| 1                            | GR FOCUS                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23                           | Tectonic overview of the West Gondwana margin                                                                                                                                                                                                                                                                                                                                    |
| 4<br>5                       | Alan P.M. Vaughan <sup>1*</sup> and Robert J. Pankhurst <sup>2</sup>                                                                                                                                                                                                                                                                                                             |
| 6<br>7<br>8<br>9<br>10<br>11 | <ul> <li><sup>1*</sup>Corresponding author, British Antarctic Survey, High Cross, Madingley Rd,<br/>Cambridge CB3 0ET, UK, e-mail: <u>a.vaughan@bas.ac.uk</u>, tel. +44-1223-221400,<br/>fax: +44-1223-362616</li> <li><sup>2</sup>Visiting Research Associate, British Geological Survey, Keyworth, Nottingham<br/>NG12 5GG, UK, e-mail: <u>rjpt@nigl.nerc.ac.uk</u></li> </ul> |
| 12<br>13                     | Abstract                                                                                                                                                                                                                                                                                                                                                                         |
| 14<br>15                     | The oceanic southern margin of Gondwana, from southern South America through                                                                                                                                                                                                                                                                                                     |
| 16                           | South Africa, West Antarctica, New Zealand (in its pre break-up position), and                                                                                                                                                                                                                                                                                                   |
| 17                           | Victoria Land to Eastern Australia is one of the longest and longest-lived active                                                                                                                                                                                                                                                                                                |
| 18                           | continental margins known. It was the site of the 18,000 km Terra Australis orogen,                                                                                                                                                                                                                                                                                              |
| 19                           | which was initiated in Neoproterozoic times with the break-up of Rodinia, and                                                                                                                                                                                                                                                                                                    |
| 20                           | evolved into the Mesozoic Australides. The Gondwana margin was completed, in Late                                                                                                                                                                                                                                                                                                |
| 21                           | Cambrian times, by closure of the Adamastor Ocean (between Brazilian and                                                                                                                                                                                                                                                                                                         |
| 22                           | southwest African components) and the Mozambique Ocean (between East and West                                                                                                                                                                                                                                                                                                    |
| 23                           | Gondwana), forming the Brasiliano-Pan-African mobile belts. During the Early                                                                                                                                                                                                                                                                                                     |
| 24                           | Palaeozoic much of the southern margin was dominated by successive episodes of                                                                                                                                                                                                                                                                                                   |
| 25                           | subduction-accretion. Eastern Australia, Northern Victoria Land and the                                                                                                                                                                                                                                                                                                          |
| 26                           | Transantarctic Mountains were affected by one of the first of these events - the Late                                                                                                                                                                                                                                                                                            |
| 27                           | Cambrian Ross/Delamerian orogeny, remnants of which may be found in the                                                                                                                                                                                                                                                                                                          |
| 28                           | Antarctic Peninsula – but also contain two accreted terranes of unknown age and                                                                                                                                                                                                                                                                                                  |
| 29                           | origin. Similar events are recognized at the South American end of the margin, where                                                                                                                                                                                                                                                                                             |
| 30                           | the Cambrian Pampean orogeny occurred with dextral strike-slip along the western                                                                                                                                                                                                                                                                                                 |
| 31                           | edge of the Río de la Plata craton, followed by an Ordovician active margin                                                                                                                                                                                                                                                                                                      |
| 32                           | (Famatinian) associated with the collision of the Precordillera terrane. However, the                                                                                                                                                                                                                                                                                            |

| 33 | central part of the margin (the Sierra de la Ventana of eastern Argentina, the Cape    |
|----|----------------------------------------------------------------------------------------|
| 34 | Fold Belt of South Africa and the Ellsworth Mountains of West Antarctica) seem to      |
| 35 | represent a passive margin during the Early Palaeozoic, with the accumulation of       |
| 36 | predominantly reworked continental sedimentary deposits (Du Toit's 'Samfrau            |
| 37 | Geosyncline'). In many of the outer areas, accretion and intense granitic/rhyolitic    |
| 38 | magmatism continued during the Late Palaeozoic, with collision of several small        |
| 39 | continental terranes, many of which are nevertheless of Gondwana origin: e.g.,         |
| 40 | southern Patagonia and (possibly) 'Chilenia' in the South American-South African       |
| 41 | sectors, and the Western Province and Median Batholith terranes of New Zealand.        |
| 42 | The rhyolitic Permo-Triassic LIP of southern South America represents a Permo-         |
| 43 | Triassic switch to extensional tectonics, which continued into the early Jurassic, and |
| 44 | was followed by the establishment of the Andean subduction margin. Elsewhere at        |
| 45 | this time the margin largely became passive, with terrane accretion continuing in New  |
| 46 | Zealand. In the Mesozoic, the Terra Australis Orogen evolved into the accretionary     |
| 47 | Australides, with episodic orogenesis in the New Zealand, West Antarctic and South     |
| 48 | American sectors in Late Triassic-Early Jurassic and mid-Cretaceous times, even as     |
| 49 | Gondwana was breaking up.                                                              |

- 51 52 Key words: Accretionary orogen, terrane, Palaeozoic, Laurentia, Rodinia

| 53       |                                                                                      |
|----------|--------------------------------------------------------------------------------------|
| 54       | Contents                                                                             |
| 55       |                                                                                      |
| 56       | 1. Introduction                                                                      |
| 57       | 2. What is West Gondwana?                                                            |
| 58       | 2.1. Cratonic elements                                                               |
| 59       | 2.2. Mesoproterozoic and Neoproterozoic mobile belts                                 |
| 60       | 2.3. Palaeozoic–Mesozoic terranes                                                    |
| 61       | 2.4. Boundary with East Gondwana                                                     |
| 62       | 3. The formation and dispersal of West Gondwana                                      |
| 63       | 4. The oceanic margin of West Gondwana                                               |
| 64       | 4.1. South America                                                                   |
| 65       | 4.2. South Africa                                                                    |
| 66       | 4.3. West Antarctica                                                                 |
| 67       | 5. Adjacent parts of the oceanic margin of East Gondwana                             |
| 68       | 5.1. New Zealand.                                                                    |
| 69       | 5.2. Victoria Land and the Transantarctic Mountains                                  |
| 70       | 6. Concluding remarks                                                                |
| 71       | Acknowledgements                                                                     |
| 72       | References                                                                           |
| 73       |                                                                                      |
| 74       |                                                                                      |
| 75       |                                                                                      |
| 76       | 1. Introduction                                                                      |
| 77<br>78 | The oceanic margin of Gondwana was of the order of 40,000 km long (Fig. 1). Its      |
| 79       | northern boundary was the source of Avalonian and Cadomian terranes in the west      |
| 80       | and Cimmerian terranes in the east (Unrug, 1997). Its southern margin has been       |
| 81       | proposed as one of the largest and longest-lived accretionary orogens on Earth       |
| 82       | (Cawood, 2005; Vaughan et al., 2005b) - the Proterozoic and Palaeozoic Terra         |
| 83       | Australis orogen (Cawood, 2005), which evolved into the Australides (Vaughan et al., |
| 84       | 2005b) during the Palaeozoic and Mesozoic. This orogen was over 18000 kilometres     |
| 85       | long, incorporating margins against the Iapetus and palaeo-Pacific oceans (Unrug,    |
| 86       | 1997) (Fig. 1), and is comparable in scale to the Late Palaeozoic                    |
| 87       | Alleghenian/Hercynian/Uralian orogen of central Pangaea (Vaughan et al., 2005b).     |
| 88       | Today, the southern margin of Gondwana can be subdivided into Australian, Victoria   |
| 89       | Land, New Zealand, West Antarctic, South African and South American sectors          |
| 90       | (Figure 1). Apart from the West Antarctic and South African sectors, these have      |

91 recently been reviewed in a Geological Society Special Publication (Vaughan et al., 92 2005a). The present paper focuses on the Iapetus and palaeo-Pacific margin of West 93 Gondwana (Fig. 1), i.e. the West Antarctic and South American sectors; it does not 94 deal with the collisional margin between East and West Gondwana, nor with the 95 Avalonian/Cadomian or Cimmerian margins (Fig. 1). However, it does touch on the 96 New Zealand and Victoria Land sectors (including the Transantarctic Mountains) of 97 the margin of East Gondwana, as these may have contributed detrital material and 98 terranes to the accretionary margin of West Gondwana from Palaeozoic times 99 onwards.

100

101 Moving clockwise along the southern margin of Gondwana, from modern-day east to 102 west (Figure 1), starting in East Gondwana, the Phanerozoic history of the Victoria 103 Land sector of the margin has recently been reviewed by Tessensohn and Henjes-104 Kunst (2005) and the New Zealand sector has had recent and comprehensive reviews 105 by Mortimer (2004) and Wandres and Bradshaw (2005). Moving into West 106 Gondwana, aspects of the West Antarctic sector have been reviewed in the past 10 107 years by Pankhurst et al. (1998b) and Vaughan and Storey (2000), but is a sector of 108 the margin in need of an up-to-date treatment. Rapalini (2005) reviewed the southern 109 South American sector of the margin from the latest Proterozoic to the late Palaeozoic 110 on the basis of palaeomagnetic data, and a brief review of this sector was presented in 111 Vaughan et al. (2005b), but an up-to-date comprehensive review of the whole South 112 American sector is lacking. Given the pace of recent developments (e.g., Casquet et 113 al., 2006; Pankhurst et al., 2006), and the considerable controversy over the 114 Palaeozoic history of this sector of the margin, particularly regarding the origin of the

Precordillera or Cuyania terrane (e.g., Thomas and Astini, 2003; Finney et al., 2005),
a further review is appropriate.

117

## 118 **2. What is West Gondwana?**

119 In simple terms West Gondwana is that part of the supercontinent represented today in

120 South America, Arabia, Africa and West Antarctica. From a geological point of view,

121 however, this definition is over-simplified and it reflects a subdivision based on the

122 break-up rather than the amalgamation configuration of the supercontinent (e.g.,

123 Storey et al., 1996; Veevers, 2004). The earliest geologically-based separation of

124 Gondwana into eastern and western parts was made by Du Toit (1937) (Fig. 2). He

125 further separated Antarctica into eastern and western parts, as suggested by Suess

126 (1883–1901), assigning them to East and West Gondwana, respectively (see Thomson

127 and Vaughan (2005) for a brief discussion), but placed New Zealand in East

128 Gondwana, off the eastern coast of Australia (Fig. 2). More recently, West Gondwana

129 has been defined on the basis of the Archaean shields, cratons and cratonic fragments,

130 the intervening Mesoproterozoic and Neoproterozoic mobile belts, and the outer belts

131 of Proterozoic–Mesozoic terranes that make it up (e.g., Unrug, 1997; Pankhurst et al.,

132 1998b; Brito Neves et al., 1999; Vaughan and Storey, 2000; Murphy et al., 2004;

133 Tohver et al., 2006).

134

135 2.1 Cratonic elements

136

137 The major cratonic elements comprise the Amazonia-West Africa craton, Sao

138 Francisco-Congo craton, Kalahari–Grunehogna craton, Río de la Plata craton, and the

139 Arabian–Nubian shield (Tohver et al., 2006) (Fig. 3). Cordani et al. (2003) pointed

|  | 140 | out that there are | e smaller | cratonic | fragments of | of co | nsiderable | importanc | e in |
|--|-----|--------------------|-----------|----------|--------------|-------|------------|-----------|------|
|--|-----|--------------------|-----------|----------|--------------|-------|------------|-----------|------|

141 understanding the evolution of the supercontinent. These include the Central Goias

142 massif (Fischel et al., 2001), the Luiz Alves, Río Apa, Sao Luis and Paraná cratonic

- 143 fragments (e.g., Tohver et al., 2006) (Fig. 3). The Hoggar–Potiguar plate of Brito
- 144 Neves et al. (1999) is another potential cratonic fragment (e.g., Liegeois et al., 2003;
- 145 Ouzegane et al., 2003), although its limits are not currently delineated.

