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Abstract

The pulsed Doppler ultrasound (DU) is one of the important tools in the study

of vessel diseases and the investigation of flow conditions.Due to its non-invasive

nature, it has been increasingly used in medicine in the lastfew decades. Ac-

curate estimation of DU spectral center frequency and bandwidth parameters are

extremely important for blood flow diagnostic purposes. Under real-time data ac-

quisition conditions the DU signal is generally corrupted with different types of

noise. In these situations the identification of signal components solely belonging

to the blood flow signal is a difficult task.

This thesis was aimed to study spectral techniques to enhance spectral param-

eter estimation, in particular the center frequency. Spectral estimates were ob-

tained using the Short Time Fourier Transform (STFT) and Continuous Wavelet

Transform (CWT). STFT was applied to short duration data segments, respecting

signals’ stationary properties. Two CWT functions have been studied: varying

bandwidth filter and fixed bandwidth filter. Since different filter bandwidth values

yield different results, bandwidths for fixed bandwidth filter were investigate and

the most proper one has been used on the performance comparative studies. To

enhance the blood flow signal content of noise-embedded clinical Doppler signals,

a STFT-based technique was proposed to reduce the signals’ noise components.

Quantitative evaluation of the spectral methods was primarily performed on

simulated signals with deterministic center frequency andbandwidth. Different

signal to noise ratio signals were simulated. It has been observed that STFT spec-

tral center frequency and bandwidth estimators were less biased than the CWT

ones, although the last ones were less sensitive to the center frequency variations.

Applying the proposed noise cancellation technique to simulated signals re-

duces the spectral estimators’ errors. As an example, a typical noisy signal with

10dbSNR, a reduction of 88% and 97% was obtained on the RMS bias of the

estimation of the center frequency and bandwidth estimators respectively.

Keywords: Doppler spectrum, STFT, wavelets, noise cancellation, ultrasound,

blood flow signal.
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Resumo

O ultra-som Doppler pulsado é um importante instrumento utilizado no estudo

de doenças vasculares e na investigação das condiçõesde fluxo sanguı́neo. De-

vido á sua natureza não invasiva, tem sido crescentementeutilizado nas últimas

décadas. A estimativa precisa de parâmetros como sejam a frequência central e a

largura da banda do espectro Doppler de ultra-som são extremamente importantes

no diagnóstico de anomalias do fluxo sanguı́neo. Nestas situações, a identificação

de componentes de sinal pertencendo somente ao sinal de fluxosanguı́neo é uma

tarefa difı́cil.

Pretendia estudar-se nesta tese técnicas que melhorassema qualidade da esti-

mativa espectral, particularmente da frequência central. Foram obtidas estimati-

vas do espectro usando a Transformada de Fourier de Tempo Reduzido (STFT) e

a Transformada Contı́nua de Wavelet (CWT). A STFT foi aplicada a segmentos

do sinal de curta duração, respeitando as suas caracterı́sticas de estacionaridade.

Estudaram-se duas funções da CWT: O filtro de largura da banda variada e a filtro

de largura da banda fixa. Uma vez que diferentes larguras de banda do filtro pro-

duzem resultados diferentes, foram investigados possı́veis valores para a largura

da banda do filtro de largura da banda fixa, tendo-se escolhidoo valor mais apro-

priado para utilização nos estudos comparativos de desempenho. Para melhorar

o conteúdo do sinal sanguı́neo em sinais clı́nicos Dopplerruidosos, foi proposta

uma metodologia de redução de ruı́dos das componentes do sinal.

A avaliação quantitativa dos resultados foi inicialmente feita com base em

sinais simulados de frequência central e largura de banda determinı́sticos. Difer-

entes nı́veis de sinal-ruı́do foram simulados. Observou-se que os estimadores

frequência central e largura de banda eram menos enviesados quando se utilizava a

STFT do que utilizando a CTW; contudo, esta última produziaestimativas menos

sensı́veis á forma de onda de frequência central.

Os erros da estimação espectral reduzem quando a técnicade cancelamento de

ruı́do proposta é aplicada. A tı́tulo de exemplo, aplicando-a a um sinal tipicamente

ruidoso com 10dB de SNR, as estimativas da frequência central e da largura de

banda reduzem o viés rms de 88% e 97% respectivamente.
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Chapter 1

Introduction

1.1 Motivation

The upward trend of the development of science and technology in the twen-

tieth century, profoundly encompasses the life style of human kind. The depen-

dency of our lives on the new discoveries in science and technology is substantial.

These discoveries enrich the quality of life and improves our daily activities. In-

vestments in science and medicine lead to achievements all around the globe.

These achievements help to save lives of thousands of people, cure numerous dis-

eases and amend lives of millions of people. Perhaps it wont be too far from the

reality if we consider any new achievement a simple aid to either save lives or

improve quality of life.

In this context, engineering sciences indeed carry out a major role in the de-

velopment of instruments used in medicine. Medicine and engineering endorsing

each other, help us to have better and improved lives. Thank to the achievements

in medicine, life expectancy is getting higher, more diseases become curable and

lives of more people become better and improved.

Any progress in engineering of devices, tools and the technology used in

medicine, in fact would serve our lives. By nature, upon arrival to any new stage,

man kind demands to get to a higher one. In engineering, any single invention led
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to a faster, more powerful and more precise invention. Moreover to the desire of

the man kind, the society necessitates and requests the progressive development of

tools. In medicine, for instance, during 1970s the efficacy of carotid endarterec-

tomy was debated. At the time, carotid endarterectomy was a well established and

recognized procedure to deal with stenotic vessels. However, based on the reports

of high rate of mortality after surgery, The steadily increasing number of carotid

endarterectomy started to decline. The international medical society demanded

establishment of particular criteria to evaluate effectiveness of carotid endarterec-

tomy on patients with specific stenotic degree. Doppler ultrasound devices were

among the best noninvasive methods to estimate stenotic degree on vessels.

The first report of application of Doppler ultrasound in medical diagnosis dates

back to 1956. Satomura and his group from Osaka University, Japan, reported the

detection of heart wall motion using Doppler Ultrasound. Merely two decades

after this report, Doppler ultrasound methodology progressed massively. In 1978,

color Doppler imaging system using continuous wave signalswas introduced. In

this system, regions with increased flow velocity were distinguished by color cod-

ing from normal flow velocity regions. Eventually by the early 1990’s in Eu-

rope and North America, the official criteria for carotid endarterectomy procedure

based on the stenotic degree on vessels were established. The topic is yet to be

investigated and still there are many aspects of this methodology to be researched.

The particular motivation of the current thesis is to study techniques to improve

spectral estimation of Doppler ultrasound blood flow signals.

1.2 Proposed Goals

This work was aimed to study the application of spectral estimator methods on

the estimation of Doppler ultrasound blood flow spectral mean frequencies. This

main goal should be achieved by primarily investigating a method for reducing

the noise content of the clinical signals. Then, more than one spectral estimator

method should be tested aiming at the determination of spectral mean frequency

(mean blood flow) curves for each cardiac cycle. To help on thespectral estima-
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tion methods’ understanding and characterization usage ofsimulated signals was

suggested. In this sense, an existent computational program to simulate Doppler

signals has been employed.

1.3 Thesis Outline

This thesis consists of five chapters. The first chapter is theintroduction and

includes the sections about motivation of the work, proposed goals and outline of

the thesis. Second chapter is dedicated to the theoretical background. This chapter

has two main sections. In the first section a historical overview of development of

Doppler ultrasound concerning its medical application is presented. Section ends

with the theoretical background of Doppler ultrasound signal simulator used in

this study. This simulator is briefly described and its corresponding mathematical

expressions are presented. In the second main section of this chapter, spectral es-

timators are being explained. In this part, Fourier based and Continuous Wavelet

transformation are annotated. At the end of this chapter theexpression to estimate

the center frequency and the bandwidth are presented.

The third chapter is on the methods applied in this study. In this chapter, Short

Time Fourier Transform (STFT) is described. A proposed technique to eliminate

the noise based on STFT is thoroughly presented. The Continuous Wavelet Trans-

form (CWT) is the other applied method. Presented are the used wavelet base in

this study, fixed bandwidth filter and varying bandwidth filter.

The fourth chapter is devoted to the obtained results. The noise content of the

clinical signals is being analyzed. Three different clinical signals are presented

to exhibit the variation of magnitude of noise in different signals. Results of the

STFT, CWT with fixed bandwidth filter and CWT with varying bandwidth filter

are presented. Finally the results of application of these three methods for spectral

estimation on the clinical signals are presented.

The fifth chapter offers the conclusions and the proposals offuture work.
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Chapter 2

Theoretical Background

2.1 Introduction

This chapter is devoted to the theoretical background of this work and has two

parts. The first part concerns the Doppler ultrasound blood flow signals. Primarily

a historical overview of Doppler ultrasound methodology and application of this

methodology on blood flow signals is presented. The importance of application

of Doppler ultrasound on carotid artery is briefly described. The simulator used

in this study and reported in literature is introduced. Second part of this chapter

deals with the spectral parameters. Two spectral estimation methods were used

in this work: Short Time Fourier Transform and Continuous Wavelet Transform.

Primarily, the need for the STFT is exemplified and it is showed why the Fourier

Transform is inadequate in particular cases in digital signal processing; Then the

CWT method and time-scale representation are introduced. Then the two trans-

formation methods are compared. At last, the power waveformis formulated and

the expressions to estimate the center frequency and the bandwidth are presented.

The terms center frequency and mean frequency are used interchangeably in this

thesis and both refer to the same concept.
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2.2 Doppler Ultrasound Blood Flow Signals

Application of Doppler ultrasound is based on the idea of detecting the Doppler

shift in the frequency of the ultrasound that is backscattered from a moving object.

The stepping stone in Doppler ultrasound as a medical diagnosis tool is the work

done by Shigeo Satomura at Osaka University, Japan [1]. Satomura and his asso-

ciates published an article in 1956 and reported the Dopplerultrasound detection

of heart wall motion using 3MHzultrasound signals. Satomura and his associates

studied three different applications to further develop Doppler methodology. One

of these applications was flow in peripheral vessels. This research indicated that

blood flow in peripheral arteries and veins could be detectedtranscutaneously. An-

other important outcome of this research was that the frequency of the reflected

waves was proportional to the velocity of the blood flow. Theyhad suggested the

potential for using the methodology to study atherosclerotic arteries. Atheroscle-

rosis is a vascular disease in which an artery wall thickens and causes stenotic

lesions in arteries. Kanemasa Kato, another Japanese scholar along with his asso-

ciates showed that Doppler signals were originating from moving red cells. They

demonstrated that the frequency of these signals were related to the velocity and

their output voltage related to the number of red cells. In 1965, Ziro Kaneko and

his associates from Osaka University found that spectrum analysis provided the

best means for analyzing Doppler signals.

