoption of new technologies and innovations, resulting in faster technology advancement. On 

the other hand, higher technology growth can prompt increased investment as firms seek to remain com-

petitive by adopting the latest technologies. Similarly, the relationship between human capital, savings, 

and population is complex (MRW, 1992)—more savings or lower population growth causes higher human 

capital via more significant income. Hence, including all these independent variables in a single growth 

model can potentially cause multicollinearity, leading to severe statistical issues (Jaya et al., 2019; Pe-

saran and Smith, 2019). Multicollinearity makes it difficult or even impossible to isolate the independent 

impacts of the predictors on the dependent variable. Furthermore, the coefficient estimates of correlated 

variables become biased and difficult to interpret accurately, while the standard errors can be inflated, 

potentially leading to misleading statistical significance tests. 
 

To mitigate multicollinearity, one approach is to use ordinary techniques such as variable selection or 

dimension reduction methods to eliminate one of the correlated variables. Alternatively, if the theoretical 

importance of all the independent variables is significant and one wishes to include them in the model, 

Bayesian methods that can handle multicollinearity effectively need to be explored. Bayesian methods 

offer some advantages in dealing with multicollinearity compared to traditional frequentist methods (Block 

et al., 2011; Jaya et al., 2019; Pesaran and Smith, 2019). Bayesian methods provide a more flexible and 

principled framework for modeling complicated relationships among variables. Here are some ways the 

Bayesian approach can help overcome multicollinearity issues: 
 

(i) Prior specification: In Bayesian analysis, one can include informative priors that express our beliefs 

about the relationships between variables before observing the data. One can guide the model towards 

plausible parameter estimates by incorporating specific prior knowledge, even when multicollinearity is 

present. Informative priors can help stabilize the estimation process and provide more realistic parameter 

estimates. 

(ii) Sampling-based estimation: Bayesian inferences rely on Markov Chain Monte Carlo (MCMC) tech-

niques to obtain the posterior distribution of parameters. These techniques allow for efficient sampling 

from the joint posterior distribution, which can be helpful when dealing with multicollinearity, especially in 

high-dimensional settings. 

(iii) Prioritizing parameter uncertainty: Bayesian inference naturally provides a posterior distribution 

for each parameter, including variance and covariance estimates. This means that instead of point esti-

mates, one gets a range of likely values, which helps understand the uncertainty around the parameter 

estimates, mainly when multicollinearity is present. 

(iv) Non-linear models: Bayesian methods are more amenable to handling non-linear relationships be-

tween variables. When multicollinearity arises due to interactions between variables, Bayesian modeling 

can easily incorporate these non-linear effects, allowing for a more flexible representation of the underlying 

relationships. 

With all the above arguments in mind, the research focuses on determining which of the following 

models – the canonical or human capital-augmented Solow models augmented by homogeneous and het-

erogeneous technology – best accounts for income disparity across OECD countries. A Bayesian non-linear 

framework through MCMC simulations is applied to an OECD panel to achieve this goal. The assumption 

of fixed technological progress, depreciation rates, and country-specific rates for these variables will be 

incorporated into the canonical and augmented Solow models. Our research contributes to the growth area 

in the following ways: first, the adoption of thoughtful Bayesian estimation allows for coding the interac-

tions among variables, disentangling individual effects of the predictor variables on the response; the 
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research concludes that the Solow model augmented with country-specific human capital accumulation 

and identical technology performs best in depicting the economic growth of OECD countries; second, the 

study demonstrates the advantages of the Bayesian approach over frequentist inference in handling com-

plex growth models. 

 

 

1. CANONICAL SOLOW GROWTH MODEL, MRW SPECIFICATION,  

     AND RELATED EMPIRICS 
 

1.1 MRW specification of canonical Solow model  

The canonic Solow growth model includes labor-augmenting technical progress as an exogenous var-

iable, known as Harrod-neutral technical progress. The Cobb-Douglas production function is utilized:  

𝑄𝑖𝑡 = 𝐴𝐾𝑖𝑡
𝛼(𝐿𝐸)𝑖𝑡

1−𝛼 .          (1) 

where 𝑄, 𝐾, and 𝐿 are income, physical capital, and raw labor, respectively.  is labor-augmenting tech-

nical progress; is effective labor; 𝛼 is income elasticity concerning physical capital (0 < 𝛼 < 1); and 

𝑖, 𝑡 are country and time, respectively. 
 

