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Several technologies exist to create 3D content for the web. With X3D, WebGL, and X3DOM, it is possible to visualize and interact
with 3D models in a web browser. Frequently, three-dimensional objects are stored using the X3D file format for the web. However,
there is no explicit topological information, which makes it difficult to design fast algorithms for applications that require adjacency
and incidence data. This paper presents a new open source toolkit TopTri (Topological model for Triangle meshes) for Web3D
servers that builds the topological model for triangular meshes of manifold or nonmanifold models. Web3D client applications
using this toolkit make queries to the web server to get adjacent and incidence information of vertices, edges, and faces. This paper
shows the application of the topological information to get minimal local points and iso-lines in a 3D mesh in a web browser. As
an application, we present also the interactive identification of stalactites in a cave chamber in a 3D web browser. Several tests show
that even for large triangular meshes with millions of triangles, the adjacency and incidence information is returned in real time

making the presented toolkit appropriate for interactive Web3D applications.

1. Introduction

Advances in computer graphics and scanning technologies
have resulted in geometric models of complex objects con-
sisting of millions of polygons. In general, 3D objects are
approximated by triangular meshes since graphical cards are
optimized for triangles.

The ability to visualize and manipulate these 3D models
on the Web is promising for many application areas.

The latest HTML5 specification explicitly utilizes X3D
for declarative 3D scenes [1]. The X3D file format represents
object surfaces by subdividing or approximating them with
triangles and storing the geometry of every vertex of the mesh
only once. The triangles are then defined by pointers to the
vertices that define them. In this way, the triangle mesh is
represented by a shared list of vertices and a list of triangles
storing pointers for their vertices. This representation is
convenient and efficient for many purposes; however, in
some domains it proves to be ineffective. There is no explicit

topological information which makes it difficult to design
and implement fast algorithms to retrieve adjacency and
incidence data. For many applications like mesh simplifica-
tion [2], multiresolution techniques [3], 3D interaction [4],
collision detection [5], and many others, a fast access to adja-
cent vertices, edges, and triangles is an important aspect for
the implementation of efficient algorithms and techniques.
When the topological information is not available explicitly,
searching topological data is time consuming, in particular
for large meshes. Therefore, there is a need for models that
also store topological adjacency and incidence data as light
as possible to maximize performance and minimize the extra
memory overhead for Web3D applications. Of course, the
more explicit topological information is stored, the more
memory is needed and the faster is accessing the required
adjacency and incidence information.

This paper presents a new open source TopTri (Available
from http://w3.ualg.pt/~mfiguei/toptri.php) toolkit that adds
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topological data to triangular meshes of manifold or non-
manifold models. This toolkit can be installed on Web3D
servers and constitutes a framework to make interactive
topological queries on the Web. This paper shows that getting
adjacent and incidence information of vertices, edges, and
faces from a Web3D server makes the interactive determi-
nation of minimal local points and isolines in a 3D mesh in
a web browser possible. The use of topological information
can be an important tool in the study of karsts and their
geomorphological structures as it is shown here with the
interactive determination of stalactites from a cave chamber
on a 3D Web browser.

The toolkit is implemented with the Python program-
ming language and builds a topological model on the Web
server from the triangle geometry mesh. The topological
model implements a graph induced from the mesh geometry
that explicitly stores adjacency and incidence information of
vertices, edges, and faces.

This paper also presents tests executed with several mod-
els of different complexities that show real-time performance
to get the adjacency and incidence information for models
with millions of triangles.

This paper is organized as follows. Section 2 presents
related work. The topological model presented in this paper is
supported by the graph theory that is discussed in Section 3.
Section 4 describes the implementation details of TopTri.
Section 5 analyzes the memory cost for the representation
of the topological adjacency and incidence information for
the TopTri toolkit and compares it with other data struc-
tures. Section 6 presents examples of functionalities that
were implemented using the topological framework TopTri
installed in the Web3D server side. Performance evaluation of
the TopTri toolkit is discussed in Section 7, and conclusions
are presented in Section 8.

2. Related Work

Polygonal meshes are the most commonly used represen-
tations in computer graphics applications. They are mostly
important in modelization for real-time and photorealistic
graphics. Polygonal meshes are used in geometric systems
and applications such as virtual reality, rendering of solids,
and surfaces. They represent surfaces by subdividing or
approximating them into simpler surfaces, which are called
faces [6]. Polygonal meshes are well suited to scan line
rendering and represent therefore the method of choice for
real-time computer graphics.