The mainstream efforts of early Japanese investigators were endeavored to

study the extracranial cerebral arteries. This work let to the demonstration of the

difference between Doppler signal from carotid arteries obtained from patients

with atherosclerosis and healthy subjects [1]. Meanwhile,along with Japanese in-

vestigators, American scholars were working on ultrasoundin late 50’s and early

60’s. Dean Franklin from University of Washington by developing a transit-time

recorder was employing ultrasound to study cardiovasculardynamics. Donald

Eugene Strandness, a surgeon, realized the potential of Doppler ultrasound in

the new field of vascular surgery. He introduced the Doppler methodology to

surgeons interested in vascular diseases. The availability of continuous-wave in-

struments (two classes of Doppler ultrasound instruments are briefly explained

6



in section 2.2.1) led to immediate attention of clinical applications. Strandness

and his associates described the Doppler ultrasound measurement of blood flow

in peripheral vessels in an article in 1966. In this article they demonstrate the dif-

ference of the waveforms obtained from normal patients and from patients with

atherosclerosis.

2.2.1 General View of Doppler Ultrasound

Ultrasound is a sound wave that has frequencies above the audible range of

frequencies of human being (20kHz). Diagnostic ultrasound instruments emit

ultrasound waves to an object of study. Doppler ultrasound systems may be cat-

egorized in two groups: Continuous-wave and Pulsed-wave. This classification

is based on how the transmitted signal is emitted, being either continuously or in

bursts. Continuous-wave instruments use two transducers,one for transmitting the

ultrasound and one for receiving the reflected ultrasound. The region of overlap of

the beams is the area within which these instruments are sensitive to movement.

These instruments have weak range resolution that causes confusion of direction

of signals from close vessels. Quantifying the blood flow using these systems is

difficult and they have exaggerated sensitivity to vessel walls movement [2].

The primary limitation of Doppler velocity detectors was the incapability to

pinpoint the exact location of the moving reflectors that generated the Doppler

signal. These instruments could not determine the depth of ablood vessel, nor

distinguish varying flow velocities in large vessels and relate them to their loca-

tion within the vessel lumen [1]. The need for instruments that could effectively

measure velocities at specific ranges and obtain profiles across the lumen of a

blood vessel led to the development of Pulsed-wave Doppler instruments.

The pulsed Doppler ultrasound is one of the important tools in the study of

vessel diseases and the investigation of flow conditions. Due to its non-invasive

nature, it has been increasingly used in medicine in the lastfew decades.
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2.2.2 Typical Blood Flow Signals

Doppler ultrasound blood flow studies are based on the analysis of ultrasound

signals that are backscattered by moving particles within avessel. These blood

scattering units are mainly the red blood cells (erythrocytes) and cell aggregates.

The pulsed ultrasonic Doppler blood flow detector determines blood velocity by

measuring the Doppler shift in the frequency of ultrasound.

Doppler shift (or in another words, difference) frequency is defined as the

difference between the received and the transmitted frequency. The received fre-

quency is the sum of the reference frequency with a frequencycomponent pro-

portional to the velocity of reflectors, in this case the blood particles. If the angle

between the receiving and the transmitting direction of ultrasound is 180◦, the

relation between the received and transmitted frequency can be formulated as be-

low [2]

fd = ft − fr =

(

2.
ft
c

)

.v.cosθ (2.1)

Where fd represents the Doppler shit frequency,ft and fr represent transmitted

and received frequency, respectively.c is the velocity of sound in tissue,v is the

velocity of the reflectors, andθ is the angle between the ultrasound beam and the

direction of motion of the object under study.

In arteries, blood-flow detection by Doppler ultrasound allows the measure-

ment of systolic blood pressure. In veins, blood-flow detection used to be more

difficult due to the fact that slower velocities produced lower frequency shift.

However this issue was overcome by applying augmentation maneuvers on ve-

nous flow. Augmented venous-flow signals make it possible to detect obstructed

blood flow caused by venous thrombosis. It can also be used fordetection of ve-

nous valve incompetence. Doppler ultrasound was found to beable to detect air

emboli in late 1960’s. It was also proven to be useful in monitoring during open-

heart surgery and some neurosurgical procedures [1].

One of the common vascular diseases is stenosis. A stenosis is resulted from

an intrusive lesion of blood vessels and could cause the shortage of blood sup-
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ply to distal vessels. A vascular stenosis usually causes vortices and turbulence

downstream the blood flow. These irregularities in the bloodflow can be evalu-

ated to detect and quantify the lesion and its degree [3]. It has been shown that

vessel stenosis has a close relation to the abnormal hyperplasia of cells in adja-

cent vessels, formation of emboli and artery expansion; Therefore detection and

estimation of stenotic degree on vessels has a significant importance [4].

2.2.3 Doppler ultrasound and Carotid Artery Surgery

As it was mentioned earlier, atherosclerosis causes stenotic lesions in arter-

ies. A short term treatment of this situation includes minimally invasive angio-

plasty procedure. This could include application of a stentthat physically ex-

pands the narrowed arteries. The major invasive surgery is bypass surgery but it

provides additional blood supply that goes around the extremely narrowed vessel.

One of the main impeller forces in development of Doppler methodology was the

rapid increase of reconstructive peripheral vascular surgery during the 1950’s and

1960’s. Grafting operations to replace or bypass stenotic artery segments as well

as endarterectomy to remove luminary structures were receiving huge attention in

treatment of atherosclerosis.

During the 1970’s, due to reports of high stroke and mortality rates, at commu-

nity hospitals in the United States, the appropriateness ofcarotid endarterectomy

was questioned. The number of carotid endarterectomy operations performed in

the United states significantly decreased from 107,000 in 1985 to 83,000 in 1986.

In a period of 5 years from 1986, because of increasing concern of cardiovas-

cular surgery, different international organizations were motivated to indicate the

stenotic degree on vessels and appropriateness of surgery.In 1991, European

Carotid Surgery Trialists’ Collaborative Group known as ECSTCG and North

American Symptomatic Carotid Endarterectomy Trial Collaborators (NASCETC)

issued their conclusion that symptomatic patients with 70 to 99% stenosis derived

significant benefit from operation [1].
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By 1992, the decreasing rate of performed carotid endarterectomy that started

after 1984, showed an upward trend. After reconfirmation of the utility of carotid

endarterectomy, Doppler ultrasound velocity criteria arebeing established to meet

the categories of stenosis relevant to ECSTCG and NASCETC [1].

2.2.4 Doppler Blood Flow Signal Simulator

Physical properties of a Doppler instrument plays a key roleon its performance

in measurement of blood flow. The other key player that has no less importance

is the Doppler signal analysis technique that is employed. It is quite practical to

have a source of signals with known characteristics in orderto compare the per-

formance of various methods of signal analysis. In this way,one could estimate

specific properties of a simulated signal using a suggested signal analysis method

and compare the result with the expected values. Moreover the researcher can

compare the results of different methods against each otherwhen applied to the

same signal. In a situation where an averaged value has to be evaluated, a number

of signals could be simulated and stored and using a method ortechnique obtain

the results.

The nonstationary blood flow Doppler signal can be modeled as[5]

xD(t) = A(t)ejΦr(t)ejΦd(t) (2.2)

this expression is composed of a random base-band function such asA(t)ejΦr(t)

and a frequency shifting function,ejΦd(t). The frequency shifting function has a

frequency equal to the blood flow spectral center frequencyfm(t). The random

base-band component of the simulated signal can be formulated as

A(t)ejΦr(t) = F−1|G( f ).N( f )| (2.3)

and the phase shifting function that is dependent on the deterministic center fre-
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quency curve,fm(t), as

Φ(t) = 2π
∫ t

0
fm(t)dt+C (2.4)

whereF−1 denotes the inverse Fourier transform operator.G( f ) presents a real

zero mean filter function with Gaussian spectral shape andN( f ) corresponds to a

complex random variable that convey a normal power spectraldensity and a root

mean square (RMS) value of unity. Typically the filter function has a RMS band-

width of 100Hz, when simulation of carotid artery blood flow signal is performed.

In the current study the filter functionG( f ) has a Gaussian shape is given by

G( f ) =

(

e
−0.5

(

f
b

)2
)

1
2

(2.5)

In this Doppler signal simulator, the waveform of deterministic center frequency

curve that is fed to the simulator determines the propertiesof the output signal.

2.3 Spectral Estimators

2.3.1 Fourier Based Methods

2.3.1.1 The Necessity of Time-Frequency Analysis

In the study of a physical phenomena with more than one variable, the depen-

dency and relation of variables with each other within the overall aspects of the

phenomena are often important. One example of such a phenomena is any form

of time varying spectra. To name such an event, we could mention the quick and

dramatic change of frequency composition of light during a sun set. It is practical

to devise a distribution that presents the energy or intensity of a signal simulta-

neously in time and frequency. Consider spectral analysis of audio signal of one

hour music concert. Due to the fact that different frequencies are produced by

different instruments, naming violin and drum, the overallspectrum of the signal
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shows that there are certain music instruments being played. However what can

not be extracted from the spectrum is that which instrument is played when. A

way to overcome this issue is to represent the signal in a joint distribution of time

and frequency.

For better appreciation of the importance of time-frequency analysis, consider

2 signals composed of finite length sine waves. Assume 3 different sine waves

at frequencies 16, 19 and 23 Hz. Signal A and signal B are 2 different combina-

tions of these sine waves. Signal A is constructed as an aggregation of the sine

wave at 23 Hz first, then 16 Hz and then 19 Hz. On the other side, signal B is

constructed as being primarily the sine wave at 23 Hz,then 19Hz and finally 16

Hz. Signal A and signal B present identical spectrum howeverby looking at their

time domain representation it is observed that they are not identical signals in the

time domain. Figure 2.1 presents a comparison of these 2 signals. In this figure,

(a) and (b) depict time domain, frequency domain and joint representation in time

and frequency domains of signals A and B, respectively.

(a) (b)

Figure 2.1: Comparison of signals with different time domain representation and
identical spectrum. The top-left plot of (a) and (b) are the time domain repre-
sentations, the ones in bottom-right are the spectrum and top-right 3-dimensional
figures are the colored joint representation of time and frequency of signals.

In some of the real-life applications of digital signal processing a signal, such
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as speech signal, is transformed from one domain to another domain. This trans-

formation or mapping is done by means of particular mathematical formulations

and has to be information-preserving. Fourier transform isperhaps the most

common method to map a signal from time to frequency domain. However the

continuous-time Fourier transform (CFT) of a signal fails to provide informa-

tion about the time order of occurrence of particular frequencies (as it is seen in

bottom-right subplots of (a) and (b) as spectrum in figure 2.1).

x(t) =
∫

X( f )ej2π f td f (2.6)

X( f ) =
∫

x(t)e− j2π f tdt (2.7)

X( f ) is referred to as a spectral representation (spectrum) ofx(t) with the vari-

able f defined as frequency. SinceX( f ) andx(t) are uniquely related, it is possible

to assume the spectrum as the signal in the frequency domain or frequency rep-

resentation [6]. To overcome the aforementioned issue of order of occurrence in

time, a spectral representation that includes some explicit dependence on the time

is needed (top-right subplots of (a) and (b) as in figure 2.1).A mathematical func-

tion that formulates a mapping process from time to frequency domain of the form

X( f ,τ) in which f corresponds to frequency andτ to time could be the solution.

In this process, the signal is being analyzed at certain frequencies, to be called fre-

quency bins. The result of such a transformation is conveying values for different

frequency bins at each and every time instant. In another words, wherever there is

presence of a particular frequency, the result is representing its estimated value.