146

147 2.2 Mesoproterozoic and Neoproterozoic mobile belts

148

149 Brito Neves et al. (1999) used the term Brasiliano–Pan African collage for the

150 Mesoproterozoic and Neoproterozoic–Cambrian mobile belts involved in the final

amalgamation of West Gondwana. Tohver et al. (2006) listed 19 individual belts to

152 this collage, illustrated in Figure 3. Brito Neves et al. (1999) summarized them as the

153 Neoproterozoic Borborema/Trans-Saharan and Tocantins belts, and the

154 Neoproterozoic–Cambrian Pampean and Mantiqueira belts in modern-day South

155 America, and, in modern-day Africa, the Neoproterozoic Dahomeyide belt and the

156 Neoproterozoic–Cambrian Damara, and Zambesi belts. Other important parts of

157 Neoproterozoic–Cambrian West Gondwana include the Cariris-Velhos terrane (Brito

- 158 Neves et al., 1999) of northern South America–East Africa and the "Grenville"
- 159 Neoproterozoic rocks of the Haag Nunataks block of West Antarctica and the

160 Falklands Plateau (e.g., Storey et al., 1994; Wareham et al., 1998).

161

162 2.3 Palaeozoic–Mesozoic terranes

| 164 | Accretion of new terrane material to Gondwana was active during amalgamation             |
|-----|------------------------------------------------------------------------------------------|
| 165 | (Cawood, 2005) and continued until the late stages of break-up of the supercontinent     |
| 166 | (e.g., Vaughan et al., 2002b). In the Phanerozoic, these include the Cambrian rocks of   |
| 167 | the Ellsworth–Whitmore Mountains block of West Antarctica (e.g., Curtis et al.,          |
| 168 | 1999), and the Cambrian rocks of the Western Province of New Zealand (Münker and         |
| 169 | Cooper, 1995). Various Proterozoic fragments of West Gondwana also became part of        |
| 170 | the margins of the Laurentia and Baltica cratons (Skehan, 1997). Murphy et al.           |
| 171 | (2004) reviewed these and summarized them as being formed either of reworked             |
| 172 | Neoproterozoic "juvenile crust within the Panthalassa-type ocean surrounding             |
| 173 | Rodinia", the so-called Avalonian-type terranes, or of reworked West African             |
| 174 | Palaeoproterozoic crust, the so-called Cadomian-type terranes. Following                 |
| 175 | amalgamation, the Gondwana margin continued to be active with addition of new            |
| 176 | oceanic material (e.g., Cawood et al., 2002) and remobilization of existing parts of the |
| 177 | margin by strike-slip faulting (e.g., Cawood, 2005). Major episodes of terrane           |
| 178 | addition and remobilization occurred during the Gondwanan Orogeny of the Permo-          |
| 179 | Carboniferous (e.g., Cawood, 2005; Pankhurst et al., 2006) and during global             |
| 180 | orogenesis in the Triassic-Jurassic and Cretaceous (e.g., Vaughan and Livermore,         |
| 181 | 2005).                                                                                   |
| 182 |                                                                                          |
| 183 | 2.4 Boundary with East Gondwana                                                          |

185 The boundary with East Gondwana consists of a meandering zone of late

186 Neoproterozoic to earliest Cambrian orogenic and mobile belts, termed Pan-African,

187 extending from and including the Arabian–Nubian Shield in the north to Antarctica in

188 the south (e.g., Shackleton, 1996). Perhaps the most important of these belts is that of

189 the East African–Antarctic orogeny (Jacobs and Thomas, 2004). Unrug (1997) shows 190 a very broad zone of potential convergence in the northern segment, which include 191 eastern Africa and the Arabian-Nubian Shield. The southernmost extent of this 192 collision zone includes the Namaqua-Natal-Maud belt on the margin of the Kalahari-193 Grunehogna craton in southern Africa and Dronning Maud Land in East Antarctica 194 (Jacobs et al., 2003). The essentially synchronous collision Brasiliano zone is the 195 subject of a new survey of geological links across the present South Atlantic region 196 (Pankhurst et al., in press).

197

## 198 **3. The formation and dispersal of West Gondwana**

199

200 Formation of the Gondwana supercontinent appears to have overlapped with the 201 break-up of Rodinia (a possible supercontinent built around Laurentia), which 202 occurred between 1000 and 750 million years ago (e.g. Cordani et al., 2003; Meert 203 and Torsvik, 2003). The series of accretionary and collisional events that formed 204 West Gondwana began 850 million years ago and were complete by the latest 205 Cambrian (490 million years ago) (e.g., Brito Neves et al., 1999). It is overly 206 simplistic to think of the final formation of Gondwana in terms of a collision between 207 the East and West parts (e.g., Meert, 2001). Recent palaeomagnetic data (Tohver et 208 al., 2006) suggest that prior to final amalgamation of Gondwana in the mid-Cambrian, 209 the Amazon–West Africa block of West Gondwana was still a separate entity from 210 Rodinia, and was separated from other blocks that constitute West Gondwana 211 (Congo-São Francisco-Kalahari-Arabia-Río de la Plata). Trindade et al. (2006) 212 provided palaeomagnetic support for this for Amazonia and proposed that 213 amalgamation involved successive suturing along three major orogenic belts, the

214 Mozambique, Kuunga and Pampean–Araguaia belts through closure of the 215 Mozambique, Adamastor and Clymene oceans. However, the associated complex 216 collisional processes produced deformation and magmatism throughout the late 217 Neoproterozoic and Early Cambrian in the East African–Antarctic belt and in the 218 Brasiliano belt between the Kalahari and Amazonia cratons. Jacobs & Thomas (2004) 219 suggest dispersal of smaller continental fragments by escape tectonics associated with 220 a Himalayan style and scale mountain range formed in the Mozambique belt. These 221 major orogenies, and their topographical and erosional consequences, are the most 222 probable explanation for the widespread occurrence of detrital zircons of this age span 223 in the subsequent sedimentary record of both East and West Gondwana margins (See 224 also Squire et al., 2006). According to Basei et al. (2005), a narrow band of 225 Neoproterozoic metasedimentary rocks on the Atlantic coast of South America is 226 equivalent to the southwest African sequences formed by erosion of the Kalahari and 227 Namagua–Natal basement and was left behind on the Cretaceous opening of the South 228 Atlantic Ocean, so that the suture zone resulting from closure of the Adamastor ocean 229 now lies within southeastern Brazil and Uruguay.

230

231 During and subsequent to Late Cambrian times, West Gondwana continued to accrete

232 microcontinents and terrane fragments (e.g., Cawood, 2005; Vaughan and Livermore,

- 233 2005). The origin of some, such as the Precordillera terrane and its relationship to
- 234 Laurentia and the Pampia Terrane, continues to be extremely controversial (e.g.,

Thomas and Astini, 2003; Finney et al., 2005).

236

**4. The oceanic margin of West Gondwana** 

| 241 | In the southern South American sector of the margin, the accretionary orogen model         |
|-----|--------------------------------------------------------------------------------------------|
| 242 | has to take into account widely held ideas of collisional accretion of individual          |
| 243 | terranes of pre-existing continental crust (Fig. 4). Many of these terranes were first     |
| 244 | proposed and named by Ramos (1988) and, although many are accepted in general,             |
| 245 | the essential details of their delineation, composition, and the timing of their accretion |
| 246 | to Gondwana continue to be controversial.                                                  |

247

248 The best known of these is the Precordillera terrane (Astini et al., 1995), often equated 249 with and referred to as Cuyania (Ramos, 1988; 2004). This has\_an outcrop area at least 250 300 km from north-to-south and less than 100 km in width where the geology is 251 dominated by Cambrian to Middle Ordovician limestones, succeeded unconformably 252 by Silurian–Devonian clastic sediments that pass upwards into typical Gondwana 253 sequence lacustrine deposits and red beds of Carboniferous to Triassic age. Alonso et 254 al. (2008) present structural and sedimentological evidence for the passive margin 255 nature of this sequence. The most significant feature of the limestones is a change 256 from a Cambrian brachiopod and trilobite fauna of Laurentian affinity to a Middle to 257 Late Ordovician Gondwana fauna (Benedetto, 1998; Astini et al., 2004). For many, 258 this supports the idea that the Precordillera terrane was derived from Laurentia, but 259 approached Gondwana during the Early Ordovician, followed by accretion during a 260 Middle Ordovician collision. This idea is supported by a wide range of evidence, e.g., 261 an Early-to-Middle magmatic arc including both I- and S-type granites developed on 262 the marginal continental crust of Gondwana – the Famatinian arc (Pankhurst et al., 1998a; Pankhurst et al., 2000). Other aspects compatible with this scenario are 263

| 264 | contemporaneous bentonite ash bands in the Precordillera limestones (Huff et al.,        |
|-----|------------------------------------------------------------------------------------------|
| 265 | 1998; Fanning et al., 2004), and palaeomagnetic data (Rapalini, 2005). Middle            |
| 266 | Ordovician metamorphism has been found in rocks east of the Precordillera (Casquet       |
| 267 | et al., 2001; Vujovich et al., 2004) and equated with the collision stage, and Castro de |
| 268 | Machuca et al. (2008) ascribe an Early Silurian age to major post-collisional shear      |
| 269 | zones. This is also the interpretation given in Chernicoff et al. (2007) who have        |
| 270 | studied detrital zircon in a Late Ordovician-Devonian sedimentary sequence which         |
| 271 | they regard as deposited in a post-collisional foreland basin. However, others (e.g.,    |
| 272 | Aceñolaza et al., 2002) have proposed an alternative origin for the Precordillera        |
| 273 | terrane in another part of West Gondwana, with Ordovician emplacement by massive         |
| 274 | strike-slip movement along the margin. Attempts to resolve these opposing                |
| 275 | hypotheses for the origin source of the Precordillera terrane continue without final     |
| 276 | agreement, largely based on the patterns of detrital zircon provenance ages              |
| 277 | determined by U–Pb geochronology (Thomas and Astini, 2003; Finney et al., 2005).         |
| 278 |                                                                                          |
| 279 | Another aspect of the Precordillera terrane hypothesis is the nature and origin of its   |
| 280 | underlying crustal basement. Unfortunately, this is not unambiguously exposed. There     |
| 281 | is indirect indication for it consisting of a high-grade metamorphic complex of          |
| 282 | 'Grenvillian' age through the occurrence of ~1000 Ma amphibolite xenoliths brought       |
| 283 | up in a Miocene dacite through the easternmost limestone outcrops (Kay et al., 1996).    |
| 284 | High-grade rocks of 1200–1000 Ma have since been discovered throughout the               |
| 285 | Western Sierras Pampeanas sequences to the east of the Precordillera (McDonough et       |
| 286 | al., 1993; Varela et al., 1996; Pankhurst and Rapela, 1998; Casquet et al., 2001; 2005;  |
| 287 | 2006). Ordovician limestones are associated with high-grade granite gneiss of            |
| 288 | 'Grenville' age as far south as Ponon Trehue (Fig. 4, Heredia, 2002; Cingolani et al.,   |

289 2005) and 'Grenville'-age tonalites at Las Matras (Sato et al., 2000). Initially these 290 occurrences were mostly considered to be representative of the middle crustal 291 basement of the Precordillera terrane, consistent with a Laurentian origin, but more 292 recently (e.g., Galindo et al., 2004; Casquet et al., 2006) it has been suggested that the 293 'Grenville'-age rocks of the Western Sierras Pampeanas could be regarded as 294 autochthonous Gondwana basement during the Ordovician, and Casquet et al. (2006; 295 2007) have interpreted some at least as equivalent to the Arequipa-Antofalla block, 296 normally regarded as unambiguously autochthonous. The true nature of the 297 Precordillera basement thus remains questionable. 298

299 The Eastern Sierras Pampeanas constitute another putative continental terrane 300 accretion event (the Pampia terrane of Ramos, 1988, see Fig. 4). This is a belt of 301 migmatitic gneisses, low-grade metasediments, granites and metabasites which 302 underwent orogenic deformation, metamorphism and anatexis in Early-to-Middle 303 Cambrian times (Rapela et al., 1998a; Rapela et al., 1998b; Rapela et al., 2002), 304 although Guereschi and Martino (2008) suggest that an even older migmatization 305 event may also have occurred. Their Early Palaeozoic history is thus incompatible 306 with the Palaeoproterozoic Río de la Plata craton to the east and the passive margin 307 limestones of the Precordillera sequence to the west, suggesting an exotic terrane. The 308 predominant Nd model age signature of these rocks is a Mesoproterozoic one (as is 309 that of the Famatinian rocks to the west). For this reason, Rapela et al. (1998b) 310 followed previous authors in thinking that the metasedimentary component must have 311 been derived from such a source to the east as a foreland sequence above an eastward 312 dipping subduction zone; however, no Mesoproterozoic source is exposed. They 313 suggested that the terrane was not allochthonous but had previously been rifted-off

314 from a similar position on the Gondwana margin in Neoproterozoic times, and was 315 similar to the Arequipa-Antofalla blocks of northern Chile and Peru. Simpson et al. 316 (2003) and Schwartz and Gromet (2004) proposed subduction of a spreading ridge in 317 Middle Cambrian times as an alternative to collision of a continental block. As a 318 recent development based on detrital zircon U-Pb and whole-rock Sm-Nd data, 319 Escayola et al. (2007) have proposed a radical model in which subduction towards the 320 west occurred in Neoproterozoic times, with sediments being deposited in a back-arc 321 basin from both the Grenville-age Western Sierras Pampeanas and the arc itself rather 322 than from the Río de la Plata craton to the east. The high-grade metamorphism of the 323 Pampean belt followed Early Cambrian closure of the back-arc basin. This could 324 explain the metabasites (as basin floor remnants) but there is no evidence for the arc 325 itself. The problem of the Pampean orogeny is ripe for new data to resolve these and 326 possibly other alternatives, and Rapela et al. (in press) present new evidence on the 327 extent of the craton, the origin of the Pampean belt metasedimentary rocks and the 328 Cambrian tectonic events leading to their juxtaposition.