Suppose that labor-augmenting technical progress has a rate of 𝑔. In this scenario, the effect of tech-

nical progress on production is similar to that of raw labor. For instance, if the growth rate of labor produc-

tivity (E) is 0.02, it means that in period t, 100 workers would produce the same output as 102 workers 

did in the previous period (t-1). 
 

Additionally, if the population (L) and labor productivity (E) grow at a rate of  and 𝑔, respectively, 

effective labor (LE) would increase at a higher rate, specifically (𝑛 + 𝑔), which exceeds the growth rate of 

raw labor (L). This indicates that the combined effect of population growth and labor productivity growth 

results in a higher growth rate of effective labor, leading to a more significant impact on production. 

In the Solow model, augmented with Harrod-neutral technical progress, there is a ratio between 

physical capital and effective labor (𝑘𝐸 =
𝐾

𝐿𝐸
), and 𝑞𝐸  is the income per unit of effective labor (𝑞𝐸 =

𝑄

𝐿𝐸
). 

Applying 𝐿𝐸𝑖𝑡 = 𝐿𝑖𝑡𝐸𝑖𝑡 leads to: 
 

𝑞𝑖𝑡 = 𝑞𝑖𝑡
𝐸 𝐸𝑖𝑡 = 𝑞𝑖𝑡

𝐸 𝑒𝑔𝑡.                           (2) 
 

𝑘𝑖𝑡 = 𝑘𝑖𝑡
𝐸 𝐸𝑖𝑡 = 𝑘𝑖𝑡

𝐸 𝑒𝑔𝑡.                           (3) 
 

Dividing (1) by 𝐿𝐸, we obtain: 
 

𝑞𝑖𝑡
𝐸 = 𝐴(𝑘𝑖𝑡

𝐸 )𝛼.                                        (4) 
 

Hence, the fundamental growth equation is rewritten: 
 

∆𝑘𝑖𝑡
𝐸 = 𝑠𝑞𝑖𝑡

𝐸 − (𝑛 + 𝑔 + 𝛿)𝑘𝑖𝑡
𝐸 .               (5) 

 

Or 
 

∆𝑘𝑖𝑡
𝐸 = 𝑠𝐴(𝑘𝑖𝑡

𝐸 )𝛼 − (𝑛 + 𝑔 + 𝛿)𝑘𝑖𝑡
𝐸 .       (6) 

 

where ∆𝑘𝑖𝑡
𝐸  represents the increment of physical capital, and the variables 𝑠, 𝛿, 𝑛, and 𝑔 represent the 

fraction of savings (physical investment) in income, depreciation rate, growth rate of population, and 

technology growth rate, respectively. 
 

The right-hand side of (6) consists of two terms: the first term represents investment per unit of 

effective labor, and the second term represents “break-end investment” – an amount of investment that 

compensates for the depreciated part of the capital stock – along with the growth rate of effective labor 

(𝑛 + 𝑑). As a result, when investment per unit of effective labor matches the “break-end investment,” 𝑘𝐸 

E

LE

n

Ek
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increases. Conversely, if they do not match, 𝑘𝐸 decreases. This interplay between investment and effective 

labor drives changes in 𝑘𝐸 over time. 
 

