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Abstract 

 

Humans are naturals at categorizing objects, i.e., at dividing them into groups depending on their features 

and surroundings. We do it easily and in real-time. Additionally, our Human Visual System (HVS) is the 

only one reliable for object detection, categorization and recognition; the latter events take place in the 

visual cortex, being object recognition achieved around 150-200ms, and occurring also a categorization-

specific activation in prefrontal cortex before or around 100ms. This provides one of the evidences which 

substantiate that categorization is a more bottom-up process than recognition. Visual cortical area V1 is 

composed - among others - by simple and complex cells which are adjusted to different spatial frequencies 

(scales), orientations and disparity. These cell‟s responses were used to build a model for events detection 

in V1; these events are classified by type - lines and edges – and polarity - positive and negative. Being the 

goal of this thesis to develop a cortical model for object categorization - inspired in the HVS and based on 

2D object views -, the V1 multi-scale events generated by the former model were used to accomplish that 

goal.  

In the developed categorization model the final category attributed to an object is the convergence of three 

similarity concepts which define in different ways the resemblance degree between an object and a certain 

category; the resemblance degree is therefore accomplished by comparing the V1 events between templates 

and objects. The resemblance degree or similarity percentage was calculated  (a) on the first concept as the 

quotient between the number of common events between object and category templates (considering type 

and polarity) in all scales, and the number of object‟s events in all scales; (b) on the second concept the 

similarity percentage was calculated as  the quotient between the number of common events between object 

and category templates (not considering type nor polarity) in all scales, and the number of object‟s events 

in all scales; (c) finally, on the third concept this ratio was calculated as the quotient between the number of 

common events between object and category templates (considering type and polarity) in all scales, and the 

category‟s “events number” in all scales. The final category assigned to an object is then (1
st
) a category on 

which the three concepts agree on and (2
nd

) the best scored one. 

For the proof of concept a database composed by 8 different categories and 10 objects per category was 

used; left and right profile views were chosen to represent each object. Regarding the 80 results obtained by 

categorizing 40 objects in both views, an average categorization success rate of 93.75% was accomplished, 

being 92.50% the success rate achieved for left profile, and 95.00% the one achieved for right profile; even 

each of the  miscategorized images was attributed a category which is similar to its true one. In order to 

conclude the proof of concept, the model was also tested in terms of small invariance to rotation, scale and 

noise, having been then achieved high categorization success rates (above 82%). 

Keywords: Categorization, Lines and Edges, Multi-scale, Visual Cortex. 
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Resumo 

 

É inata a nossa capacidade de categorizar objetos, i.e., de dividi-los em grupos dependendo das suas 

características e contexto em que estes surgem. Fazêmo-lo facilmente, e em tempo real. O nosso 

Sistema Visual Humano (SVH) é o único considerado fiável para deteção, categorização, e 

reconhecimento de objetos, e, embora o seu funcionamento não seja inteiramente conhecido, já há 

muita informação acerca do mesmo.  

Os nossos olhos captam a informação exterior sob a forma de luz; esta, sendo projetada na retina que é 

fotossensível, é convertida em sinais elétricos que são encaminhados para o cérebro através do nervo 

ótico; daí os sinais seguem para o Lateral Geniculate Nucleus (LGN) que por sua vez os encaminha 

para o córtex visual onde a informação é processada. É no córtex visual que ocorre a deteção, 

categorização e reconhecimento de objetos; estes processos envolvem dois fluxos de dados - “bottom-

up” e “top-down” (subsistemas "what" e "where") – incluindo também a integração de ambos. Há 

evidência de que reconhecemos um objeto após uma exposição de apenas 150-200ms, e também, logo 

após 100ms (ou menos) há uma ativação específica da categorização que ocorre no córtex pré-frontal; 

isto é uma das evidências que fundamentam que a categorização é um processo mais “bottom-up” do 

que o reconhecimento. Basta um olhar muito breve sobre uma imagem para sabermos os seus 

principais conteúdos (gist); isto sugere que alguma informação é transmitida muito rapidamente ao 

córtex pré-frontal, para que os mais prováveis templates de objetos e vistas possam ser selecionados e 

encaminhados pelos subsistemas “what” e “where”; o fenómeno descrito anteriormente corresponde à 

categorização de objetos – o tema em estudo nesta dissertação.  