2.3.1.2 The Short-Time Fourier Transform and Spectrogram

In analyzing the frequency content of a signal, in order to obtain a finer local-

ization in time, one could choose smaller segments in time. However it must be

taken into account that reducing the length of time segmentsis subjected to limi-

tation. The reason behind this limitation is that after certain amount of narrowing

the time slice, the spectrum presents no relation to the spectrum of the original
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signal. This issue can be explained as parsing a signal into short duration signals,

causes the constructed segments to have inherently large bandwidth. The spectra

of such short duration signals convey altered information concerning the proper-

ties of the original signal [6]. This limitation is called uncertainty principle and it

is applied to the small segments in time to be analyzed, rather than to the whole

duration of the signal.

In order to analyze a given signal at timet, one could emphasize the signal at

that time and suppress the signal at other instants of time. This could be done by

multiplying the signal by a window function,h(t), centered at the momentt, that

results in a modified signal:

xτ(t) = x(t)h(t− τ) (2.8)

The resultant modified signal is function of two times. Firstit is a function of

moment in the time the analysis is being done,τ, second the running time,t. The

window function is the mathematical function that is used tosegment the signal

over time. There are numerous window function being used in signal processing

applications and each one has specific properties. Throughout the employment

of a window function on a signal, power properties of the window function are

affecting the result. Whenever an interpretation and estimation has to be done on

the Fourier transform of a windowed signal, special care must be taken into ac-

count on the effect of the window function. The selection of the window function

is based on the fact that it is needed to leave the signal unaltered to some extent at

the timeτ of interest and suppress the signals for all the values distant from that

moment.

xτ(t)∼
{

x(t) for t nearτ
0 for t far away fromτ

(2.9)

The term ”window” originates from the fact that a portion (small segment in time)

of the signal is being observed. In an analogy a small portionof a scenery is seen

from a window and the rest is not considered in the observation.
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Since the modified signal emphasizes the signal around timeτ, the Continuous

Fourier Transform (CFT) or spectrum will reflect the distribution of frequency

around it; this could be shown as equation 2.10

Xτ( f ) =
∫

e− j2π f txτ(t)dt (2.10)

Substitutingxτ(t) from equation 2.8 in equation 2.10 results in

Xτ( f ) =
∫

e− j2π f tx(t)h(t− τ)dt (2.11)

Therefore the energy density spectrum at timeτ can be written as below [6]:

PSP(τ, f ) = |Xτ( f )|2 =
∣

∣

∣

∣

∫

e− j2π f tx(t)h(t− τ)dt

∣

∣

∣

∣

2

(2.12)

It is possible to obtain energy density spectrum for each different time. The total-

ity of these spectra is the time-frequency distribution ,PSP. This time-frequency

distribution is often called “spectrogram”. Since it is desired to analyze the signal

around timeτ, a window function that has a peak around timeτ has been cho-

sen. Hence the name short-time as the modified signal is shortin duration and its

Fourier transform, Equation 2.11 is called the short-time Fourier transform. It is

a convention to represent CFT of signalx(t) at momentτ by Xτ(t) or in another

form byX(τ, f ).

Short-time Fourier transform or simply STFT is based on the simple idea of

parsing a signal into small time segments and then Fourier analyze each segment

to ascertain existence of frequencies in each segment. The totality of such spec-

tra indicates how the spectrum is varying in time. One of the most widely used

method to study non-stationary signals is short-time Fourier transform [6]. Mo

and Cobbold [7] state that Doppler signal can be considered as wide-sense quasi-

stationary during a short time interval therefore application of STFT on it would

be feasible. It is worth to mention that the result of STFT is strictly tightened to

the properties of the used window function.

In some situations, it is convenient to express the STFT in another form, for
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instance as an integral in the frequency domain, that is:

X(τ, f ) = e− j2π f τ
∫

ej2π f tX(u)H(u− f )du (2.13)

whereX(u) andH(u) are Fourier transforms ofx(t) andh(t), respectively, andu is

a dummy frequency variable. We can interpret this function as the frequency-shift

of the inverse continuous Fourier transform ofX(u)H(u− f ). If H(u) is chosen

in a way to present a low-pass filter in frequency, thereforeX(u)H(u− f ) is the

CFT of x(τ) being filtered by a bandpass filter with the shape ofH(u). Since the

bandpass filter is translated in frequency, it is centered atf instead of 0. The factor

e− j2π f τ in equation 2.13 is to shift the filtered output back to zero. In this way,

STFT can be seen as a process of filtering a signal with a bank offilters, and then

frequency shift each output back to zero. These filters have constant bandwidth

but centered in different frequencies.

The STFT can be written as a convolution in time:

X(τ, f ) = e− j2π f τ
[

ej2π f τx(τ)∗h∗(−τ)
]

(2.14)

Where symbol∗ denotes the convolution integral. Convolution integral isdefined

as:

u(σ) =

∫

υ(λ )w(σ −λ )dλ ≡ υ(σ)∗w(σ) (2.15)

As it was mentioned earlier, it is not possible to narrow the time slice uncondi-

tionally. Consider choosingh(t) as short as possible in time. Doing so, in the

limit h(t) = δ (t), whereδ (t) is the Dirac delta function. This function trans-

forms to frequency asH( f ) = 1. Substituting it in equation 2.11, shows that

X(τ, f ) = e− j2π f τx(τ) that is simply the original signals(t) translated down in

frequency. This transformation absolutely preserves the time information, while

on the frequency it provides no information whatsoever. It is possible to show

that [8] as a consequence, the uncertainty principle restricts values of∆t and∆ f

as time and frequency resolutions of STFT to satisfy∆ f ∆t = C. In which C is

a nonzero value whose precise value depends on the definitionof width that is

selected. Therefore it can be concluded that once the function h(t) is chosen, the

time and frequency resolution of STFT are fixed for all the values oft and f [9].
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2.3.2 Continuous Wavelets Transform

An inevitable characteristic of STFT is that both time and frequency resolu-

tion are fixed over the entire time-frequency plane. The timeresolution is fixed

as a consequence ofh(t)e− j2π f t regardless of any value off . Consequently,

∆ f =C/∆t is also fixed over the entire plane. There are certain situations in which

it is desired to overcome fixed resolutions. Consider analysis of a signal with 2

sets of components: short-lived high frequency features that are closely spaced in

time whereas the other ones are long-duration low frequencycomponents that are

closely spaced in frequency and complete their cycles in a large time interval. A

proper transform of such a signal must have enough sufficienttime resolution to

distinguish the high-frequency features, while it has to bewith enough frequency

resolution to separate closely-spaced low frequency ones.Satisfying these two

requirements simultaneously, is not in the scope of the STFT.

One suggestion could be the application of two STFT with differenth(t): to

meet the time resolution requirement, use a short-livedh(t) with a small value

of ∆t, then a long-durationg(t) for good frequency resolution. The other option

could be such a time-frequency representation that has variable time-frequency

resolution; good time resolution for high frequencies and good frequency res-

olution for low frequencies. To address the issue of the compromise between

time and frequency resolution, Continuous Wavelet Transform would be suitable.

As the resolution is not fixed in this form of transformation,it is categorized as

“multi-resolution” transformation. The multi-resolution transformation is done by

decomposition of a given signal on a set of shifted (by amountof τ) and scaled (by

s) function derived from a predefined prototype,Ψ(t). This prototype function is

called mother wavelet function. The wavelet has to be chosenin a way that by

means of appropriate shifting and scaling, proper estimation on the signal could

be done. The CWT is expressed as

CWT(τ, r) =
1
√

|r|

∫

x(t)Ψ∗
(

t− τ
r

)

dt (2.16)
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Wheret andτ represent the time,x(t) is the time domain signal being analyzed,

r denotes the scale parameter andΨ∗(t) is the complex conjugate of the wavelet

function. The factor 1/
√

|r| is used to ensure energy preservation. Scale parame-

ter is a concept used in wavelet theory and it is the counterpart of frequency. Scale

parameter and frequencyf are related byr = f0/ f , where f0 represents the cen-

tral frequency of the wavelet’s Fourier transform. Likewise STFT, it is possible to

express CWT as an integral in the frequency domain, that is [9]:

CWT(τ, r) =
√

|r|
∫

S(u)Ψ∗(ur)ej2π f τdu (2.17)

WhereS(u) andΨ(u) correspond to the CFT ofx(t) andψ(t) respectively. Also

as convolution in time domain

CWT(τ, r) =
1
√

|r|

[

x(τ)∗h∗
(−τ

r

)]

(2.18)

To better grasp how the CWT differs from the STFT, compare theterms corre-

sponding to filter function in equation 2.14 and equation 2.18 that are STFT and

CWT in the form of convolution in time. In the case of CWT we canconfirm that

the width ofh(τ/r) is not fixed, but rather dependent on the value ofr. Reminding

the scaling operation in one domain on a given signal, one cansay thath(t/2) has

twice the width ofh(t) while h(2t) has half the width ofh(t). Since time resolu-

tion of the CWT is dependent on the width of functionh(τ/r), asr decreases, the

function gets narrower in time and in return the time resolution improves. In con-

trary asr increases, the time resolution is degraded, but the frequency resolution

is improved as the quantity∆t∆ f has to remain constant.

In the same manner that filter bank for STFT was defined previously, we can

invoke the same concept for CWT. In this case CWT could be interpreted as a

process of filtering a given signal with a bank of filters with fixed relative band-

width or varying absolute bandwidth as one version of CWT. Matos et al. [10]

investigated the properties of results of CWT using fixed andvarying absolute

bandwidth. In our study both versions have been implementedand results were

compared along with the results of STFT. The relative bandwidth (BWrel) of a fil-
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ter (or a function) is defined as the ratio between the absolute bandwidth (∆ f ) of

the bandpass region surrounding the filter’s center frequency and the center fre-

quency (fh) itself. Based on this definition aQ factor is defined as the inverse of

the relative bandwidth:

BWrel =
∆ f
fh

=
1
Q

(2.19)

The result obtained from CWT is in the scale-frequency format. However to com-

ply this result with the ones obtained from STFT, a time-scale to time-frequency

mapping has to be employed. Since during the CWT process,ψ(t) was sam-

pled toψ[n] using sampling rate ofFsx, a ratio between the sampling rate ofx[n]

(Fsx), andFsh is defined. Equation 2.20 presents the relation between scales and

frequencies.

s=
k
f

(2.20)

wherek is

k=
Fsx

Fsh

(2.21)

Strictly speaking, the CWT is a time-scale representation and it has to be men-

tioned that this mapping (proposed by Teich et al. [9]) is theway to interpret the

result of CWT in compliance with STFT.

