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Abstract

The pulsed Doppler ultrasound (DU) is one of the importaatstm the study
of vessel diseases and the investigation of flow conditibuo® to its non-invasive
nature, it has been increasingly used in medicine in theféastdecades. Ac-
curate estimation of DU spectral center frequency and battbwarameters are
extremely important for blood flow diagnostic purposes. en@al-time data ac-
quisition conditions the DU signal is generally corruptedhvdifferent types of
noise. In these situations the identification of signal congmts solely belonging
to the blood flow signal is a difficult task.

This thesis was aimed to study spectral techniques to erlsgpectral param-
eter estimation, in particular the center frequency. Speetstimates were ob-
tained using the Short Time Fourier Transform (STFT) andtiDonus Wavelet
Transform (CWT). STFT was applied to short duration datarsags, respecting
signals’ stationary properties. Two CWT functions haverbseidied: varying
bandwidth filter and fixed bandwidth filter. Since differeitefi bandwidth values
yield different results, bandwidths for fixed bandwidthefilivere investigate and
the most proper one has been used on the performance coivpataties. To
enhance the blood flow signal content of noise-embeddeidaliDoppler signals,
a STFT-based technique was proposed to reduce the sign&és’ components.

Quantitative evaluation of the spectral methods was pilypnperformed on
simulated signals with deterministic center frequency baddwidth. Different
signal to noise ratio signals were simulated. It has beeargbd that STFT spec-
tral center frequency and bandwidth estimators were lessedithan the CWT
ones, although the last ones were less sensitive to therdeggaency variations.

Applying the proposed noise cancellation technique to kted signals re-
duces the spectral estimators’ errors. As an example, aalypoisy signal with

10dbSNR a reduction of 88% and 97% was obtained on the RMS bias of the

estimation of the center frequency and bandwidth estirmatspectively.

Keywords: Doppler spectrum, STFT, wavelets, noise cancellatiomsittund,
blood flow signal.



Resumo

O ultra-som Doppler pulsado & um importante instrumeritizado no estudo
de doencas vasculares e na investigacao das condledfsxo sanguineo. De-
vido & sua natureza nao invasiva, tem sido crescenteméhtado nas Ultimas
décadas. A estimativa precisa de parametros como sejequ€hcia central e a
largura da banda do espectro Doppler de ultra-som sacmtnente importantes
no diagnostico de anomalias do fluxo sanguineo. Nestea:8ies, a identificacao
de componentes de sinal pertencendo somente ao sinal deséngaineo € uma
tarefa dificil.

Pretendia estudar-se nesta tese técnicas que melhorasgetidade da esti-
mativa espectral, particularmente da frequéncia cenfialam obtidas estimati-
vas do espectro usando a Transformada de Fourier de TempaiBedSTFT) e
a Transformada Continua de Wavelet (CWT). A STFT foi aplica segmentos
do sinal de curta duracao, respeitando as suas casdici@side estacionaridade.
Estudaram-se duas funcdes da CWT: O filtro de largura dagbeariada e a filtro
de largura da banda fixa. Uma vez que diferentes largurasrdialato filtro pro-
duzem resultados diferentes, foram investigados pdssratores para a largura
da banda do filtro de largura da banda fixa, tendo-se escathidtor mais apro-
priado para utilizacao nos estudos comparativos de des@mo. Para melhorar
0 contelido do sinal sanguineo em sinais clinicos Doppldosos, foi proposta
uma metodologia de reducao de ruidos das componentésalo s

A avaliacao quantitativa dos resultados foi inicialneefeita com base em
sinais simulados de frequéncia central e largura de bagidandinisticos. Difer-
entes niveis de sinal-ruido foram simulados. Obsereogtge os estimadores
frequéncia central e largura de banda eram menos enviegadodo se utilizava a
STFT do que utilizando a CTW; contudo, esta tltima prodastamativas menos
sensiveis a forma de onda de frequéncia central.

Os erros da estimacao espectral reduzem quando a télenteancelamento de
ruido proposta & aplicada. A titulo de exemplo, aplicaac um sinal tipicamente
ruidoso com 18B de SNR, as estimativas da frequéncia central e da largura de
banda reduzem o viés rms de 88% e 97% respectivamente.



Palavras-chave:Espectro Doppler, STFT, wavelets, cancelamento de ruido,
ultra-som, sinal de fluxo sanguineo.
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Chapter 1

Introduction

1.1 Motivation

The upward trend of the development of science and techpatotipe twen-
tieth century, profoundly encompasses the life style of &arkind. The depen-
dency of our lives on the new discoveries in science and tdolyy is substantial.
These discoveries enrich the quality of life and improvesdaily activities. In-
vestments in science and medicine lead to achievementsoalha@ the globe.
These achievements help to save lives of thousands of pepnumerous dis-
eases and amend lives of millions of people. Perhaps it wenbd far from the
reality if we consider any new achievement a simple aid tbegisave lives or
improve quality of life.

In this context, engineering sciences indeed carry out ammaje in the de-
velopment of instruments used in medicine. Medicine andnemging endorsing
each other, help us to have better and improved lives. Thathetachievements
in medicine, life expectancy is getting higher, more disgsdsecome curable and
lives of more people become better and improved.

Any progress in engineering of devices, tools and the tdogyoused in
medicine, in fact would serve our lives. By nature, uponvaitrio any new stage,
man kind demands to get to a higher one. In engineering, agjesinvention led



to a faster, more powerful and more precise invention. Megeto the desire of
the man kind, the society necessitates and requests theepsdge development of
tools. In medicine, for instance, during 1970s the efficalcgawotid endarterec-
tomy was debated. At the time, carotid endarterectomy waaslleestablished and
recognized procedure to deal with stenotic vessels. Howleaesed on the reports
of high rate of mortality after surgery, The steadily in@eg number of carotid
endarterectomy started to decline. The international cadiociety demanded
establishment of particular criteria to evaluate effemtigss of carotid endarterec-
tomy on patients with specific stenotic degree. Doppleastiund devices were
among the best noninvasive methods to estimate stenotieeleg vessels.

The first report of application of Doppler ultrasound in neadidiagnosis dates
back to 1956. Satomura and his group from Osaka Universipad, reported the
detection of heart wall motion using Doppler Ultrasound. réde two decades
after this report, Doppler ultrasound methodology progeesmassively. In 1978,
color Doppler imaging system using continuous wave sigwals introduced. In
this system, regions with increased flow velocity were dgished by color cod-
ing from normal flow velocity regions. Eventually by the &afl990’s in Eu-
rope and North America, the official criteria for carotid en@rectomy procedure
based on the stenotic degree on vessels were establishedofib is yet to be
investigated and still there are many aspects of this melbgg to be researched.
The particular motivation of the current thesis is to stuglghiniques to improve
spectral estimation of Doppler ultrasound blood flow signal

1.2 Proposed Goals

This work was aimed to study the application of spectrahestor methods on
the estimation of Doppler ultrasound blood flow spectral mieagquencies. This
main goal should be achieved by primarily investigating @ahoe for reducing
the noise content of the clinical signals. Then, more tham spectral estimator
method should be tested aiming at the determination of sgdentan frequency
(mean blood flow) curves for each cardiac cycle. To help orspgeztral estima-
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tion methods’ understanding and characterization usagaraflated signals was
suggested. In this sense, an existent computational prograimulate Doppler
signals has been employed.

1.3 Thesis Outline

This thesis consists of five chapters. The first chapter isnneduction and
includes the sections about motivation of the work, prodageals and outline of
the thesis. Second chapter is dedicated to the theoretickgbound. This chapter
has two main sections. In the first section a historical aearof development of
Doppler ultrasound concerning its medical applicationresspnted. Section ends
with the theoretical background of Doppler ultrasound alggimulator used in
this study. This simulator is briefly described and its cgpending mathematical
expressions are presented. In the second main sectiorsafttapter, spectral es-
timators are being explained. In this part, Fourier based@ntinuous Wavelet
transformation are annotated. At the end of this chapteexpeession to estimate
the center frequency and the bandwidth are presented.

The third chapter is on the methods applied in this studyhigndhapter, Short
Time Fourier Transform (STFT) is described. A proposednegplre to eliminate
the noise based on STFT is thoroughly presented. The Cantsvavelet Trans-
form (CWT) is the other applied method. Presented are the wseelet base in
this study, fixed bandwidth filter and varying bandwidth filte

The fourth chapter is devoted to the obtained results. Thsermontent of the
clinical signals is being analyzed. Three different clatisignals are presented
to exhibit the variation of magnitude of noise in differergreals. Results of the
STFT, CWT with fixed bandwidth filter and CWT with varying bamdth filter
are presented. Finally the results of application of thessetmethods for spectral
estimation on the clinical signals are presented.

The fifth chapter offers the conclusions and the proposdistofe work.
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Chapter 2

Theoretical Background

2.1 Introduction

This chapter is devoted to the theoretical background efiloirk and has two
parts. The first part concerns the Doppler ultrasound blavdgignals. Primarily
a historical overview of Doppler ultrasound methodology application of this
methodology on blood flow signals is presented. The impogarf application
of Doppler ultrasound on carotid artery is briefly describ&tie simulator used
in this study and reported in literature is introduced. $elcpart of this chapter
deals with the spectral parameters. Two spectral estimatiethods were used
in this work: Short Time Fourier Transform and Continuous/#at Transform.
Primarily, the need for the STFT is exemplified and it is shadwdy the Fourier
Transform is inadequate in particular cases in digital @igmocessing; Then the
CWT method and time-scale representation are introducbén the two trans-
formation methods are compared. At last, the power wavefsifiormulated and
the expressions to estimate the center frequency and thisviith are presented.
The terms center frequency and mean frequency are usedhategeably in this
thesis and both refer to the same concept.



2.2 Doppler Ultrasound Blood Flow Signals

Application of Doppler ultrasound is based on the idea oéd@tg the Doppler
shift in the frequency of the ultrasound that is backscattéom a moving object.
The stepping stone in Doppler ultrasound as a medical degmool is the work
done by Shigeo Satomura at Osaka University, Japan [1]n&atoand his asso-
ciates published an article in 1956 and reported the Dopyliersound detection
of heart wall motion using@Hz ultrasound signals. Satomura and his associates
studied three different applications to further developpler methodology. One
of these applications was flow in peripheral vessels. Thaearch indicated that
blood flow in peripheral arteries and veins could be detecggtcutaneously. An-
other important outcome of this research was that the freqyuef the reflected
waves was proportional to the velocity of the blood flow. Theg suggested the
potential for using the methodology to study atheroscielateries. Atheroscle-
rosis is a vascular disease in which an artery wall thickens@uses stenotic
lesions in arteries. Kanemasa Kato, another Japaneseasahwig with his asso-
ciates showed that Doppler signals were originating fromvingred cells. They
demonstrated that the frequency of these signals weredelatthe velocity and
their output voltage related to the number of red cells. 165, Ziro Kaneko and
his associates from Osaka University found that spectruatyais provided the
best means for analyzing Doppler signals.