The model reaches the steady state when ∆𝑘𝑖𝑡
𝐸 = 0. Transforming (2) and (3), we obtain: 

𝑘∗ = (
𝑠𝐴

𝑛+𝑔+𝛿)
)

1

1−𝛼
𝑒𝑔𝑡.     (7) 

 

𝑞∗ = 𝐴
1

1−𝛼 (
𝑠

𝑛+𝑔+𝛿)
)

𝛼

1−𝛼
𝑒𝑔𝑡.     (8) 

 

where 𝑘∗ and 𝑞∗ are per capita capital and income at the steady state, respectively. We take logarithms to 

obtain: 

𝑙𝑛𝑞 = 𝑎 +
𝛼

1−𝛼
ln(𝑠) −

𝛼

1−𝛼
(𝑛 + 𝑔 + 𝛿)     (9) 

At the steady state, (8) indicates that per capita income gains continuous growth at a speed of . 

This sustained growth is primarily attributed to the impact of labor-augmenting technical progress, which 

counteracts the law of diminishing returns to capital, a factor that could otherwise hinder per capita income 

growth. The gradual accumulation of raw labor, coupled with technological advancements, allows effective 

labor to expand in tandem with physical capital, leading to an increase in the ratio between capital and 

labor at a rate of 𝑔. As a result, both capital and income experience growth at a combined rate of (𝑛 + 𝑔), 

while the ratio between capital and labor and per capita income rise at a rate of 𝑔. The steady-state reflects 

a dynamic equilibrium where various factors work harmoniously to sustain economic growth. 

When MRW (1992) introduced human capital stock (𝐻) into the production function, (1) becomes: 

𝑄𝑖𝑡 = 𝐾𝑖𝑡
𝛼𝐻𝑖𝑡

𝛽
(𝐴𝑖𝑡𝐿𝑖𝑡)1−𝛼−𝛽     (10) 

where 𝛽 is income elasticity concerning human capital (0 < 𝛽 < 1), MRW hold the assumption of decreas-

ing returns to all capital: 𝛼 + 𝛽 < 1. 

Transforming (10) and taking logarithms, we obtain: 

𝑙𝑛𝑞 = 𝑎 +
𝛼

1−𝛼−𝛽
ln(𝑠𝑘) +

𝛽

1−𝛼−𝛽
ln(𝑠ℎ) −

𝛼+𝛽

1−𝛼−𝛽
(𝑛 + 𝑔 + 𝛿)     (11) 

where 𝑠𝑘 and 𝑠ℎ are the share of physical and human capital investment in income, respectively. 

 

 

1.2 Related empirics  

MRW (1992) conducted one of the most influential works revitalizing the canonical Solow growth 

model. Their study focused on specifying the Solow model and testing its predictions. To estimate their 

regression, making an identifying restricted assumption of homogeneous technology across countries 

(g+δ=0.05), the authors employed a simple frequentist technique (Ordinary Least Squares) with data span-

ning from 1960 to 1985 for three distinct subsets of countries: the first dataset comprised 98 countries, 

the second included 75 countries, and the third was limited to 22 OECD countries. The outcomes of their 

analysis were mixed. The Solow model elucidated more than half of the income per capita variation among 

diverse countries, except for a specific subset – the OECD economies. The outcomes were satisfactory in 

the initial two subsamples, showing an R-squared value of 0.59 and implying an elasticity of physical cap-

ital (α) of 0.6. Nevertheless, the results for the OECD subsample were considerably less fulfilling. The esti-

mated coefficient of ln (n + 0.05) was found to be statistically insignificant despite having the correct neg-

ative sign. Furthermore, the R-squared value for the OECD countries was extremely low, amounting to only 

0.06. These findings highlighted potential limitations of the standard Solow model when applied to the 

OECD economies. To improve the Solow model's explanatory power, MRW (1992) chose to include human 

capital in the analysis, due to which, for the OECD subsample, R-squared increases from 0.06 to 0.24, a 

low for a well-specified model level, while implied α decreases from 0.36 to 0.14 and implied β obtains a 

value of 0.37. Suggesting that multicollinearity is implicit in their augmented model, MRW (1992) stated: 

g
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“Human-capital accumulation may be correlated with saving rates and population growth rates; this would 

imply that omitting human-capital accumulation biases the estimated coefficients on saving and popula-

tion growth.” 
 