A área cortical V1, uma das áreas do córtex visual, é composta (entre outras) por células simples e 

complexas, as quais estão ajustadas a diferentes frequências espaciais (escalas), orientações e 

disparidades. As respostas destas células foram usadas para construir um modelo de deteção de 

eventos em V1, sendo que estes podem ser separados por tipo – linhas e arestas -, e polaridade - 

positiva e negativa; estes atributos corticais caracterizam cada objeto, pelo que cada categoria de 

objetos tem uma distribuição espacial muito própria destes eventos, mais oticamente visível nas 

escalas mais baixas (escalas finas). Sendo o objetivo desta tese desenvolver um modelo cortical para 

categorização de objectos – inspirado no SVH e baseado em vistas 2D – as linhas e arestas em multi-

escala geradas pelo modelo de deteção de eventos em V1 foram usadas nesse sentido. Existem já 

alguns modelos que propõem arquiteturas corticais para categorização de objetos, no sentido de se 

aproximarem progressivamente da forma de funcionamento do SVH; porém, este por sua vez é 

complexo e não inteiramente conhecido, havendo muitas hipóteses a considerar e simular.  
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No modelo de categorização desenvolvido, a categoria final atribuída a um objeto consiste na 

convergência (multi-escala) de 3 conceitos de semelhança que definem de diferentes maneiras o grau 

de parecença entre um objecto e uma dada categoria; o grau de parecença é então obtido através da 

comparação entre os eventos em V1 dos objetos/categorias padrão (templates). O grau de parecença 

ou percentagem de semelhança entre um objecto e uma categoria foi calculado (a) no primeiro 

conceito como o quociente entre o número de eventos comuns entre o objeto e os templates da 

categoria (considerando o tipo e a polaridade) em todas as escalas, e o número de eventos do objeto 

em todas as escalas; (b) no segundo conceito a percentagem de semelhança é calculada como o 

quociente entre o número de eventos comuns entre o objeto e os templates da categoria (não 

considerando o tipo nem a polaridade) em todas as escalas, e o número de eventos do objeto em todas 

as escalas; (c) finalmente, no terceiro conceito a percentagem de semelhança é calculada como o 

quociente entre o número de eventos comuns entre o objeto e os templates da categoria (considerando 

o tipo e a polaridade) em todas as escalas, e o „número de eventos‟ de uma categoria em todas as 

escalas.  

Para a prova de conceito utilizou-se uma base de dados constituída por 8 categorias diferentes (maçãs, 

carros, vacas, chávenas, cães, cavalos, pêras e tomates), cada uma com 10 objetos, sendo cada objeto 

disponibilizado em 41 vistas diferentes; para representar um objecto, foram seleccionadas duas vistas 

2D – perfil esquerdo e direito. As comparações efectuadas entre uma imagem de um objeto e os 

templates das categorias (na mesma vista) geram, considerando os três conceitos, um total de 3 8=24 

rácios de semelhança; mediante a definição de uma margem em torno da percentagem máxima obtida 

em cada conceito, cada um dos 3 fornecerá a(s) sua(s) categoria(s)-resposta. Intersectando as 3 

respostas, „a‟ ou „as‟ categorias comuns são seleccionadas; se houver uma só categoria comum, essa é 

a resposta final; se houver mais do que uma, é escolhida a categoria mais pontuada.  

Da base de dados usada que tem um total de 80 objectos, foram selecionados 40 com o propósito de 

criar os templates, sendo os restantes objetos reservados para realizar os testes e completar a prova de 

conceito – objetos teste. Assim, para cada vista, há 40 imagens disponíveis dos objectos template (80 

nas duas vistas); as imagens dos objectos template de uma mesma categoria são usadas para preparar 

os templates da categoria. Os templates de comparação de uma categoria para uma dada vista e escala 

dividem-se em 4 imagens correspondentes aos eventos disponíveis: uma imagem representante das 

linhas positivas, outra representante das linhas negativas, outra das arestas negativas, e outra das 

arestas positivas. 

Baseando-se o modelo na concordância entre conceitos distintos, este modelo apresentou resultados 

„primários‟ muito promissores: considerando os 80 templates, i.e., 40 objetos template em ambas as 

vistas, 100% dos resultados de categorização estavam corretos (como esperado). No teste seguinte, 

usou-se os restantes objetos disponíveis – os 40 objetos teste – com o objetivo de observar se o modelo 



VIII 

era bem-sucedido na categorização de objetos „desconhecidos‟ (pois no teste anterior os objetos 

testados eram „conhecidos‟ uma vez que os templates das categorias são construídos com base nas 

imagens dos objetos template). Assim, considerando os 80 resultados obtidos (ambas as vistas) 

obteve-se uma percentagem média de sucesso de 93.75% (75 imagens), sendo que das imagens 

correspondentes aos objetos em perfil esquerdo 92.50% foram corretamente categorizadas, e das 

correspondentes ao perfil direito esta percentagem correspondeu a 95.00%. A grande maioria das 

imagens de ambas as vistas foi assim bem categorizada, e, até a cada uma das restantes 5 imagens (3 

objectos) foi atribuída uma categoria similar à sua categoria original.  