Polygonal meshes can be represented in different ways:
explicit, pointers to a vertex list, and pointers to an edge
list [7]. In the explicit representation, each polygon P is
represented by a list of vertex coordinates P = ((x;, ¥;,21),
(X9, ¥2:23)5 o> (X5 Vu» 2,,)). In this case, vertices shared by
different polygons are duplicated. Algorithms that perform
operations on a mesh, like mesh editing or mesh decimation
algorithms need more information than the mere shape of
each separate polygon. For example, when the geometric
position of one vertex is modified, this operation not only
affects the shape of a single polygon that contains this vertex,
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but all polygons containing a vertex at the same geometric
position should be modified also. With this structure, it is
difficult to find all the polygons that share the same vertex,
since it requires comparing the coordinate triples of one
polygon with those of all other polygons. Additionally, there
can be computational roundoff problems and the same vertex
can have slightly different coordinate values making that a
correct match might never be made. This problem can be
solved with the next structure.

The representation of a mesh with pointers to a vertex list
has each vertex in the mesh stored just once in a vertexlist V =
(x> ¥1>21)5 -« > (X, ¥ 2,))- A polygon is then defined by a
list of indexes into the vertex list. For example, the polygon
P = (2,4, 6) isa triangle defined by the vertices with indices 2,
4, and 6 in the vertex list. With this structure if the geometric
position of a vertex is modified, all polygons sharing this
common vertex store pointers to the same physical instance
and are also updated. In this way, the vertex geometry is
specified once and is shared by an arbitrary number of
polygons. However, in such a structure, it is, for example,
difficult to find polygons that share an edge. This problem is
solved by the next representation.

The mesh can also be represented by pointers to an edge
list. Thereisa vertexlist V = ((xy, ¥1,21), - - > (X5 ¥0» 2,,)) like
in the previous representation. A polygon is represented by a
list of indexes to an edge list P = (E,,...,E,). Each edge is
represented only once by the indexes to the two vertices in the
vertex list defining the edge and the two polygons to which
the edge belongs, E = (V},V,, P, P,). In this case, it is easy
to find polygons that share an edge since that information is
stored explicitly in the model.

However, in none of these three representations it is easy
to determine which edges are incident to a vertex, since all
edges must be traversed. The main disadvantage of these
three structures is that they do not have explicit connectivity
information stored in the data structure. For this reason, it
is difficult to implement fast algorithms to find adjacency
and incidence data. Rapid access to adjacent vertices, edges,
and triangles is an important aspect for the implementation
of algorithms and techniques such as multiresolution tech-
niques, subdivision surfaces, mesh simplification, and others.

More information can be added explicitly to determine
such relationships. Oriented boundary representation struc-
tures like the Winged-Edge [8], Half-Edge [6], the Radial-
Edge [9], or the AIF (Adjacency and Incidence Framework)
[10] store explicit topological data to speed up algorithms
finding adjacency and incidence information. For example,
the winged-edge representation expands the edge descrip-
tion to include pointers to the two adjoint edges of each
polygon and the vertex description includes a pointer to an
edge incident on the vertex. The Adjacency and Incidence
Framework is a data structure which is not topologically-
oriented that explicitly stores the adjacency vertex to edge,
edge to face, and the incidence edge to vertex and face to
edge relations. Kallmann and Thalmann [11] proposed the
Star-Vertex data structure based on the incidence information
around a vertex. It is concise, but the retrieval of adjacency
and incidence information is slow since there is no explicit
information about edges and faces.
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Commonly used file formats follow the pointers to a
vertex list data structure, such as: VRML (Virtual Reality
Modeling Language), PLY (Polygon file format), and X3D
file format. In these cases, there is no explicit topological
information which makes it difficult to design and implement
fast algorithms to retrieve adjacency and incidence data. In
this way, it is, for example, very time consuming to find
the set of vertices adjacent to a given vertex, because that
requires traversing all the faces of the model. Thus, this search
algorithm is time consuming, in particular for large meshes.

Triangular meshes structures are commonly used to
model 3D objects since the triangle is currently the only
geometric structure that is directly supported by computer
graphics hardware. The triangular mesh is a geometric data
structure that represents the surface of objects by a set of
triangles, where each face is represented by three vertices.