329

330 The latest collisional event proposed by Ramos (1988) for the central part of this 331 sector in that of the hypothetical Chilenia terrane (Fig. 4). This is supposed to have 332 occurred in Devonian time, and was principally invoked in order to explain granite 333 magmatism of this age that occurs both within the Pampean belt and to the south. A 334 major unit in the former category is the Achala batholith in the southern Sierras de Córdoba. This consists of evolved S-type granites (some with high U contents), of 335 336 generally post-orogenic characteristics (Lira and Kirschbaum, 1990). Geuna et al. 337 (2007) present palaeomagnetic data that support rapid cooling soon after 338 crystallization.

| 22 | 0 |
|----|---|
| 55 | 2 |

| 340 | Finally, moving south to Patagonia, we arrive at a situation that has been a long-lived  |
|-----|------------------------------------------------------------------------------------------|
| 341 | puzzle. The source of the problem is the ?Cambrian to Permian Gondwanide                 |
| 342 | sedimentary sequence that forms a Late Permian fold and thrust belt in the Sierra de la  |
| 343 | Ventana (aka Sierras Australes) of southernmost Buenos Aires province, Argentina         |
| 344 | (Fig. 4). As emphasized by du Toit (1937), this has an obvious continuation in the       |
| 345 | Cape Fold Belt of South Africa and the Ellsworth Mountains sequence of West              |
| 346 | Antarctica – all of these must have been joined together as a single stratigraphical and |
| 347 | tectonic system during the Late Palaeozoic evolution of Gondwana.                        |
| 348 |                                                                                          |
| 349 | Ramos (1984; 1986) proposed that an allochthonous (exotic) Patagonian terrane            |
| 350 | collided with cratonic South America (supercontinental Gondwana) along the Río           |
| 351 | Colorado zone (Fig. 4) in Carboniferous times. This was thought to have resulted         |
| 352 | from southwest-dipping subduction beneath the North Patagonian Massif. Devonian-         |
| 353 | Carboniferous penetrative deformation, southward-verging folds and southward-            |
| 354 | directed thrusting of supracrustal rocks of the northeastern North Patagonian Massif     |
| 355 | was described by Chernicoff and Caminos (1996) and elaborated in a detailed              |
| 356 | structural study by von Gosen (2003), who argued for Permian rather than                 |
| 357 | Carboniferous crustal shortening, and possibly a northeastward-directed accretionary     |
| 358 | process.                                                                                 |
| 359 |                                                                                          |
| 360 | A major revision of the original collision model for Patagonia has been proposed by      |
| 361 | Pankhurst et al. (2006). They claim that the majority of rocks in the North Patagonian   |

Massif are autochthonous to Gondwana. The basement to the immediate south of the 

Sierra de la Ventana itself includes Late Neoproterozoic and Cambrian granites and

364 volcanic rocks of a similar age to those of the Pampean orogeny, albeit in a different 365 tectonic setting, and the northeastern part of the North Patagonian Massif has 366 Ordovician granite magmatism and metamorphism equivalent to the Famatinian 367 orogeny. There is no evidence of a Grenville-age belt similar to the Western Sierras 368 Pampeanas, but this could possibly be hidden beneath the deep Mesozoic and younger 369 sediments of the Río Colorado basin. Thus any collision must have occurred to the 370 south of this massif with its deformed Cambro-Ordovician cover. The discovery of Early Carboniferous subduction-related magmatism followed by mid-Carboniferous 371 372 S-type granites in a belt that runs southeastwards from the western margin of the 373 North Patagonian Massif led to the proposal that this was essentially the zone of 374 collision, and that the distinctive crustal complexes of the Deseado Massif to the south 375 represents part of the colliding terrane (Pankhurst et al., 2006). The pre-Jurassic 376 geology of the Deseado Massif is very poorly exposed, but it includes Late 377 Neoproterozoic sedimentation, Cambrian plutonism, and both Silurian and Devonian 378 granite magmatism (Pankhurst et al., 2003).

379

380 Another prominent feature of the Palaeozoic geology of southern South America is 381 the enormously voluminous and extensive eruption of Permian and Triassic rhyolitic 382 rocks and the emplacement of associated granites (ca 290-220 Ma) - the Choiyoi 383 complex (Kay et al., 1989; Mpodozis and Kay, 1990). These are so far most closely 384 controlled in terms of their chronology in Patagonia, where they have a wide range 385 ages and isotopic characteristics. Initiation in Early Permian times was ascribed by 386 Pankhurst et al. (2006) to post-collisional break-off of the down-going slab, perhaps 387 with delamination of the crust beneath the North Patagonian Massif, leading to large-388 scale access of heat to the middle crust. It was suggested that this could have lead to

389 promulgation of the slab break-off towards the north along the Gondwana margin,

390 where the magmatism of the Permo-Triassic Choiyoi Group may be more closely

391 related to east-directed subduction than to collision.

392

393 Some of the youngest rocks in this sector of West Gondwana are the accretionary 394 complexes forming the farthest outboard part of the margin (e.g., Vaughan and 395 Storey, 2000; Hervé and Fanning, 2003; Mortimer, 2004; Glen, 2005). These largely 396 formed after Gondwana was assembled and are semi-continuous from southern South 397 America to eastern Australia, ranging in age from Carboniferous to Cretaceous. 398 Detrital zircon studies show that he material within these complexes are of 399 Gondwanan origin (Hervé et al., 2003; Augustsson et al., 2006). Sepúlveda et al. 400 (2008) show that a relatively recent example, the Madre de Dios terrane (Fig. 4), 401 contains evidence of a Late Carboniferous-Early Permian mid-ocean ridge origin. The 402 terrane was accreted to the Gondwana margin during deformation in Late Triassic-403 Early Jurassic times, called the Chonide orogeny (Hervé et al., 2003; Sepúlveda et al., 404 2008) in Patagonia, but which was part of a global event (Vaughan and Livermore, 405 2005). 406

407 4.2 South Africa

408

409 The Cape Fold Belt of South Africa (e.g., Johnston, 2000) (including the Falkland

410 Islands block (Mitchell et al., 1986; Storey et al., 1999)), together with the Sierra de la

411 Ventana of eastern Argentina (e.g., Rapela et al., 2003) and the Ellsworth Mountains

412 of West Antarctica (e.g., Curtis, 2001), forms the central part of the margin of West

413 Gondwana. The basement consists of the 2000-1000 Ma metamorphic volcano-

| 414 | sedimentary rocks of the Namaqua-Natal belt (e.g., Dewey et al., 2006; Eglington,        |
|-----|------------------------------------------------------------------------------------------|
| 415 | 2006; McCourt et al., 2006), which was deformed during late Neoproterozoic to early      |
| 416 | Palaeozoic Gondwana amalgamation (e.g., Jacobs et al., 2003). The Phanerozoic            |
| 417 | continental margin sedimentary succession is represented by the 6-10 km thick,           |
| 418 | siliciclastic Cape Supergroup (Broquet, 1992; Barnett et al., 1997) and subsequent       |
| 419 | glacial, marine and terrestrial-fluvial successions of the Karoo Supergroup, which       |
| 420 | includes the Dwyka, Ecca, Beaufort and Stormberg lithostratigraphic units                |
| 421 | (Catuneanu et al., 2005). The sedimentary succession ranges in age from                  |
| 422 | Neoproterozoic to mid-Jurassic, terminated by basin-wide basaltic volcanism of the       |
| 423 | Karoo Igneous Province (e.g., Duncan et al., 1997). This sector of the margin appears    |
| 424 | to represent a passive margin during the Early Palaeozoic (Shone and Booth, 2005),       |
| 425 | with the accumulation of predominantly reworked continental sedimentary deposits         |
| 426 | (the 'Samfrau Geosyncline' (Du Toit, 1937)). It was deformed by the Gondwanide           |
| 427 | Orogeny in the Late Permian-Early Triassic (e.g., Johnston, 2000). This major fold       |
| 428 | belt is often modelled as an intraplate orogen representing far-field-deformation        |
| 429 | related to distant subduction (e.g., Johnston, 2000), although Dalziel et al. (2000)     |
| 430 | suggested that flattening of the subduction zone could have been driven by interaction   |
| 431 | with mantle plume that was subsequently responsible for continental break-up.            |
| 432 | However, a recent re-evaluation by Pankhurst et al. (2006), using data from the South    |
| 433 | American, Sierra de la Ventana section of the fold belt, supports a possible collisional |
| 434 | origin.                                                                                  |
| 435 |                                                                                          |

436 4.3 West Antarctica

West Antarctica was originally split into four (Dalziel and Elliot, 1982), or five
(Storey et al., 1988), tectonic blocks. The innermost of these is the EllsworthWhitmore mountains block, which has sedimentological affinities to the Cape Fold
Belt of South Africa (Curtis et al., 1999; Curtis, 2001). It preserves a passive margin
volcano-sedimentary succession that ranges from the Cambrian to the Permo-Triassic
and may have been derived from the Natal embayment (Randall and Mac Niocaill,
2004).

445

446 Recent reassessments of the large-scale structure of West Antarctica suggests that the 447 remaining blocks of West Antarctica can be subdivided into at least three main terrane 448 belts that appear to be continuous from the New Zealand sector of East Gondwana to 449 the Antarctic Peninsula (Pankhurst et al., 1998b; Vaughan and Storey, 2000). The 450 innermost and oldest of these is termed the Ross province in West Antarctica and 451 called the Eastern Domain in the Antarctic Peninsula (Vaughan and Storey, 2000). 452 The Hf-isotope composition of inherited zircons in Late Palaeozoic–Mesozoic 453 granites, migmatites and paragneisses from the Antarctic Peninsula show that they are 454 derived from Mesoproterozoic sources and have been taken to suggest that this 455 domain is underlain by crust of that age (e.g., Flowerdew et al., 2006). The oldest 456 rocks of this Palaeozoic ocean-marginal domain are the Ordovician turbidite 457 sequences of the Swanson Formation of Marie Byrd Land (Pankhurst et al., 1998b). 458 These have no equivalents elsewhere in West Antarctica although turbidites of similar 459 age are seen in the Robertson Bay terrane of Victoria Land in East Gondwana (Stump, 460 1995). These are intruded by the Ford Granodiorite in Marie Byrd Land, which are 461 equivalent in age to the older granitoids from Target Hill in the northern Antarctic 462 Peninsula (Millar et al., 2002). A suite of granitoids emplaced between 340 and 320

463 million years ago (Pankhurst et al., 1998b) are widely developed in Marie Byrd Land 464 and are also seen at Target Hill in the northern Antarctic Peninsula (Millar et al., 465 2002). Although not developed in Marie Byrd Land, the Eastern Domain in the 466 Antarctic Peninsula contains a sequence of Middle Jurassic Gondwana break-up 467 rhyolite volcanic rocks, the Ellsworth Land Volcanic Group (Hunter et al., 2006b), 468 and an Early Jurassic to Cretaceous (Willan and Hunter, 2005; Hunter et al., 2006a) 469 sequence of deep and shallow marine clastic sedimentary rocks called the Latady 470 Group (Laudon et al., 1983; Hunter and Cantrill, 2006). The latest event seen in this domain is the mid-Cretaceous emplacement of arc plutons of the voluminous Lassiter 471 472 Coast Intrusive Suite (e.g., Flowerdew et al., 2005).

473

474 Outboard of the Ross Province/Eastern Domain is a series of magmatic arc terranes 475 termed the Amundsen Province in Marie Byrd Land (Pankhurst et al., 1998b) and the 476 Central Domain in the Antarctic Peninsula (Vaughan and Storey, 2000). The 477 Amundsen Province and Central Domain are largely magmatic and show many 478 similarities in compositional types and in timing of magmatic emplacement (Vaughan 479 and Storey, 2000). Plutonism appears to have peaked in three discrete episodes in the 480 Late Triassic, mid-Jurassic, and Late Jurassic to Early Cretaceous (Leat et al., 1995; 481 Vaughan and Storey, 2000). Recent geophysical data from the Antarctic Peninsula 482 suggest that the Central Domain is composite and made up of smaller terranes 483 (Ferraccioli et al., 2006). So far, a mafic eastern Central Domain and a granitic 484 western Central Domain have been identified (Ferraccioli et al., 2006). Major 485 deformational episodes affected the Central Domain in Late Triassic-early Jurassic 486 and mid-Cretaceous times (Vaughan et al., 2002a; Vaughan et al., 2002b; Vaughan 487 and Livermore, 2005).