2.3.3 Computing the PSD

2.3.3.1 Power waveform

Application of STFT on a given discrete signal, that is application of FT to

the time slices of the signal, will result in spectral density of the signal; regarding

each instant of time, it could be formulated as

S(k) =
N−1

∑
n=0

xw(e)
− j2πkn∆T (2.22)

wheren is an instant of discrete time andk is frequency,xw is the application of a

window function on the signal,∆T is the duration of time being processed andN
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is the number of frequency points used. Leiria [11] states that using equation 2.23

we can calculate the corresponding power density spectrum

P(k) =
1
N
|S(k)|2 (2.23)

In order to make sure that the power spectrum is an average value over the time

slice being observed as opposed to a function of the window size, the factor1N is

being used in the expression. In the case where the window function applied to

the signal is a rectangular window, equation 2.23 is a good approximation of the

PSD [11], however in the case of other window functions (for instance hamming)

that do not demonstrate a unitary power density spectrum, the power density of

the applied window has to be introduced in the expression as

EN =
1
N

N−1

∑
n=0

w2(n) (2.24)

which means that equation 2.23 would be rewritten in the formof

P(k) =
1

NEN
|S(k)|2 (2.25)

and subsequently the power density expression regarding each instant of time and

frequency could be written as below

P(n,k) =
1

NEN
|S(n,k)|2 (2.26)

and the variation of the power over time is

P(k) =
N−1

∑
k=0

P(n,k) (2.27)

2.3.3.2 Mean Frequency waveform and Bandwidth

The mean frequency for each instant of time is calculated using the power

density at each instant and weighted regarding the frequency bins being used and
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averaged [5].

f̃m(n) =

N−1
∑

k=0
f (n,k) ·P(n,k)
N−1
∑

k=0
P(n,k)

(2.28)

wheren andk correspond to discrete time and frequency, respectively.f (n,k) de-

notes the frequency value corresponding to momentn and frequency bink. Simi-

larly the spectral RMS half bandwidth estimation is computed using the equation

below.

b̃(n) =

√

√

√

√

√

√

√

N−1
∑

k=0

(

f̃m(n)− fk
)2

P(n,k)

N−1
∑

k=0
P(n,k)

(2.29)
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Chapter 3

Spectral Methods Applied

3.1 Simulation of Blood Flow Signals

Using the expression ofΨ(t) (see 2.4), one can obtain a Doppler simulated

signal based on a desired form of spectral center frequency variations. In fact

any arbitrary form of curve could be used with this function.However decision

was made to choose a curve from literature that has been developed and inves-

tigated previously by scholars. This center frequency is depicted in figure 3.1

and is derived from a convective velocity waveform. This velocity waveform ob-

tained by assessment of Doppler ultrasound blood flow on common carotid artery

during a cardiac cycle. The velocity waveform incorporatesspectral width and

power increase that is resultant from flow disturbance. Moreover the waveform

conveys time-localized rapid variations in frequency compelled by the passage of

vortices [3]. This center frequency curve was proposed by Wang and Fish [12].

3.2 Spectral Estimation Methods

Spectral estimation methods that were investigated in thisstudy were Short-

Time Fourier Transform (STFT), and Continuous Wavelet Transform (CWT). The

STFT implementations were mostly based on the functions available from MAT-

LAB. A noise reduction technique was proposed. The STFT method to eliminate

the accompanying noise of the simulated signal as well as theclinical signals was
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Figure 3.1: Deterministic center frequency curvefm(t) (left) similar to that ob-
tained from the common carotid artery, and correspondingΨ(t) curve (right)

enhanced. The CWT routines and codes were adopted from a previous work done

by Matos et al. [10]. In this study, two forms of CWT were investigated: varying

bandwidth filter and fixed bandwidth filter. These methods were applied to simu-

lated signals with different levels of noise.

Rangaraj [13] states that synchronized signal averaging can separate a repet-

itive signal from noise without distorting the signal. If the noise is random with

zero mean, averaging will improve to SNR. He mentions methods to apply the

synchronized averaging on different clinical signals. Forinstance in the case of

ECG, detecting the QRS complexes and using their position toalign the wave-

forms to synchronized averaging would be an option. In the case of simulated

signals, it is simply done by performing the desired number simulations. The

added random noise in the simulator used in this study has zero mean. Thus aver-

aging on a number of simulated signals can be applied to reduce the noise. It was

decided to obtain the results from 100 simulated signals. Inorder to quantitatively

compare the methods, center frequency and bandwidth of signals were evaluated

and compared against the deterministic ones.
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3.2.1 STFT Based Method

In the processing of clinical signals that are acquired in a real-life situation

mostly there are non-zero values at instants of time-frequency. Logically part of

these values are generated by the original source of the signal; for instance in

studying blood flow using Doppler ultrasound the blood particles that backscatter

the Doppler ultrasound to be detected by the ultrasonic detector. The rest of the

values of occurred frequencies that are relatively small, correspond to the noise

and any undesired acquired information. The idea at this point of study was to

establish a series of routines to obtain time-frequency representation of a given

signal. Then manipulation was required in a way so that acceptable results, i.e.

center frequency and bandwidth parameters, could be extracted from the signal.

Since MATLAB provided ’spectrogram’ function, it was decided to use this

function. The function’s input variables were modified in order to obtain a time-

frequency representation of signals. Then on this intermediate results, the devel-

oped cancellation methods could be applied. Following thisprocedure, spectral

parameters, i.e. center frequency and bandwidth could be extracted. The syntax

of the command used is as below

spectrogram(signal,window,noverlap,F,fs,’yaxis’)

wheresignal is a one dimensional real input signal,window is the size of the used

window in data points.F is the vector of frequencies andfs is the sampling fre-

quency of the input signal. This function plots a 2-dimensional graph where a

colored pixel represents the spectral power occurring for aparticular pair of in-

stant of time and corresponding frequency. The redder spotsrepresent higher

power values while the bluer ones represent lower values of the power spectrum.

To obtain a plot where the horizontal axis corresponds to time and the vertical axis

to frequencies, as it is used in typical Doppler blood flow signal representations,

the’yaxis’ had to be added at the end of the list of inputs; otherwise, theaxes will

be swapped.
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Figure 3.2: Spectrogram of 5000 data points (roughly one cardiac cycle) of a
clinical Doppler signal.

Another possible format of ’spectrogram’ command is

[S,F,T,P]=spectrogram(signal,window,noverlap,F,fs,’yaxis’)

This command produces a positive and negative complex valued matrix ’S’, vec-

tors ’T’ and ’P’ and a positive real valued matrix ’P’, as the power spectral density.

For the case of real input signal, one-sided modified periodogram estimate of the

PSD of each data segment will be obtained. The matrix ’S’ is the short term

Fourier transform of the input signal. Vectors ’F’ and ’T’ are frequency and time

vectors respectively. Length of ’F’ is the same as the number of the frequency

points of the output. Matrices ’S’ and ’P’ have the same size. The ’columns’ and

’rows’ of these matrices are of the length calculated as in equation 3.1.

rows = size(F)

columns = f ix

(

nsignal−noverlap
window−noverlap

)

(3.1)

in which ’size’ and ’fix’ are MATLAB functions. ’nsignal’ is the length of the

input signal and ’window’ and ’noverlap’ are the lengths of each segment and over-

lapping of two adjacent segments, respectively.
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3.2.2 Clinical Data Noise Reduction Technique

After applying the ’spectrogram’ function of MATLAB, a time-frequency rep-

resentation of a given clinical signal can be obtained, fromwhich relevant infor-

mation, may be obtained. The obstacle is that this time-frequency representation

contains both the information from the Doppler blood flow signal and the accom-

panying noise with it. To eliminate the noise from the spectrogram of a given

clinical signal and to estimate spectral parameters such ascenter frequency and

bandwidth, a noise cancellation technique has been developed.

signal(t)

Matrix S(t,f)

SNoInfo(t,f) Threshold r1

r2

Snew(t,f) Pcalculated Center Frequency(t)

Tolerance

r3

Pthreshold

CancellationLevel %

STFT

Noise Power

Figure 3.3: Block diagram of implemented MATLAB routines toeliminate noise
from STFT of a given input. The input signal is an audio file of Doppler sig-
nal. The operator of a system based on this block diagram adjusts the value of
Tolerance. The operator also involves in selection of the region in theSTFT cor-
responding to theSNoIn f o. Pthresholdpresents the threshold of noise elimina-
tion (as a power value),center f requencyis the estimated center frequency of the
spectrogram andCancellationLevelquantifies the amount of noise cancellation
procedure. Outputs are depicted with rounded-corner rectangles.

Figure 3.3 presents the block diagram of the implemented MATLAB routines

concerning this study. The sets of operations on the input file and the interme-

diate outputs are divided in two groups. In the first half, thenoise is identified

and isolated and then removed from the signal. This part is indicated with the
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left hand side dashed rectangle in figure 3.3 and is named “Noise”. The operation

within this part are being explained in section 3.2.2.1. Thesecond half of the op-

erations are dealing with the power waveform and power calculations. The final

outputs are obtained in this part. The right hand side dashedrectangle in figure 3.3

presents the block diagram of the operations related to thispart. Section 3.2.2.2

corresponds to the second half of the operations.

Outputs in this diagram are indicated with rounded-corner rectangles. A time

domain signal is forming the input of this series of routines. In the first place the

STFT is applied on the input. Within the resultant time-frequency representation,

particular region of frequencies is marked as the noise portion. This portion that

does not correspond to the blood flow signal is called ’SNoInfo’. Selection of this

portion requires the decision of user of the system. The usercan select this re-

gion by observing the graphical representation of the STFT.Based on SNoInfo, a

threshold is defined. The threshold along with a tolerance toensure a secure error

margin is used to eliminate particular values in the time-frequency representation

of the input. In this figure, circle ’r1’ represents a simple multiplication function

and circle ’r2’ is an implemented MATLAB routine that eliminates any value in

a given matrix (real complex valued) that is less than a defined value (product

of Threshold and Tolerance). The result of the elimination is called ’Snew’. The

power matrix is obtained using the matrix Snew. This power matrix is called ’Pcal-

culated’ and only represents the power of the values corresponding to the blood

flow signal and not the noise. Using the obtained matrix power, center frequency

of the Doppler signal could be estimated. As an output, threshold is presented

in the form of power and is called ’Pthreshold’. This value indicates the power

threshold so that power values above it are considered as thevalues corresponding

to the blood flow. In order to present the level of noise reduction applied on the

input signal, a value as ’CancellationLevel’ in percentageis defined.

In the following subsections, the noise reduction technique terms and proce-

dure will be described. From now onwards, the ’spectrogram’ clinical Doppler

signal’s input, containing the blood flow signal plus noise will be called ’clinical

signal’; when only the blood flow is considered, the term ’pure signal’ or simply
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’signal’ will be used. The term ’signal’ might be used in contexts related to both

time and frequency domain.

3.2.2.1 Noise Identification, Separation and Reduction

In this subsection, the terms corresponding to the time-frequency representa-

tion of a signal, the portion related to noise and the procedure to eliminate it, are

being explained. The matrix corresponding to the time-representation of a clinical

signal is being represented as a 2-dimensional matrix and then the area belonging

to the noise is being identified and separated. A graphical comparison on different

levels of noise for a simulated signal based on the colored spectrogram is pre-

sented. Then particular values are defined to be used to eliminate certain level of

noise.

Matrix S is a positive and negative complex valued matrix in which therows

correspond to the frequencies and the columns to instances of time. In the case

of figure 3.2 the ’spectrogram’ function was set for 1024 frequency points, 190

data points for the window length and overlap of 120 data points to calculate

spectrogram of 5000 data points of a portion of a clinical signal. Using ’surf’

function of MATLAB, a 3-dimensional plot of the real part of the matrix ’S’ would

resemble figure 3.4.
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Figure 3.4: 3-dimensional representation of the real part of matrix ’S’.