Finalmente, para terminar a prova de conceito, o modelo foi testado em termos de „pequena‟ 

invariância à rotação, escala e ruído; estes testes foram realizados tendo como base as imagens dos 

objetos teste em perfil direito, e, foram então obtidas elevadas percentagens de categorização (acima 

de 82%). 

Palavras-chave: Categorização, Linhas e Arestas, Multi-escala, Córtex Visual.  
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1. Introduction 

 

ABSTRACT 

Objects biological categorization - the main subject of the thesis - is introduced in 

this chapter. Here the thesis’ goals, contributions and context are presented, and a 

brief glance over the thesis’ topics is also provided. 

 

Computer Vision (CV) is a challenging and useful technology area. Its origin dates back to 

the late 1950s and early 1960s (Bebis et al., 2003) – just about 60 years ago; nevertheless, it is 

quickly spreading throughout the world, being a powerful tools source for several areas, such 

as medicine, robotics, manufacturing, remote sensing, industry and multimedia (Bebis et al., 

2003). CV is “the study of enabling computers to understand and interpret visual information 

from static images and video sequences” (Bebis et al., 2003), being a study subject which is 

becoming very important in computer science and engineering. Bebis et al., 2003 referred that 

CV research aims to understand the processes underlying vision, in order to computationally 

implement them. The authors refer two motivations to back up this statement: 1) “to develop 

computer vision systems as a method of testing and evaluating models of human or other 

biological vision systems” and 2) to solve concrete problems by means of computer systems 

conceived through engineering approaches. Furthermore, some of the CV‟s sub-domains 

comprise object detection, retrieval, categorization and recognition, face detection and 

recognition, scene categorization and rebuilding, events detection, video tracking, optical 

flow, learning, indexing, image restoring and movement prediction.  

Among the above mentioned CV‟s sub-domains, one of them is especially important for this 

thesis - object categorization - as the focus was to build a biologically based categorization 

model. Visual object categorization – also termed „generic object recognition‟ – can be 

defined “as the process of assigning a specific object to a certain category” (Pinz, 2006). 

Savarese & Fei-Fei, 2010 and Kinnunen et al., 2010 mention in different words that object 

categorization has been a very significant CV research sub-area in recent years. There are 

several applications for categorization. For instance, Kim & Medioni, 2011 mention that 
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applications for shape-based object classification “include autonomous robotic navigation and 

manipulation, and urban scene understanding,” and Pinz, 2006 provided some examples of 

categorization application fields, such as “image database annotation, image retrieval and 

video annotation”. Moreover, the latter author states that “reliable categorization in real-time 

will open up applications in surveillance, driver assistance, autonomous robots, interactive 

games, virtual and augmented reality and telecommunications.” Considering a broader 

viewpoint, these applications might include „cognitive personal assistance‟ systems “with 

many potential aspects, ranging from user support in complex environments to very basic 

support capabilities for elderly or disabled people” (Pinz, 2006). As could be seen, there are 

many applications for artificial categorization systems; however, several obstacles need to be 

surpassed so that these systems function properly.  

An artificial categorization system needs information about an object to recognize its class. 

Galleguillos & Belongie, 2010 mentioned that object categorization traditional approaches 

use appearance features as the principal data to categorize objects in real world images, 

naming as well some appearance features: color, edge responses, texture and shape. Pinz, 

2006 referred that some „recent‟ approaches try to (a) “model appearance more locally”, (b) 

“group simple geometric primitives” and (c) “use learning algorithms to find common 

patterns that can be shared over many individuals of a category”. Besides the already 

mentioned categorization-related publications, several others enriched the CV state-of-the-art; 

as an example, we can name the one by Petre & Zaharia, 2011 who presented a scheme for 

categorization of 2D objects present in still images, which resorted to categorized 3D models; 

also, Leibe & Schiele, 2003 studied the efficiency of some appearance- and contour-based 

recognition methods for multi-class object categorization, and Han et al., 2011 assessed a 

canonical correlation- and view-based approach for object categorization and recognition. 

Further categorization methods will be mentioned in chapter 2 (General Concepts and State-

of-the-Art), being some of them described in detail.  

Not only object categorization, but also object detection and recognition are important CV 

topics, once there's a wide range of commercial applications in surveillance and robotics. 