| 489 | The outermost of the West Antarctic terrane belts is termed the Western Domain in     |
|-----|---------------------------------------------------------------------------------------|
| 490 | the Antarctic Peninsula (Vaughan and Storey, 2000). It has no equivalent in Marie     |
| 491 | Byrd Land although similar accretionary complex terranes are developed in New         |
| 492 | Zealand and in southern South America (Vaughan and Storey, 2000). Accretionary        |
| 493 | complex rocks range in age from Late Carboniferous (Kelly et al., 2001) to Late       |
| 494 | Cretaceous (Vaughan and Storey, 2000). The Western Domain in the Antarctic            |
| 495 | Peninsula was affected by deformation in the Late Triassic-early Jurassic and in the  |
| 496 | mid-Cretaceous (Vaughan and Livermore, 2005).                                         |
| 497 |                                                                                       |
| 498 | 5. Adjacent parts of the oceanic margin of East Gondwana                              |
| 499 |                                                                                       |
| 500 | 5.1 New Zealand                                                                       |
| 501 |                                                                                       |
| 502 | The New Zealand sector of the eastern Gondwana margin (e.g. Mortimer, 2004;           |
| 503 | Wandres and Bradshaw, 2005) is made up of a collage of terranes, composed of          |
| 504 | basement rocks ranging in age from early Cambrian to late Early Cretaceous. These     |
| 505 | can be grouped into three provinces, the Western Province, the Median Province, and   |
| 506 | the Eastern Province (Coombs et al., 1976; Bishop et al., 1985; Bradshaw, 1989). The  |
| 507 | Western Province is made up of two terranes that formed the Palaeozoic margin of      |
| 508 | East Gondwana and largely consist of lower Palaeozoic metasedimentary rocks cut by    |
| 509 | series of Devonian, Carboniferous and Early Cretaceous granite plutons (e.g., Cooper, |
| 510 | 1989; Muir et al., 1996; Waight et al., 1998). In addition there are some minor       |
| 511 | volcanic and metamorphic rocks of Cambrian age (e.g., Münker and Crawford, 2000).     |
| 512 | The Median Province is largely magmatic and consists of suites of Carboniferous to    |

| 513 | Early Cretaceous subduction-related arc plutons with subordinate volcanic and          |
|-----|----------------------------------------------------------------------------------------|
| 514 | sedimentary rocks (e.g., Muir et al., 1998; Mortimer et al., 1999). The Eastern        |
| 515 | Province (e.g., Mortimer, 2004; Wandres and Bradshaw, 2005) consists of arc, fore-     |
| 516 | arc and accretionary complex rocks that formed and accumulated during Permian to       |
| 517 | Cretaceous plate convergence and subduction. These have been subdivided into up to     |
| 518 | 13 terranes, several of which are grouped into a Torlesse Superterrane (Campbell,      |
| 519 | 2000). As pointed out by Wandres and Bradshaw (2005) the bulk of New Zealand           |
| 520 | continental crust is submerged by the sea. Adams (2008) examines the terrane           |
| 521 | evidence from this hidden area by studying Rb-Sr metamorphic and U-Pb detrital         |
| 522 | zircon ages from the emergent island parts of the submerged continental crust, called  |
| 523 | "Zealandia". The data show that the Campbell Plateau segment of Zealandia has clear    |
| 524 | affinities with the Western Province/Ross Province and the Median                      |
| 525 | Province/Amundsen Province, with little evidence for extension of the Eastern          |
| 526 | Province.                                                                              |
| 527 |                                                                                        |
| 528 | 5.2 Victoria Land and the Transantarctic Mountains                                     |
| 529 |                                                                                        |
| 530 | Although strictly part of East Gondwana, the Transantarctic Mountains are important    |
| 531 | because they both acted as a source for sediments deposited in West Gondwana,          |
| 532 | particularly in West Antarctica (e.g., Flowerdew et al., 2006), and were themselves a  |
| 533 | sedimentary sink for sediments derived from West Gondwana in Late Palaeozoic and       |
| 534 | Early Mesozoic times (e.g., Elliot and Fanning, 2007). At their most northerly extent, |
| 535 | in Northern Victoria Land, the Transantarctic Mountains are composed of Cambrian       |
| 536 | and Ordovician terranes amalgamated during the Ross Orogeny (recently reviewed by      |
| 537 | Tessensohn and Henjes-Kunst, 2005). The main part of the Transantarctic Mountains      |

| 538                                                                       | is underlain by Neoproterozoic, and possibly older (e.g., Fanning et al., 1996;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 539                                                                       | Fitzsimons, 2003), basement, intruded by granitoid plutons of the Ross Orogeny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 540                                                                       | (Stump, 1995). This is unconformably overlain by the quartzose sandstones of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 541                                                                       | Devonian Taylor Group (Isbell, 1999). The Taylor Group was deformed by the end-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 542                                                                       | Palaeozoic Gondwanan orogeny (Cawood, 2005) and is in turn unconformably                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 543                                                                       | overlain by the Permo-Triassic glacial, marine, terrestrial and fluvial sedimentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 544                                                                       | rocks of the Victoria Group (Collinson et al., 1994). This upper sedimentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 545                                                                       | sequence was intruded in the Lower Jurassic by sills and dikes of Ferrar Dolerite (e.g.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 546                                                                       | Hergt et al., 1991) with co-magmatic overlying basaltic pyroclastic rocks (e.g., Elliot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 547                                                                       | and Hanson, 2001) and Kirkpatrick Basalt flood lavas (e.g., Elliot et al., 1999).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 548                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 549                                                                       | 6. Concluding remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 550                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 551                                                                       | The longevity and extent of the Gondwana margin has ensured that it has remained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 552                                                                       | the subject of intense study for over seventy years. It was one of the birthplaces of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 552<br>553                                                                | the subject of intense study for over seventy years. It was one of the birthplaces of terrane theory (e.g., Vaughan et al., 2005b) and it continues to be a proving ground for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 552<br>553<br>554                                                         | the subject of intense study for over seventy years. It was one of the birthplaces of terrane theory (e.g., Vaughan et al., 2005b) and it continues to be a proving ground for theories of supercontinental amalgamation (e.g., Cawood, 2005) and break-up (e.g.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 552<br>553<br>554<br>555                                                  | the subject of intense study for over seventy years. It was one of the birthplaces of<br>terrane theory (e.g., Vaughan et al., 2005b) and it continues to be a proving ground for<br>theories of supercontinental amalgamation (e.g., Cawood, 2005) and break-up (e.g.,<br>Rapela et al., 2005; Veevers, 2005; Willan and Hunter, 2005).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 552<br>553<br>554<br>555<br>556                                           | the subject of intense study for over seventy years. It was one of the birthplaces of<br>terrane theory (e.g., Vaughan et al., 2005b) and it continues to be a proving ground for<br>theories of supercontinental amalgamation (e.g., Cawood, 2005) and break-up (e.g.,<br>Rapela et al., 2005; Veevers, 2005; Willan and Hunter, 2005).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 552<br>553<br>554<br>555<br>556<br>557                                    | the subject of intense study for over seventy years. It was one of the birthplaces of<br>terrane theory (e.g., Vaughan et al., 2005b) and it continues to be a proving ground for<br>theories of supercontinental amalgamation (e.g., Cawood, 2005) and break-up (e.g.,<br>Rapela et al., 2005; Veevers, 2005; Willan and Hunter, 2005). An interesting question is the one of translation of terranes along the Gondwana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 552<br>553<br>554<br>555<br>556<br>557<br>558                             | the subject of intense study for over seventy years. It was one of the birthplaces of<br>terrane theory (e.g., Vaughan et al., 2005b) and it continues to be a proving ground for<br>theories of supercontinental amalgamation (e.g., Cawood, 2005) and break-up (e.g.,<br>Rapela et al., 2005; Veevers, 2005; Willan and Hunter, 2005). An interesting question is the one of translation of terranes along the Gondwana<br>margin. Cawood et al.(2002) have shown evidence for translations of thousands of                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 552<br>553<br>554<br>555<br>556<br>557<br>558<br>559                      | the subject of intense study for over seventy years. It was one of the birthplaces of<br>terrane theory (e.g., Vaughan et al., 2005b) and it continues to be a proving ground for<br>theories of supercontinental amalgamation (e.g., Cawood, 2005) and break-up (e.g.,<br>Rapela et al., 2005; Veevers, 2005; Willan and Hunter, 2005). An interesting question is the one of translation of terranes along the Gondwana<br>margin. Cawood et al.(2002) have shown evidence for translations of thousands of<br>kilometres along the Gondwana margin from the Permian to the Cretaceous, and this                                                                                                                                                                                                                                                                                                                                                     |
| 552<br>553<br>554<br>555<br>556<br>557<br>558<br>559<br>560               | <ul> <li>the subject of intense study for over seventy years. It was one of the birthplaces of</li> <li>terrane theory (e.g., Vaughan et al., 2005b) and it continues to be a proving ground for</li> <li>theories of supercontinental amalgamation (e.g., Cawood, 2005) and break-up (e.g.,</li> <li>Rapela et al., 2005; Veevers, 2005; Willan and Hunter, 2005).</li> <li>An interesting question is the one of translation of terranes along the Gondwana</li> <li>margin. Cawood et al.(2002) have shown evidence for translations of thousands of</li> <li>kilometres along the Gondwana margin from the Permian to the Cretaceous, and this</li> <li>idea has been inherent in some treatments of the older Palaeozoic tectonics. Structural</li> </ul>                                                                                                                                                                                         |
| 552<br>553<br>554<br>555<br>556<br>557<br>558<br>559<br>560<br>561        | the subject of intense study for over seventy years. It was one of the birthplaces of<br>terrane theory (e.g., Vaughan et al., 2005b) and it continues to be a proving ground for<br>theories of supercontinental amalgamation (e.g., Cawood, 2005) and break-up (e.g.,<br>Rapela et al., 2005; Veevers, 2005; Willan and Hunter, 2005).<br>An interesting question is the one of translation of terranes along the Gondwana<br>margin. Cawood et al.(2002) have shown evidence for translations of thousands of<br>kilometres along the Gondwana margin from the Permian to the Cretaceous, and this<br>idea has been inherent in some treatments of the older Palaeozoic tectonics. Structural<br>evidence suggests that large scale strike-slip faults exist (e.g. Vaughan and Storey,                                                                                                                                                              |
| 552<br>553<br>554<br>555<br>556<br>557<br>558<br>559<br>560<br>561<br>562 | <ul> <li>the subject of intense study for over seventy years. It was one of the birthplaces of</li> <li>terrane theory (e.g., Vaughan et al., 2005b) and it continues to be a proving ground for</li> <li>theories of supercontinental amalgamation (e.g., Cawood, 2005) and break-up (e.g.,</li> <li>Rapela et al., 2005; Veevers, 2005; Willan and Hunter, 2005).</li> <li>An interesting question is the one of translation of terranes along the Gondwana</li> <li>margin. Cawood et al.(2002) have shown evidence for translations of thousands of</li> <li>kilometres along the Gondwana margin from the Permian to the Cretaceous, and this</li> <li>idea has been inherent in some treatments of the older Palaeozoic tectonics. Structural</li> <li>evidence suggests that large scale strike-slip faults exist (e.g. Vaughan and Storey,</li> <li>2000). Some support for large-scale translation can be derived from zircon data</li> </ul> |

| 563 | although the only | way that these | movements can b | be confirmed or | quantified is b | ν |
|-----|-------------------|----------------|-----------------|-----------------|-----------------|---|
|     |                   |                |                 |                 |                 | ~ |

564 multidisciplinary studies that include palaeomagnetic analysis and interpretation.

565

#### 566 Acknowledgements

- 567 The authors would like to thank Brendan Murphy and Carlos Rapela for thoughtful
- and constructive reviews, and M. Santosh for editorial assistance.
- 569 **References**
- 570

| 571 | Aceñolaza, F.G., Miller, H. and Toselli, A.J., 2002. Proterozoic–Early Paleozoic |
|-----|----------------------------------------------------------------------------------|
| 572 | evolution in western South America: a discussion. Tectonophysics 354, 121-       |
| 573 | 137.                                                                             |
| 574 | Adams, C.J., 2008. Paleozoic terranes at the Pacific Ocean margin of Zealandia.  |
|     |                                                                                  |

- 575 Gondwana Research 13, xx-xx, d.o.i. xxxxx (this issue).
- Alonso, J.L., Gallastegui, J., Garcia-Sansegundo, J., Farias, P., Rodriguez Fernandez,
  R. and Ramos, V.A., 2008. Extensional tectonics and gravitational collapse in
  an Ordovician passive margin: the western Argentine Precordillera. Gondwana
  Research 13, xx-xx, d.o.i. 10.1016/j.gr.2007.05.014 (this issue).
- Astini, R.A., Benedetto, J.L. and Vaccari, N.E., 1995. The Early Paleozoic evolution
  of the Argentine Precordillera as a Laurentian rifted, drifted, and collided
  terrane: a geodynamic model. Geological Society of America Bulletin 107,
  253–273.
- Astini, R.A., Thomas, W.A. and Yochelson, E.L., 2004. Salterella in the Argentine
  Precordillera: an Early Cambrian palaeobiogeographic indicator of Laurentian
  affinity. Palaeogeography Palaeoclimatology Palaeoecology 213, 125–132.
- Augustsson, C., Münker, C., Bahlburg, H. and Fanning, C.M., 2006. Provenance of
  late Palaeozoic metasediments of the SW South American Gondwana margin:
  a combined U-Pb and Hf-isotope study of single detrital zircons. Journal of the
  Geological Society 163, 983–995.
- Barnett, W., Armstrong, R.A. and deWit, M.J., 1997. Stratigraphy of the upper
  Neoproterozoic Kango and lower Palaeozoic Table Mountain Groups of the
  Cape Fold Belt revisited. South African Journal of Geology 100, 237–250.
- Basei, M.A.S., Frimmel, H.E., Nutman, A.P., Preciozzi, F. and Jacob, J., 2005. A
  connection between the Neoproterozoic Dom Feliciano (Brazil/Uruguay) and
  Gariep (Namibia/South Africa) orogenic belts evidence from a
  reconnaissance provenance study. Precambrian Research 139, 195–221.
- Benedetto, J.L., 1998. Early Palaeozoic brachiopods and associated shelly faunas
  from western Gondwana: their bearing on the geodynamic history of the preAndean margin. In: Pankhurst, R.J. and Rapela, C.W. (Eds.) The ProtoAndean Margin of Gondwana. Special Publication of the Geological Society,
  London, vol. 142, pp. 57–83.
- Bishop, D.G., Bradshaw, J.D. and Landis, C.A., 1985. Provisional terrane map of
  South Island, New Zealand. In: Howell, D.G. (Ed.) Tectonostratigraphic