The mainstream efforts of early Japanese investigators wedeavored to
study the extracranial cerebral arteries. This work lehtodemonstration of the
difference between Doppler signal from carotid arterietaimled from patients
with atherosclerosis and healthy subjects [1]. Meanwhil@ng with Japanese in-
vestigators, American scholars were working on ultrasaondte 50’s and early
60's. Dean Franklin from University of Washington by deygtgy a transit-time
recorder was employing ultrasound to study cardiovasaljaamics. Donald
Eugene Strandness, a surgeon, realized the potential gbl&opltrasound in
the new field of vascular surgery. He introduced the Dopplethmdology to
surgeons interested in vascular diseases. The avayatiltontinuous-wave in-
struments (two classes of Doppler ultrasound instrumemtdaefly explained



in section 2.2.1) led to immediate attention of clinical bgations. Strandness
and his associates described the Doppler ultrasound nezasaot of blood flow
in peripheral vessels in an article in 1966. In this artibleytdemonstrate the dif-
ference of the waveforms obtained from normal patients amh foatients with
atherosclerosis.

2.2.1 General View of Doppler Ultrasound

Ultrasound is a sound wave that has frequencies above thiel@audnge of
frequencies of human being (R82. Diagnostic ultrasound instruments emit
ultrasound waves to an object of study. Doppler ultrasowystesns may be cat-
egorized in two groups: Continuous-wave and Pulsed-waves dlassification
is based on how the transmitted signal is emitted, beingedbntinuously or in
bursts. Continuous-wave instruments use two transdumeedpr transmitting the
ultrasound and one for receiving the reflected ultrasouheé.r&égion of overlap of
the beams is the area within which these instruments arétigerte movement.
These instruments have weak range resolution that causéssamn of direction
of signals from close vessels. Quantifying the blood flowmngghese systems is
difficult and they have exaggerated sensitivity to vessélsvmaovement [2].

The primary limitation of Doppler velocity detectors wa® timcapability to
pinpoint the exact location of the moving reflectors thategated the Doppler
signal. These instruments could not determine the depthbdd@d vessel, nor
distinguish varying flow velocities in large vessels anételthem to their loca-
tion within the vessel lumen [1]. The need for instrumentsd tdould effectively
measure velocities at specific ranges and obtain profilessadhe lumen of a
blood vessel led to the development of Pulsed-wave Doppétriments.

The pulsed Doppler ultrasound is one of the important taolhe study of
vessel diseases and the investigation of flow conditionse uts non-invasive
nature, it has been increasingly used in medicine in thddastecades.



2.2.2 Typical Blood Flow Signals

Doppler ultrasound blood flow studies are based on the arai/sitrasound
signals that are backscattered by moving particles withiessel. These blood
scattering units are mainly the red blood cells (erythresyand cell aggregates.
The pulsed ultrasonic Doppler blood flow detector detersiisleod velocity by
measuring the Doppler shift in the frequency of ultrasound.

Doppler shift (or in another words, difference) frequensydefined as the
difference between the received and the transmitted frexyuél' he received fre-
quency is the sum of the reference frequency with a frequenayponent pro-
portional to the velocity of reflectors, in this case the blparticles. If the angle
between the receiving and the transmitting direction ofaglbund is 18Q the
relation between the received and transmitted frequentypedormulated as be-
low [2]

fg=fi—fr = <2%) .V.cosf (2.2)

Where fq represents the Doppler shit frequen&yand f, represent transmitted
and received frequency, respectivatyis the velocity of sound in tissug,is the
velocity of the reflectors, anél is the angle between the ultrasound beam and the
direction of motion of the object under study.

In arteries, blood-flow detection by Doppler ultrasounaal the measure-
ment of systolic blood pressure. In veins, blood-flow detectised to be more
difficult due to the fact that slower velocities produced éovirequency shift.
However this issue was overcome by applying augmentatiamemaers on ve-
nous flow. Augmented venous-flow signals make it possiblesteal obstructed
blood flow caused by venous thrombosis. It can also be useadkefection of ve-
nous valve incompetence. Doppler ultrasound was found @bbeto detect air
emboli in late 1960's. It was also proven to be useful in manivity during open-
heart surgery and some neurosurgical procedures [1].

One of the common vascular diseases is stenosis. A stesasisulted from
an intrusive lesion of blood vessels and could cause theaimof blood sup-
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ply to distal vessels. A vascular stenosis usually causdgge and turbulence
downstream the blood flow. These irregularities in the bliod can be evalu-

ated to detect and quantify the lesion and its degree [3]adtbeen shown that
vessel stenosis has a close relation to the abnormal hyséapf cells in adja-

cent vessels, formation of emboli and artery expansiony&ibee detection and
estimation of stenotic degree on vessels has a significgdriance [4].

2.2.3 Doppler ultrasound and Carotid Artery Surgery

As it was mentioned earlier, atherosclerosis causes stelestons in arter-
ies. A short term treatment of this situation includes maligninvasive angio-
plasty procedure. This could include application of a sthat physically ex-
pands the narrowed arteries. The major invasive surgerypads surgery but it
provides additional blood supply that goes around the mehe narrowed vessel.
One of the main impeller forces in development of Dopplerhndblogy was the
rapid increase of reconstructive peripheral vascularesyrduring the 1950’s and
1960’s. Grafting operations to replace or bypass stendgryasegments as well
as endarterectomy to remove luminary structures wereviegghuge attention in
treatment of atherosclerosis.

During the 1970’s, due to reports of high stroke and mostadites, at commu-
nity hospitals in the United States, the appropriatenessuaftid endarterectomy
was questioned. The number of carotid endarterectomy tipesgperformed in
the United states significantly decreased from 107,000 &518 83,000 in 1986.
In a period of 5 years from 1986, because of increasing caneecardiovas-
cular surgery, different international organizations everotivated to indicate the
stenotic degree on vessels and appropriateness of surfjed991, European
Carotid Surgery Trialists’ Collaborative Group known asHCG and North
American Symptomatic Carotid Endarterectomy Trial Cadhatbors (NASCETC)
issued their conclusion that symptomatic patients witho/@% stenosis derived
significant benefit from operation [1].



By 1992, the decreasing rate of performed carotid enda&itarey that started
after 1984, showed an upward trend. After reconfirmatiomefttility of carotid
endarterectomy, Doppler ultrasound velocity criterialzimg established to meet
the categories of stenosis relevant to ECSTCG and NASCEJC [1

2.2.4 Doppler Blood Flow Signal Simulator

Physical properties of a Doppler instrument plays a keyaalis performance
in measurement of blood flow. The other key player that hasss importance
is the Doppler signal analysis technique that is employe duite practical to
have a source of signals with known characteristics in or@eompare the per-
formance of various methods of signal analysis. In this vea could estimate
specific properties of a simulated signal using a suggesjedlsanalysis method
and compare the result with the expected values. Moreoeergbearcher can
compare the results of different methods against each ethen applied to the
same signal. In a situation where an averaged value has t@h&ated, a number
of signals could be simulated and stored and using a methtetbnique obtain
the results.

The nonstationary blood flow Doppler signal can be modeld@]as
Xp(t) = A(t)el P el ®a(t) (2.2)

this expression is composed of a random base-band funaiiimasA(t)el®®
and a frequency shifting functioe!®(®), The frequency shifting function has a
frequency equal to the blood flow spectral center frequefagy). The random
base-band component of the simulated signal can be foreclet

At)el®® = F~LG(f).N(f)] (2.3)

and the phase shifting function that is dependent on therdetestic center fre-
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quency curvefy(t), as
t
o(t) = 271 / fm(t)dt+C 2.4)
0

whereF 1 denotes the inverse Fourier transform opera@i(f) presents a real
zero mean filter function with Gaussian spectral shapeNirid corresponds to a
complex random variable that convey a normal power spedénasity and a root
mean square (RMS) value of unity. Typically the filter functhas a RMS band-
width of 10(Hz, when simulation of carotid artery blood flow signal is penfied.

In the current study the filter functio®( f) has a Gaussian shape is given by

G(f) = <e0'5<£>2>2 (2.5)

In this Doppler signal simulator, the waveform of deterrsiiw center frequency
curve that is fed to the simulator determines the propedti¢ise output signal.

2.3 Spectral Estimators

2.3.1 Fourier Based Methods
2.3.1.1 The Necessity of Time-Frequency Analysis

In the study of a physical phenomena with more than one Jarigie depen-
dency and relation of variables with each other within therall aspects of the
phenomena are often important. One example of such a pheroisiany form
of time varying spectra. To name such an event, we could wretiie quick and
dramatic change of frequency composition of light duringia set. It is practical
to devise a distribution that presents the energy or intgdia signal simulta-
neously in time and frequency. Consider spectral analysasidio signal of one
hour music concert. Due to the fact that different freques@re produced by
different instruments, naming violin and drum, the ovesalkectrum of the signal
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shows that there are certain music instruments being plagediever what can
not be extracted from the spectrum is that which instrumeplayed when. A
way to overcome this issue is to represent the signal in & glistribution of time
and frequency.

For better appreciation of the importance of time-freqyeartalysis, consider
2 signals composed of finite length sine waves. Assume 3rdiftesine waves
at frequencies 16, 19 and 23 Hz. Signal A and signal B are 2réift combina-
tions of these sine waves. Signal A is constructed as an gaipe of the sine
wave at 23 Hz first, then 16 Hz and then 19 Hz. On the other sigealkB is
constructed as being primarily the sine wave at 23 Hz,theHA and finally 16
Hz. Signal A and signal B present identical spectrum howbydooking at their
time domain representation it is observed that they aredauitical signals in the
time domain. Figure 2.1 presents a comparison of these 2lsigim this figure,
(a) and (b) depict time domain, frequency domain and joiptesentation in time
and frequency domains of signals A and B, respectively.

05 0 05

05 0 08 50
40
30
20
10

15 20 25 30 35 40 15 m 25 30 35 40
Frequency (Hz) Frequency (Hz)

(@) (b)

Figure 2.1: Comparison of signals with different time domigpresentation and
identical spectrum. The top-left plot of (a) and (b) are tineetdomain repre-

sentations, the ones in bottom-right are the spectrum grdgbt 3-dimensional

figures are the colored joint representation of time anduieegy of signals.

In some of the real-life applications of digital signal pessing a signal, such
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as speech signal, is transformed from one domain to anotmaith. This trans-
formation or mapping is done by means of particular mathealdiormulations

and has to be information-preserving. Fourier transforrpashaps the most
common method to map a signal from time to frequency domaioweyer the

continuous-time Fourier transform (CFT) of a signal fadsprovide informa-

tion about the time order of occurrence of particular fregues (as it is seen in
bottom-right subplots of (a) and (b) as spectrum in figurg.2.1

X(t) = /X(f)eiZ"“df (2.6)

X(f) = /x(t)ei2"”dt 2.7)

X(f)isreferred to as a spectral representation (spectrumi} pfvith the vari-
ablef defined as frequency. Sinié f) andx(t) are uniquely related, it is possible
to assume the spectrum as the signal in the frequency doméiequency rep-
resentation [6]. To overcome the aforementioned issueds#rasf occurrence in
time, a spectral representation that includes some ekgépiendence on the time
is needed (top-right subplots of (a) and (b) as in figure ZAlpathematical func-
tion that formulates a mapping process from time to frequeloenain of the form
X(f, 1) in which f corresponds to frequency amdo time could be the solution.
In this process, the signal is being analyzed at certaiuéegies, to be called fre-
guency bins. The result of such a transformation is conggyatues for different
frequency bins at each and every time instant. In anothedsyavherever there is
presence of a particular frequency, the result is represgits estimated value.