Some data structures that also store topological data
were designed specifically for triangular meshes as for exam-
ple, Directed-Edge [12], Tri-Edge [13], Progressive Meshes
[14], Progressive Simplicial Complexes (PSC) [15] and CHE
(Compact Half-Edge) [16]. The Directed-Edge and the CHE
structures trade memory for access time, enabling a balance
between the memory usage and the topological data that
is stored explicitly in the model, by either storing internal
references explicitly or by locally reconstructing them on
demand. Progressive Meshes and the Tri-Edge are concise
data structures that are triangle based which are slower to find
adjacency and incidence for edges. De Floriani and Hui [17]
also introduced a data structure for nonmanifold triangular
meshes that explicitly stores the adjacency and incidence
vertex to vertex, vertex to triangle, triangle to vertex, and
triangle to triangle relations. However, access to the adjacency
and incidence information associated to edges is slow since
edges are not explicitly represented.

The OpenMesh [18] and the Computational Geometry
Algorithm Library (CGAL) (http://www.cgal.org) implement
a Half-Edge data structure in C++. These libraries are very
powerful because of their flexibility and efficiency; however,
C++ is not pratical to use in the server side of a Web3D site
[19].

3. Graphs, Adjacency, and Incidence

A graph G = (V, E) consists of a set of vertices, V, and a set
of edges, E, where each edge e € E is an unordered pair of
vertices. In the present work, graphs are finite and contain
neither loops nor multiple edges. We adopted the notation of
Wallis [20].

Two vertices endpoints of the same edge are said to be
adjacent to each other. The set of all vertices adjacent to the
vertex u is denoted by N (u). The degree or valency k of a vertex
is the number of vertices adjacent to it.

An edge uv is said to be incident on its both endpoints,
u and v. Two edges are adjacent if they share a common
endpoint.

A path is a sequence of pairwise adjacent vertices without
repetition of any vertex except possibly the first and the last
which can be the same. When the first and the last vertices of
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FIGURE 1: Graph with 5 vertices and 7 edges.

a path are the same, the closed path is also called a cycle. The
length of a path is its number of edges.

Figure 1 presents a representation of the graph G = (V, E)
with 5 vertices (V = {v,,...,v5}) and 7 edges. Vertex v, is
adjacent to vertices v, and v;. Edge v5v, of E(G) is adjacent to
the edge v,v;. The cycle C = (v,, v,, v5, vy, 1) is of length 4.

The above concepts of adjacent and incidence can be
extended to cycles. In this way, a cycle is incident on its edges
and on its vertices. Two cycles sharing a common edge are
adjacent.

In this work we are concerned about cycles of length 3
(3-cycles).

In several practical problems it is necessary to identify
specific relationships of incidence and adjacency between
elements in graphs. Let us see how to query some of these
topological relationships. Properties 1, 2, and 3, together,
provide the basis for the toolkit implementation presented in
Section 4 of this paper.

Property 1. Given a vertex u € V(G), then the following
properties hold:

(a) each vertex v of N(u) is adjacent to u;
(b) every edge uv for v € N(u) is incident on 1

(¢) any existing 3-cycle (u, v, w,u) for v € N(u) and w €
N(u) N N(v) is incident on u.

The first and second properties are straightforward conse-
quences of definitions of adjacent vertices and incident edges.
The third is also straightforward, pointing that u, v, and w
are pairwise adjacent. When u and v do not share adjacent
vertices, such cycle does not exist.

Property 2. Given an edge e = uv € E(G), then

(a) each edge uw (resp. vs) for w € N(u) (s € N(v)) is
adjacent to e;

(b) each cycle (u, v, w, u) for each w € N(u) N N(v) is
incident on edge e.



Property 3. Given the cycle C = (u, v, w, u) then it is adjacent
to the cycles:

(@) (u,v,r,u) forr € N(u) N N(v);
(b) (v,w,s,v) for s € N(v) N N(w);
(c) (u,w, t,u) fort € N(u) N N(w).

4. Implementation of the
Topological Framework

The topological framework is available as a free toolkit TopTri
that implements a graph induced from a triangular mesh. For
graph representation, adjacency lists are used, where for each
vertex the list of adjacent vertices is stored.