| 605 | terranes. Circum-Pacific Council for Energy and Mineral Resources Earth               |
|-----|---------------------------------------------------------------------------------------|
| 606 | Science Series No. 1., Houston, Texas, pp. 515–521.                                   |
| 607 | Bradshaw, J.D., 1989. Cretaceous geotectonic patterns in the New Zealand region.      |
| 608 | Tectonics 8, 803–820.                                                                 |
| 609 | Brito Neves, B.B., Neto, M.D.C. and Fuck, R.A., 1999. From Rodinia to Western         |
| 610 | Gondwana: An approach to the Brasiliano-Pan African Cycle and orogenic                |
| 611 | collage. Episodes 22, 155–166.                                                        |
| 612 | Broquet, C.A.M., 1992. The sedimentary record of the Cape Supergroup: a review. In:   |
| 613 | de Wit, M.J. and Ransome, I.G.D. (Eds.) Inversion tectonics of the Cape Fold          |
| 614 | Belt, Karoo and Cretaceous Basins of Southern Africa. Balkema, Rotterdam,             |
| 615 | pp. 159–183.                                                                          |
| 616 | Campbell, H.J., 2000. The marine Permian of New Zealand. In: Yin, H., Dickins,        |
| 617 | J.M., Shi, G.R. and Tong, T. (Eds.) Permian-Triassic evolution of Tethys and          |
| 618 | the western Circum-Pacific. Elsevier Science Publishers B.V., Amsterdam, pp.          |
| 619 | 111–125.                                                                              |
| 620 | Casquet, C., Baldo, E., Pankhurst, R.J., Rapela, C.W., Galindo, C., Fanning, C.M. and |
| 621 | Saavedra, J., 2001. Involvement of the Argentine Precordillera terrane in the         |
| 622 | Famatinian mobile belt: U-Pb SHRIMP and metamorphic evidence from the                 |
| 623 | Sierra de Pie de Palo. Geology 29, 703–706.                                           |
| 624 | Casquet, C., Pankhurst, R.J., Rapela, C.W., Galindo, C., Dahlquist, J., Baldo, E.,    |
| 625 | Saavedra, J., Casado, J.M.G. and Fanning, C.M., 2005. Grenvillian massif-             |
| 626 | type anorthosites in the Sierras Pampeanas. Journal of the Geological Society         |
| 627 | 162, 9–12.                                                                            |
| 628 | Casquet, C., Pankhurst, R.J., Fanning, C.M., Baldo, E., Galindo, C., Rapela, C.W.,    |
| 629 | Gonzalez-Casado, J.M. and Dahlquist, J.A., 2006. U-Pb SHRIMP zircon                   |
| 630 | dating of Grenvillian metamorphism in Western Sierras Pampeanas                       |
| 631 | (Argentina): Correlation with the Arequipa-Antofalla craton and constraints on        |
| 632 | the extent of the Precordillera Terrane. Gondwana Research 9, 524–529.                |
| 633 | Casquet, C., Pankhurst, R.J., Rapela, C.W., Galindo, C., Fanning, C.M., Chiaradia,    |
| 634 | M., Baldo, E., Gonzalez-Casado, J.M. and Dahlquist, J.A., 2007. The Maz               |
| 635 | terrane: a Mesoproterozoic domain in the Western Sierras Pampeanas                    |
| 636 | (Argentina) equivalent to the Arequipa-Antofalla block of southern Perú?              |
| 637 | Implications for Western Gondwana margin evolution. Gondwana Research                 |
| 638 | 13, xx-xx, d.o.i. 10.1016/j.gr.2007.04.005 (this issue).                              |
| 639 | Castro de Machuca, B., Arancibia, G., Morata, D., Belmar, M., Previley, L. and        |
| 640 | Pontoriero, S., 2008. P-T-t evolution of an Early Silurian medium-grade shear         |
| 641 | zone on the west side of the Famatinian arc, Argentina: implications for the          |
| 642 | assembly of the Western Gondwana margin. Gondwana Research 13, xx-xx,                 |
| 643 | d.o.i. 10.1016/j.gr.2007.05.005 (this issue).                                         |
| 644 | Catuneanu, O., Wopfner, H., Eriksson, P.G., Cairncross, B., Rubidge, B.S., Smith,     |
| 645 | R.M.H. and Hancox, P.J., 2005. The Karoo basins of south-central Africa.              |
| 646 | Journal of African Earth Sciences 43, 211–253.                                        |
| 647 | Cawood, P.A., Landis, C.A., Nemchin, A.A. and Hada, S., 2002. Permian                 |
| 648 | fragmentation, accretion and subsequent translation of a low-latitude Tethyan         |
| 649 | seamount to the high-latitude east Gondwana margin: evidence from detrital            |
| 650 | zircon age data. Geological Magazine 139, 131–144.                                    |
| 651 | Cawood, P.A., 2005. Terra Australis Orogen: Rodinia breakup and development of        |
| 652 | the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and             |
| 653 | Paleozoic. Earth-Science Reviews 69, 249–279.                                         |

| 654 | Chernicoff, C.J. and Caminos, R., 1996. Estructura y relaciones estratigráficas de la  |
|-----|----------------------------------------------------------------------------------------|
| 655 | Formación Nahuel Niyeu, Macizo Norpatagónico oriental, Provincia de Río                |
| 656 | Negro. Revista de la Asociación Geológica Argentina 51, 201–212.                       |
| 657 | Chernicoff, C.J., Zappettini, E.O., Santos, J.O.S., Griffin, W. and McNaughton, N.J.,  |
| 658 | 2007. Foreland basin deposits associated with Cuyania Terrane accretion in La          |
| 659 | Pampa province, Argentina. Gondwana Research 13, xx-xx, d.o.i.                         |
| 660 | 10.1016/j.gr.2007.04.006 (this volume).                                                |
| 661 | Cingolani, C.A., Llambías, E.J., Basei, M.A.S., Varela, R., Chemale, F., Jr. and Abre, |
| 662 | P., 2005. Grenvillian and Famatinian-age igneous events in the San Rafael              |
| 663 | Block, Mendoza Province, Argentina: geochemical and isotopic constraints.              |
| 664 | In: Pankhurst, R.J. and Veiga, G. (Eds.) Gondwana 12: Geological and                   |
| 665 | biological heritage of Gondwana. Academia Nacional de Ciencias, Córdoba,               |
| 666 | Argentina, pp. 102.                                                                    |
| 667 | Collinson, J.W., Isbell, J.L., Elliot, D.H., Miller, M.F., Miller, J.M.G. and Veevers, |
| 668 | J.J., 1994. Permian-Triassic Transantarctic basin. In: Veevers, J.J. and Powell,       |
| 669 | C.M. (Eds.) Permian-Triassic Pangean basins and foldbelts along the                    |
| 670 | Panthalassan margin of Gondwana. Geological Society of America Memoir,                 |
| 671 | vol. 184, pp. 173–221.                                                                 |
| 672 | Coombs, D.S., Landis, C.A., Norris, R.J., Sinton, J.M., Borns, D.J. and Craw, D.,      |
| 673 | 1976. The Dun Mountain ophiolite belt, New Zealand, its tectonic setting,              |
| 674 | constitution, and origin, with special reference to the southern portion.              |
| 675 | American Journal of Science 276, 561–603.                                              |
| 676 | Cooper, R.A., 1989. Early Paleozoic terranes of New Zealand. Journal of the Royal      |
| 677 | Society of New Zealand 19, 73–112.                                                     |
| 678 | Cordani, U.G., Brito-Neves, B.B. and D'Agrella, M.S., 2003. From Rodinia to            |
| 679 | Gondwana: A review of the available evidence from South America.                       |
| 680 | Gondwana Research 6, 275–283.                                                          |
| 681 | Curtis, M.L., Leat, P.T., Riley, T.R., Storey, B.C., Millar, I.L. and Randall, D.E.,   |
| 682 | 1999. Middle Cambrian rift-related volcanism in the Ellsworth Mountains,               |
| 683 | Antarctica: tectonic implications for the palaeo- Pacific margin of Gondwana.          |
| 684 | Tectonophysics 304, 275–299.                                                           |
| 685 | Curtis, M.L., 2001. Tectonic history of the Ellsworth Mountains, West Antarctica:      |
| 686 | reconciling a Gondwana enigma. Geological Society of America Bulletin 113,             |
| 687 | 939–958.                                                                               |
| 688 | Dalziel, I.W.D. and Elliot, D.H., 1982. West Antarctica: problem child of              |
| 689 | Gondwanaland. Tectonics 1, 3–19.                                                       |
| 690 | Dalziel, I.W.D., Lawver, L.A. and Murphy, J.B., 2000. Plumes, orogenesis, and          |
| 691 | supercontinental fragmentation. Earth and Planetary Science Letters 178, 1–            |
| 692 | 11.                                                                                    |
| 693 | Dewey, J.F., Robb, L. and Van Schalkwyk, L., 2006. Did Bushmanland extensionally       |
| 694 | unroof Namaqualand? Precambrian Research 150, 173–182.                                 |
| 695 | Du Toit, A.L., 1937. Our Wandering Continents, an Hypothesis of Continental            |
| 696 | Drifting. Oliver & Boyd, Edinburgh and London. 366 pp.                                 |
| 697 | Duncan, R.A., Hooper, P.R., Rehacek, J., Marsh, J.S. and Duncan, A.R., 1997. The       |
| 698 | timing and duration of the Karoo igneous event, southern Gondwana. Journal             |
| 699 | of Geophysical Research-Solid Earth 102, 18127–18138.                                  |
| 700 | Eglington, B.M., 2006. Evolution of the Namaqua-Natal Belt, southern Africa - A        |
| /01 | geochronological and isotope geochemical review. Journal of African Earth              |
| 702 | Sciences 46, 93–111.                                                                   |

| 703 | Elliot, D.H., Fleming, T.H., Kyle, P.R. and Foland, K.A., 1999. Long-distance         |
|-----|---------------------------------------------------------------------------------------|
| 704 | transport of magmas in the Jurassic Ferrar large igneous province, Antarctica.        |
| 705 | Earth and Planetary Science Letters 167, 89–104.                                      |
| 706 | Elliot, D.H. and Hanson, R.E., 2001. Origin of widespread, exceptionally thick        |
| 707 | basaltic phreatomagmatic tuff breccia in the Middle Jurassic Prebble and              |
| 708 | Mawson Formations, Antarctica. Journal of Volcanology and Geothermal                  |
| 709 | Research 111, 183–201.                                                                |
| 710 | Elliot, D.H. and Fanning, C.M., 2007. Shackleton Glacier region, Antarctica: evidence |
| 711 | for multiple sources along the Gondwana plate margin. Gondwana Research               |
| 712 | 13, xx-xx, d.o.i. 10.1016/j.gr.2007.05.003 (this volume).                             |
| 713 | Escayola, M.P., Pimentel, M.M. and Armstrong, R.A., 2007. Neoproterozoic backarc      |
| 714 | basin: Sensitive high-resolution ion microprobe U-Pb and Sm-Nd isotopic               |
| 715 | evidence from the Eastern Pampean Ranges, Argentina. Geology 35, 495–498.             |
| 716 | Fanning, C.M., Moore, D.H., Bennett, V.C. and Daly, S.J., 1996. The "Mawson           |
| 717 | Continent": Archaean to Proterozoic crust in East Antarctica and the Gawler           |
| 718 | Craton, Australia: A cornerstone in Rodinia and Gondwana. Geological                  |
| 719 | Society of Australia, Abstracts 41, 135.                                              |
| 720 | Fanning, C.M., Pankhurst, R.J., Rapela, C.W., Baldo, E.G., Casquet, C. and Galindo,   |
| 721 | C., 2004. K-bentonites in the Argentine Precordillera contemporaneous with            |
| 722 | rhyolite volcanism in the Famatinian Arc. Journal of the Geological Society,          |
| 723 | London 161, 747–756.                                                                  |
| 724 | Ferraccioli, F., Jones, P.C., Vaughan, A.P.M. and Leat, P.T., 2006. New               |
| 725 | aerogeophysical view of the Antarctic Peninsula: More pieces, less puzzle.            |
| 726 | Geophysical Research Letters 33.                                                      |
| 727 | Finney, S.C., Peralta, S.H., Gehrels, G.E. and Marsaglia, K.M., 2005. The Early       |
| 728 | Paleozoic history of the Cuyania (greater Precordillera) terrane of western           |
| 729 | Argentina: evidence from geochronology of detrital zircons from Middle                |
| 730 | Cambrian sandstones. Geologica Acta 3, 339–354.                                       |
| 731 | Fischel, D.P., Pimentel, M.M., Fuck, R.A. and Armstrong, R., 2001. U-Pb SHRIMP        |
| 732 | and Sm-Nd geochronology of the Silvânia Volcanics and Jurubatuba Granite:             |
| 733 | juvenile Paleoproterozoic crust in the basement of the Neoproterozoic Brasília        |
| 734 | Belt, Goiás, central Brazil. Anais da Academia Brasileira de Ciências 73, 445–        |
| 735 | 460, 10.1590/S0001-37652001000300012.                                                 |
| 736 | Fitzsimons, I.C.W., 2003. Proterozoic basement provinces of southern and              |
| 737 | southwestern Australia and their correlation with Antarctica. In: Yoshida, M.         |
| 738 | and Windley, B.F. (Eds.) Proterozoic East Gondwana: Supercontinent                    |
| 739 | assembly and breakup. Special Publications of the Geological Society,                 |
| 740 | London, vol. 206, pp. 93–130.                                                         |
| 741 | Flowerdew, M.J., Millar, I.L., Vaughan, A.P.M. and Pankhurst, R.J., 2005. Age and     |
| 742 | tectonic significance of the Lassiter Coast Intrusive Suite, Eastern Ellsworth        |
| 743 | Land, Antarctic Peninsula. Antarctic Science 17, 443–452.                             |
| 744 | Flowerdew, M.J., Millar, I.L., Vaughan, A.P.M., Horstwood, M.S.A. and Fanning,        |
| 745 | C.M., 2006. The source of granific gneisses and migmatites in the Antarctic           |
| 746 | Peninsula: a combined U-Pb SHRIMP and laser ablation Hf isotope study of              |
| /4/ | complex zircons. Contributions to Mineralogy and Petrology 151, 751–768.              |
| /48 | Galindo, C., Casquet, C., Rapela, C., Pankhurst, R.J., Baldo, E. and Saavedra, J.,    |
| /49 | 2004. Sr, C and O isotope geochemistry and stratigraphy of Precambrian and            |
| /50 | Iower Paleozoic carbonate sequences from the Western Sierras Pampeanas of             |
| /51 | Argentina: tectonic implications. Precambrian Research 131, 55–71.                    |