2.3.1.2 The Short-Time Fourier Transform and Spectrogram

In analyzing the frequency content of a signal, in order tawiba finer local-
ization in time, one could choose smaller segments in timawéver it must be
taken into account that reducing the length of time segmersisbjected to limi-
tation. The reason behind this limitation is that aftera@rtmount of narrowing
the time slice, the spectrum presents no relation to thetspaf the original
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signal. This issue can be explained as parsing a signal it duration signals,
causes the constructed segments to have inherently langleviztih. The spectra
of such short duration signals convey altered informatiomcerning the proper-
ties of the original signal [6]. This limitation is called certainty principle and it
is applied to the small segments in time to be analyzed, ratiae to the whole
duration of the signal.

In order to analyze a given signal at timene could emphasize the signal at
that time and suppress the signal at other instants of tirhis. dould be done by
multiplying the signal by a window functiomt), centered at the momentthat
results in a modified signal:

Xz (t) =x(t)h(t — 1) (2.8)

The resultant modified signal is function of two times. Fitss a function of
moment in the time the analysis is being donesecond the running time, The
window function is the mathematical function that is usedégment the signal
over time. There are numerous window function being usedmas processing
applications and each one has specific properties. Thraghe employment
of a window function on a signal, power properties of the vewdunction are
affecting the result. Whenever an interpretation and egton has to be done on
the Fourier transform of a windowed signal, special caretrhagaken into ac-
count on the effect of the window function. The selectionha window function
is based on the fact that it is needed to leave the signalaredlto some extent at
the timert of interest and suppress the signals for all the valuesrdiftam that
moment.

X(t fort neart
xe(t) ~ 4 < (2.9)
0 fort far away fromr

The term "window” originates from the fact that a portion @hsegment in time)
of the signal is being observed. In an analogy a small podfanscenery is seen
from a window and the rest is not considered in the obsenvatio
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Since the modified signal emphasizes the signal around tintiee Continuous
Fourier Transform (CFT) or spectrum will reflect the distition of frequency
around it; this could be shown as equation 2.10

X (f) = /e‘jz’mxr(t)dt (2.10)
Substitutingx; (t) from equation 2.8 in equation 2.10 results in

Xe(f) = / e 12Tyt )h(t — 7)dt (2.11)
Therefore the energy density spectrum at tmean be written as below [6]:

2
Pe(T, ) = [Xe (F)[2 = ’/ejz’mx(t)h(t— r)dt (2.12)

It is possible to obtain energy density spectrum for eadiedint time. The total-
ity of these spectra is the time-frequency distributidap. This time-frequency
distribution is often called “spectrogram”. Since it is oled to analyze the signal
around timer, a window function that has a peak around timbas been cho-
sen. Hence the name short-time as the modified signal is ishduration and its

Fourier transform, Equation 2.11 is called the short-timarter transform. It is

a convention to represent CFT of signél) at momentr by X;(t) or in another

form by X(7, f).

Short-time Fourier transform or simply STFT is based on ihgke idea of
parsing a signal into small time segments and then Fouredyas each segment
to ascertain existence of frequencies in each segment. otdléyt of such spec-
tra indicates how the spectrum is varying in time. One of tleestmvidely used
method to study non-stationary signals is short-time Fouransform [6]. Mo
and Cobbold [7] state that Doppler signal can be considesedde-sense quasi-
stationary during a short time interval therefore appiaabf STFT on it would
be feasible. It is worth to mention that the result of STFTtigsy tightened to
the properties of the used window function.

In some situations, it is convenient to express the STFT atrear form, for
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instance as an integral in the frequency domain, that is:

X(1,f) = e‘jZ"fT/ejZ"“X(u)H(u— f)du (2.13)

whereX(u) andH (u) are Fourier transforms oft) andh(t), respectively, and is
a dummy frequency variable. We can interpret this funct®the frequency-shift
of the inverse continuous Fourier transformXfu)H (u— f). If H(u) is chosen
in a way to present a low-pass filter in frequency, there¥fe)H (u— f) is the
CFT ofx(1) being filtered by a bandpass filter with the shapéi¢fi). Since the
bandpass filter is translated in frequency, it is centerddradtead of 0. The factor
e 12T in equation 2.13 is to shift the filtered output back to zemthis way,
STFT can be seen as a process of filtering a signal with a bdiilkeo$, and then
frequency shift each output back to zero. These filters hawstant bandwidth
but centered in different frequencies.

The STFT can be written as a convolution in time:

X (1, f) = e12nf1 [eiz"”x(r) *h*(—r)] (2.14)

Where symbok denotes the convolution integral. Convolution integralesined
as:
u(o) = /u()\)w(a—)\)d)\ =u(o)*xw(0o) (2.15)

As it was mentioned earlier, it is not possible to narrow tiheetslice uncondi-
tionally. Consider choosinf(t) as short as possible in time. Doing so, in the
limit h(t) = o(t), whered(t) is the Dirac delta function. This function trans-
forms to frequency a$i(f) = 1. Substituting it in equation 2.11, shows that
X(1,f) = e 12 Tx(1) that is simply the original signai(t) translated down in
frequency. This transformation absolutely preservesithe information, while
on the frequency it provides no information whatsoever.s Ipossible to show
that [8] as a consequence, the uncertainty principle otstvalues ofAt andAf

as time and frequency resolutions of STFT to satisfyAt = C. In whichC is

a nonzero value whose precise value depends on the definitiidth that is
selected. Therefore it can be concluded that once the fimiatt) is chosen, the
time and frequency resolution of STFT are fixed for all thesesloft and f [9].
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2.3.2 Continuous Wavelets Transform

An inevitable characteristic of STFT is that both time arehjfrency resolu-
tion are fixed over the entire time-frequency plane. The tigsslution is fixed
as a consequence bft)e 2™ regardless of any value of. Consequently,
Af =C/Atis also fixed over the entire plane. There are certain s@togin which
it is desired to overcome fixed resolutions. Consider amalySa signal with 2
sets of components: short-lived high frequency featuratsate closely spaced in
time whereas the other ones are long-duration low frequeoryponents that are
closely spaced in frequency and complete their cycles imge lame interval. A
proper transform of such a signal must have enough suffitimet resolution to
distinguish the high-frequency features, while it has tavite enough frequency
resolution to separate closely-spaced low frequency oBesisfying these two
requirements simultaneously, is not in the scope of the STFT

One suggestion could be the application of two STFT withedéhth(t): to
meet the time resolution requirement, use a short-livgd with a small value
of At, then a long-duratiog(t) for good frequency resolution. The other option
could be such a time-frequency representation that haablartime-frequency
resolution; good time resolution for high frequencies anddfrequency res-
olution for low frequencies. To address the issue of the comfse between
time and frequency resolution, Continuous Wavelet Tramsf@ould be suitable.
As the resolution is not fixed in this form of transformatianis categorized as
“multi-resolution” transformation. The multi-resolutidransformation is done by
decomposition of a given signal on a set of shifted (by amotinj and scaled (by
s) function derived from a predefined prototypét). This prototype function is
called mother wavelet function. The wavelet has to be chasenway that by
means of appropriate shifting and scaling, proper estonain the signal could
be done. The CWT is expressed as

CWT(T,1) = —— /x(t)LIJ* (t_—r> dt (2.16)
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Wheret andt represent the time(t) is the time domain signal being analyzed,

r denotes the scale parameter &#dt) is the complex conjugate of the wavelet
function. The factor ,L/ﬂ is used to ensure energy preservation. Scale parame-
ter is a concept used in wavelet theory and it is the counteop&equency. Scale
parameter and frequendyare related by = fo/ f, wheref, represents the cen-
tral frequency of the wavelet’s Fourier transform. Like&8TFT, it is possible to
express CWT as an integral in the frequency domain, thafis [9

CWT(t,r) = \/W/S(u)w*(ur)ejznfrdu (2.17)

WhereS(u) andW¥(u) correspond to the CFT of(t) and(t) respectively. Also
as convolution in time domain

CWT(T,r) = \/—1|T| [x(r)*h* (_TT)} (2.18)
To better grasp how the CWT differs from the STFT, comparet¢nes corre-
sponding to filter function in equation 2.14 and equatior82tat are STFT and
CWT in the form of convolution in time. In the case of CWT we @amfirm that
the width ofh(7/r) is not fixed, but rather dependent on the value &eminding
the scaling operation in one domain on a given signal, onesagtthath(t/2) has
twice the width ofh(t) while h(2t) has half the width oh(t). Since time resolu-
tion of the CWT is dependent on the width of functilefr /r), asr decreases, the
function gets narrower in time and in return the time resofuimproves. In con-
trary asr increases, the time resolution is degraded, but the frexyuesolution
is improved as the quantittAf has to remain constant.

In the same manner that filter bank for STFT was defined prelypwe can
invoke the same concept for CWT. In this case CWT could bepné¢ed as a
process of filtering a given signal with a bank of filters witkefil relative band-
width or varying absolute bandwidth as one version of CWTtddaet al. [10]
investigated the properties of results of CWT using fixed aanying absolute
bandwidth. In our study both versions have been implemeaneldresults were
compared along with the results of STFT. The relative badtwBWe,) of a fil-
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ter (or a function) is defined as the ratio between the absdabdwidth Af) of
the bandpass region surrounding the filter’s center frecuand the center fre-
quency () itself. Based on this definition @ factor is defined as the inverse of
the relative bandwidth:

Af 1
BWo = - = 5 (2.19)
The result obtained from CWT is in the scale-frequency fdriawever to com-
ply this result with the ones obtained from STFT, a time-s¢altime-frequency
mapping has to be employed. Since during the CWT proagés, was sam-
pled toy[n] using sampling rate dfsy, a ratio between the sampling ratexif|
(Fsx), andFs, is defined. Equation 2.20 presents the relation betweerseaald

frequencies.

S= ? (2.20)
wherek is .
K= (2.21)
Fs,

Strictly speaking, the CWT is a time-scale representatiuhitthas to be men-
tioned that this mapping (proposed by Teich et al. [9]) isvlag to interpret the
result of CWT in compliance with STFT.

2.3.3 Computing the PSD
2.3.3.1 Power waveform

Application of STFT on a given discrete signal, that is aggdiion of FT to
the time slices of the signal, will result in spectral deysitthe signal; regarding
each instant of time, it could be formulated as

N-1

S(k) = zoxw(erjz"k”“ (2.22)

wheren is an instant of discrete time akds frequencyx, is the application of a
window function on the signal)T is the duration of time being processed ahd
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is the number of frequency points used. Leiria [11] statasiising equation 2.23
we can calculate the corresponding power density spectrum

P(k) = < IS 2.23)

In order to make sure that the power spectrum is an average w&kr the time
slice being observed as opposed to a function of the windpey the factor% is
being used in the expression. In the case where the windogtiumapplied to
the signal is a rectangular window, equation 2.23 is a go@icegmation of the
PSD [11], however in the case of other window functions (fatance hamming)
that do not demonstrate a unitary power density spectruenptiiver density of
the applied window has to be introduced in the expression as

1 N—1

En=—
N Nn:

w?(n) (2.24)
which means that equation 2.23 would be rewritten in the fofm

P9 = g 15097 (2.25)

and subsequently the power density expression regardafgiestant of time and
frequency could be written as below

P(n,k) = % 1S(n, k) % (2.26)

and the variation of the power over time is
N—1
P(k) = Z P(n,k) (2.27)
k=0

2.3.3.2 Mean Frequency waveform and Bandwidth

The mean frequency for each instant of time is calculatedgugie power
density at each instant and weighted regarding the frequains being used and
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averaged [5].
Nil f (n7 k) ' P(n7 k)
fin(n) = ¥=2

— (2.28)
> P(nk)
k=0

wheren andk correspond to discrete time and frequency, respectifé¢ty.k) de-
notes the frequency value corresponding to momeartd frequency bik. Simi-
larly the spectral RMS half bandwidth estimation is compuising the equation
below.