A triangular mesh is a set of triangular faces used to
represent or approximate surfaces. Let G = (V, E) be a graph
where v; € V if there is a point P, vertex of a triangle in
the mesh in a one-to-one correspondence. That is, there is a
bijection between elements of V(G) and the set of all vertices
of the mesh. Vertices v; and v;are adjacent (viv]- € E(G)) ifthe
points P, and P; are both vertices of one triangular face of the
mesh. This definition holds for manifold and nonmanifold
meshes.

The toolkit is implemented using Python programming
language (http://www.python.org). This programming lan-
guage is a high-level object-oriented language which is very
versatile since it can also be compiled (http://www.py2exe.org/),
linked with other programming languages (http://www.
boost.org/doc/libs/1_36_0/libs/python/doc/index.html)  or
used in a web server, as we did.

This language includes dictionary and list data structures
which allow the user to load graphs data using adjacency lists.
Dictionaries, which are hash tables, are mapping objects that
map key values to arbitrary objects. Mappings are mutable
objects. Dictionaries can be thought as a list of key: value pairs
where keys are usually integer or strings and values any object.

One of the advantages of using dictionaries in the imple-
mentation of this toolkit is that searching for an element is
much faster since it is O(1).

The following example shows the adjacency lists of graph
in Figure 1:

G=1{1:[2,3,4,5],2:[1,3],3:[1,2,4],4: [1,3,5],

¢y
5:[1,4]}.

In addition to the adjacency lists, the toolkit also includes
six methods to achieve topological relationships for vertices,
edges, and cycles of length 3. Adjacency methods map each
vertex to the list of its adjacent vertices (vGetAdjacent Ver-
tices), an edge to the list of its adjacent edges (eGetAdjacent-
Edges), and any 3-cycle to the list of its adjacent 3-cycles
(fGetAdjacentFaces). Incidence methods map each vertex to
the list of incident edges and to the list of its incident 3-cycles
(vGetlncidentEdges and vGetlncidentFaces, resp.), and each
edge to the list of its incident 3-cycles (eGetIncidentFaces)
(see Table 1).

Algorithm 1 shows implementation code in Python of
methods vGetAdjacentVertices and eGetlncidentFaces. The
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TABLE L: List of the implemented methods in TopTri toolkit for
getting topological relationships for vertices, edges, and cycles of
length 3.

Methods Input Output
vGetAdjacentVertices Vertex Vertices list
vGetIncidentEdges Vertex Edges list
vGetlIncidentFaces Vertex 3-cycle list
eGetAdjacentEdges Edge Edges list
eGetIncidentFaces Edge 3-cycle list
fGetAdjacentFaces 3-cycle 3-cycle list

class Topology:

def vGetAdjacentVertices (self, u):
adj = self-adjacent [u]
return adj

def eGetIncidentFaces (self, u, v):
U = set (self-adjacent [u])
V = set (self-adjacent [v])
I = U-intersection (V)
faces =[]
forwinI:
faces-append ((u, v, w))
return faces

ArGoriTHM I: Implementation of methods vGetAdjacentVertices
and eGetIncidentFaces.

TaBLE 2: Classification of explicit and implicit topological methods
implemented in TopTri toolkit.

Methods Property Classif.
vGetAdjacentVertices Property 1(a) Explicit
vGetlncidentEdges Property 1(b) Explicit
vGetIncidentFaces Property 1(c) Implicit
eGetAdjacentEdges Property 2(a) Implicit
eGetIncidentFaces Property 2(b) Implicit
fGetAdjacentFaces Property 3 Implicit

first one, vGetAdjacent Vertices, is an explicit topological rela-
tion; that is, adjacent vertices are retrieved in one single query,
and the second, eGetIncidentFaces, is an implicit topological
relation; that is, incident faces are obtained with two or
more queries. Table 1 shows the list of the six implemented
methods and the corresponding input. The output is always a
list of vertices, edges, or 3-cycles. These methods implement
Properties 1, 2 and 3.

Table 2 presents the classification of explicit and implicit
methods, which depends on the number of the implemented
queries. This table also relates methods with the implemented
properties. Properties (a) and (b) in Propertyl depend
only on one query (N(u)), thus vGetAdjacentVertices and
vGetlncidentEdges are explicit methods.
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Accordingly, toolkit implements six of the nine topologi-
cal relationships between vertices, edges, and faces. However,
the remaining three were not implemented because they
correspond to relations involving the adopted representation
of edges and faces. For example, an edge is identified as a
pair of vertices (v;,v;), thus relation from edge to vertices is
straightforward.