Furthermore, the debate surrounding cross-country income disparities among OECD countries has 

prompted growth economists to reconsider the old approach, assuming that the term “A” (representing 

total factor productivity, TFP) is the same across all countries. Jorgenson (1995) recommended not speci-

fying homogeneous technology variables in growth models, suggesting that this assumption may need to 

capture the reality of technological differences between nations accurately. Islam (1995) further empha-

sizes that assuming homogeneous technology can lead to an omitted variable bias. The growth model may 

fail to capture crucial factors influencing income differences by overlooking the variations in technology 

levels across countries. Prescott (1998) offers a different perspective, arguing that differences in savings 

rates might not be as significant as TFP when explaining income disparities. He proposes that the focus 

should shift towards developing a TFP theory to understand better the sources of economic growth and 

variations in income levels. Numerous subsequent studies (Islam, 1995; Lee et al., 1997; Felipe and 

McCombie, 2005; Abu-Qarn, 2019) have explored variations in technology levels and rates across coun-

tries and replicated the Solow model employing various frequentist methods. However, the empirical re-

sults obtained from these studies have been mixed, leading to divergent conclusions. Notably, adopting a 

panel approach, Islam (1995) found that the fit of the Solow model considerably improved for the OECD 

subset and concluded: “The present paper advocates and implements a panel data approach to deal with 

this issue. The panel data framework makes it possible to allow for differences of the above-mentioned 

type in the form of unobservable individual “country effects”.” Similarly, Felipe and McCombie (2005) 

found a significant improvement in the model’s explanatory power when taking into account variations in 

technology across OECD countries. By contrast, Abu-Qarn (2019) revealed that incorporating heterogene-

ous technology did not produce a better model fit for three data samples, including OECD countries. How-

ever, similar to MRW (1992), adding the human capital variable notably improved the goodness-of-fit. This 

discrepancy in the mentioned findings highlights the complicated connections between population, sav-

ings, human capital, technology, and income. By our suggestion, the primary reason for the contradictory 

findings is that incorporating heterogeneous technology or human capital into the Solow model creates a 

close association between physical investment and productivity variables, as well as between human cap-

ital investment and savings and population. These dimensions are strongly correlated in general. The high 

correlation between these variables can create difficulties for frequentist methods in the mentioned stud-

ies. This correlation may lead to issues such as multicollinearity, making it challenging to disentangle the 

independent effects of the predictors on income. 

In summary, empirical investigations incorporating human capital and technology variations across 

OECD countries in the Solow growth model have yielded conflicting outcomes. Some studies show im-

proved explanatory power with the inclusion of differences in technology, while others indicate limited im-

provement. The high correlation between population growth, physical and human capital investment, and 

technology poses challenges for frequentist methods. The current study implements Bayesian non-linear 

estimation with specific priors on a panel of OECD countries to address this significant challenge when 

incorporating country-specific human capital, technology, and depreciation rates. By selecting specific pri-

ors, Bayesian analysis offers a more flexible approach to handle multicollinearity and allows for a better 

understanding of parameter uncertainties and non-linear relationships in a growth model. As a result, the 

study will provide more reliable and robust evidence on the best version of the Solow growth model.  

 

 

2. BAYESIAN MCMC SIMULATIONS AND DATA 
 

2.1 Bayesian MCMC simulations 

Since the 1990s, the application of Bayesian approaches in various fields, from genetics to macroe-

conomics, has sparked a revolution in data analysis. However, growth econometrics has been relatively 

absent from using Bayesian methods. In this article, we aim to introduce growth researchers to the thought-

ful (with specific informative priors) Bayesian methodology as an effective tool to tackle model uncertainty 
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arising from statistical issues. By doing so, we can address some of the limitations of the frequentist ap-

proach and benefit from a more flexible and intuitive framework for handling uncertainty. The most signif-

icant advantage of Bayesian analysis is its ability to incorporate specific prior information or beliefs about 

the parameters of interest. Unlike the frequentist approach, which does not formally include prior infor-

mation, Bayesian analysis can utilize this additional knowledge, resulting in more efficient estimation from 