N-1 _

5 (fm(n) = f)*P(n,K)
bn) = | *=—— (2.29)
Y P(n,k)
k=0
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Chapter 3

Spectral Methods Applied

3.1 Simulation of Blood Flow Signals

Using the expression d¥(t) (see 2.4), one can obtain a Doppler simulated
signal based on a desired form of spectral center frequeaggtons. In fact
any arbitrary form of curve could be used with this functidfowever decision
was made to choose a curve from literature that has beenogpedebnd inves-
tigated previously by scholars. This center frequency iaded in figure 3.1
and is derived from a convective velocity waveform. Thisoe#ly waveform ob-
tained by assessment of Doppler ultrasound blood flow on comuarotid artery
during a cardiac cycle. The velocity waveform incorporapsctral width and
power increase that is resultant from flow disturbance. Meeethe waveform
conveys time-localized rapid variations in frequency cetigal by the passage of
vortices [3]. This center frequency curve was proposed bggNand Fish [12].

3.2 Spectral Estimation Methods

Spectral estimation methods that were investigated instiidy were Short-
Time Fourier Transform (STFT), and Continuous Wavelet $fanm (CWT). The
STFT implementations were mostly based on the functiongadola from MAT-
LAB. A noise reduction technique was proposed. The STFT otkth eliminate
the accompanying noise of the simulated signal as well aclitheal signals was
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Figure 3.1: Deterministic center frequency curfggt) (left) similar to that ob-
tained from the common carotid artery, and correspontl(tg curve (right)

enhanced. The CWT routines and codes were adopted fromiapsevork done
by Matos et al. [10]. In this study, two forms of CWT were initgated: varying
bandwidth filter and fixed bandwidth filter. These methodsanagplied to simu-
lated signals with different levels of noise.

Rangaraj [13] states that synchronized signal averagingseparate a repet-
itive signal from noise without distorting the signal. Ifetimoise is random with
zero mean, averaging will improve to SNR. He mentions methtodapply the
synchronized averaging on different clinical signals. istance in the case of
ECG, detecting the QRS complexes and using their positialigm the wave-
forms to synchronized averaging would be an option. In tree ad simulated
signals, it is simply done by performing the desired numbeuations. The
added random noise in the simulator used in this study haszean. Thus aver-
aging on a number of simulated signals can be applied to ectihecnoise. It was
decided to obtain the results from 100 simulated signalerder to quantitatively
compare the methods, center frequency and bandwidth dcdisigrere evaluated
and compared against the deterministic ones.
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3.2.1 STFT Based Method

In the processing of clinical signals that are acquired iea-life situation
mostly there are non-zero values at instants of time-frequelLogically part of
these values are generated by the original source of thalsifpr instance in
studying blood flow using Doppler ultrasound the blood jgéet that backscatter
the Doppler ultrasound to be detected by the ultrasonicctiateThe rest of the
values of occurred frequencies that are relatively smahrespond to the noise
and any undesired acquired information. The idea at thistpwi study was to
establish a series of routines to obtain time-frequencyessmtation of a given
signal. Then manipulation was required in a way so that dabépresults, i.e.
center frequency and bandwidth parameters, could be ¢xtrdom the signal.

Since MATLAB provided 'spectrogram’ function, it was deetlto use this
function. The function’s input variables were modified imer to obtain a time-
frequency representation of signals. Then on this interatedesults, the devel-
oped cancellation methods could be applied. Following pinesedure, spectral
parameters, i.e. center frequency and bandwidth could trected. The syntax
of the command used is as below

spectrogram(signal,window,noverlap,F,fs, ’yaxis’)

wheresignal is a one dimensional real input signaindow is the size of the used
window in data pointsr is the vector of frequencies and is the sampling fre-
quency of the input signal. This function plots a 2-dimensiograph where a
colored pixel represents the spectral power occurring fpardéicular pair of in-
stant of time and corresponding frequency. The redder semi®sent higher
power values while the bluer ones represent lower valueseopower spectrum.
To obtain a plot where the horizontal axis corresponds te amd the vertical axis
to frequencies, as it is used in typical Doppler blood flownasigepresentations,
the yaxis’ had to be added at the end of the list of inputs; otherwiseaxke will
be swapped.
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Figure 3.2: Spectrogram of 5000 data points (roughly ondiaarcycle) of a
clinical Doppler signal.

Another possible format okpectrogran’ command is

[S,F,T,P]=spectrogram(signal,window,noverlap,F,fs, ’yaxis’)
This command produces a positive and negative complex dahadrix 's’, vec-
tors 'T" and 'p’ and a positive real valued matrix’; as the power spectral density.
For the case of real input signal, one-sided modified pegeain estimate of the
PSD of each data segment will be obtained. The mat’ixs’ the short term
Fourier transform of the input signal. Vectors and "1’ are frequency and time
vectors respectively. Length of’’is the same as the number of the frequency
points of the output. Matrices”and 'p’ have the same size. The 'columns’ and
'rows’ of these matrices are of the length calculated as uaggn 3.1.

rows = sizgF)
nsignal— noverlap
window— noverlap

columns = fix( (3.1

in which ’size’ and 'fix’ are MATLAB functions. 'nsignal’ is the length of the

input signal andwindow’ and 'noverlap’ are the lengths of each segment and over-
lapping of two adjacent segments, respectively.
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3.2.2 Clinical Data Noise Reduction Technique

After applying the spectrogram’ function of MATLAB, a time-frequency rep-
resentation of a given clinical signal can be obtained, fraimch relevant infor-
mation, may be obtained. The obstacle is that this timedigaqy representation
contains both the information from the Doppler blood flowsiband the accom-
panying noise with it. To eliminate the noise from the spagtam of a given
clinical signal and to estimate spectral parameters sudemter frequency and
bandwidth, a noise cancellation technique has been dezelop

signal(t)

Noise Power

\ 4

STFT Snew(t,f) Pcalculatec—{Center Frequency(})
v

Matrix S(t,f) —»é @—»{Cancellation Level ‘%x

h 4

SNoilnfo(t,f) —» Threshold - Pthreshold

Toleranc

Figure 3.3: Block diagram of implemented MATLAB routinesdiiminate noise
from STFT of a given input. The input signal is an audio file ad{dpler sig-
nal. The operator of a system based on this block diagranstdibe value of
Tolerance The operator also involves in selection of the region inSAET cor-
responding to th&Nolnfo Pthresholdpresents the threshold of noise elimina-
tion (as a power valuegenter frequencis the estimated center frequency of the
spectrogram an@ancellationLeveljuantifies the amount of noise cancellation
procedure. Outputs are depicted with rounded-cornermgtea.

Figure 3.3 presents the block diagram of the implemented M¥H routines
concerning this study. The sets of operations on the inpaiafid the interme-
diate outputs are divided in two groups. In the first half, tioése is identified
and isolated and then removed from the signal. This partdeated with the
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left hand side dashed rectangle in figure 3.3 and is nameds#&lol he operation
within this part are being explained in section 3.2.2.1. $&eond half of the op-
erations are dealing with the power waveform and power taticums. The final

outputs are obtained in this part. The right hand side dastwtdngle in figure 3.3
presents the block diagram of the operations related tqotis Section 3.2.2.2
corresponds to the second half of the operations.

Outputs in this diagram are indicated with rounded-coreetangles. A time
domain signal is forming the input of this series of routinksthe first place the
STFT is applied on the input. Within the resultant time-freqcy representation,
particular region of frequencies is marked as the noisaqguoriThis portion that
does not correspond to the blood flow signal is called 'SN@Irelection of this
portion requires the decision of user of the system. The caerselect this re-
gion by observing the graphical representation of the SBased on SNolnfo, a
threshold is defined. The threshold along with a toleran@nsure a secure error
margin is used to eliminate particular values in the tinegtfrency representation
of the input. In this figure, circle rl’ represents a simplaltiplication function
and circle 'r2’ is an implemented MATLAB routine that elinates any value in
a given matrix (real complex valued) that is less than a défirsdue (product
of Threshold and Tolerance). The result of the eliminatooalled 'Snew’. The
power matrix is obtained using the matrix Snew. This powdrixe called 'Pcal-
culated’ and only represents the power of the values caoretipg to the blood
flow signal and not the noise. Using the obtained matrix ppagmter frequency
of the Doppler signal could be estimated. As an output, tiolekis presented
in the form of power and is called 'Pthreshold’. This valudigates the power
threshold so that power values above it are considered aslines corresponding
to the blood flow. In order to present the level of noise reiducapplied on the
input signal, a value as 'CancellationLevel’ in percentaggefined.

In the following subsections, the noise reduction techaitgrms and proce-
dure will be described. From now onwards, tRgectrogram’ clinical Doppler
signal’s input, containing the blood flow signal plus nois# ke called ’clinical
signal’; when only the blood flow is considered, the term &argnal’ or simply
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'signal’ will be used. The term ’signal’ might be used in cexis related to both
time and frequency domain.

3.2.2.1 Noise ldentification, Separation and Reduction

In this subsection, the terms corresponding to the timgukeacy representa-
tion of a signal, the portion related to noise and the procetiueliminate it, are
being explained. The matrix corresponding to the timeas@ntation of a clinical
signal is being represented as a 2-dimensional matrix asrdttie area belonging
to the noise is being identified and separated. A graphicapeasison on different
levels of noise for a simulated signal based on the coloredtspgram is pre-
sented. Then particular values are defined to be used tonaliencertain level of
noise.

Matrix S is a positive and negative complex valued matrix in whichrihes
correspond to the frequencies and the columns to instaridesa In the case
of figure 3.2 the spectrogram’ function was set for 1024 frequency points, 190
data points for the window length and overlap of 120 data tgdia calculate
spectrogram of 5000 data points of a portion of a clinicahalg Using surf’
function of MATLAB, a 3-dimensional plot of the real part ¢fd matrix 5’ would
resemble figure 3.4.
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Figure 3.4: 3-dimensional representation of the real pgartatrix 's’.

BackGroundArea in the plot representing matrix” ( figure 3.4), there is an
area that depicts the signal, or in another words, existehspecific frequencies
at each time instant related to the pure signal. Howeverandht of the plot one
can see a spinous area corresponding to the noise. Thisireg#less reddish
but rather darker color. From now on this area and its coomding part of the
matrix 's’ will be named BackGroundArea. The level of the spines inBlaek-
GroundArea is relatively smaller for the signals that halesa noisy time domain
representation (i.e. having more definitive sound by lisigno their audio file)
in comparison with clinical signals with more noisy audio.