5. Memory Cost Analysis

In the explicit representation of a mesh, a triangle is defined
by the geometric position of its three vertices. In this way,
assuming 4 bytes float values, each 3D triangle requires 3 - 3 -
4 = 36 bytes.

As discussed in Section 2, the representation of a mesh
with pointers to a vertex list is the most common way to
represent the geometry of 3D models. In such representation,
vertices shared by several triangles are stored only once.
Consider #, e, and f as the number of vertices, edges, and
faces, respectively, then from the Euler’s formulan—e+ f = 2
[7]. It is known that a manifold triangle mesh (3 f = 2e) with
n vertices has f = 2n triangles. These values are confirmed
with the three models used to evaluate the performance of
the toolkit in Section 7 (see Table 5).

In this way, the representation of a mesh with pointers to
a vertex list requires 3 - 4 - n = 12nbytes to store the geom-
etry of all n vertices of the mesh and 3 - 4 - f = 12 f bytes for
the triangles pointers to the three vertices, assuming 4 bytes
to store each pointer. Therefore, for a triangle mesh with
f triangles, the total space to store geometry is 12n +
12f = 18 f bytes. Compared to the explicit representation of
a triangle mesh, the representation of a mesh with pointers to
a vertex list saves about fifty percent of the memory amount.

If the triangle mesh is represented by pointers to an edge
list, it also requires 3 - 4 - n = 12n = 6 f bytes to store the
geometry of all n vertices of the mesh and 3 - 4 - f bytes to
represent the list of indices to edges of each triangle. To
represent every edge that is represented once by the indices
to the two vertices in the vertex list and the two triangles to
which the edge belongs requires 4-2-e+4-2-e = 24 f bytes. In
this case, the total amount of memory required to represent a
mesh with f triangles with this structure equals 42 f bytes.

Section 2 also described several known structures to pro-
vide fast access to topological adjacency and incidence data.
It is not our purpose to extensively proove the storage cost
for those structures. Table 3 compares these data structures
in terms of storage cost for a triangular mesh with #n vertices
and f = 2n triangles. The “bytes/triangle” column presents
the number of bytes needed for each triangle in memory. The
variable k is the vertex degree or valency, that is, the number
of edges incident at a given vertex.

The pointers to a vertex list data structure is the most
compact of these structures since it only stores vertices and
faces. It is used basically for visualization purposes.

For a graph G with n vertices and e edges, the sum of
valencies of its vertices is d = Y; k; = 2e. Moreover, if G is
induced from a triangular mesh 3f =~ 2e,n — d/6 = 2 and
d = 6(n — 2), the average vertex degree is approximately 6.

TABLE 3: Memory cost per triangle for the representation of geom-
etry and topology.

Data structure Bytes/triangle
Explicit 36
Pointers to a vertex list 18
Pointers to an edge list 42
Winged-Edge 60
Half-Edge 46
Radial-Edge 56
Adjacency and Incidence Framework 29 + 2k
Directed-Edge 44
Tri-Edge 35
Progessive Meshes 33
Progessive Simplicial Complexes 37 + 2k
Topological toolkit (TopTri) 14

The new topological toolkit TopTri, presented in this
paper, implements adjacency lists to represent the graph.
For graphs obtained from triangular meshes, each vertex
is adjacent to 6 vertices approximately. Assuming that each
vertex requires 4 bytes to store its integer index, the total
memory requirement for the graph is (6 - 4 + 4)nbytes.
Because relations n — e + f = 2 and 3f = 2e hold for these
graphs, memory requirement is about 56 + 14 f. Thus, for
large values of f (f > 56), the structure takes approximately
14 bytes for each triangle.

Table 3 presents only the topological memory cost for the
TopTri since it is a toolkit for the topological data that can
be used in combination with any geometric representation.
Therefore, if the client application of TopTri uses the pointers
to a vertex list to represent the geometry, which is the most
concise representation, there is a total cost of 32 bytes for each
triangle to store the geometric and topological data, which
compares favorably with other known data structures.