the available data. By producing a posterior distribution of the parameters, Bayesian analysis enables re-

searchers to express uncertainty in parameter estimates and make probabilistic statements about the 

parameter values. On the contrary, frequentist methods often rely on point estimates and confidence in-

tervals, which may not fully capture the extent of uncertainty. So, Bayesian analysis is well-suited for han-

dling model complexity and hierarchies, making it a valuable tool for dealing with high-dimensional data 

and intricate relationships between variables. Bayesian analysis proves to be effective in dealing with mul-

ticollinearity, a common issue in regression analysis, by incorporating specific prior information and provid-

ing a full posterior distribution of the parameters. In contrast, frequentist methods may struggle with such 

complexity and can lead to issues like overfitting or underfitting. In frequentist regression, multicollinearity 

can result in unstable coefficient estimates and inflated standard errors (Block et al., 2011; Jaya et al., 

2019; Pesaran and Smith, 2019; Thach et al., 2019).  

The study employs MCMC simulations within a Bayesian non-linear regression model with specific pri-

ors on the elasticity parameters (α, β) to assess the canonical Solow model and its augmented versions. 

In the canonical and human capital-augmented Solow models, we incorporate constant exogenous tech-

nology variables along with heterogeneous technology and depreciation rates. Thus, we need to evaluate 

four Solow models: two canonical Solow models and two human capital-augmented Solow models with 

homogeneous and heterogeneous technology variables. To estimate the Bayesian growth models based 

on equation (11), we suppose that all the OECD countries in the sample have reached their steady state. 

To assess the canonical Solow model, the study adopts the assumptions of MRW (1992), with a tech-

nology growth rate of 0.02 and a depreciation rate of 0.03. Various assumptions regarding technology and 

depreciation rates are applied to both the canonical and augmented versions of the Solow model. For 

comparison and selection among the four Bayesian models, Bayesian information criteria such as Devi-

ance Information Criterion (DIC), log of marginal likelihood (log(ML)), Bayes factor measured in log metric 

(log(BF)), and posterior probabilities of models (P(M/y)) are analyzed. A Bayesian model performs better if 

the DIC is smaller while the remaining statistics are larger. Furthermore, visual tools such as observed vs. 

fitted plots, residual vs. fitted plots, and predictive interval plots are employed to compare the goodness-

of-fit between the best Bayesian and frequentist growth models. In conjunction with the graphical tools, 

we utilize standard metrics such as Mean Squared Error (MSE), (Root Mean Squared Error) (RMSE), and 

Mean Absolute Error (MAE). The smaller the metric value is, the more precise the model predictions be-

come. 

DIC is calculated as: 

𝐷𝐼𝐶 = 𝐷(𝜃̅) + 2𝑝𝐷     (12) 

where 𝐷(𝜃̅) is the posterior mean deviance, and 𝑝𝐷 is the effective number of parameters in a model. 

Log(ML) is measured by: 

log 𝑃(𝑦) = 𝑙𝑜𝑔 ∫ 𝑝(𝑦|𝜃)𝑝(𝜃)𝑑𝜃      (13) 

where 𝑃(𝑦) is the marginal likelihood of the data y, 𝑝(𝑦|𝜃) is the likelihood function, and 𝑝(𝜃) is the prior 

distribution of the parameters θ. Note that the integral is taken over the parameter space θ. 

As the ratio of the marginal likelihoods under two competing models, 𝑀1 and 𝑀2, BF is calculated as:  

𝐵𝐹 =
𝑝(𝑦|𝑀1)

𝑝(𝑦|𝑀2)
     (14) 

where 𝑝(𝑦|𝑀1) and 𝑝(𝑦|𝑀2) are the marginal likelihoods of the data under models 𝑀1 and 𝑀2, respec-

tively. 

As the average of the absolute differences between the observed values and the predicted values, 

MAE is calculated as: 
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𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|𝑛

𝑖=1      (15) 

where 𝑛 is the number of observations (data points), 𝑦𝑖 is the actual (observed) value for observation 𝑖, 
and 𝑦̂𝑖 is the predicted value for observation 𝑖. 