In figure 3.5 a comparison of color tone of background areasbesg seen.
In each subplot of this figure, different values of Gaussiais@were added to a
simulated signal. Therefore the signal to noise ratio aé¢hsgnals are different.
Afterwards their spectrogram were obtained. In 3.5a thetspgram of simu-
lated signal is represented with no noise, so that more ldaekGroundArea is
expected; whereas in 3.5d, due to the amount of the added, ihéssame simu-
lated signal haSNR= 2dB
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Figure 3.5: Spectrogram of a simulated signal with 4 diffédevels of noise;
three different levels of Gaussian noise were added tor@igignal without noise
in (a), so that resulted in SNR of 20 dB (b), 10 dB (c), and 2 dB (d

SNolnfo For all the clinical Doppler signals under analysis on thaky it is
possible to point to a region of the matrit that covers a range of frequencies in
all instants of time in which the frequencies related to tigaal do not exist. In
these parts we only have the background area. This aredgd &Nloinfo and can
be seen as a matrix. For instance in figure 3.4 this area ceulolghly addressed
as the area between 4500 to 5000 Hz. This area has approbjitietsame color
tone of the rest of the BackGroundArea. Thus it could be usepve an insight
of the statistical characteristic of the background noisBackGroundArea. It is
practical to use magnitudes of elements of SNolnfo matrigaiculate the root
mean squared (RMS) or the mean value of the BackGroundAtga.célculated
value could be used to distinguish between values of elesradnhatrix s’ that
either belong to the BackGroundArea (the noise) or to theaigself.
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Threshold Having the RMS of the matrix SNolnfo already calculated, oae
define a threshold that could be used to assign elements oiikrhgltto Back-
GroundArea or the pure signal. Based on this threshold thexma’ will be pro-
cessed to eliminate the noise of the clinical signal. Nes=dte mention that the
matrix 's’ has positive and negative values. Consequently the eleméth their
‘absolute’ value less than the Threshold will be assignetiégdackGroundArea.

Tolerance In atime-frequency representation, instants of timessgy corre-
sponding to the pure signal mostly demonstrate a significéariger magnitude
(redder pixel in spectrogram) in comparison to the Back@dduea. Figure 3.6
represents the spectrogram of a portion of a clinical sign#éhe left hand side
and magnitude of occurred frequencies at an arbitraryniestaf time within that
portion in the right hand side. In this figure it can be seen #bahis particular
instant of time, frequency variation above (approximgté00 Hz have magni-
tude values in the range of0.2 to 0.2. These frequency variations correspond
to the time-frequency values located at the BackGroundAHmawever looking

at frequency variations between 200 Hz and 1100 Hz, rouglagn be said that
the magnitudes are betweerd and 5 and there are frequency peaks taking place
with magnitudes-12 and 12.

In order to make sure the implemented MATLAB routines wiltegetively
eliminate the values of spikes in the BackGroundArea, theevaf Threshold
is multiplied by a positive real number designated by Taleea This way one
can have a secure error margin. Depending on the magnituthe afifference
between the values of the frequency of the signal and theesaltithe spikes of
the BackGroundArea, this Tolerance could be adjusted. Bhesvof Tolerance
should be small enough to leave the spikes related to thegginal intact and
eliminate (ideally) all the other spikes that belong to trecBGroundArea. In
another words, the value of Threshold as well as Toleranaeg#s from a given
clinical signal to another.
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Figure 3.6: Spectrogram of a portion of a clinical signaft(feind side) where a
particular time instant (0.286 second) is pinpointed bydaliree; right hand side
of figure represents the magnitude of frequency variatibtisad time instant.

Snew Once established the values of Tolerance and Thresholdftardhatain-
ing their product, within the matrixs’ values with absolute values less that the
previously referred product can be eliminated. Ideallis #ction will result in

a matrix where all the values in its BackGroundArea are @lated (turned into
zero). This “cleaned” signal is called Snew. Figure 3.7stifates the frequency
variations observed for a particular time instan@b second as exemplified in
figure3.6) before (left plot) and after (right plot) the Sneadculation. In the case
of this figure, the Threshold value is set t2003 and the Tolerance to 4 result-
ing in elimination of values between0.8014 and+0.8014. It can be seen that
this range is distinguishably smaller than the average madmof the frequency
variations belonging to the signal. In this example it isglbke to assume that
the range of frequencies belonging to the BackGroundAra@ppsoximately the
range of frequencies higher than 1100 Hz. In this range thaerman value of
the spikes is 020 which is still smaller than the product of the Threshrend
Tolerance. In Figure 3.7 we can verify how the frequency eslcorresponding
to the signal are left untouched throughout the process.
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Figure 3.7: A particular time instant of clinical signal ofjdire 3.6 before (left
hand side) and after Snew calculation (right hand side).

3.2.2.2 Power Spectral Calculation

In this subsection, the terms related to power spectrautations are be-
ing explained. Primarily output of the MATLAB functiorspectrogran’ iS pre-
sented. Then power spectral calculation applied on a neideced input is be-
ing explained. Finally a threshold value in the sense of poavel a term as
CancellationLevehre introduced. Th€ancellationLevebuantifies the amount
of noise reduction applied to a given input; it gives an ihsign the level of
reduced noise regarding RMS of the pure signal.

Pmatlab Is a matrix with the same size as the matgXgresented as an output
of the later format of the MATLAB functionspectrogram’ as explained in 3.2.1.

Pcalculated Is a matrix with the same size as the maf®matlabthat could be
obtained applying equation 2.26 on the matsix The window that has been used
is the Hamming window. Aydin and Markus [14] compared siXaté&nt window
types (rectangualr (Boxcar), Bartlett, Hanning, HammiB@ckman and Gaus-
sian) and the results showed that Hamming and Bartlet wisdpve the highest
EBR. EBR is "the ratio of embolic signal intensity to backgnal intensity”. It is
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worth to mention that the MATLAB routines were implementadhiway that the
window type could be easily changed. Since these windowgrakeded by MAT-
LAB itself, it is possible to choose for this or any other windtype throughout
the procedures. The number of frequency points used in e aifigure 3.7 is
1024 points. In another scenario, applying equation 2.28ematrixSnewwe
can have the matrix of power values from the denoised tiraguiency represen-
tation.

PThreshold Having a MATLAB code developed to calculate matfgalculated
from the matrixS, we can represent the Threshold value (explained in se8tih@.1)
in the form of power value . For the case of figure 3.7, assmttie Threshold and
Tolerance values mentioned in section 3.2.2.1, the Pthlesf 9.8254x 107 7.
Meaning that instants of time-frequency having power Iésstthis value are
eliminated.

Power Waveform Obtaining the matri¥Pcalculatedfrom the matrixSnew by
summing its values at each instant of time (columns) we céaiob power wave-
form that represents the power waveform over time (see equadt27). This
waveform is demonstrating the power which is related to thpad. The power
values from the BackGroundArea are omitted from it. It isiolrg that doing the
same procedure dAmatlalh matrix of values of powers at each instant of time-
frequency, results in a waveform that is containing thermiation of the signal
itself and the BackGroundArea too.

CancellationLevel From the matriXSnewone can calculatecalculated Then
based on this matrix, by using equation 2.28 we can obtaimib@n frequency
waveform. Comparing this waveform with the mean frequeneyeform ob-
tained from the matri§it can be seen that by adjustifidgnressholdandTolerance
that results in adjustment &threshold we can obtain an acceptable definition of
the mean frequency waveform of the signal. TencellationLeveis a value
represented in percentage corresponding to the ratio batRehresholdand
RMS of the values of the matriRcalculated The values existing in the matrix
Pcalculatedare values that are abofathreshold thus theCancellationLevels
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a value that is related to bofPthresholdand the values belonging to the power
of instants of time-frequency not belonging to the Back@bArea. For the case
of figure 3.7 this value is small, as it might be expected, &ad is only 346%.
This tenuity is due to the fact that for this particular sigtiae BackGroundArea
has relatively small level.

3.3 Wavelet based Method

As it is stated in chapter 2, decision was made to study théeimgntation of
two forms of filter banks to use them in Continuous Wavelen$farmation algo-
rithms: varying bandwidth filter (according to the frequgheing analyzed) and
fixed bandwidth filter. The MATLAB code implementation of CWAlas based
on the fast-CWT algorithm proposed by Jones and Baraniuk [IBree levels
of Gaussian noise were applied to simulated signals in dodeimulate signals
with different SNR: infinity (no noise), 20 dB and 10 dB. Usithgse algorithms,
CWT of 100 signals were estimated, center frequency cuners wbtained and
then averaged. Finally this average was compared with tterdmistic center
frequency waveform used to obtain the simulated signalsafitst place. To ease
analysis of these curves, the resultant center frequenegfaan was divided into
3 region: Mountain, Valley and Steppe. for each region, the Was studied using
3 parameters: maximum value, minimum value and averageedBa@s these val-
ues and requirement of a specific application, we can dedatdtked or varying
bandwidth filters.

3.3.1 Wavelet Base

The wavelet base that was used in this part of the study wals-Qidylorlet
wavelet that is well concentrated both in time and frequemtys wavelet can be
written in the following form [9]

Y(t) = expljct).exp—at?/2) (3.2)
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In this expression parametewas set to Zrso that the wavelet would be symmet-
rical aroundf = 1Hz. Parameten was tested by Matos et al [10] to obtain the
best estimation results. Decision was made to maintainahesythat is 0.0123.
The real part and the magnitude of the Fourier transformisfftimction is shown

in figure 3.8. There are many oscillations50) in the real part and a duration
of approximately 60 time units was presented. For the cheakres ofc anda

the (t) function resembles a windowed sinusoid & ) is a narrow bandpass
filter centered atf = 1Hz This wavelet has a narrow relative bandwidth (see
equation 2.19) and it is readily calculated [9] to be:

2V 2a
BWel = C

(3.3)

that is 0.050 in our study. This value of relative bandwidesults in aQ =
1/0.050= 20>> 1 and hence the name High-Q.
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Figure 3.8: High-Q Morlet in time domain (left hand side) lwitme unite t, and
frequency domain (right hand side).

By choosinga = 0.4 and maintaining = 277, we can have a low-Q Morlet as
in figure 3.9 thatis again centeredfat 1Hz In this case the Q factor is 3.51 and
the wavelet is called low-Q Morlet [9]. THE(f) is still a bandpass filter however
it has fewer oscillations and the relative bandwidth is morehis case it is 0.28
in comparison to 0.049 for the case of high-Q Morlet.
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Figure 3.9: Low-Q Morlet in time domain (left hand side) witime unite t, and
frequency domain (right hand side).

3.3.2 Fixed Bandwidth Filters

The filter banks were stored on the hard disk of the computdregahey could
be used several times in order to compare results usingeatiffparameters to cre-
ate filter banks. Tests have been done (see 4.3) on simuigtelswith 1@ B
SNR to find proper value for the bandwidth. The reason to clfuseamount of
noise to add to the simulated signal is that the color tongamk Ground Arean
this case, resembles the color ton®atkGround Are@f most of the clinical sig-
nals available in this study. In these tests, bandwidthsdet 0.02 and 0.2 were
examined. Due to the characteristics of the wavelet, usingliEe smaller than
0.02 was not possible and for values above 0.2 there werenyot@nsiderable
improvement so that these values were decided as the limits.