6. Applications in a Web3D Server

In this section, we present some examples of functionalities
that we have implemented using the topological framework
TopTri installed in the Web3D server for the SIPCLIP project
(http://193.136.227.170/sipclip/web3d.php). This project aims
to provide information on past regional climates. This
information is based on the analysis of cave speleothems,
which are useful records for paleoclimatic reconstruction.
These examples are built efficiently taking advantage of the
topological information available from the TopTri library
enabling their interactive use in a web browser.

The 3D model of a cave chamber was built from a point
cloud with about 45 million points obtained from a terrestrial
laser scan survey. In order to select a 3D mesh with a
reasonable size that does not compromise performance in
the Web, we simplified the original cave chamber mesh with
10 038 522 triangles (Figure 2(a)), executing mesh decimation
operations, to build a new 3D mesh model of the cave
chamber with 249 934 triangles (Figure 2(b)) [21].
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FIGURE 2: The 3D model of the cave chamber with 10 038 522 triangles (a) and its simplification after decimation process with 249 934 triangles

for Web3D (b).

TABLE 4: Number of triangles, X3D file size, and download time
of three meshes generated after different decimation based on the
original cave chamber model with 10 038 522 faces.

Decimation (%) # Triangles File size (MB) Download time (s)

90 998 856 60.2 60
95 499 486 29.8 19
97 249934 14.6 7

For the 3D mesh simplification we used the MeshLab
multiedge decimation function called Quadratic Edge Col-
lapse Decimation. This function removes the multiedge mesh
together with its relative triangles and then connects the
adjacent vertices to the new vertex [22].

Three simplifications were generated from the original
cave chamber 3D mesh model. Table 4 presents the number
of triangular faces and the size of each simplified 3D mesh
file in X3D format. Tests of download time were performed
in localhost environment. Note that waiting times varying
between 7seconds and 60 seconds were measured. All the
running times presented in this paper were obtained using
a desktop computer with an Intel Core i7 3.40 GHz, 8 GB of
memory RAM, and a NVIDIA Quadro 4000 graphic card
(with 2 GB of dedicated memory).

6.1. Local Minima. In the following paragraphs we present
the results obtained from the implementation of an algorithm
to find local minima.

Speleothems are cave mineral deposits, usually formed
of calcite whose precipitation processes are mainly related to
carbon dioxide levels in the cave percolation water. Stalactites
are speleothems hanging from the cave roof that form where
percolation water seeps, mainly along geomorphological
features in the cave ceiling such as faults or diaclases that
represent preferential plans for water dripping. The recog-
nition and positioning of cave stalactites can therefore give
some information on major hidden cave features responsible
for cave geomorphology. Stalagmites are speleothems that
grow upward from the cave floor. They are therefore the
complement of stalactites.

Stalactite extremities correspond to local minima in the
3D mesh. A local minimum in the 3D mesh surface is one

Data: G = (V, E)
Result: Local minima array (L,,)
L,, < empty list;
forv e Vdo
N (v) « list of adjacent vertices to v;
if (z, < Zv,-) A (n, < 0) for all v; € N(v) then
appendvto L,,;
end
end

ALGORITHM 2: Local minima algorithm.

vertex v of the triangular mesh such that its z-coordinate is
smaller than the z-coordinates of all adjacent vertices of v.
This local minimum is a stalactite extremity when its normal
vector /i = (0,0,n,) and n, < 0.

An algorithm to find local minima requires adjacency
information. This was implemented using the adjacency
information that we can get from the TopTri toolkit. For the
graph G = (V, E), defined from the 3D mesh; Algorithm 2
returns a list of vertices such that their z-coordinate is smaller
or equal to the z-coordinates of all adjacent vertices and
the vector normal to the surface is downward oriented. The
approach implemented finds all the local minima for the cave
chamber in 80 milliseconds. Figure 3 shows the interactive
visualization of the 3D model of the cave chamber in a Web
browser and the stalactite extremities presented as white
points.

6.2. Stalactites. As already mentioned, studying cave stalac-
tites can be important. For this purpose, we also implemented
a tool that enables the user to select one point of a sta-
lactite and determine automatically the surrounding region
of the stalactite. This is important for the determination
of properties such as the surface area of the stalactite.
This is implemented with Algorithm 3 that determines all
the triangles of the stalactite using adjacency information
available from the topological TopTri toolkit. Figure 4 is an
image of a stalactite with 96 triangles, area of 99.6 dm”, and
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FIGURE 3: Web visualization of the cave chamber 3D mesh model
with 249 934 triangles and local minima (stalactites extremities) as
white points.