MSE and RMSE measure the average squared difference between the predicted and the observed 

values. MSE is measured by:  

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1       (16) 

RMSE is the square root of the MSE: 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸     (17) 

We set a default configuration for the MCMC sample during our simulation process. We discard the 

initial 2,500 burn-in iterations to ensure the stability and convergence of the algorithm. Additionally, to 

effectively assess MCMC convergence in a high-dimensional regression setting, we use a thinning rate of 

50. This allows us to reduce the number of iterations while retaining the sample's representativeness. 

Consequently, 502,451 iterations are executed within the MCMC algorithm, providing robust and reliable 

analysis. 

 

 

2.2 Data  

Our investigation utilizes a panel dataset encompassing 28 OECD countries from 1970 to 2019. The 

dataset is designed to explore the connections between various fundamental inputs and their impact on 

aggregate income. The dataset comprises essential variables: physical investment share in GDP (𝑠𝑘), hu-

man capital investment share in GDP (𝑠ℎ), population growth rate (n), productivity (TFP) growth rate (g), 

depreciation rate (𝛿), and per capita income (q). To set a specific informative prior for the elasticity param-

eters (𝛼, 𝛽), we restrict its possible values between 0 and 0.5, adopting a uniform(0,0.5) prior distribution. 

This mildly informative prior choice aims to introduce a regularization effect on the posterior distribution, 

enhancing the stability and reliability of the parameter estimates. To check estimation robustness, we run 

one more simulation with a uniform(0,1) prior for parameters 𝛼, 𝛽. 

Data on per capita income, TFP, depreciation rate, and population are sourced from version 10.01 of 

the Penn World Tables. At the same time, information on the physical and human capital investment share 

in GDP is gathered from the World Bank’s World Development Indicators. By employing a thoughtful Bayes-

ian estimation with informative prior settings relying on these comprehensive datasets, the study gains 

more profound insights into the linkages between the crucial variables and their implications for economic 

growth in the OECD economies.  

 

 

3. BAYESIAN SIMULATION OUTCOMES AND INTERPRETATION 
 

 

3.1 Convergence diagnosis 

Before performing Bayesian inferences, it is necessary to inspect the convergence of MCMC chains to 

ensure the robustness of the Bayesian analysis. Our investigation has carried out thorough diagnostic tests 

to assess the convergence of the MCMC chains in relation to our models. The results for the best-fitting 

Bayesian model, recorded in Appendix A, indicate reasonable diagnostic graphs. Specifically, the trace 

plots show no discernible trends and rapidly approach constant mean and variance values, indicating fa-

vorable convergence. Additionally, the autocorrelation plots exhibit acceptable patterns, and the histo-

grams resemble the shape of probability distributions (Appendices B and C). Overall, the MCMC chains of 

our model demonstrate good mixing, suggesting no serious convergence issues. It can be confidently con-

cluded that the MCMC chains have effectively converged to the target distribution. This provides a solid 
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foundation for performing Bayesian inferences and drawing reliable conclusions about the parameters and 

relationships in the model. 

 

 

3.2 Goodness-of-fit comparison between homogeneous technology-,  

       heterogeneous technology-, human capital-augmented Solow growth models 

Table 1 demonstrates the performance of the four Solow growth models estimated performing MCMC 

simulations. According to the Bayesian information criteria estimates, the Solow model augmented with 

human capital and homogeneous technology is most preferable for the OECD sample. The finding is con-

sistent mainly with MRW (1992). The main reason for this finding is productivity convergence arising in the 

advanced world (Bernard and Jones, 1996; Sadik, 2008; Mendez, 2020). The productivity convergence 

hypothesis posits that adopting technologies within groups of industrialized countries is more likely and 

faster due to the low costs of importing them from a few centers. The estimated values of constant, α, and 

β for this model do not differ considerably from those of the canonical and human capital-augmented 