BackGroundArea in the plot representing matrix ’S’ ( figure 3.4), there is an

area that depicts the signal, or in another words, existenceof specific frequencies

at each time instant related to the pure signal. However in the rest of the plot one

can see a spinous area corresponding to the noise. This region has less reddish

but rather darker color. From now on this area and its corresponding part of the

matrix ’S’ will be named BackGroundArea. The level of the spines in theBack-

GroundArea is relatively smaller for the signals that have aless noisy time domain

representation (i.e. having more definitive sound by listening to their audio file)

in comparison with clinical signals with more noisy audio.

In figure 3.5 a comparison of color tone of background areas can bee seen.

In each subplot of this figure, different values of Gaussian noise were added to a

simulated signal. Therefore the signal to noise ratio of these signals are different.

Afterwards their spectrogram were obtained. In 3.5a the spectrogram of simu-

lated signal is represented with no noise, so that more bluerBackGroundArea is

expected; whereas in 3.5d, due to the amount of the added noise, the same simu-

lated signal hasSNR= 2dB
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(a) SNR: infinity (b) SNR: 20 dB

(c) SNR: 10 dB (d) SNR: 2 dB

Figure 3.5: Spectrogram of a simulated signal with 4 different levels of noise;
three different levels of Gaussian noise were added to original signal without noise
in (a), so that resulted in SNR of 20 dB (b), 10 dB (c), and 2 dB (d).

SNoInfo For all the clinical Doppler signals under analysis on this work, it is

possible to point to a region of the matrix ’S’ that covers a range of frequencies in

all instants of time in which the frequencies related to the signal do not exist. In

these parts we only have the background area. This area is called SNoInfo and can

be seen as a matrix. For instance in figure 3.4 this area could be roughly addressed

as the area between 4500 to 5000 Hz. This area has approximately the same color

tone of the rest of the BackGroundArea. Thus it could be used to give an insight

of the statistical characteristic of the background noise or BackGroundArea. It is

practical to use magnitudes of elements of SNoInfo matrix tocalculate the root

mean squared (RMS) or the mean value of the BackGroundArea. This calculated

value could be used to distinguish between values of elements of matrix ’S’ that

either belong to the BackGroundArea (the noise) or to the signal itself.
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Threshold Having the RMS of the matrix SNoInfo already calculated, onecan

define a threshold that could be used to assign elements of matrix ’ S’ to Back-

GroundArea or the pure signal. Based on this threshold the matrix ’ S’ will be pro-

cessed to eliminate the noise of the clinical signal. Needless to mention that the

matrix ’S’ has positive and negative values. Consequently the elements with their

’absolute’ value less than the Threshold will be assigned tothe BackGroundArea.

Tolerance In a time-frequency representation, instants of time-frequency corre-

sponding to the pure signal mostly demonstrate a significantly larger magnitude

(redder pixel in spectrogram) in comparison to the BackGroundArea. Figure 3.6

represents the spectrogram of a portion of a clinical signalin the left hand side

and magnitude of occurred frequencies at an arbitrary instance of time within that

portion in the right hand side. In this figure it can be seen that at this particular

instant of time, frequency variation above (approximately) 1100 Hz have magni-

tude values in the range of−0.2 to 0.2. These frequency variations correspond

to the time-frequency values located at the BackGroundArea. However looking

at frequency variations between 200 Hz and 1100 Hz, roughly it can be said that

the magnitudes are between−5 and 5 and there are frequency peaks taking place

with magnitudes−12 and 12.

In order to make sure the implemented MATLAB routines will effectively

eliminate the values of spikes in the BackGroundArea, the value of Threshold

is multiplied by a positive real number designated by Tolerance. This way one

can have a secure error margin. Depending on the magnitude ofthe difference

between the values of the frequency of the signal and the values of the spikes of

the BackGroundArea, this Tolerance could be adjusted. The value of Tolerance

should be small enough to leave the spikes related to the puresignal intact and

eliminate (ideally) all the other spikes that belong to the BackGroundArea. In

another words, the value of Threshold as well as Tolerance changes from a given

clinical signal to another.

31



Figure 3.6: Spectrogram of a portion of a clinical signal (left hand side) where a
particular time instant (0.286 second) is pinpointed by a red line; right hand side
of figure represents the magnitude of frequency variations at that time instant.

Snew Once established the values of Tolerance and Threshold and after obtain-

ing their product, within the matrix ’S’ values with absolute values less that the

previously referred product can be eliminated. Ideally, this action will result in

a matrix where all the values in its BackGroundArea are eliminated (turned into

zero). This “cleaned“ signal is called Snew. Figure 3.7 illustrates the frequency

variations observed for a particular time instant (0.286 second as exemplified in

figure3.6) before (left plot) and after (right plot) the Snewcalculation. In the case

of this figure, the Threshold value is set to 0.2003 and the Tolerance to 4 result-

ing in elimination of values between−0.8014 and+0.8014. It can be seen that

this range is distinguishably smaller than the average magnitude of the frequency

variations belonging to the signal. In this example it is possible to assume that

the range of frequencies belonging to the BackGroundArea isapproximately the

range of frequencies higher than 1100 Hz. In this range the maximum value of

the spikes is 0.6020 which is still smaller than the product of the Thresholdand

Tolerance. In Figure 3.7 we can verify how the frequency values corresponding

to the signal are left untouched throughout the process.
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Figure 3.7: A particular time instant of clinical signal of figure 3.6 before (left
hand side) and after Snew calculation (right hand side).

3.2.2.2 Power Spectral Calculation

In this subsection, the terms related to power spectral calculations are be-

ing explained. Primarily output of the MATLAB function ’spectrogram’ is pre-

sented. Then power spectral calculation applied on a noise reduced input is be-

ing explained. Finally a threshold value in the sense of power and a term as

CancellationLevelare introduced. TheCancellationLevelquantifies the amount

of noise reduction applied to a given input; it gives an insight on the level of

reduced noise regarding RMS of the pure signal.

Pmatlab Is a matrix with the same size as the matrix ’S’ presented as an output

of the later format of the MATLAB function ’spectrogram’ as explained in 3.2.1.

Pcalculated Is a matrix with the same size as the matrixPmatlabthat could be

obtained applying equation 2.26 on the matrix ’S’. The window that has been used

is the Hamming window. Aydin and Markus [14] compared six different window

types (rectangualr (Boxcar), Bartlett, Hanning, Hamming,Blackman and Gaus-

sian) and the results showed that Hamming and Bartlet windows give the highest

EBR. EBR is ”the ratio of embolic signal intensity to background intensity“. It is
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worth to mention that the MATLAB routines were implemented in a way that the

window type could be easily changed. Since these windows areprovided by MAT-

LAB itself, it is possible to choose for this or any other window type throughout

the procedures. The number of frequency points used in the case of figure 3.7 is

1024 points. In another scenario, applying equation 2.26 onthe matrixSnewwe

can have the matrix of power values from the denoised time-frequency represen-

tation.

PThreshold Having a MATLAB code developed to calculate matrixPcalculated

from the matrixS, we can represent the Threshold value (explained in section3.2.2.1)

in the form of power value . For the case of figure 3.7, assigning the Threshold and

Tolerance values mentioned in section 3.2.2.1, the Pthreshold is 9.8254×10−7.

Meaning that instants of time-frequency having power less than this value are

eliminated.

Power Waveform Obtaining the matrixPcalculatedfrom the matrixSnew, by

summing its values at each instant of time (columns) we can obtain a power wave-

form that represents the power waveform over time (see equation 2.27). This

waveform is demonstrating the power which is related to the signal. The power

values from the BackGroundArea are omitted from it. It is obvious that doing the

same procedure onPmatlab, matrix of values of powers at each instant of time-

frequency, results in a waveform that is containing the information of the signal

itself and the BackGroundArea too.

CancellationLevel From the matrixSnew, one can calculatePcalculated. Then

based on this matrix, by using equation 2.28 we can obtain themean frequency

waveform. Comparing this waveform with the mean frequency waveform ob-

tained from the matrixSit can be seen that by adjustingThressholdandTolerance

that results in adjustment ofPthreshold, we can obtain an acceptable definition of

the mean frequency waveform of the signal. TheCancellationLevelis a value

represented in percentage corresponding to the ratio between Pthresholdand

RMS of the values of the matrixPcalculated. The values existing in the matrix

Pcalculatedare values that are abovePthreshold, thus theCancellationLevelis
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a value that is related to bothPthresholdand the values belonging to the power

of instants of time-frequency not belonging to the BackGroundArea. For the case

of figure 3.7 this value is small, as it might be expected, and that is only 3.46%.

This tenuity is due to the fact that for this particular signal, the BackGroundArea

has relatively small level.

3.3 Wavelet based Method

As it is stated in chapter 2, decision was made to study the implementation of

two forms of filter banks to use them in Continuous Wavelet Transformation algo-

rithms: varying bandwidth filter (according to the frequency being analyzed) and

fixed bandwidth filter. The MATLAB code implementation of CWTwas based

on the fast-CWT algorithm proposed by Jones and Baraniuk [15]. Three levels

of Gaussian noise were applied to simulated signals in orderto simulate signals

with different SNR: infinity (no noise), 20 dB and 10 dB. Usingthese algorithms,

CWT of 100 signals were estimated, center frequency curves were obtained and

then averaged. Finally this average was compared with the deterministic center

frequency waveform used to obtain the simulated signals in the first place. To ease

analysis of these curves, the resultant center frequency waveform was divided into

3 region: Mountain, Valley and Steppe. for each region, the bias was studied using

3 parameters: maximum value, minimum value and average. Based on these val-

ues and requirement of a specific application, we can decidedfor fixed or varying

bandwidth filters.

3.3.1 Wavelet Base

The wavelet base that was used in this part of the study was High-Q Morlet

wavelet that is well concentrated both in time and frequency. This wavelet can be

written in the following form [9]

ψ(t) = exp( jct).exp(−αt2/2) (3.2)
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In this expression parameterc was set to 2π so that the wavelet would be symmet-

rical aroundf = 1Hz. Parameterα was tested by Matos et al [10] to obtain the

best estimation results. Decision was made to maintain the value, that is 0.0123.

The real part and the magnitude of the Fourier transform of this function is shown

in figure 3.8. There are many oscillations (>50) in the real part and a duration

of approximately 60 time units was presented. For the chosenvalues ofc andα
theψ(t) function resembles a windowed sinusoid andΨ( f ) is a narrow bandpass

filter centered atf = 1Hz. This wavelet has a narrow relative bandwidth (see

equation 2.19) and it is readily calculated [9] to be:

BWrel =
2
√

2α
c

(3.3)

that is 0.050 in our study. This value of relative bandwidth results in aQ =

1/0.050= 20≫ 1 and hence the name High-Q.
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Figure 3.8: High-Q Morlet in time domain (left hand side) with time unite t, and
frequency domain (right hand side).

By choosingα = 0.4 and maintainingc= 2π , we can have a low-Q Morlet as

in figure 3.9 that is again centered atf = 1Hz. In this case the Q factor is 3.51 and

the wavelet is called low-Q Morlet [9]. TheΨ( f ) is still a bandpass filter however

it has fewer oscillations and the relative bandwidth is more; in this case it is 0.28

in comparison to 0.049 for the case of high-Q Morlet.
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Figure 3.9: Low-Q Morlet in time domain (left hand side) withtime unite t, and
frequency domain (right hand side).