Data:G=(V, E),veV
Result: T set of triangles defining the stalactite
T « list of triangles incident on v and below v;
fort € T do

if ¢, is adjacent witht and below v then

append t, to T}

end

end

ALcoriTHM 3: Algorithm to determine stalactites.

bounding box dimensions of 16.3 cm x 15.9cm X 24.1 cm,
determined in 26 miliseconds with the previous algorithm.

6.3. Contour Lines. Contour lines on nonflat surfaces, also
known as contours, are lines with all points at the same
elevation. For a 3D mesh, if the z, elevation contour line
intersects an edge of the model, then the contour line has two
segments that lie on the triangles T} and T, incident on that
edge.

Providing the graph G = (V,E) and the elevation z,,
Algorithm 4 returns the collection of the segments of the
polyline C, which represent the contour at elevation z, of
the 3D mesh.

This algorithm may run in linear time with respect to the
number of the edges of the graph. It was used to compute a
collection of contours with predefined equidistant between
consecutive lines.

Contours provide rich information about morphology of
the cave chamber surface. They help the identification of
smooth regions, high gradient surfaces, and orientation of
specific alignments. Figure 5 shows the ceiling surface of the
cave model from the top view without and with superim-
posed 15 cm equidistant contour lines (Figures 5(a) and 5(b),
resp.), where those features can be easily recognized.

7. Evaluation of the Topological Framework

This section describes several tests to evaluate the perfor-
mance of the novel topological framework TopTri presented
in this paper.

FIGURE 4: Stalactite selected interactively by the user in the Web3D
browser.

Data: G = (V, E), z, elevation
Result: C set of segments defining C,
C — empty list;
fore € E(G)do
if e intersects C, then
T,, T, « triangles incident on e
S TinC,,i=12
append §; to C
end
end

ALGORITHM 4: Contour lines algorithm.

TaBLE 5: Complexity in terms of the number of vertices, faces, and
the X3D file size for the bunny, the Web3D, and the original cave
chamber models.

Bunny Web3D cave Original cave
# Vertices 35947 126921 5021214
# Triangles 69451 249934 10038 522
File size 4.3 MB 14.6 MB 520 MB

In our experiments, we used the model of the bunny
(http://graphics.stanford.edu/data/3Dscanrep/) from the
University of Stanford (Figure 6), the model of the cave
chamber for the Web3D (Figure 2(b)), and the original
model of the cave chamber (Figure 2(a)) from the SIPCLIP
project (PTDC/AAC-CLI/100916/2008—Temperature, pre
cipitation regime and soil conditions in Southwestern Iberian
Peninsula under a warmer climate—Insight from the past
(http://193.136.227170/sipclip)) [23].

Table 5 presents the complexity of these models. It can be
seen that the model with the lowest complexity in terms of
the number of triangles is the bunny with 69 451 triangles.
The model of the cave chamber for the Web3D has 249 934
triangles and the original model of the cave chamber has
10038522 triangles. The original 3D model of the cave
chamber was built from a point cloud with about 45 million
points obtained from a terrestrial laser scan survey [21].
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FIGURE 5: Visualization of the Web3D cave chamber model with
249934 triangles from a top view perspective (a); and the same
3D mesh with 15cm equidistant contour lines (b). Note that with
the contours information the model highlights the cave relief and
preferred alignments.

FIGURE 6: Bunny 3D mesh model.

It can also be seen that the number of triangles f is
about twice the number #n of vertices (f = 2n) as expected.
The bunny, the Web3D, and the original cave chamber are
stored in X3D format files of sizes 4.3 MB, 14.6 MB, and
520 MB, respectively. With these three models of different
complexities we can evaluate the toolkit TopTri performance.

Topological relationship queries involve adjacency lists. It

is known that the average of vertex degrees is approximately
6 for manifold triangular meshes. In addition to this result,
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TABLE 6: Frequency of vertex degrees for the tested models.