Solow models with heterogeneous technology. The estimated value of the constant is around 10, while 

those of α and β are approximately 0.01 and 0.02, respectively. However, the canonical Solow model 

stands apart, with estimated values of the constant and α equal to 8.06 and 0.26, respectively. Notably, 

augmentation with human capital improves the Solow model’s goodness-of-fit, aligning with previous stud-

ies (MRW, 1992; Abu-Qarn, 2019). Conversely, by adding country-specific technology variables, the Solow 

model produces conflicting results: the model fit increases in Islam (1995) and Felipe and McCombie 

(2005) but decreases in Abu-Qarn (2019) and our study. Regarding the estimated values for α, the results 

from our human capital-augmented Solow models are similar to those by Abu-Qarn (2019) but much lower 

compared to MRW (1992) and Islam (1995). It is noteworthy that our estimated values of β are much lower 

compared to MRW (1992), Islam (1995), and Abu-Qarn (2019). 

 

 
Table 1. Posterior summary of the canonical and human capital-augmented Solow models 

Bayesian models Canonical Solow growth models 
Human capital-augmented Solow 

growth models 

Technology variables 
homogeneous 

technology 

heterogeneous 

technology 

homogeneous 

technology 

heterogeneous 

technology 

Specification of 

technology and 

depreciation rates 

𝑔 = 0.02, 
𝛿 = 0.03 

𝑔 = 𝑡𝑓𝑝, 
𝛿 = 𝑑𝑒𝑙𝑡𝑎 

𝑔 = 0.02, 
𝛿 = 0.03 

𝑔 = 𝑡𝑓𝑝, 
𝛿 = 𝑑𝑒𝑙𝑡𝑎 

Number of OECD 

countries 
28 28 28 28 

MCMC sample size 10000 10000 10000 10000 

Constant 8.060 10.107 10.229 10.307 

Implied 𝛼 

0.263 

(0.006)* 

[0.201,0.292]** 

0.033 

(0.004) 

[0.002,0.091] 

0.013 

(0.002) 

[0.000,0.045] 

0.013 

(0.001) 

[0.000,0.044] 

Implied 𝛽   

0.017 

(0.005) 

[0.001,0.066] 

0.021 

(0.003) 

[0.001,0.068] 

DIC 2703.028 2752.757 1123.334 1124.512 

Log(ML) -1364.732 -1390.287 -576.6644 -576.7437 

Log(BF) . -25.55514 788.0674 787.9881 

P(M/y) 0.0000 0.0000 0.5198 0.4802 

Error variance 0.303 0.313 0.215 0.215 

Note: *denotes Markov chain standard error (MCSE), ** denotes PPI (Posterior Probability Interval) representing a 

95% probability that a mean coefficient lies between two values in the population. 

Source: Calculations by the author 

3.3 Goodness-of-fit comparison between frequentist and Bayesian growth models  
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This subsection compares the performance of frequentist and Bayesian inferences in estimating the 

human capital-augmented Solow growth model with homogeneous technology. This task is carried out via 

observed vs. fitted plots, residual plots, and predictive interval plots. As evident from the first type of diag-

nostic plots (Figure 1a), notable differences emerge between the predictive performance of the Bayesian 

and frequentist models. The yellow (Bayesian) points align more closely with the diagonal line (y = x) com-

pared to the blue (frequentist) ones. This indicates that the Bayesian model’s predicted values match the 

observed values better than the frequentist model.      

                                                

a) 

 
b) 

 

Figure 1. Bayesian vs. frequentist: a) Observed vs. fitted plot, b) Residual plot 

Source: own 
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Furthermore, the second type of plot (Figure 1b) exhibits that, compared to the frequentist residual 

(blue) plot, the residuals of the Bayesian (yellow) plot are more evenly spread across the range of predicted 

values, which indicates that the Bayesian model’s predictions are unbiased and have no systematic errors. 