3.3.2 Fixed Bandwidth Filters

The filter banks were stored on the hard disk of the computer sothat they could

be used several times in order to compare results using different parameters to cre-

ate filter banks. Tests have been done (see 4.3) on simulated signals with 10dB

SNR to find proper value for the bandwidth. The reason to chosethis amount of

noise to add to the simulated signal is that the color tone ofBackGroundAreain

this case, resembles the color tone ofBackGroundAreaof most of the clinical sig-

nals available in this study. In these tests, bandwidths between 0.02 and 0.2 were

examined. Due to the characteristics of the wavelet, using avalue smaller than

0.02 was not possible and for values above 0.2 there were not any considerable

improvement so that these values were decided as the limits.

A MATLAB code was implemented to create fixed bandwidth filters. This

code calls another code to createψ(t) function to be used to create filters and

then stores them. The code receives various parameters as input and stores the

filters in a given destination on the hard disk. These values include the sampling

frequency of the clinical (or simulated) signal to been analyzed, increment steps in

the scene of frequencies, sampling frequency of theψ(t), and parameters to create

the ψ(t), and finally a destination to store the filters. The length of the signal

to be analyzed is inputted to the code so that the created filters match signal(s)

lengthwise. Frequencies to be analyzed have to be between a value in the low
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frequency region and half of the sampling frequency of the signal to be analyzed.

3.3.3 Varying Bandwidth Filters

Another MATLAB code was implemented to create and store varying band-

width filters. This code receives desired relative bandwidth, c, vector of scales,

length of clinical (or simulated) signal to been analyzed, and destination directory

on the hard disk. Likewise the other code, this code also calls the code to create

ψ(t) function. Vector of scales is basically a conversion between the vector of

frequencies to be analyzed and scales in the time-scale representation that is re-

sultant from the wavelet transform. This vector is created based on the sampling

frequency of the signal to be analyzed, sampling frequency of the ψ(t) function,

and the vector of frequencies (see equations 2.20 and 2.21).
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Chapter 4

Results

4.1 Analyzing the Noise Content of Clinical Data

Applying the definition of theCancellationLevel(see 3.2.2.2) to the different

clinical signals available in this study we may observe thatCancellationLevelmay

vary from infinitesimal values like 1% up to high values like 25%. The reasoning

of this diverse range is based on the level of the values of theBackGroundArea

in comparison to the pure signal. Choosing a value up to 25% would result in an

acceptable definition of the mean frequency waveform while affecting (reduction)

values of the pure signal the least. Deciding for values greater than 25% would

manipulate the main features of the signal in a way that the result may be altered

and lead to a fallacious mean frequency waveform. Needless to mention that for

clinical signals with a better definition (bigger difference between the values of the

BackGroundAreaand the signal in the matrixPcalculated) it is feasible to use a

smaller value for theCancellationLevel. Speaking in the sense of the spectrogram

of a signal, such as the one in figure 3.2, a clinical signal with a better definition

means that the color tone of itsBackGroundAreais more of a bluer color and

the color tone of the signal itself is more redder. Thus a clinical signal with the

worst situation is the one that has a smaller difference in the color tone of the two

areas. To give an example of such a case, we can compare the results previously

represented in figure 3.7 with figure 4.2. In this figure we can see that despite the

highCancellationLevel, 18% (in comparison to 3.4% for the case of figure 3.7),
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we still have small, but effective, presence of theBackGroundAreaafter the noise

reduction process.

Figure 4.1: Spectrogram of a portion of a clinical signal (right hand side) in which
an arbitrary instant of time (0.286 second) is marked with a red vertical line and
magnitude of frequency variations (left hand side) at that instant of time.
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Figure 4.2: Comparison of magnitude of variations of frequency at the time in-
stance of right hand side plot of 4.1 before (left) and after noise reduction (right).

Note that in the case of this instant of time, the main values of frequencies

of the signal are in a frequency range inferior to 500Hz. However, analyzing the

plot on right hand side of figure 4.1, one can notice the presence of strong spikes

(around 3200, 4000, and 4500 Hz) which prevailed the previously applied noise
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reduction process. Due to the multiplication of the values of powers at each in-

stant of time-frequency with the value of the frequency bin (see equation 2.28), the

existence of a few spikes in the higher frequency region in the BackGroundArea

would dramatically affect the mean frequency calculation.

In the figures 4.3 to 4.5, we have tested 3 different clinical signals. In each

figure there are 3 sub plots. The one on top represents the spectrogram of a por-

tion of a clinical signal, the middle one is the result of application of the noise

reduction technique to the clinical signal usingCancellationLevelof 1%. This

means that the root mean square (RMS) of the matrixSnoIn f ois directly used as

theThresholdvalue (Tolerance= 1). Finally the bottom graph shows the small-

est possibleCancellationLevelthat leads to an acceptable mean frequency wave-

form estimation. By an acceptable estimation of the mean frequency waveform

we mean an estimation that by looking at it, one could relate different features

of the waveform to the spectrogram of the clinical signal. That is an estimation

that would follow the variations of frequency the best. It ispossible to relate the

color tone of theBackGroundAreaand the magnitude of the difference between

color tone of two areas with a required amount ofThreshold(or in another sense

Pthreshold. To appreciate this relation, we can compare thePthresholdin these

three figures. From this comparison, it can be concluded thata more reddish

background requires a higherPthreshold. In these particular casesPthresholds

of 5.84×10−8, 1.04×10−6, and 5.83×10−6 are sufficient to obtain acceptable

results from these particular clinical signals. The mentionedPthresholds corre-

spond to 2%, 21% and 27% ofCancellationLevel, respectively.

Fine tuning of the parameters required for the noise reduction procedure en-

abled the calculation of the mean frequency waveform (as mentioned in litera-

ture, i.e. [5]) with high accuracy level. However it is worthto mention that due

to clinical nature of some of them there are examples that portions of the audio

files are severely affected by high levels of noise in such a way that no waveform

could be extracted from them whatsoever. This could be intuitively understood

by simply listening to their corresponding audio file. Considering the spectro-

gram of such cases, we can see that for time instants that the signal is acutely
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battered, we have presence of values not only in the low frequency region, but

rather the whole frequency scope. This is seen as both thick and thin reddish

columns covering most of the frequency scope along the spectrogram. Clinical

signal 2007032219143.wavis an example of such a case.
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Figure 4.3: Spectrogram of a portion of a clinical signal (top), center frequency es-
timation without noise cancellation (middle) and with noise cancellation (bottom)
with Pthresholdof 5.62×10−7.
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Figure 4.4: Spectrogram of a portion of a clinical signal (top), center frequency es-
timation without noise cancellation (middle) and with noise cancellation (bottom)
with Pthresholdof 7.17×10−6.
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Figure 4.5: Spectrogram of a portion of a clinical signal (top), center frequency es-
timation without noise cancellation (middle) and with noise cancellation (bottom)
with Pthresholdof 4.03×10−5.
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4.2 STFT on the simulated signal

To appreciate the performance of implemented noise reduction technique, STFT

was applied on simulated signals enhancing the technique. Then results were com-

pared against the deterministic center frequency used in the process of simulation.

The comparison gives an image that how accurate is the estimation.

Center frequency of hundred simulated signals were obtained by using STFT

and were averaged. Then bias of the result was calculated as the absolute value

of the difference between the value of the deterministic center frequency and the

estimated center frequency at each time instant. Figure 4.6represents the deter-

ministic center frequency curve (right hand axis) against the bias curve (left hand

axis) between the 100 averaged mean frequency curves and thedeterministic one

while STFT with noise reduction technique was employed. As areference the

zero line is traced in the graph. Figure 4.7 corresponds to the bandwidth estima-

tion of these 100 mean frequencies.

Concerning the performance of different methods of spectral estimators, it was

observed that their accuracy is different for different features of identical simu-

lated signals. To be more precise, it was seen that one methodcould follow steep

changes in the frequencies (high frequencies with short duration in time) within

the center frequency curve more accurately; while another one could estimate the

curve more precisely when the frequency level is rather constant as low frequency

and long duration in time (compare figures 4.6, 4.9 and 4.11).Therefore the

deterministic center frequency curve (as well as the results of estimations) was

segmented into 3 regions: Mountain, Valley and Steppe.

Mountain as the big hill-form in the first half of the waveform. Mountain

segment demonstrates a huge frequency sweep and covers a range of frequencies

approximately between 1000Hz and 4500Hz. On a time-slice of almost 0.2 sec-

onds, there is an uphill and a downhill. Valley segment has a small decrease and

a following increase in frequency, approximately in the middle of the waveform.

Finally the rest of the waveform, where the values are in a vicinity of 1000Hzwas
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named Steppe. In figure 4.6 Mountain and Valley regions are indicated by text

above arrows. An ideal estimator is the one that could followthe huge and small

frequency changes in the Mountain and Valley region, as wellas maintaining a

good approximation of the Steppe region as relatively the flat part of the wave-

form.

Figure 4.6: Bias of the center frequency estimation (left hand axis) using the STFT
and noise reduction technique with CancellationLevel of 7%, plotted against the
deterministic center frequency curve (right hand axis).
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If the simulated signal represents a 640 millisecond segment of a cardiac cycle,

on the deterministic center frequency curve, the peak of theMountain takes place

at 95 millisecond. Regarding the peak of the Mountain, the Mountain region is

between 25 and 177 millisecond; the bottom of Valley is taking place at 333 mil-

lisecond and regarding this point, the Valley is between 290and 395 milliseconds.

The rest belongs to the Steppe region. These values were chosen empirically.

Segmenting resultant averaged center frequency estimations was done regarding

the relation of position (in time) of these points with the instants of time in which

maximum and minimum occur in the Mountain and the Valley region. In fig-

ure 4.6 these time instants are represented with vertical red lines.

In table 4.1 we can see the values of maximum, minimum and average of the

bias at each region in the top row when the center frequency was estimated using

STFT. Window length of 15.7 millisecond and overlap of 13.75millisecond (87%)

was used. The Spectrogram function was employed with 128 frequency bins. In

this study 3 different levels of SNR for simulated signals were investigated [16].

The signal to noise ratio of the analyzed simulated signals in this example was

10dB and noiseCancelationLevelof 7% was applied.

4.3 Fixed Bandwidth Filter

on the Simulated Signal

In order to choose a bandwidth for fixed bandwidth filters, tests have been

done and different parameters were tested. Values of maximum, minimum and

average were obtained for each 3 regions.

By testing bandwidths of 0.03, 0.05, 0.07, 0.09, 0.11, 0.13,0.15, 0.17 and

0.19, we have observed that it is not possible to determine a specific single pattern

in the values of the bias to identify the best option. Nevertheless, as different

bandwidths performed better for different segments and different parameters, it

is recommended to define the criteria of selection based on the requirement of a

particular application.
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(f) Valley: average bias
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Figure 4.8: Bias of mean frequency estimated curves at threeregions when 9
different bandwidths of 0.03, 0.05, 0.07, 0.09, 0.11, 0.13,0.15, 0.17 and 0.19
were employed. The values of bias inHz at each bandwidth are marked with a
small square.