A MATLAB code was implemented to create fixed bandwidth fgtefThis
code calls another code to creapgt) function to be used to create filters and
then stores them. The code receives various parameterpuatsaind stores the
filters in a given destination on the hard disk. These valnelside the sampling
frequency of the clinical (or simulated) signal to been gpeadl, increment steps in
the scene of frequencies, sampling frequency offttt¢, and parameters to create
the (t), and finally a destination to store the filters. The lengthhaf signal
to be analyzed is inputted to the code so that the createdsfilt@tch signal(s)
lengthwise. Frequencies to be analyzed have to be betwealua wm the low
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frequency region and half of the sampling frequency of thealito be analyzed.

3.3.3 Varying Bandwidth Filters

Another MATLAB code was implemented to create and store ingrpand-
width filters. This code receives desired relative banduwidt vector of scales,
length of clinical (or simulated) signal to been analyzed destination directory
on the hard disk. Likewise the other code, this code alss tladl code to create
@(t) function. Vector of scales is basically a conversion betwtee vector of
frequencies to be analyzed and scales in the time-scalesamation that is re-
sultant from the wavelet transform. This vector is creatasell on the sampling
frequency of the signal to be analyzed, sampling frequefitiyeo(t) function,
and the vector of frequencies (see equations 2.20 and 2.21).
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Chapter 4

Results

4.1 Analyzing the Noise Content of Clinical Data

Applying the definition of th&€€ancellationLeve(see 3.2.2.2) to the different
clinical signals available in this study we may observe @aicellationLevemay
vary from infinitesimal values like 1% up to high values like22. The reasoning
of this diverse range is based on the level of the values oB#ekGroundArea
in comparison to the pure signal. Choosing a value up to 254du@sult in an
acceptable definition of the mean frequency waveform wiiiketng (reduction)
values of the pure signal the least. Deciding for valuestgrahan 25% would
manipulate the main features of the signal in a way that theltrenay be altered
and lead to a fallacious mean frequency waveform. Needtesgention that for
clinical signals with a better definition (bigger differenoetween the values of the
BackGroundAreand the signal in the matriRcalculated it is feasible to use a
smaller value for th€ancellationLevelSpeaking in the sense of the spectrogram
of a signal, such as the one in figure 3.2, a clinical signah aibetter definition
means that the color tone of iBackGroundAreas more of a bluer color and
the color tone of the signal itself is more redder. Thus aicinsignal with the
worst situation is the one that has a smaller differencearctior tone of the two
areas. To give an example of such a case, we can compare tifts pFsviously
represented in figure 3.7 with figure 4.2. In this figure we aamthat despite the
highCancellationLevel18% (in comparison t0.83% for the case of figure 3.7),
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we still have small, but effective, presence of BeckGroundAreafter the noise
reduction process.
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Figure 4.1: Spectrogram of a portion of a clinical signajlitihand side) in which
an arbitrary instant of time (0.286 second) is marked witkdavertical line and
magnitude of frequency variations (left hand side) at thatant of time.
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Figure 4.2: Comparison of magnitude of variations of fregwyeat the time in-
stance of right hand side plot of 4.1 before (left) and aftesa reduction (right).

Note that in the case of this instant of time, the main valdelseguencies
of the signal are in a frequency range inferior to B20 However, analyzing the
plot on right hand side of figure 4.1, one can notice the pesehstrong spikes
(around 3200, 4000, and 4500 Hz) which prevailed the preloapplied noise
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reduction process. Due to the multiplication of the valuepawers at each in-
stant of time-frequency with the value of the frequency Bee(equation 2.28), the
existence of a few spikes in the higher frequency region @BidickGroundArea
would dramatically affect the mean frequency calculation.

In the figures 4.3 to 4.5, we have tested 3 different cliniaghals. In each
figure there are 3 sub plots. The one on top represents the@peen of a por-
tion of a clinical signal, the middle one is the result of apgiion of the noise
reduction technique to the clinical signal usi@gncellationLevebf 1%. This
means that the root mean square (RMS) of the m&nialn f ois directly used as
the T hresholdvalue (Tolerance= 1). Finally the bottom graph shows the small-
est possibl€ancellationLevethat leads to an acceptable mean frequency wave-
form estimation. By an acceptable estimation of the meaguiacy waveform
we mean an estimation that by looking at it, one could rel@ferdnt features
of the waveform to the spectrogram of the clinical signalafTis an estimation
that would follow the variations of frequency the best. Ip@ssible to relate the
color tone of theBackGroundAreand the magnitude of the difference between
color tone of two areas with a required amounfdireshold(or in another sense
Pthreshold To appreciate this relation, we can compareRhieresholdin these
three figures. From this comparison, it can be concludeddhabre reddish
background requires a highBthreshold In these particular caséthreshol®
0f 5.84x 1078, 1.04x 106, and 583 x 10~© are sufficient to obtain acceptable
results from these particular clinical signals. The mergPthreshold corre-
spond to 2%, 21% and 27% GfancellationLevelrespectively.

Fine tuning of the parameters required for the noise redangirocedure en-
abled the calculation of the mean frequency waveform (astioresd in litera-
ture, i.e. [5]) with high accuracy level. However it is wotth mention that due
to clinical nature of some of them there are examples thatqusr of the audio
files are severely affected by high levels of noise in suchyativat no waveform
could be extracted from them whatsoever. This could betiaély understood
by simply listening to their corresponding audio file. Calesing the spectro-
gram of such cases, we can see that for time instants thaighal $s acutely
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battered, we have presence of values not only in the low &egy region, but
rather the whole frequency scope. This is seen as both tmdkilan reddish
columns covering most of the frequency scope along the sgggeim. Clinical
signal 200703221914®avis an example of such a case.
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Spectrogram: 10000 points of 200703164112.wav
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Figure 4.3: Spectrogram of a portion of a clinical signapft@enter frequency es-
timation without noise cancellation (middle) and with reoancellation (bottom)
with Pthresholdof 5.62 x 10~7.
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Spectrogram: 10000 points of 2007032011112.wav
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Figure 4.4: Spectrogram of a portion of a clinical signapft@enter frequency es-
timation without noise cancellation (middle) and with reoancellation (bottom)
with Pthresholdof 7.17 x 107,
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Spectrogram: 10000 points of 2007032724146 .wav
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Figure 4.5: Spectrogram of a portion of a clinical signapft@enter frequency es-
timation without noise cancellation (middle) and with reoancellation (bottom)
with Pthresholdof 4.03 x 107°.
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4.2 STFT on the simulated signal

To appreciate the performance of implemented noise remlutdchnique, STFT
was applied on simulated signals enhancing the techniduen flesults were com-
pared against the deterministic center frequency usectipribcess of simulation.
The comparison gives an image that how accurate is the @gima

Center frequency of hundred simulated signals were olddgeusing STFT
and were averaged. Then bias of the result was calculatdteasbsolute value
of the difference between the value of the deterministid¢ereinequency and the
estimated center frequency at each time instant. Figureepi@sents the deter-
ministic center frequency curve (right hand axis) againetiias curve (left hand
axis) between the 100 averaged mean frequency curves addtdreninistic one
while STFT with noise reduction technique was employed. Asfarence the
zero line is traced in the graph. Figure 4.7 correspondsadéndwidth estima-
tion of these 100 mean frequencies.

Concerning the performance of different methods of speestanators, it was
observed that their accuracy is different for differenttéees of identical simu-
lated signals. To be more precise, it was seen that one methad follow steep
changes in the frequencies (high frequencies with shosdtabur in time) within
the center frequency curve more accurately; while anothercould estimate the
curve more precisely when the frequency level is ratherteoss low frequency
and long duration in time (compare figures 4.6, 4.9 and 4.Therefore the
deterministic center frequency curve (as well as the resfliestimations) was
segmented into 3 regions: Mountain, Valley and Steppe.

Mountain as the big hill-form in the first half of the wavefarnrMountain
segment demonstrates a huge frequency sweep and covegeafdrequencies
approximately between 108z and 45061z. On a time-slice of almost 0.2 sec-
onds, there is an uphill and a downhill. Valley segment hamallsdecrease and
a following increase in frequency, approximately in the diédof the waveform.
Finally the rest of the waveform, where the values are in eijcof 1000Hz was
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named Steppe. In figure 4.6 Mountain and Valley regions atieated by text
above arrows. An ideal estimator is the one that could foldlogvhuge and small
frequency changes in the Mountain and Valley region, as alnaintaining a
good approximation of the Steppe region as relatively thepflat of the wave-
form.
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Figure 4.6: Bias of the center frequency estimation (lefiichaxis) using the STFT
and noise reduction technique with CancellationLevel of ptétted against the
deterministic center frequency curve (right hand axis).
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Figure 4.7: Bias of bandwidth estimation using STFT.
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If the simulated signal represents a 640 millisecond segofencardiac cycle,
on the deterministic center frequency curve, the peak oltbentain takes place
at 95 millisecond. Regarding the peak of the Mountain, theiMain region is
between 25 and 177 millisecond; the bottom of Valley is tgkptace at 333 mil-
lisecond and regarding this point, the Valley is between&89395 milliseconds.
The rest belongs to the Steppe region. These values werercteospirically.
Segmenting resultant averaged center frequency estinsattas done regarding
the relation of position (in time) of these points with thetents of time in which
maximum and minimum occur in the Mountain and the Valley oagi In fig-
ure 4.6 these time instants are represented with vertiddimes.

In table 4.1 we can see the values of maximum, minimum anchgeeuf the
bias at each region in the top row when the center frequensyes@mated using
STFT. Window length of 15.7 millisecond and overlap of 13mi8isecond (87%)
was used. The Spectrogram function was employed with 12@iémcy bins. In
this study 3 different levels of SNR for simulated signalgevivestigated [16].
The signal to noise ratio of the analyzed simulated sigmalhis example was
10dB and nois€CancelationLevebf 7% was applied.

4.3 Fixed Bandwidth Filter
on the Simulated Signal

In order to choose a bandwidth for fixed bandwidth filtersistdsmve been
done and different parameters were tested. Values of mawjmminimum and
average were obtained for each 3 regions.

By testing bandwidths of 0.03, 0.05, 0.07, 0.09, 0.11, 0L35, 0.17 and
0.19, we have observed that it is not possible to determipecific single pattern
in the values of the bias to identify the best option. Newddbs, as different
bandwidths performed better for different segments anigraift parameters, it
is recommended to define the criteria of selection based@retuirement of a
particular application.
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Figure 4.8: Bias of mean frequency estimated curves at tlegiens when 9
different bandwidths of 0.03, 0.05, 0.07, 0.09, 0.11, 0@35, 0.17 and 0.19
were employed. The values of biashtz at each bandwidth are marked with a
small square.