| 752 | Geuna, S.E., Escosteguy, L.D. and Miró, R., 2007. Palaeomagnetism of the Late         |
|-----|---------------------------------------------------------------------------------------|
| 753 | Devonian - Early Carboniferous Achala Batholith, Córdoba, central Argentina:          |
| 754 | implications for the apparent polar wander path of Gondwana. Gondwana                 |
| 755 | Research 13, xx-xx, d.o.i. 10.1016/j.gr.2007.05.006 (this volume).                    |
| 756 | Glen, R.A., 2005. The Tasmanides of eastern Australia: 600 million years of           |
| 757 | interaction between the proto-Pacific plate and the Australian sector of              |
| 758 | Gondwana, In: Vaughan, A.P.M., Leat, P.T. and Pankhurst, R.J. (Eds.)                  |
| 759 | Terrane Processes at the Margins of Gondwana, Geological Society, London,             |
| 760 | Special Publications vol 246 pp 23–96                                                 |
| 761 | Guereschi A B and Martino R D 2008 Field and textural evidence of two                 |
| 762 | migmatization events in the Sierras de Córdoba Argentina Gondwana                     |
| 763 | Research 13 xx-xx doi xxxxx (this volume)                                             |
| 764 | Heredia N 2002 Upper Llanvirn-Lower Caradoc conodont biostratigraphy                  |
| 765 | southern Mendoza Argentina In: Aceñolaza E.G. (Ed.) Aspects of the                    |
| 765 | Ordovician System in Argentina, Serie Correlación Geológica, vol. 16, pp.             |
| 700 | 167 176                                                                               |
| 769 | 10/-1/0.<br>Heret IM Posto DW and Hawkesworth C I 1001 The netrogenesis of Mesozoia   |
| 708 | Hergi, J.M., Peale, D.W. and Hawkesworth, C.J., 1991. The petrogenesis of Mesozoic    |
| /09 | Gondwana low-11 flood basalts. Earth and Planetary Science Letters 105,               |
| //0 | 134-148.                                                                              |
| //1 | Herve, F. and Fanning, C.M., 2003. Early Cretaceous subduction of continental crust   |
| 112 | at the Diego de Almagro archipelago, southern Chile. Episodes 26, 285–288.            |
| 773 | Herve, F., Fanning, C.M. and Pankhurst, R.J., 2003. Detrital zircon age patterns and  |
| 774 | provenance of the metamorphic complexes of southern Chile. Journal of South           |
| 775 | American Earth Sciences 16, 107–123.                                                  |
| 776 | Huff, W.D., Bergstrom, S.M., Kolata, D.R., Cingolani, C.A. and Astini, R.A., 1998.    |
| 777 | Ordovician K-bentonites in the Argentine Precordillera: relations to                  |
| 778 | Gondwana margin evolution. In: Pankhurst, R.J. and Rapela, C.W. (Eds.) The            |
| 779 | Proto-Andean Margin of Gondwana. Special Publication of the Geological                |
| 780 | Society, London, vol. 142, pp. 107–126.                                               |
| 781 | Hunter, M.A. and Cantrill, D.J., 2006. A new stratigraphy for the Latady Basin,       |
| 782 | Antarctic Peninsula, part 2: Latady Group and basin evolution. Geological             |
| 783 | Magazine 143, 797–819.                                                                |
| 784 | Hunter, M.A., Cantrill, D.J. and Flowerdew, M.J., 2006a. Latest Jurassic-earliest     |
| 785 | Cretaceous age for a fossil flora from the Latady Basin, Antarctic Peninsula.         |
| 786 | Antarctic Science 18, 261–264.                                                        |
| 787 | Hunter, M.A., Riley, T.R., Cantrill, D.J., Flowerdew, M.J. and Millar, I.L., 2006b. A |
| 788 | new stratigraphy for the Latady Basin, Antarctic Peninsula, part 1: Ellsworth         |
| 789 | Land Volcanic Group. Geological Magazine 143, 777–796.                                |
| 790 | Isbell, J.L., 1999. The Kukri Erosion Surface; a reassessment of its relationship to  |
| 791 | rocks of the beacon supergroup in the central Transantarctic Mountains,               |
| 792 | Antarctica. Antarctic Science 11, 228–238.                                            |
| 793 | Jacobs, J., Bauer, W. and Fanning, C.M., 2003. Late Neoproterozoic/Early Palaeozoic   |
| 794 | events in central Dronning Maud Land and significance for the southern                |
| 795 | extension of East African Orogen into East Antarctica. Precambrian Research           |
| 796 | 126, 27–53.                                                                           |
| 797 | Jacobs, J. and Thomas, R.J., 2004. Himalayan-type indenter-escape tectonics model     |
| 798 | for the southern part of the late Neoproterozoic-early Paleozoic East African-        |
| 799 | Antarctic orogen. Geology 32, 721–724.                                                |

| 800 | Johnston, S.T., 2000. The Cape Fold Belt and Syntaxis and the rotated Falkland          |
|-----|-----------------------------------------------------------------------------------------|
| 801 | Islands: dextral transpressional tectonics along the southwest margin of                |
| 802 | Gondwana. Journal of African Earth Sciences 31, 51–63.                                  |
| 803 | Kay, S.M., Ramos, V.A., Mpodozis, C. and Sruoga, P., 1989. Late Paleozoic to            |
| 804 | Jurassic Silicic Magmatism at the Gondwana Margin - Analogy to the Middle               |
| 805 | Proterozoic in North-America. Geology 17, 324–328.                                      |
| 806 | Kay, S.M., Orrell, S. and Abbruzzi, J.M., 1996. Zircon and whole rock Nd-Pb isotopic    |
| 807 | evidence for a Grenville age and a Laurentian origin for the basement of the            |
| 808 | Precordillera in Argentina. Journal of Geology 104, 637–648.                            |
| 809 | Kelly, S.R.A., Doubleday, P.A., Brunton, C.H.C., Dickins, J.M., Sevastopulo, G.D.       |
| 810 | and Taylor, P.D., 2001. First Carboniferous and ?Permian marine macrofaunas             |
| 811 | from Antarctica and their tectonic implications. Journal of the Geological              |
| 812 | Society, London 158, 219–232.                                                           |
| 813 | Laudon, T.S., Thomson, M.R.A., Williams, P.L., Miliken, K.L., Rowley, P.D. and          |
| 814 | Boyles, J.M., 1983. The Jurassic Latady Formation, southern Antarctic                   |
| 815 | Peninsula. In: Oliver, R., James, P.R. and Jago, J.B. (Eds.) Antarctic Earth            |
| 816 | Science. Australian Academy of Science, Canberra, pp. 398–414.                          |
| 817 | Leat, P.T., Scarrow, J.H. and Millar, I.L., 1995. On the Antarctic Peninsula batholith. |
| 818 | Geological Magazine 132, 399–412.                                                       |
| 819 | Liegeois, J.P., Latouche, L., Boughrara, M., Navez, J. and Guiraud, M., 2003. The       |
| 820 | LATEA metacraton (Central Hoggar, Tuareg shield, Algeria): behaviour of an              |
| 821 | old passive margin during the Pan-African orogeny. Journal of African Earth             |
| 822 | Sciences 37, 161–190.                                                                   |
| 823 | Lira, R. and Kirschbaum, A.M., 1990. Geochemical evolution of granites from the         |
| 824 | Achala batholith of the Sierras Pampeanas, Argentina. In: Kay, S.M. and                 |
| 825 | Rapela, C.W. (Eds.) Plutonism from Antarctica to Alaska. Geological Society             |
| 826 | of America Special Paper, vol. 241, pp. 67–76.                                          |
| 827 | Lucassen, F., Becchio, R., Wilke, H.G., Franz, G., Thirlwall, M.F., Viramonte, J. and   |
| 828 | Wemmer, K., 2000. Proterozoic-Paleozoic development of the basement of the              |
| 829 | Central Andes (18-26 degrees S) - a mobile belt of the South American craton.           |
| 830 | Journal of South American Earth Sciences 13, 697–715.                                   |
| 831 | McCourt, S., Armstrong, R.A., Grantham, G.H. and Thomas, R.J., 2006. Geology and        |
| 832 | evolution of the Natal belt, South Africa. Journal of African Earth Sciences 46,        |
| 833 | 71–92.                                                                                  |
| 834 | McDonough, M., Ramos, V.A., Isachsen, C. and Bowring, S., 1993. Edades                  |
| 835 | preliminares de circones del basamento de la Sierra de Pie de Palo, Sierras             |
| 836 | Pampeanas Occidentales de San Juan: sus implicáncias para el supercontinente            |
| 837 | proterozoico de Rodinia. Actas del XII Congreso Geológico Argentino III,                |
| 838 | 340–343.                                                                                |
| 839 | Meert, J.G., 2001. Growing Gondwana and rethinking Rodinia: A paleomagnetic             |
| 840 | perspective. Gondwana Research 4, 279–288.                                              |
| 841 | Meert, J.G. and Torsvik, T.H., 2003. The making and unmaking of a supercontinent:       |
| 842 | Rodinia revisited. Tectonophysics 375, 261–288.                                         |
| 843 | Millar, I.L., Pankhurst, R.J. and Fanning, C.M., 2002. Basement chronology of the       |
| 844 | Antarctic Peninsula: recurrent magmatism and anatexis in the Palaeozoic                 |
| 845 | Gondwana margin. Journal of the Geological Society, London 159, 145–157.                |
| 846 | Mitchell, C., Taylor, G.K., Cox, K.G. and Shaw, J., 1986. Are the Falkland Islands a    |
| 847 | rotated microplate? Nature 319, 131–134.                                                |
| 848 | Mortimer, N., Tulloch, A.J., Spark, R.N., Walker, N.W., Ladley, E., Allibone, A. and    |
| 849 | Kimbrough, D.L., 1999. Overview of the Median batholith, New Zealand: a                 |