Degree Bunny Web3D cave Original cave
<3 0.12% 1.95% 0.02%
4 1.32% 9.00% 14.02%
5 11.33% 25.29% 23.29%
6 75.12% 31.82% 31.37%
7 11.16% 21.23% 16.91%
8 0.86% 8.25% 10.16%
>9 0.07% 2.46% 4.22%

TABLE 7: Time to create topological model and to make 10 thousand
adjacency and incidence random queries in the 3 models.

Bunny  Web3D cave  Original cave

Time to load 177ms  694ms 325
geometric model

Egiggizﬁfo del 166 ms 585ms 24s
vGetAdjacentVertices 14 ms 14 ms 15ms
vGetlncidentEdges 23 ms 25ms 26 ms
vGetIncidentFaces 64 ms 68 ms 71 ms
eGetAdjacentEdges 44 ms 49 ms 52 ms
eGetlIncidentFaces 48 ms 51ms 53 ms
[fGetAdjacentFaces 6lms 65ms 67 ms

we can see from Table 6 that six is the vertex degree most
common in the three models and the number of vertices with
degree greater or equal to 9 is less than 5 percent.

Table 7 presents the performance of the topological
framework tested with the bunny, Web3D cave, and the orig-
inal cave chamber models.

The first line shows the time to load the geometric model
from the disk to main memory. It can be seen that the time
to create the topological model ranges from 166 milliseconds
to 24 seconds for the larger model with about 10 millions
of triangles. These are acceptable values, even for the larger
model. It is also seen that it always takes less time to create
the topological model than to load the geometric model to
memory.

Table 7 also presents the time to make adjacent and inci-
dent queries to the topological models. As the time to make
a single query is so reduced, we decided to present in Table 7
the time to make 10 000 random queries. In this way, making
10 000 queries to get adjacent vertices to a given vertex are
executed at most in 15milliseconds for the original cave
chamber model. The most time consuming operation is the
query vGetIncidentFaces to get incident faces given a vertex
as it can take about 71 milliseconds to make the ten thousand
queries for the cave chamber.

Table 7 also confirms that to make an explicit topological
relation query like vGetAdjacent Vertices, which is retrieved in
a single query, is faster than making an implicit topological
query like vGetlncidentFaces that requires two or more
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queries. For this reason, the two explicit topological queries
vGetAdjacentVertices and vGetIncidentEdges are the fastest.

Furthermore, from Table 7 we can also see that the time
to make 10000 queries does not change significantly with
the complexity of the model. The cave chamber model
has about 10 million triangles and the bunny model has
about 70 thousand triangles but it takes 71 milliseconds and
64 milliseconds, respectively, to make ten thousand vGetlInci-
dentFaces queries. This is explained since making searches
in dictionaries in the Python programming language is of
complexity O(1).

Nevertheless, memory usage to store the graph using
these data structures result is greater than the estimated
value of 14 bytes for each triangle. Measurements of memory
allocated to the graph structure show that bunny takes
about 90 bytes/triangle whereas Web3D cave and original
cave chamber less than 82 bytes/triangle. This extra memory
is related with the internal representation of above data
structures and the fact that tests were performed in a 64 bits
system.

The time needed to find all the local minima for the
Web3D cave chamber model and for the original cave cham-
ber model is 80 milliseconds and 3 seconds, respectively. The
approach implemented finds all the local minima for a large
model like the original cave chamber with about 10 million
triangles.

8. Conclusions

This paper presents a free framework for 3D Web servers
that builds a topological model for triangular manifold or
nonmanifold meshes. Applications can use available methods
to get adjacent and incidence information of vertices, edges,
and faces.

This framework was implemented in Python (version
2.7). Although it is an interpreter language, results show that
performance achieved makes the toolkit useful also for real-
time applications. Furthermore, this programming language
allows TopTri toolkit to be used in the server side for Web3D
applications.

The framework described in this paper builds a topolog-
ical model implementing a graph created from the triangle
geometry mesh. In this way, client applications of the TopTri
toolkit have access to adjacency and incidence information of
vertices, edges, and faces.

Results show that getting adjacency and incidence infor-
mation is very fast and at approximately constant time, which
makes the TopTri toolkit scalable and appropriate for real-
time applications.

It is shown in this paper that the memory cost per triangle
to store the topological data compares favorable with other
structures.

This paper also presents the use of the framework to the
study of karsts and their geomorphological structures. We
implemented algorithms to find local minima, isolines, and
identify stalactites in a cave chamber in a Web browser.
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