Figure 4.8 demonstrates a graphical comparison of the ipeafoce of each
of these 9 different bandwidths in the scene of value of masaich region. The
subplots in the first row correspond to the values of bias énMountain region,
Second row is related to the Valley region and the bottom otlvé Steppe region.
At each row, the subplots in the left column correspond taniv@mum value of
the bias, the middle column is representing the maximumevafibias and the
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right column exhibits the average of values of bias at eagionre The horizontal
axes of each of the subplots is conveying 9 points. Thesegpoorrespond to
each of the 9 different bandwidth in an ascending order. Tér&cal axes are
corresponding to the magnitude of the bias. As the bias @ulzked in the scene
of Hertz the values on these axes are also in Hertz.
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Figure 4.9: Bias of the center frequency estimation usingTGMith fixed band-
width filter of 0.07.
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Figure 4.10: Bias of bandwidth estimation using fixed barmdhfilter.

Figures 4.9 and 4.10 are presenting the bias of estimateérciaquency
curve and bandwidth, respectively. The estimated cengguincy curves were
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averaged over 100 simulated signals and the bias (left hdapiveas obtained by
subtracting it by the deterministic center frequency (rigand axis). The SNR
of analyzed signals were @8 and bandwidth of @7Hz was used in the pro-
cess of CWT. In order to comply with the results obtained giSTFT method,

128 scales were used in wavelet transformation. A scatpsecy mapping (see
equation 2.20) was applied to obtain the time-frequencyessmtation of the
CWT.

4.4 Varying Bandwidth Filter
on the Simulated Signal

In the table 4.1 the absolute values of maximum, minimum,amtage bias
of the estimated mean frequency curve are presented selydaatthe 3 regions.
The values are obtained by employing 3 different method$:TSWith noise re-
duction technique, CWT with fixed bandwidth filter using 9feliént values of
bandwidth, and CWT with varying bandwidth filter. By compayithe values
corresponding to both CWT methods, we can see that the \gingindwidth filter
presents smaller maximum for the bias in the Mountain re¢®8®Hz) in com-
parison to 91Piz for the best case with bandwidth ofldHz. While the STFT
method presents 16 for the same region. The average of bias in the Steppe re-
gion for varying bandwidth filter is 2z which is approximately 6 times greater
than the worst case of fixed bandwidth filter that i$424 For the Valley region,
varying bandwidth version also presents higher averagkeesahan the fixed
bandwidth CW version and STFT. The average of the bias in tepp® region
for the case of STFT is EBzwhich is relatively close to the values of the averaged
bias of the Steppe region using fixed bandwidth filter. The Bifethod results
the least maximum and averaged bias for all the regions, Vewihis is not the
case for the minimum value of the bias.
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Mountain Valley Steppe

BW Min Max Ave| Min Max Ave| Min Max Ave
STFT |0.135 106 430375 28 11| 0.153 55 13
0.03 0.128 890 481 0.323 135 61| 0.004 86 24
0.05 0.088 908 444 0.018 78 32| 0.002 84 19
0.07 0.205 887 434 0.042 52 20| 0.008 80 18
0.09 0.152 941 440 0.027 59 17| 0.020 78 18
0.11 0.020 912 432 0.008 49 18| 0.003 78 18
0.13 0.107 937 442 0.111 41 16| 0.011 77 18
0.15 0.061 978 454 0.015 58 19| 0.0002 74 19
0.17 0.116 1074 470 0.065 43 18| 0.007 75 19
0.19 0.104 1071 459 0.029 59 19| 0.004 78 18
varying| 0.027 280 192 124 434 213 157 334 210

Table 4.1: Bias of estimated center frequency curve for eddhe regions of
observation. The top row represents the result of STFT watkereduction tech-
nigue. The 9 rows below that correspond to 9 different baddvsifor CWT with
fixed bandwidth filter; the bottom line is representing thkuga for each region
using CWT with varying bandwidth filter.
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Figure 4.11: Bias of the center frequency estimation usikgTGwvith varying
bandwidth filter of 005.
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Bandwidth estimation bias, BWrel: 0.05, SNR: 10
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Figure 4.12: Bias of bandwidth estimation using varyingdwaialth filter.

Figure 4.11 presents the deterministic center frequenyeduight hand axis)
against the averaged bias of center frequency curve egtimait 100 simulated
signals (left hand axis). Figure 4.12 depict the bandwidtimgation with CWT
using the varying bandwidth filter. Likewise the fixed bandthifilter, 128 scales
were used in the wavelet transformation. The bandwidth efitter used for the
wavelet transformation is.05Hz The SNR of analyzed signals weredE) As it
is expected from the table 4.1 the estimation of center #aquin the Steppe re-
gion has a significant bias (arour®00Hz). However this bias is rather constant
and could be seen as a general offset throughout the wholefevav. The other
issue to point out here is the value of the bias in the Mountgion specifically
the peak of the waveform occurring roughly alfs This peak has a smaller
bias in comparison to the one for fixed bandwidth filter (searégd.10). For
the case of fixed bandwidth at the peak of the waveform themeasly 80 z of
bias, however this value for the case of varying bandwidijuss about 206l z
If one assumes the bias in the Steppe region as a general atgasd—200Hz,
by elevating the bias waveform for 28@ to eliminate the offset, there would be
roughly 40@Hz bias at the peak of the waveform which is still significantgd
than the lowest bias in the case of fixed bandwidth filter.
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4.5 Spectral Estimation of Clinical Data

In this section, the results of application of aforemergidestimators on clin-
ical signals are presented. Three different signals witbeldifferent levels of
background noise (low, middle, and high) were selected fesgntation in this
section. A portion of 10000 data points from each of theseadgwas segmented.
At the end of section 4.1, the results of application of STHTegtimating the
center frequency of these three signals were presentelde leutrent section, the
same segments are being analyzed using STFT, CWT with fixedinadth filter
and finally CWT with varying bandwidth filter to estimate cenfrequency and
bandwidth. These results are presented in figures 4.13 %0 4&dr each signal,
there are two graphs, one demonstrating the result of céptgrency estimation
and another one corresponding to the estimated bandwidth.

It must be mentioned that the MATLAB codes written for apation of CWT
(both fixed bandwidth filter and varying bandwidth filter) wemodified to be
used with the clinical signals. The filters used on the CWToalgms must be
designed in accordance with numerous parameters, ingjutlien sampling fre-
quency of the input signal. The sampling frequency of theusated and the
clinical signals were 18KHz and 11025KHz, respectively. In contrary, the im-
plementation of codes for the STFT is not dependent on th@lkkagrrequency
of the input signal. Therefore, the same STFT codes werefosedtimating the
spectral parameters of the simulated and the clinical 8gna

In the graphs of the current section, STFT was enhanced Imoike reduction
technique proposed in this study (see 3.2.2). In the casadlf elinical signal,
different amount oCancellationLevels applied. This value is mentioned in the
caption of corresponding graph. In order to get a better ggienof results of ap-
plied methods on these three clinical signals, one can caba results with the
respective spectrogram in figures 4.3 to 4.5. In these thgeeet, the spectro-
grams are presented in the top plot. In the application oflSWndow length of
14.47 milliseconds was used. The length of overlap of adfesegments is 10.47
millisecond that corresponds to overlap of 75% of windowglén

54



Center frequency estimation of 10000 points of 200703164112.wav
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Figure 4.13: Center frequency (a) and bandwidth (b) estonaising STFT,
CWT with fixed bandwidth, and CWT with varying bandwidth filte The
CancellationLeveln the case of STFT is 3%Rthresholdis 9.36 x 10~7 and
Toleranceis 4.
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Figure 4.13a corresponds to the clinical signal with thetleaise of the three.
Considering this figure, in estimating the center frequen&ycan notice that all
three estimators performed relatively similar in the Seepggion. In this figure
one can mark the Steppe region between seconds @ tan@ 05 to 0.65. How-
ever the Varying bandwidth filter estimation is slightly hey than the other two.
In estimating the value of peak of the Mountain, the STFT dedviarying band-
width filter performed roughly the same. The Fixed bandwiiiér estimated this
value approximately 70% to 80% of the hight of the Mountaitineated with the
other two methods. Varying and fixed bandwidth filters exieitbierrors in Valley
region (roughly between second#b to 047). However it has to be mentioned
that this error is overcame in the STFT due to the noise chatical technique ap-
plied to the spectrogram of the signal. In this figure we cantkat in the point of
transition between the Steppe region and the Mountain mgd@gé®t of the Moun-
tain), the STFT and Fixed bandwidth filter performed moreizey. In contrary
the varying bandwidth filter suffers from overestimationhas point.

In this figure, concerning the second Mountain, one can eatislight delay
in time in the curve corresponding to the STFT estimatione d@&lay counts up
for approximately @15 milliseconds.

Figure 4.13b demonstrates the bandwidth estimation ofaheessignal. Like-
wise the center frequency estimation, the fixed and varystigxators exhibit error
in the Valley region. However in the bandwidth estimatiois #rror is more acute
and for the case of the varying bandwidth filter, it is extreffiee bandwidth es-
timation in the Valley region for the varying bandwidth filie even higher than
the peak of the Mountain. In the Mountain region, the varyagdwidth filter
and the STFT estimated the value of the Mountain fairly eqiiak fixed band-
width filter estimated the value of the peak approximatel§%4o0 130% of the
the value estimated by the STFT and varying bandwidth filiethe Steppe re-
gion, the varying bandwidth filter estimated the bandwidtihkr than the fixed
bandwidth filter. The least estimation belongs to the STFT.
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Center frequency estimation of 10000 points of 2007032011112.wav
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Figure 4.14: Center frequency (a) and bandwidth (b) estonaising STFT,
CWT with fixed bandwidth, and CWT with varying bandwidth filte The
CancellationLeveln the case of STFT is 22%thresholdis 7.86x 106 and
Toleranceis 2.74.
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In figure 4.14a one can locate the Steppe region approxiynagdlveen sec-
onds 015to 03, and 045to Q7. In the first Steppe region, the STFT and the fixed
bandwidth filter performed relatively the same. Nevertbgia the second Steppe
region, that can be considered as an elevated Steppe réiggofixed filter esti-
mated the center frequency slightly less than the STFT.drfitht Steppe region
the varying filter overestimated the bandwidth and in theosdcSteppe region
(elevated Steppe) the varying filter estimated the cen¢guency slightly higher
than the STFT. There are two Valley regions in this segmetti@signal located
roughly around (L2 second and.82 second. The STFT method detected the Val-
leys at these points. On the other hand, the varying and ted bandwidth filter
were not sensitive to the Valley region. Similar to the sigridhe figure 4.13, the
STFT and the varying filter estimated the peak of the Mourfnty equal. The
Mountain regions are located aBGsecond and.85 second. The fixed bandwidth
filter estimated these peaks slightly less than the other two

Figure 4.14b correspond to the bandwidth estimation of #messignal. In
this figure, we can notice four acute spikes in the first Stepg®n in estimation
of the STFT. The resultant estimated bandwidth is the |edsbih Steppe regions
using the STFT method. In the first Steppe region, the avesagandwidth es-
timation of the STFT is around 16{x. The average for fixed bandwidth filter is
around 5061z and for the varying bandwidth filter it is approximately 1800 In
the second Steppe region (elevated Steppe), all estimegtinsated the value of
the bandwidth relatively close to each other. The STFT agasthe least value,
and the varying bandwidth filter has the highest. The varging the fixed band-
width filter were not sensitive to the Valley region, howettee STFT detected
the Valley. In the Mountain region, the STFT has the leasimegion and at the
point of peak of the Mountain the varying and the fixed bandwiidter presented
roughly the same estimation. However the varying versigimased the feet of
the Mountain extremely higher than the fixed one.
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Figure 4.15: Center frequency (a) and bandwidth (b) estonaising STFT,
CWT with fixed bandwidth, and CWT with varying bandwidth filte The
CancellationLeveln the case of STFT is 26%thresholdis 4.04x 10~5 and
Toleranceis 2.63.
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The center frequency estimation of the third signal is presin figure 4.15a.
This signal has the highest BackGroundArea noise amongthele signals pre-
sented in this section. In the spectrogram of this signalithpresented in fig-
ure 4.5, one can pinpoint the two Steppe regions. Firstiwéen seconds.05
and 03 and the other one between secondsdhd 07. In both Steppe regions,
the fixed bandwidth filter has the least estimation and thgingrbandwidth fil-
ter has the highest. The STFT and the fixed bandwidth filterbéxtelatively
smoother curves, in contrary the varying bandwidth filtes flactuations in the
curve around the Valley region. The Valley region in thiswigs located approxi-
mately at point 046 seconds. The fixed bandwidth filter estimated the valugan t
Valley region with a smooth concave curve. The STFT perfaetetively similar
but has a small spike in the bottom of the Valley. It is worthrtention that the
same form of spike has been observed in the Valley regiomg&iiT in case of
an inadequate CancelationLevel selection. In this figureavesee that in spite
of the high level of noise cancellation, the peak of the sgi&ts smaller but not
omitted. On the other side, the varying bandwidth filtersfaildetecting the Vally.