| 850 | new interpretation of the geology of the Median Tectonic Zone and adjacent            |
|-----|---------------------------------------------------------------------------------------|
| 851 | rocks. Journal of African Earth Sciences 29, 257–268.                                 |
| 852 | Mortimer, N., 2004. New Zealand's geological foundations. Gondwana Research 7,        |
| 853 | 261–272.                                                                              |
| 854 | Mpodozis, C. and Kay, S.M., 1990. Provincias magmáticas ácidas y evolución            |
| 855 | tectónica de Gondwana. Revista Geológica de Chile 17, 153–180.                        |
| 856 | Muir, R.J., Weaver, S.D., Bradshaw, J.D., Eby, G.N., Evans, J.A. and Ireland, T.R.,   |
| 857 | 1996. Geochemistry of the Karamea Batholith, New Zealand and comparisons              |
| 858 | with the Lachlan Fold Belt granites of SE Australia. Lithos 39, 1–20.                 |
| 859 | Muir, R.J., Ireland, T.R., Weaver, S.D., Bradshaw, J.D., Evans, J.A., Eby, G.N. and   |
| 860 | Shelley, D., 1998. Geochronology and geochemistry of a Mesozoic magmatic              |
| 861 | arc system, Fiordland, New Zealand. Journal of the Geological Society,                |
| 862 | London 155, 1037–1052.                                                                |
| 863 | Münker, C. and Cooper, R.A., 1995. The Island arc setting of a New Zealand            |
| 864 | Cambrian volcano-sedimentary sequence: implications for the evolution of the          |
| 865 | SW Pacific Gondwana fragments. Journal of Geology 103, 687–700.                       |
| 866 | Münker, C. and Crawford, A.J., 2000. Cambrian arc evolution along the SE              |
| 867 | Gondwana active margin: A synthesis from Tasmania-New Zealand-Australia-              |
| 868 | Antarctica correlations. Tectonics 19, 415–432.                                       |
| 869 | Murphy, J.B., Pisarevsky, S.A., Nance, R.D. and Keppie, J.D., 2004. Neoproterozoic-   |
| 870 | Early Paleozoic evolution of peri-Gondwanan terranes: implications for                |
| 871 | Laurentia–Gondwana connections. International Journal of Earth Sciences 93,           |
| 872 | 659–682.                                                                              |
| 873 | Ouzegane, K., Kienast, J.R., Bendaoud, A. and Drareni, A., 2003. A review of          |
| 874 | Archaean and Paleoproterozoic evolution of the In Ouzzal granulitic terrane           |
| 875 | (Western Hoggar, Algeria). Journal of African Earth Sciences 37, 207–227.             |
| 876 | Pankhurst, R.J. and Rapela, C.W., 1998. Introduction. In: Pankhurst, R.J. and Rapela, |
| 877 | C.W. (Eds.) The Proto-Andean Margin of Gondwana. Special Publication of               |
| 878 | the Geological Society, London, vol. 142, pp. 1–9.                                    |
| 879 | Pankhurst, R.J., Rapela, C.W., Saavedra, J., Baldo, E., Dahlquist, J., Pascua, I. and |
| 880 | Fanning, C.M., 1998a. The Famatinian magmatic arc in the southern Sierras             |
| 881 | Pampeanas. In: Pankhurst, R.J. and Rapela, C.W. (Eds.) The Proto-Andean               |
| 882 | Margin of Gondwana. Special Publication of the Geological Society, London,            |
| 883 | vol. 142, pp. 343–367.                                                                |
| 884 | Pankhurst, R.J., Weaver, S.D., Bradshaw, J.D., Storey, B.C. and Ireland, T.R., 1998b. |
| 885 | Geochronology and geochemistry of pre-Jurassic superterranes in Marie Byrd            |
| 886 | Land, Antarctica. Journal of Geophysical Research 103, 2529–2547.                     |
| 887 | Pankhurst, R.J., Rapela, C.W. and Fanning, C.M., 2000. Age and origin of coeval       |
| 888 | TTG, I- and S-type granites in the Famatinian belt of NW Argentina, pp. 151–          |
| 889 | 168.                                                                                  |
| 890 | Pankhurst, R.J., Rapela, C.W., Loske, W.P., Marquez, M. and Fanning, C.M., 2003.      |
| 891 | Chronological study of the pre-Permian basement rocks of southern Patagonia.          |
| 892 | Journal of South American Earth Sciences 16, 27–44.                                   |
| 893 | Pankhurst, R.J., Rapela, C.W., Fanning, C.M. and Marquez, M., 2006. Gondwanide        |
| 894 | continental collision and the origin of Patagonia. Earth-Science Reviews 76,          |
| 895 | 235–257.                                                                              |
| 896 | Pankhurst, R.J., Trouw, R.A.J., Brito Neves, B.B. and deWit, M.J., in press. West     |
| 897 | Gondwana: pre-Cenozoic correlations across the South Atlantic region,                 |
| 898 | Geological Society, London, Special Publications.                                     |

| 899<br>900              | Ramos, V.A., 1984. ¿un continente paleozoica a la deriva? IX Congreso Geológico<br>Argentino, San Carlos de Bariloche Actas 2, 311–325 |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 901                     | Ramos V A 1986 Discussion of "Tectonostratigraphy as applied to analysis of                                                            |
| 901<br>902              | South African Phanerozoic basins" by H de la R Winter Transactions of the                                                              |
| 002                     | Geological Society of South Africa 80, 427, 420                                                                                        |
| 903                     | Pamos V A 1088 Lata Protorozoia Early Palaozoia of South America: a collisional                                                        |
| 904                     | history Episodes 11, 168, 174                                                                                                          |
| 905                     | Pamos V A 2004 Cuvania an avotic block to Conducana: Paviou of a historical                                                            |
| 900                     | Ramos, V.A., 2004. Cuyama, an exotic block to Condwana. Review of a historical                                                         |
| 907                     | Bandall, D.E. and Maa Nigapill, C. 2004. Combring palagomegnetic data confirm a                                                        |
| 908                     | Natel Embourgent location for the Ellowerth Whitmers Mountaine. Anteretice                                                             |
| 909                     | in Conducing reconstructions. Coonducing International 157, 105                                                                        |
| 910                     | 112                                                                                                                                    |
| 911                     | 110.<br>Densitie: A.E. 2005. The constitution of construction from the                                                                 |
| 912                     | Rapanin, A.E., 2005. The accretionary mistory of southern South America from the                                                       |
| 913                     | latest Proterozoic to the Late Paleozoic: some paleomagnetic constraints. In:                                                          |
| 914                     | vaugnan, A.P.M., Leat, P.I. and Panknurst, K.J. (Eds.) Terrane Processes at                                                            |
| 915                     | the Margins of Gondwana. Geological Society, London, Special Publications,                                                             |
| 910                     | Vol. 246, pp. $305-328$ .                                                                                                              |
| 91/                     | Rapela, C.W., Panknurst, R.J., Casquet, C., Baldo, E., Saavedra, J. and Galindo, C.,                                                   |
| 918                     | 1998a. Early evolution of the Proto-Andean margin of South America.                                                                    |
| 919                     | Geology 26, $707-710$ .                                                                                                                |
| 920                     | Rapela, C.W., Pankhurst, R.J., Casquet, C., Baldo, E., Saavedra, J., Galindo, C. and                                                   |
| 921                     | Fanning, C.M., 1998b. The Pampean orogeny of the southern proto-Andes:                                                                 |
| 922                     | Cambrian continental collision in the Sierras de Cordoba. In: Pankhurst, R.J.                                                          |
| 923                     | and Rapela, C.W. (Eds.) The Proto-Andean Margin of Gondwana. Special                                                                   |
| 924                     | Publication of the Geological Society, London, vol. 142, pp. 181–217.                                                                  |
| 925                     | Rapela, C.W., Baldo, E.G., Panknurst, R.J. and Saavedra, J., 2002. Cordientite and                                                     |
| 926                     | The El Dilan equation during emplacement of nighty peraluminous magma:                                                                 |
| 927                     | The El Plion granite complex (Sierras Pampeanas, Argentina). Journal of                                                                |
| 928                     | Petrology 43, 1003–1028.                                                                                                               |
| 929                     | Rapela, C.W., Panknurst, K.J., Fanning, C.M. and Grecco, L.E., 2003. Basement                                                          |
| 930                     | evolution of the Sierra de la Ventana Fold Bell: new evidence for Cambrian                                                             |
| 931                     | Continental fitting along the southern margin of Gondwana. Journal of the                                                              |
| 952                     | Develo C.W. Darkhurst D.I. Farring C.M. and Harrá E. 2005. Dasifia subdustion                                                          |
| 933                     | Rapela, C. W., Palkinuisi, K.J., Failing, C.M. and Herve, F., 2005. Pacific subduction                                                 |
| 934                     | coeval with the Karoo manue plume, the Early Jurassic subcordineral belt of                                                            |
| 933                     | (Edg.) Terrang Processes at the Marging of Conducing Coological Society                                                                |
| 930                     | London Special Publications, vol. 246, pp. 217–240                                                                                     |
| 020                     | Donuoli, Special Fublications, vol. 240, pp. 217–240.                                                                                  |
| 930                     | Casada IM, Calinda C, and Dahlquist I, in pross. The Rie da la Plate                                                                   |
| 939                     | casado, J.M., Gainido, C. and Daniquist, J., in press. The Kio de la Flata                                                             |
| 940<br>0/1              | Sate A M Tickyi H Llambias E L and Sate K 2000 The Las Matras tonalitie                                                                |
| 042                     | trondhiamitic pluton control Argontine: Gronvillion ago constraints                                                                    |
| 942<br>0/3              | geochemical characteristics, and racional implications. Journal of South                                                               |
| 9 <del>4</del> 3<br>044 | American Farth Sciences 13, 587, 610                                                                                                   |
| 9 <del>44</del><br>0/15 | Schwartz II and Gromet I D 2004 Drovenance of a late Drotorozoia carby                                                                 |
| 74J<br>0/6              | Cambrian basin Sierras de Cordoba Argentina Procembrian Descarch 120                                                                   |
| 9 <u>4</u> 7            | 1_21                                                                                                                                   |
| ノサ /                    | 1-21.                                                                                                                                  |

| 948        | Sepúlveda, F.A., Hervé, F., Calderón, M. and Lacassie, J.P., 2008. Petrology of      |
|------------|--------------------------------------------------------------------------------------|
| 949        | metamorphic and igneous units from the allochthonous Madre de Dios                   |
| 950        | Terrane, Magallanes, Chile. Gondwana Research 13, xx-xx, d.o.i. xxxxx (this          |
| 951        | volume).                                                                             |
| 952        | Shackleton, R.M., 1996. The final collision zone between East and West Gondwana:     |
| 953        | Where is it? Journal of African Earth Sciences 23, 271–287.                          |
| 954        | Shone, R.W. and Booth, P.W.K., 2005. The Cape Basin, South Africa: A review.         |
| 955        | Journal of African Earth Sciences 43, 196–210.                                       |
| 956        | Simpson, C., Law, R.D., Gromet, L.P., Miro, R. and Northrup, C.J., 2003. Paleozoic   |
| 957        | deformation in the Sierras de Cordoba and Sierra de Las Minas, eastern Sierras       |
| 958        | Pampeanas, Argentina. Journal of South American Earth Sciences 15, 749–              |
| 959        | 764.                                                                                 |
| 960        | Skehan, J.W., 1997. Assembly and dispersal of supercontinents: The view from         |
| 961        | Avalon. Journal of Geodynamics 23, 237–262.                                          |
| 962        | Squire, R.J., Campbell, I.H., Allen, C.M. and Wilson, C.J.L., 2006. Did the          |
| 963        | Transgondwanan Supermountain trigger the explosive radiation of animals on           |
| 964        | Earth? Earth and Planetary Science Letters 250, 116–133.                             |
| 965        | Storey, B.C., Dalziel, I.W.D., Garrett, S.W., Grunow, A.M., Pankhurst, R.J. and      |
| 966        | Vennum, W.R., 1988. West Antarctica in Gondwanaland: crustal blocks,                 |
| 967        | reconstruction and breakup processes. Tectonophysics 155, 381–390.                   |
| 968        | Storey, B.C., Pankhurst, R.J. and Johnson, A.C., 1994. The Grenville Province within |
| 969        | Antarctica: a test of the SWEAT hypothesis. Journal of the Geological                |
| 970        | Society, London 151, 1–4.                                                            |
| 971        | Storey, B.C., Vaughan, A.P.M. and Millar, I.L., 1996. Geodynamic evolution of the    |
| 972        | Antarctic Peninsula during Mesozoic times and its bearing on Weddell Sea             |
| 973        | history. In: Storey, B.C., King, E.C. and Livermore, R.A. (Eds.) Weddell Sea         |
| 974        | tectonics and Gondwana break-up. Geological Society, London, Special                 |
| 975        | Publications, vol. 108, pp. 87–103.                                                  |
| 976        | Storey, B.C., Curtis, M.L., Ferris, J.K., Hunter, M.A. and Livermore, R.A., 1999.    |
| 977        | Reconstruction and break-out model for the Falkland Islands within                   |
| 978        | Gondwana. Journal of African Earth Sciences 29, 153–163.                             |
| 979        | Stump, E., 1995. The Ross Orogen of the Transantarctic Mountains. Cambridge          |
| 980        | University Press, Cambridge. 284 pp.                                                 |
| 981        | Suess, E., 1883–1901. Das Antlitz der Erde (4 volumes). Freytag, Leipzig [English    |
| 982        | translation (1904–1924) by Sollas, H. B. C. The Face of the Earth]. Clarendon        |
| 983        | Press, Oxford. 608 pp.                                                               |
| 984        | Tessensohn, F. and Henjes-Kunst, F., 2005. Northern Victoria Land terranes,          |
| 985        | Antarctica: far-travelled or local products. In: Vaughan, A.P.M., Leat, P.T. and     |
| 986        | Pankhurst, R.J. (Eds.) Terrane Processes at the Margins of Gondwana.                 |
| 987        | Geological Society, London, Special Publications, vol. 246, pp. 275–292.             |
| 988        | Thomas, W.A. and Astini, R.A., 2003. Ordovician accretion of the Argentine           |
| 989        | Precordillera terrane to Gondwana: a review. Journal of South American Earth         |
| 990        | Sciences 16, 67–79.                                                                  |
| 991        | Thomson, M.R.A. and Vaughan, A.P.M., 2005. The role of Antarctica in plate           |
| 992        | tectonic theories: from Scott to the present. Archives of Natural History 32,        |
| 993        | 363–394.                                                                             |
| 994<br>007 | Tonver, E., D'Agrella, M.S. and Trindade, R.I.F., 2006. Paleomagnetic record of      |
| 995        | Atrica and South America for the 1200-500 Ma interval, and evaluation of             |
| 996        | Rodinia and Gondwana assemblies. Precambrian Research 147, 193–222.                  |