                      

 

                                                                                    a)                                                                                                   

             
 b)       

      
Figure 2. Actual data (GDP per capita) within predictive intervals: a) Frequentist model, b) Bayesian model 

Source: own 
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Figure 2 compares the number of observations (actual data) of the variable GDP per capita within the 

predictive intervals between the Bayesian and frequentist human capital-augmented Solow models with 

homogeneous technology. A closer examination of the diagrams reveals only minimal disparity. However, 

the numeric results presented in Table 2, with values of 0.948 and 0.951 against 0.935, clearly indicate 

an advantage of the Bayesian models over the frequentist one. Moreover, other metrics such as MSE, 

RMSE, and MAE also favor the Bayesian models over the frequentist one. Based on these findings, we can 

conclude that the Bayesian approach outperforms the frequentist approach, particularly in addressing 

multicollinearity inherent in complex growth models. 

 

 
Table 2. Comparing the frequentist and Bayesian augmented Solow growth models 

Human capital-augmented Solow 

growth models 
Bayesian approach Frequentist approach 

Prior for α, β Uniform(0,0.5) Uniform(0,1)  

Specification of technology and 

depreciation rates 

𝑔 = 0.02, 
𝛿 = 0.03 

𝑔 = 0.02, 
𝛿 = 0.03 

𝑔 = 0.02, 
𝛿 = 0.03 

Number of OECD countries 28 28 28 

Constant 10.229 10.287 10.472 

Implied α 0.013 0.010 0.005 

Implied β 0.017 0.012 0.006 

MSE 0.303 0.303 0.312 

RMSE 0.550 0.550 0.559 

MAE 0.436 0.431 0.437 

Percentage  of observations  within 

predictive intervals 
0.948 0.951 0.935 

Source: Calculations by the author 

 

 

Furthermore, Table 2 shows that varying hyperparameters of the uniform prior do not alter the esti-

mates of the elasticities α and β. Additionally, we observe no significant distinction in the estimated values 

of the constant, α, and β between the Bayesian and frequentist models. 

 

 

CONCLUSION 

Departing from the canonical Solow growth model, which poorly explains economic growth in the OECD 

countries, numerous studies have attempted to incorporate human capital and technology variables into 

the model. Nonetheless, the findings have been inconclusive and sometimes contradictory. The primary 

reason for the mixed results may be the issue of multicollinearity arising from the high correlation between 

population growth, human and physical capital investment, and technological progress. This statistical 

challenge is one that traditional frequentist methods struggle to handle effectively. In contrast, the Bayes-

ian approach offers a more flexible and robust solution to address this correlation problem. Our study 

involved a sequence of MCMC simulations within a Bayesian non-linear framework, analyzing a panel da-

taset encompassing 28 OECD economies. The results indicate that the Solow growth model, when supple-

mented with heterogeneous human capital, homogeneous technology, and homogeneous depreciation 

rates, best explores the OECD growth pattern, which aligns with the productivity convergence hypothesis. 

Based on the research findings, the study proposes the adoption of the augmented Solow model esti-

mation results using the thoughtful Bayesian approach as a reliable empirical foundation for informing 

growth policies. Policymakers can gain a more accurate understanding of the dynamics of economic growth 

and make informed decisions to promote sustainable development and prosperity in the OECD context. 

As with any empirical research, our study has limitations that should be acknowledged. One limitation 

is the potential for omitted variable bias, as there might be other unobserved factors influencing economic 

growth that should have been accounted for in our model. Additionally, the OECD sample may not fully 
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represent the diverse global economic landscape, which could affect the generalizability of our findings. 

Despite these limitations, our study contributes to understanding economic growth dynamics by showcas-

ing the benefits of adopting a thoughtful Bayesian approach and considering the effects of heterogeneous 

factors in the Solow growth model. Further research and exploration of more comprehensive datasets 

could enhance the accuracy and scope of our findings. 
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A: Human capital-augmented Solow model 

 

 

Source: Calculations by the author 
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B: Human capital-augmented Solow model 

 

 

Source: Calculations by the author 
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C: Human capital-augmented Solow model 

 

 

Source: Calculations by the author 
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