Figure 4.15b presents the bandwidth estimation. In thigdigee can see that
likewise the other two signals, the STFT has the least esttmand the varying
bandwidth filter has the highest estimation. In both Stegogons, the varying
bandwidth filter failed to estimate variations in the bandiwicurve; the STFT
exhibits high level of fluctuation. In the Valley region, tB& FT contains a spike
with a peak approximately taking place at 1#30 Although the STFT and the
varying bandwidth filter are two different procedures, theying bandwidth filter
formed a curve that envelops the spike detected in the Vedigipn.

4.6 Concluding Remarks

In the previous section the results of application of thréfemknt spectral es-
timators on simulated signals as well as clinical signalsevdemonstrated. These
estimators, naming STFT with a noise reduction technigiéT @ith fixed band-
width filter and finally CWT with varying bandwidth filter weemployed to es-
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timate center frequency and bandwidth of signals. The stedlsignals were
obtained using a simulator that simulates the blood flow enxdbmmon carotid
artery. This simulator is proposed by Fish et al. [5]. Thrégekent clinical sig-
nals with different levels of background noise were selttbecompare the results
of these estimators.

Comparing figures 4.6, 4.9, and 4.11 one can see that STFT>awlldand-
width filter have relatively fine approximation of the valueghe Steppe region,
concerning the center frequency estimation of simulatgdads. Steppe region is
the term proposed in this study to indicate portions of theerefrequency were
its value is relatively constant. Therefor one can concthdethese two methods
could be used for estimation of any part of the signal wereetftenated value
is expected to be constant. On the other side, the varyingviadth does not
estimate satisfactorily in the Steppe region. Althoughdakgmated value of the
Steppe region using varying bandwidth filter is constarg,aktimated value has
a constant error of nearly200Hz

The term Mountain is proposed in this study to indicate pogiof a signal
where there is a rapid variation of frequency in the form chacending slope fol-
lowed by a descending slope. Considering the simulateckigm the Mountain
region we can see that STFT performs well in estimating thaevat the peak of
the Mountain. However in figure 4.6 we can see that the estirs&iave an error
of roughly 794z in both ascending and descending slopes of the Mountain.
the other hand both the other estimators behave poorerimatsig the center
frequency in the Mountain region. Fixed bandwidth filter iakis increase in the
bias as the frequency increases in both slopes. The vargndwidth filter as
well has error in estimating the center frequency of the &ted signal in the
Mountain region. In the particular case of the simulatedaigised in this study,
in the ascending slope of the Mountain, the center frequeadgs from 10081z

On

to roughly 420®z. In this case, from figure 4.11 we can see that the bias of es-

timator varies from roughly-200Hz to +200Hz, or in another words, 400z of
increase in the estimation error is observed. Therefor weccaclude that the
best choice of estimating center frequency when the frequehanges dramati-
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cally in a short period of time (either increase or decreas#)e STFT with the
proposed noise reduction technique. Nevertheless, thlet €iror of the method
in steep slopes has to be considered.

In the case of Valley region, again we can confirm that STFTopers better
in comparison to the other two estimators. STFT has the &estin this region.
The fixed bandwidth filter estimated the center frequenctiebéan the varying
bandwidth filter. The fixed bandwidth exhibits smaller erbmth in the mini-
mum point of the Valley and the descending and ascendingslophe varying
bandwidth filter has increased (absolute value) estimatroor when the values
of center frequency differentiate from the Steppe region.

Figure 4.7 presents the bias of bandwidth estimation usiFigTSAs it was
mentioned in section 2.2.4 of the second chapter, the filtectfon used to sim-
ulate common carotid artery blood flow, has a RMS bandwidti@Hz In
this figure we can verify that the STFT method using the pregasise reduc-
tion technique, estimates the bandwidth with a good appration (bias below
125H2) in most of the signal, expect the ascending slope of the Néamegion,
as well as the descending slope. In the Mountain region, anesee that the
bandwidth estimation has roughly 125 bias in the ascending slope andHs0
in the descending slope. In the rest of the signal, we canregdlte estimator
performs fairly good.

Figure 4.10 presents the bandwidth estimation using fixed\walth filter. It
can be said that the bias is basically following the cen&gudency curve. There
is @ Mountain peak with the value of approximately 1Ki&0at the same time
of the peak of the Mountain in the center frequency curve. @stenated bias
demonstrate a small Valley in the same place as the Valldigénter frequency
curve. In the case of the varying bandwidth filter (in figur&2}.we can see that
the bandwidth is over estimated. In this figure we can seetligavalues of the
bias of the estimated bandwidth are aroundH2dt can be concluded that in the
estimation of bandwidth of signals, the STFT performs th&t.b€he fixed band-
width filter follows the center frequency curve and the vagybandwidth filter
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extremely overestimates the bandwidth.

Considering figures 4.13b to 4.15b we can conclude that thgngaband-
width filter fails to estimate the bandwidth of input signalgh high level of
BackGroundArea noise. This problem is more visible whenbidwedwidth is in
the low frequency region (see figure 4.14b, first Steppe rggia the bandwidth
estimation of the clinical signals, the varying bandwidttefiand the fixed band-
width filter are not sensitive to the Valley regions. Thisuisss more severe for
signals with high level of BackGroundArea noise. For thenalg with low level
of BackGroundArea noise, STFT and the varying bandwidtkerfiistimate the
hight of the Mountain regions fairly equal; However the penfiance of the vary-
ing bandwidth filter is degraded in the feet of the Mountain.
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Chapter 5
Conclusion and Future Work

This study was aimed to investigate the estimation of Dapplegasound
blood flow spectral mean frequencies. Throughout the stiualyléd to formation
of this thesis, the following topics have been investigaidte Fourier analysis of
Doppler blood flow signals has been studied. The MATLAB codesalculat-
ing the STFT have been developed and explored in detail. Bais¢he resultant
STFT the center frequency curve has been estimated. Siagoti of the study
was to investigate center frequency estimation of clingighals, the noise con-
tent of signal appeared on the STFT has been identified atateso Based on
this representation of the noise, a noise reduction tecienweps proposed. This
technique was basically implemented to enhance the STFordier to be able to
evaluate the results, simulated signals with determmistnter frequency curve
and added Gaussian noise were employed. In addition to STwd,methods
of varying bandwidth filter and fixed bandwidth filter for CWBVe been stud-
ied. The results of application of STFT using the proposetn&ue and the two
methods of CWT were compared against each other. In the E8sefixed band-
width filter, different values of bandwidth were studied anthe best bandwidth
has been chosen. The decision was made based on value oashia kiifferent
parts estimated center frequency of one cardiac cycle dfithelated signal.

Considering estimation of Center frequency in the Mountaigion, it can
be concluded that the STFT performs the best among the tsteeators. It is
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necessary to mention that in estimating the value at the pé#tke Mountain,

the Varying bandwidth filter estimates the value fairly eds the estimation of
STFT. In the Valley region, STFT estimates the best and thipeance of the
fixed bandwidth filter is better than the performance of theyivg bandwidth fil-

ter.

Regarding the bandwidth estimation, STFT with the propas@de cancel-
lation technique estimates with a satisfactory approxionan different regions.
It has been observed that the varying bandwidth filter andikeel bandwidth
filter are not sensitive to the Valley region. On signals Wi level of Back-
GroundArea noise, the estimations of value at the peak dffientain using the
STFT and the varying bandwidth filter are fairly equal.

In the case of &ancelationLeve{see 3.2.2.2), itis possible to define another
way to calculate this concept so that it would convey morermftion on the
depth of the processes being applied on the signal. Fomiostie concept could
be defined in a way to represent the distribution of the annbdéis of the matrix
Pcalculated So to speak it is desired to deliver some of the statisticatacter-
istics of the power distribution in the matrixcalculated

In the previous chapter, it was mentioned that the fixed badttivilter has a
noticeable behavior when estimating the bandwidth. It weseoved that the esti-
mated bandwidth filter is basically following the centerguency curve (see fig-
ure 4.10). In this study, the major work was concentratechercenter frequency
estimation, however these experiments and results migbtdéher investigators
to dwell on the bandwidth estimation. Since in the case ofthailated signal,
the deterministic center frequency curve is availablesaaecher interested in this
field can investigate a method to improve the bandwidth egton using CWT
with fixed bandwidth filter.

Another issue concerning the bandwidth estimation is gecwe of unusual
spikes. These spikes are short in time and increase draaiiatip to the high fre-
guency region. Signals with high level of BackGroundAregsapexhibit spikes
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particularly in the Valley and low frequency regions. Reskars are welcomed
to explore the origin of these spikes and analyze them. Nesfeiss, more infor-
mation on the nature of the clinical signals would be an assetder to analyze
these spikes.

Development of signal processing systems based on fieldgrogable gate
arrays or simply FPGA, is one of the progressive fields in eegiing of trans-
ducers in medicine. Hu et al. [17] invested the implemeatatif a pulsed-wave
Doppler signal processor using a FPGA based system. Theyrapurted that us-
age of FPGA chips makes it possible to implement the proegssiit along with
the beamforming function on the same chip to enhance dupkxnsng. Appli-
cation of the proposed noise cancellation technique in thieent study would
ameliorate the performance of such digital system.

The noise reduction technique proposed in this study wasdisapplied
on the STFT. Nevertheless, interested researchers areragea to investigate
techniques to reduce the noise in the CWT that is the timke-sepresentation of
signals. Due to similarity of time-scale and time-frequenepresentations and
the fact that one can be transformed to the other one; The t=ieique used in
STFT can be adopted for CWT. Moreover, other techniquesdoa® the noise
in CWT and estimate the spectral parameters more precisaljovprovide the
means to evaluate the noise reduction technique proposbi ithesis.
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