Figure 4.8 demonstrates a graphical comparison of the performance of each

of these 9 different bandwidths in the scene of value of bias in each region. The

subplots in the first row correspond to the values of bias in the Mountain region,

Second row is related to the Valley region and the bottom row to the Steppe region.

At each row, the subplots in the left column correspond to theminimum value of

the bias, the middle column is representing the maximum value of bias and the
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right column exhibits the average of values of bias at each region. The horizontal

axes of each of the subplots is conveying 9 points. These points correspond to

each of the 9 different bandwidth in an ascending order. The vertical axes are

corresponding to the magnitude of the bias. As the bias is calculated in the scene

of Hertz the values on these axes are also in Hertz.

Figure 4.9: Bias of the center frequency estimation using CWT with fixed band-
width filter of 0.07.
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Figure 4.10: Bias of bandwidth estimation using fixed bandwidth filter.

Figures 4.9 and 4.10 are presenting the bias of estimated center frequency

curve and bandwidth, respectively. The estimated center frequency curves were
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averaged over 100 simulated signals and the bias (left hand axis) was obtained by

subtracting it by the deterministic center frequency (right hand axis). The SNR

of analyzed signals were 10dB and bandwidth of 0.07Hz was used in the pro-

cess of CWT. In order to comply with the results obtained using STFT method,

128 scales were used in wavelet transformation. A scale-frequency mapping (see

equation 2.20) was applied to obtain the time-frequency representation of the

CWT.

4.4 Varying Bandwidth Filter

on the Simulated Signal

In the table 4.1 the absolute values of maximum, minimum, andaverage bias

of the estimated mean frequency curve are presented separately for the 3 regions.

The values are obtained by employing 3 different methods: STFT with noise re-

duction technique, CWT with fixed bandwidth filter using 9 different values of

bandwidth, and CWT with varying bandwidth filter. By comparing the values

corresponding to both CWT methods, we can see that the varying bandwidth filter

presents smaller maximum for the bias in the Mountain region(280Hz) in com-

parison to 912Hz for the best case with bandwidth of 0.11Hz. While the STFT

method presents 106Hz for the same region. The average of bias in the Steppe re-

gion for varying bandwidth filter is 210Hzwhich is approximately 6 times greater

than the worst case of fixed bandwidth filter that is 24Hz. For the Valley region,

varying bandwidth version also presents higher averaged values than the fixed

bandwidth CW version and STFT. The average of the bias in the Steppe region

for the case of STFT is 13Hzwhich is relatively close to the values of the averaged

bias of the Steppe region using fixed bandwidth filter. The STFT method results

the least maximum and averaged bias for all the regions, however this is not the

case for the minimum value of the bias.
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Mountain Valley Steppe

BW Min Max Ave Min Max Ave Min Max Ave

STFT 0.135 106 43 0.375 28 11 0.153 55 13

0.03 0.128 890 481 0.323 135 61 0.004 86 24

0.05 0.088 908 444 0.018 78 32 0.002 84 19

0.07 0.205 887 434 0.042 52 20 0.008 80 18

0.09 0.152 941 440 0.027 59 17 0.020 78 18

0.11 0.020 912 432 0.008 49 18 0.003 78 18

0.13 0.107 937 442 0.111 41 16 0.011 77 18

0.15 0.061 978 454 0.015 58 19 0.0002 74 19

0.17 0.116 1074 470 0.065 43 18 0.007 75 19

0.19 0.104 1071 459 0.029 59 19 0.004 78 18

varying 0.027 280 192 124 434 213 157 334 210

Table 4.1: Bias of estimated center frequency curve for eachof the regions of
observation. The top row represents the result of STFT with noise reduction tech-
nique. The 9 rows below that correspond to 9 different bandwidths for CWT with
fixed bandwidth filter; the bottom line is representing the values for each region
using CWT with varying bandwidth filter.

Figure 4.11: Bias of the center frequency estimation using CWT with varying
bandwidth filter of 0.05.
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Figure 4.12: Bias of bandwidth estimation using varying bandwidth filter.

Figure 4.11 presents the deterministic center frequency curve (right hand axis)

against the averaged bias of center frequency curve estimation of 100 simulated

signals (left hand axis). Figure 4.12 depict the bandwidth estimation with CWT

using the varying bandwidth filter. Likewise the fixed bandwidth filter, 128 scales

were used in the wavelet transformation. The bandwidth of the filter used for the

wavelet transformation is 0.05Hz. The SNR of analyzed signals were 10dB. As it

is expected from the table 4.1 the estimation of center frequency in the Steppe re-

gion has a significant bias (around−200Hz). However this bias is rather constant

and could be seen as a general offset throughout the whole waveform. The other

issue to point out here is the value of the bias in the Mountainregion specifically

the peak of the waveform occurring roughly at 0.1ms. This peak has a smaller

bias in comparison to the one for fixed bandwidth filter (see figure 4.10). For

the case of fixed bandwidth at the peak of the waveform there isnearly 800Hz of

bias, however this value for the case of varying bandwidth isjust about 200Hz.

If one assumes the bias in the Steppe region as a general offset around−200Hz,

by elevating the bias waveform for 200Hz to eliminate the offset, there would be

roughly 400Hz bias at the peak of the waveform which is still significantly less

than the lowest bias in the case of fixed bandwidth filter.
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4.5 Spectral Estimation of Clinical Data

In this section, the results of application of aforementioned estimators on clin-

ical signals are presented. Three different signals with three different levels of

background noise (low, middle, and high) were selected for presentation in this

section. A portion of 10000 data points from each of these signals was segmented.

At the end of section 4.1, the results of application of STFT on estimating the

center frequency of these three signals were presented. In the current section, the

same segments are being analyzed using STFT, CWT with fixed bandwidth filter

and finally CWT with varying bandwidth filter to estimate center frequency and

bandwidth. These results are presented in figures 4.13 to 4.15. For each signal,

there are two graphs, one demonstrating the result of centerfrequency estimation

and another one corresponding to the estimated bandwidth.

It must be mentioned that the MATLAB codes written for application of CWT

(both fixed bandwidth filter and varying bandwidth filter) were modified to be

used with the clinical signals. The filters used on the CWT algorithms must be

designed in accordance with numerous parameters, including the sampling fre-

quency of the input signal. The sampling frequency of the simulated and the

clinical signals were 12.8KHz and 11.025KHz, respectively. In contrary, the im-

plementation of codes for the STFT is not dependent on the sampling frequency

of the input signal. Therefore, the same STFT codes were usedfor estimating the

spectral parameters of the simulated and the clinical signals.

In the graphs of the current section, STFT was enhanced by thenoise reduction

technique proposed in this study (see 3.2.2). In the case of each clinical signal,

different amount ofCancellationLevelis applied. This value is mentioned in the

caption of corresponding graph. In order to get a better glimpse of results of ap-

plied methods on these three clinical signals, one can compare the results with the

respective spectrogram in figures 4.3 to 4.5. In these three figures, the spectro-

grams are presented in the top plot. In the application of STFT, window length of

14.47 milliseconds was used. The length of overlap of adjacent segments is 10.47

millisecond that corresponds to overlap of 75% of window length.
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Figure 4.13: Center frequency (a) and bandwidth (b) estimation using STFT,
CWT with fixed bandwidth, and CWT with varying bandwidth filter. The
CancellationLevelin the case of STFT is 3%,Pthresholdis 9.36× 10−7 and
Toleranceis 4.
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Figure 4.13a corresponds to the clinical signal with the least noise of the three.

Considering this figure, in estimating the center frequency, we can notice that all

three estimators performed relatively similar in the Steppe region. In this figure

one can mark the Steppe region between seconds 0 to 0.1 and 0.5 to 0.65. How-

ever the Varying bandwidth filter estimation is slightly higher than the other two.

In estimating the value of peak of the Mountain, the STFT and the varying band-

width filter performed roughly the same. The Fixed bandwidthfilter estimated this

value approximately 70% to 80% of the hight of the Mountain estimated with the

other two methods. Varying and fixed bandwidth filters exhibited errors in Valley

region (roughly between seconds 0.45 to 0.47). However it has to be mentioned

that this error is overcame in the STFT due to the noise cancellation technique ap-

plied to the spectrogram of the signal. In this figure we can see that in the point of

transition between the Steppe region and the Mountain region (feet of the Moun-

tain), the STFT and Fixed bandwidth filter performed more precisely. In contrary

the varying bandwidth filter suffers from overestimation atthis point.

In this figure, concerning the second Mountain, one can notice a slight delay

in time in the curve corresponding to the STFT estimation. The delay counts up

for approximately 0.015 milliseconds.

Figure 4.13b demonstrates the bandwidth estimation of the same signal. Like-

wise the center frequency estimation, the fixed and varying estimators exhibit error

in the Valley region. However in the bandwidth estimation this error is more acute

and for the case of the varying bandwidth filter, it is extreme. The bandwidth es-

timation in the Valley region for the varying bandwidth filter is even higher than

the peak of the Mountain. In the Mountain region, the varyingbandwidth filter

and the STFT estimated the value of the Mountain fairly equal. The fixed band-

width filter estimated the value of the peak approximately 140% to 130% of the

the value estimated by the STFT and varying bandwidth filter.In the Steppe re-

gion, the varying bandwidth filter estimated the bandwidth higher than the fixed

bandwidth filter. The least estimation belongs to the STFT.
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Figure 4.14: Center frequency (a) and bandwidth (b) estimation using STFT,
CWT with fixed bandwidth, and CWT with varying bandwidth filter. The
CancellationLevelin the case of STFT is 22%,Pthresholdis 7.86×10−6 and
Toleranceis 2.74.
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In figure 4.14a one can locate the Steppe region approximately between sec-

onds 0.15 to 0.3, and 0.45 to 0.7. In the first Steppe region, the STFT and the fixed

bandwidth filter performed relatively the same. Nevertheless in the second Steppe

region, that can be considered as an elevated Steppe region,the fixed filter esti-

mated the center frequency slightly less than the STFT. In the first Steppe region

the varying filter overestimated the bandwidth and in the second Steppe region

(elevated Steppe) the varying filter estimated the center frequency slightly higher

than the STFT. There are two Valley regions in this segment ofthe signal located

roughly around 0.12 second and 0.82 second. The STFT method detected the Val-

leys at these points. On the other hand, the varying and the fixed bandwidth filter

were not sensitive to the Valley region. Similar to the signal of the figure 4.13, the

STFT and the varying filter estimated the peak of the Mountainfairly equal. The

Mountain regions are located at 0.6 second and 0.85 second. The fixed bandwidth

filter estimated these peaks slightly less than the other two.

Figure 4.14b correspond to the bandwidth estimation of the same signal. In

this figure, we can notice four acute spikes in the first Stepperegion in estimation

of the STFT. The resultant estimated bandwidth is the least in both Steppe regions

using the STFT method. In the first Steppe region, the averageof bandwidth es-

timation of the STFT is around 100Hz. The average for fixed bandwidth filter is

around 500Hzand for the varying bandwidth filter it is approximately 1300Hz. In

the second Steppe region (elevated Steppe), all estimatorsestimated the value of

the bandwidth relatively close to each other. The STFT againhas the least value,

and the varying bandwidth filter has the highest. The varyingand the fixed band-

width filter were not sensitive to the Valley region, howeverthe STFT detected

the Valley. In the Mountain region, the STFT has the least estimation and at the

point of peak of the Mountain the varying and the fixed bandwidth filter presented

roughly the same estimation. However the varying version estimated the feet of

the Mountain extremely higher than the fixed one.
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Figure 4.15: Center frequency (a) and bandwidth (b) estimation using STFT,
CWT with fixed bandwidth, and CWT with varying bandwidth filter. The
CancellationLevelin the case of STFT is 26%,Pthresholdis 4.04×10−5 and
Toleranceis 2.63.
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The center frequency estimation of the third signal is presented in figure 4.15a.