| 997  | Trindade, R.I.F., D'Agrella, M.S., Epof, I. and Neves, B.B.B., 2006. Paleomagnetism  |
|------|--------------------------------------------------------------------------------------|
| 998  | of Early Cambrian Itabaiana mafic dikes (NE Brazil) and the final assembly of        |
| 999  | Gondwana. Earth and Planetary Science Letters 244, 361–377.                          |
| 1000 | Unrug, R., 1997. Rodinia to Gondwana: the geodynamic map of Gondwana                 |
| 1001 | supercontinent assembly. GSA Today 7, 1–6.                                           |
| 1002 | Varela, R., López de Luchi, M., Cingolani, C. and Dalla Salda, L., 1996.             |
| 1003 | Geocronología de gneises y granitoides de la Sierra de Umango, La Rioja.             |
| 1004 | Implicancias tectónicas. Actas del XIII Congreso Geológico Argentino III,            |
| 1005 | 519–527.                                                                             |
| 1006 | Vaughan, A.P.M. and Storey, B.C., 2000. The eastern Palmer Land shear zone: a new    |
| 1007 | terrane accretion model for the Mesozoic development of the Antarctic                |
| 1008 | Peninsula. Journal of the Geological Society, London 157, 1243–1256.                 |
| 1009 | Vaughan, A.P.M., Kelley, S.P. and Storey, B.C., 2002a. Mid-Cretaceous ductile        |
| 1010 | deformation on the Eastern Palmer Land Shear Zone, Antarctica, and                   |
| 1011 | implications for timing of Mesozoic terrane collision. Geological Magazine           |
| 1012 | 139, 465–471.                                                                        |
| 1013 | Vaughan, A.P.M., Pankhurst, R.J. and Fanning, C.M., 2002b. A mid-Cretaceous age      |
| 1014 | for the Palmer Land event, Antarctic Peninsula: implications for terrane             |
| 1015 | accretion timing and Gondwana palaeolatitudes. Journal of the Geological             |
| 1016 | Society, London 159, 113–116.                                                        |
| 1017 | Vaughan, A.P.M., Leat, P.T. and Pankhurst, R.J., 2005a. Terrane processes at the     |
| 1018 | margins of Gondwana, Geological Society, London, Special Publication, vol.           |
| 1019 | 246, pp. vii, 445.                                                                   |
| 1020 | Vaughan, A.P.M., Leat, P.T. and Pankhurst, R.J., 2005b. Terrane processes at the     |
| 1021 | margins of Gondwana: introduction. In: Vaughan, A.P.M., Leat, P.T. and               |
| 1022 | Pankhurst, R.J. (Eds.) Terrane processes at the margins of Gondwana.                 |
| 1023 | Geological Society, London, Special Publication, vol. 246, pp. 1–22.                 |
| 1024 | Vaughan, A.P.M. and Livermore, R.A., 2005. Episodicity of Mesozoic terrane           |
| 1025 | accretion along the Pacific margin of Gondwana: implications for superplume-         |
| 1026 | plate interactions. In: Vaughan, A.P.M., Leat, P.T. and Pankhurst, R.J. (Eds.)       |
| 1027 | Terrane Processes at the Margins of Gondwana. Geological Society, London,            |
| 1028 | Special Publication, vol. 246, pp. 143–178.                                          |
| 1029 | Veevers, J.J., 2004. Gondwanaland from 650–500 Ma assembly through 320 Ma            |
| 1030 | merger in Pangea to 185–100 Ma breakup: supercontinental tectonics via               |
| 1031 | stratigraphy and radiometric dating. Earth Science Reviews 68, 1–132,                |
| 1032 | 10.1016/j.earscirev.2004.05.002.                                                     |
| 1033 | Veevers, J.J., 2005. Edge tectonics (Trench rollback, terrane export) of             |
| 1034 | Gondwanaland-Pangea synchronized by supercontinental heat. Gondwana                  |
| 1035 | Research 8, 449–456.                                                                 |
| 1036 | von Gosen, W., 2003. Thrust tectonics in the North Patagonian Massif (Argentina):    |
| 1037 | implications for a Patagonian plate. Tectonics 22, 1005.                             |
| 1038 | Vujovich, G.I., van Staal, C.R. and Davis, W., 2004. Age constraints on the tectonic |
| 1039 | evolution and provenance of the Pie de Palo Complex, Cuyania composite               |
| 1040 | terrane, and the Famatinian Orogeny in the Sierra de Pie de Palo, San Juan,          |
| 1041 | Argentina. Gondwana Research. Special Volume ("Cuyania, an exotic block              |
| 1042 | to Gondwana") 7, 1041–1056.                                                          |
| 1043 | Waight, T.E., Weaver, S.D. and Muir, R.J., 1998. Mid-Cretaceous granitic             |
| 1044 | magmatism during the transition from subduction to extension in southern             |
| 1045 | New Zealand: a chemical and tectonic synthesis. Lithos 45, 469–482.                  |

| 1046 | Wandres, A.M. and Bradshaw, J.D., 2005. New Zealand tectonostratigraphy and                                                                                             |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1047 | implications from conglomeratic rocks for the configuration of the SW Pacific                                                                                           |
| 1048 | of Gondwana. In: Vaughan, A.P.M., Leat, P.T. and Pankhurst, R.J. (Eds.)                                                                                                 |
| 1049 | Terrane Processes at the Margins of Gondwana. Geological Society, London,                                                                                               |
| 1050 | Special Publications, vol. 246, pp. 179–216.                                                                                                                            |
| 1051 | Wareham, C.D., Pankhurst, R.J., Thomas, R.J., Storey, B.C., Grantham, G.H., Jacobs,                                                                                     |
| 1052 | J. and Eglington, B.M., 1998. Pb, Nd, and Sr isotope mapping of Grenville-                                                                                              |
| 1053 | age crustal provinces in Rodinia. Journal of Geology 106, 647–659.                                                                                                      |
| 1054 | Willan, R.C.R. and Hunter, M.A., 2005. Basin evolution during the transition from                                                                                       |
| 1055 | continental rifting to subduction: Evidence from the lithofacies and modal                                                                                              |
| 1056 | petrology of the Jurassic Latady Group. Antarctic Peninsula, Journal of South                                                                                           |
| 1057 | American Earth Sciences 20, 171–191.                                                                                                                                    |
| 1058 |                                                                                                                                                                         |
| 1059 | Figure Captions                                                                                                                                                         |
| 1060 | rigure Cuptions                                                                                                                                                         |
| 1060 | Figure 1: Gondwana reconstruction after Unrug (1997) showing major terrane belts on                                                                                     |
| 1062 | the margins of the supercontinent: NZ: New Zealand: TAM: Transantarctic                                                                                                 |
| 1062 | Mountains Boundary zone between East and West Gondwana after Unrug                                                                                                      |
| 1067 | (1007) shown as overlay: ANS: Arabian Nubian Shield: N. N. M: Namaqua                                                                                                   |
| 1065 | Natal Maud belt                                                                                                                                                         |
| 1065 | Natai-Maud Deft.                                                                                                                                                        |
| 1067 | Figure 2: Condwana reconstruction after Du Toit (1037) showing earliest subdivision                                                                                     |
| 1068 | of the supercontinent into eastern and western parts                                                                                                                    |
| 1000 | of the supercontinent into eastern and western parts.                                                                                                                   |
| 1009 | Figure 3: Reconstruction of West Condwana after Tohyer et al (2006) showing                                                                                             |
| 1070 | arotonia and Brasiliano. Danafrican alamenta. Cratona shown in light grav:                                                                                              |
| 1071 | Am Amazonia: ANS Arabian Nubian Shield C Congo: CM Goias Massif                                                                                                         |
| 1072 | K. G. Kalahari, Grunahagna: I.A. Luis Alvas, D. Daraná, D.A. Día Ana, SE. São                                                                                           |
| 1073 | Francisco: SL São Lius: WA West Africa Brasiliano Danafrican balta                                                                                                      |
| 1074 | (ringed): A. Arequei: A. Arequeie: B. Berbereme: Br. Bresilie: De                                                                                                       |
| 1075 | (Inigeu). Ac, Alaçual, Ag, Alaguala, Do, Dolobolellia, DI, Diasilia, Da,<br>Domoro: DE, Dom Foliciono: Dh/O, Dohomoidoo/Ouhongidoo: G, Gorion: H                        |
| 1070 | Hoggar: Ka Kaoko: K/Z Katangan/Zambazi: LA Lufilian Arc: M                                                                                                              |
| 1077 | Mozambique: D. Daraguai: D/M. Dibaira/Mantaguaira: Do. Dockalidae: Ta                                                                                                   |
| 1070 | Tanzania: Tu, Tucayaca: WC, West Congo                                                                                                                                  |
| 1079 | Talizallia, Tu, Tucavaca, WC, West Collgo.                                                                                                                              |
| 1080 | Figure 4: Schematic representation of the tectonic elements of the margin of West                                                                                       |
| 1001 | Gondwang, extensively modified after Panalini (2005) and references therein                                                                                             |
| 1082 | using further information from Pankhurst at al. (2006) and personal                                                                                                     |
| 1005 | asing further information from C W. Banala and C. Casquat. Amazonia, Ría Ana, Ría                                                                                       |
| 1004 | de la Diete (and in some schemes. Arequine and Antefalle) are the aretonic                                                                                              |
| 1085 | blocks of Delegerraterezzie to Negreterezzie and Antoiana) are the tratomic                                                                                             |
| 1080 | blocks of Palaeoproterozoic to Neoproterozoic age. The Palipean ben (which                                                                                              |
| 1087 | encompasses the Eastern Sterras Pampeanas Pampia terrane of Ramos (1988),                                                                                               |
| 1088 | is snown as continuous with the Araguata belt of Brazil, following Irindade et                                                                                          |
| 1009 | ai. $(2000)$ , and the approximate form of the Patagonian plate is from Pankhurst at al. $(2006)$ . The known extent of Councille are holds of Councille and $(2006)$ . |
| 1090 | et al. (2006). The known extent of Grenville-age belts of Sunsas (S) and the                                                                                            |
| 1091 | western Sterras Pampeanas (w) is indicated, although the latter also occurs                                                                                             |
| 1092 | beneath the Argentine Precordinera (Cy), as either stratigraphical or tectonic                                                                                          |
| 1093 | basement. The Ordovician Famatinian orogenic belt (F) overprints the earlier                                                                                            |
| 1094 | complexes, including those of the Antofalla block, where Lucassen et al.                                                                                                |

1095 (2000) recognise Pampean metamorphism and magmatism as reflecting anaccretionary orogeny.

- Alan P.M. Vaughan is a Principal Investigator and head of the Palaeoenvironments
  Group at the British Antarctic survey, where he has worked for the past 16
  years. His work has taken to him to Antarctica six times. He is Earth sciences
  editor of Antarctic science and UK representative on the Gondwana
  Committee. He graduated from Trinity College Dublin in 1985 with a gold
- 1103 medal in natural sciences and he

1097

1120

- 1104received his PhD from that institution1105in 1991. His main interests are on the1106long-term evolution of the Earth both1107tectonically and
- 1108 palaeoenvironmentally, with a
- 1109 particular focus on the influence of
- 1110 large scale tectonic and magmatic
- 1111 processes on global1112 palaeoenvironments. He has also
- 1112 palaeoenvironments. He has also 1113 worked extensively on the tectonic
- evolution of the Antarctic sector ofWest Gondwana. He has collaborated
- 1116 with geoscientists in New Zealand,
- Brazil, Spain, Chile and the USA, andhas been involved in several publishedpapers and books.



Robert (Bob) Pankhurst is Visiting Research Associate at the British Geological
Survey, where he worked for 26 years in the NERC Isotope Geosciences
Laboratory carrying out geochronological and isotope research on behalf of
the British Antarctic Survey (BAS), during which he undertook fieldwork
extensively in Antarctica (nine summer field seasons) and southern South
America, concentrating on the latter since official retirement in 2002. He was
awarded the Polar Medal in 1987 and has been elected corresponding member

of both the Chilean and 1128 Argentine Academies of 1129 1130 Science, as well as of the 1131 Argentine Geological Association. He is Chief 1132 Books Editor for the 1133 1134 Geological Society, London, and Associate Editor for the 1135 Journal of South American 1136 Earth Sciences. He graduated 1137 1138 from the University of Cambridge (B.A. 1964, M.A. 1139 1967) where he also holds the 1140 title of Doctor of Science 1141 1142 (Sc.D. 1998). He received a Diploma in Geochemistry 1143 (1965) and then a D.Phil. 1144



| 1145 | (1968) from the University of Oxford, where he stayed as Research Fellow       |
|------|--------------------------------------------------------------------------------|
| 1146 | working on projects in Scotland, West Greenland and Iceland before joining     |
| 1147 | BAS in 1976. His main interests are in isotope dating and geochemistry         |
| 1148 | applied to igneous petrogenesis, metamorphism and sediment provenance in       |
| 1149 | relation to the evolution of the continental crust of West Gondwana, and hence |
| 1150 | the tectonic processes involved. He has actively collaborated with             |
| 1151 | geoscientists in Argentina, Australia, Brazil, Chile, New Zealand, Spain, and  |
| 1152 | the USA, and has been involved in numerous published papers and several        |
| 1153 | books.                                                                         |

# Vaughan & Pankhurst Figure 1



# Vaughan & Pankhurst Figure 2



Vaughan & Pankhurst Figure 3



Vaughan & Pankhurst Fig. 4