This signal has the highest BackGroundArea noise among the sample signals pre-

sented in this section. In the spectrogram of this signal that is presented in fig-

ure 4.5, one can pinpoint the two Steppe regions. Firstly between seconds 0.15

and 0.3 and the other one between seconds 0.5 and 0.7. In both Steppe regions,

the fixed bandwidth filter has the least estimation and the varying bandwidth fil-

ter has the highest. The STFT and the fixed bandwidth filter exhibit relatively

smoother curves, in contrary the varying bandwidth filter has fluctuations in the

curve around the Valley region. The Valley region in this signal is located approxi-

mately at point 0.46 seconds. The fixed bandwidth filter estimated the value in the

Valley region with a smooth concave curve. The STFT performsrelatively similar

but has a small spike in the bottom of the Valley. It is worth tomention that the

same form of spike has been observed in the Valley region using STFT in case of

an inadequate CancelationLevel selection. In this figure wecan see that in spite

of the high level of noise cancellation, the peak of the spikegets smaller but not

omitted. On the other side, the varying bandwidth filter fails in detecting the Vally.

Figure 4.15b presents the bandwidth estimation. In this figure we can see that

likewise the other two signals, the STFT has the least estimation and the varying

bandwidth filter has the highest estimation. In both Steppe regions, the varying

bandwidth filter failed to estimate variations in the bandwidth curve; the STFT

exhibits high level of fluctuation. In the Valley region, theSTFT contains a spike

with a peak approximately taking place at 1400Hz. Although the STFT and the

varying bandwidth filter are two different procedures, the varying bandwidth filter

formed a curve that envelops the spike detected in the Valleyregion.

4.6 Concluding Remarks

In the previous section the results of application of three different spectral es-

timators on simulated signals as well as clinical signals were demonstrated. These

estimators, naming STFT with a noise reduction technique, CWT with fixed band-

width filter and finally CWT with varying bandwidth filter wereemployed to es-
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timate center frequency and bandwidth of signals. The simulated signals were

obtained using a simulator that simulates the blood flow in the common carotid

artery. This simulator is proposed by Fish et al. [5]. Three different clinical sig-

nals with different levels of background noise were selected to compare the results

of these estimators.

Comparing figures 4.6, 4.9, and 4.11 one can see that STFT and fixed band-

width filter have relatively fine approximation of the valuesin the Steppe region,

concerning the center frequency estimation of simulated signals. Steppe region is

the term proposed in this study to indicate portions of the center frequency were

its value is relatively constant. Therefor one can concludethat these two methods

could be used for estimation of any part of the signal were theestimated value

is expected to be constant. On the other side, the varying bandwidth does not

estimate satisfactorily in the Steppe region. Although theestimated value of the

Steppe region using varying bandwidth filter is constant, the estimated value has

a constant error of nearly−200Hz.

The term Mountain is proposed in this study to indicate portions of a signal

where there is a rapid variation of frequency in the form of anascending slope fol-

lowed by a descending slope. Considering the simulated signals, in the Mountain

region we can see that STFT performs well in estimating the value at the peak of

the Mountain. However in figure 4.6 we can see that the estimators have an error

of roughly 75Hz in both ascending and descending slopes of the Mountain. On

the other hand both the other estimators behave poorer in estimating the center

frequency in the Mountain region. Fixed bandwidth filter exhibits increase in the

bias as the frequency increases in both slopes. The varying bandwidth filter as

well has error in estimating the center frequency of the simulated signal in the

Mountain region. In the particular case of the simulated signal used in this study,

in the ascending slope of the Mountain, the center frequencyvaries from 1000Hz

to roughly 4200Hz. In this case, from figure 4.11 we can see that the bias of es-

timator varies from roughly−200Hz to +200Hz, or in another words, 400Hz of

increase in the estimation error is observed. Therefor we can conclude that the

best choice of estimating center frequency when the frequency changes dramati-
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cally in a short period of time (either increase or decrease)is the STFT with the

proposed noise reduction technique. Nevertheless, the slight error of the method

in steep slopes has to be considered.

In the case of Valley region, again we can confirm that STFT performs better

in comparison to the other two estimators. STFT has the leasterror in this region.

The fixed bandwidth filter estimated the center frequency better than the varying

bandwidth filter. The fixed bandwidth exhibits smaller errorboth in the mini-

mum point of the Valley and the descending and ascending slopes. The varying

bandwidth filter has increased (absolute value) estimationerror when the values

of center frequency differentiate from the Steppe region.

Figure 4.7 presents the bias of bandwidth estimation using STFT. As it was

mentioned in section 2.2.4 of the second chapter, the filter function used to sim-

ulate common carotid artery blood flow, has a RMS bandwidth of100Hz. In

this figure we can verify that the STFT method using the proposed noise reduc-

tion technique, estimates the bandwidth with a good approximation (bias below

125Hz) in most of the signal, expect the ascending slope of the Mountain region,

as well as the descending slope. In the Mountain region, one can see that the

bandwidth estimation has roughly 125Hz bias in the ascending slope and 50Hz

in the descending slope. In the rest of the signal, we can see that the estimator

performs fairly good.

Figure 4.10 presents the bandwidth estimation using fixed bandwidth filter. It

can be said that the bias is basically following the center frequency curve. There

is a Mountain peak with the value of approximately 1450Hz at the same time

of the peak of the Mountain in the center frequency curve. Theestimated bias

demonstrate a small Valley in the same place as the Valley in the center frequency

curve. In the case of the varying bandwidth filter (in figure 4.12) we can see that

the bandwidth is over estimated. In this figure we can see thatthe values of the

bias of the estimated bandwidth are around 700Hz. It can be concluded that in the

estimation of bandwidth of signals, the STFT performs the best. The fixed band-

width filter follows the center frequency curve and the varying bandwidth filter
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extremely overestimates the bandwidth.

Considering figures 4.13b to 4.15b we can conclude that the varying band-

width filter fails to estimate the bandwidth of input signalswith high level of

BackGroundArea noise. This problem is more visible when thebandwidth is in

the low frequency region (see figure 4.14b, first Steppe region). In the bandwidth

estimation of the clinical signals, the varying bandwidth filter and the fixed band-

width filter are not sensitive to the Valley regions. This issue is more severe for

signals with high level of BackGroundArea noise. For the signals with low level

of BackGroundArea noise, STFT and the varying bandwidth filter estimate the

hight of the Mountain regions fairly equal; However the performance of the vary-

ing bandwidth filter is degraded in the feet of the Mountain.
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Chapter 5

Conclusion and Future Work

This study was aimed to investigate the estimation of Doppler ultrasound

blood flow spectral mean frequencies. Throughout the study that led to formation

of this thesis, the following topics have been investigated: The Fourier analysis of

Doppler blood flow signals has been studied. The MATLAB codesfor calculat-

ing the STFT have been developed and explored in detail. Based on the resultant

STFT the center frequency curve has been estimated. Since the goal of the study

was to investigate center frequency estimation of clinicalsignals, the noise con-

tent of signal appeared on the STFT has been identified and isolated. Based on

this representation of the noise, a noise reduction technique was proposed. This

technique was basically implemented to enhance the STFT. Inorder to be able to

evaluate the results, simulated signals with deterministic center frequency curve

and added Gaussian noise were employed. In addition to STFT,Two methods

of varying bandwidth filter and fixed bandwidth filter for CWT have been stud-

ied. The results of application of STFT using the proposed technique and the two

methods of CWT were compared against each other. In the case of the fixed band-

width filter, different values of bandwidth were studied anda the best bandwidth

has been chosen. The decision was made based on value of the bias in different

parts estimated center frequency of one cardiac cycle of thesimulated signal.

Considering estimation of Center frequency in the Mountainregion, it can

be concluded that the STFT performs the best among the three estimators. It is
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necessary to mention that in estimating the value at the peakof the Mountain,

the Varying bandwidth filter estimates the value fairly close to the estimation of

STFT. In the Valley region, STFT estimates the best and the performance of the

fixed bandwidth filter is better than the performance of the varying bandwidth fil-

ter.

Regarding the bandwidth estimation, STFT with the proposednoise cancel-

lation technique estimates with a satisfactory approximation in different regions.

It has been observed that the varying bandwidth filter and thefixed bandwidth

filter are not sensitive to the Valley region. On signals withlow level of Back-

GroundArea noise, the estimations of value at the peak of theMountain using the

STFT and the varying bandwidth filter are fairly equal.

In the case of aCancelationLevel(see 3.2.2.2), it is possible to define another

way to calculate this concept so that it would convey more information on the

depth of the processes being applied on the signal. For instance the concept could

be defined in a way to represent the distribution of the amplitudes of the matrix

Pcalculated. So to speak it is desired to deliver some of the statistical character-

istics of the power distribution in the matrixPcalculated.

In the previous chapter, it was mentioned that the fixed bandwidth filter has a

noticeable behavior when estimating the bandwidth. It was observed that the esti-

mated bandwidth filter is basically following the center frequency curve (see fig-

ure 4.10). In this study, the major work was concentrated on the center frequency

estimation, however these experiments and results might lead other investigators

to dwell on the bandwidth estimation. Since in the case of thesimulated signal,

the deterministic center frequency curve is available, a researcher interested in this

field can investigate a method to improve the bandwidth estimation using CWT

with fixed bandwidth filter.

Another issue concerning the bandwidth estimation is occurrence of unusual

spikes. These spikes are short in time and increase dramatically up to the high fre-

quency region. Signals with high level of BackGroundArea noise, exhibit spikes
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particularly in the Valley and low frequency regions. Researchers are welcomed

to explore the origin of these spikes and analyze them. Nevertheless, more infor-

mation on the nature of the clinical signals would be an assetin order to analyze

these spikes.

Development of signal processing systems based on field programmable gate

arrays or simply FPGA, is one of the progressive fields in engineering of trans-

ducers in medicine. Hu et al. [17] invested the implementation of a pulsed-wave

Doppler signal processor using a FPGA based system. They have reported that us-

age of FPGA chips makes it possible to implement the processing unit along with

the beamforming function on the same chip to enhance duplex scanning. Appli-

cation of the proposed noise cancellation technique in the current study would

ameliorate the performance of such digital system.

The noise reduction technique proposed in this study was basically applied

on the STFT. Nevertheless, interested researchers are encouraged to investigate

techniques to reduce the noise in the CWT that is the time-scale representation of

signals. Due to similarity of time-scale and time-frequency representations and

the fact that one can be transformed to the other one; The sametechnique used in

STFT can be adopted for CWT. Moreover, other techniques to reduce the noise

in CWT and estimate the spectral parameters more precisely would provide the

means to evaluate the noise reduction technique proposed inthis thesis.
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