Rodrigues & du Buf, 2009b refer that “categorization is the last step before recognition in 

which attention shifts to finer scales that reflect minute differences”. Object recognition is a 

classical problem which is addressed in any CV, image processing and machine vision book 

(Rodrigues, 2007). Among the existent object recognition algorithms, there are those more 
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object generalized and others more object specific; the latter - named “dedicated” algorithms - 

are tuned to a specific set of objects (Saleiro, 2011); the more object generalized algorithms – 

which work in a broader case range – have, usually a higher computational cost (Evans, 2009; 

Lowe, 1999). As referred by Rodrigues, 2007, each author applies his/her own definition of 

„recognition‟; “for instance, we can refer to recognition as to recognize one or several pre-

specified or learned objects or object classes (e.g. this is a coffee mug), it may be the 

identification of a specific object (this is Paul‟s coffee mug), or even detection (there are two 

coffee mugs in this image).” In this thesis we mostly refer to „object recognition‟ as the 

identification of a particular object, and to „object categorization‟ as the recognition of an 

object‟s class; however, as with every word, the usage of the term „recognition‟ will depend 

on the surrounding context (for a small state-of-the-art about recognition see chapter 2).  

Rodrigues, 2007 referred to categorization as being a tougher task than recognition, and 

described an elucidating example that distinguishes both tasks. “Object recognition is a 

clearly defined task: a certain cat, like the neighbors‟ red tabby called Toby, is recognized or 

not” (Rodrigues, 2007); the same author refers that for categorization there are different levels 

to consider “before deciding between our own red tabby called Tom and his brother Toby 

living next door”, for instance: “(a) an animal, (b) one with four legs, (c) a cat, and (d) a red 

tabby” (Rodrigues, 2007). Regarding recognition, categorization can be perceived as a more 

challenging CV topic, or at least very challenging in a different way: an object may be studied 

in different views, lightening conditions, occlusions, and contexts in order to be posteriorly 

recognized; yet, in order to study a category, several different objects from the latter may be 

studied in all the previously mentioned variations, in the pursuit of a common pattern that 

represents them all; plus, considering that a certain number of categories is considered, each 

category‟s pattern has to be sufficiently descriptive to contrast from the remaining categories‟: 

a particular middle term has to be achieved in order to build a categorization model. 

Accordingly, Pinz, 2006 refers that “major problems are related to the concept of a „visual 

category‟, where a successful recognition algorithm has to manage large intra-class 

variabilities versus sometimes marginal inter-class differences.” The latter author mentioned 

some issues an artificial categorization system has to deal with, such as representation, 

recognition and learning. Pinz, 2006 also pointed out an object location issue, mentioning that 

many systems are capable of categorizing images, but are unable to localize and delineate an 

object in an image; the latter author referred as well to a database issue - “it turns out that 

often background (context) is learned rather than object-specific information” – a problem 
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that we will allude to latter in chapter 3 (Categorization Model). Furthermore, Pinz, 2006 

referred to an evaluation issue, i.e., „how should a categorization system‟s output be 

evaluated?‟, and a system integration issue: “system integration can get quite complex when 

many components are required to interact smoothly” (Pinz, 2006).  

Looking at categorization from a biological perspective, it appears that humans perform 

categorization far better than artificial systems. However, recognition “can often be handled 

more efficiently, reliably or simply faster by an artificial vision system” (Pinz, 2006). The last 

statement is consistent with the fact that more research had taken place in the recognition area 

than in the categorization field “in the past” (Pinz, 2006). According to VanRullen & Thorpe, 

2001 humans are capable of performing ultra-rapid categorization tasks; they can decide if a 

quickly flashed image corresponds to a certain category in less than 150ms (Pinz, 2006). 

Moreover, cognitive psychology evidence reveals that humans handle with approximately 

30.000 different categories – says Pinz, 2006 while referring to Biederman, 1995; Pinz, 2006 

also adds: “this would require solving currently intractable computational complexity”. The 

“abstraction level of object classes” is not clearly defined (Leibe & Schiele, 2003); referring 

to Brown, 1958, Leibe & Schiele, 2003 indicate that “the question of how humans organize 

knowledge at different levels has received much attention in Cognitive Psychology”; “it is 

important to note that categories do not exist per se in the world” (Leibe & Schiele, 2003); the 

latter authors, referring to Rosch et al., 1976, state that categories are a “learned 

representation” which depends on education and experience (Leibe & Schiele, 2003).  

Many have been the motives that sort categorization as a hard task; we also denoted the 

superiority of the Human Visual System (HVS) when compared to a categorization artificial 

system. Naturally and effortlessly, we distinguish various categories in real-time; however, 

the HVS that we use on the daily basis is not entirely known. Being a unique system and the 

most reliable for object categorization, the HVS is used as reference in some studies, as for 

example the one by Mutch & Lowe, 2008 where “the role of sparsity and localized features in 

a biologically-inspired model of visual object classification” was studied; other examples are 

the features clustering method by Mundhenk et al., 2004, and the V1 lines and edges detection 

model by Rodrigues & du Buf, 2009b. 
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1.1 - Thesis goals, contributions and context  

As referred before, this thesis work is focused on object categorization – a challenging CV 

field; also, since the HVS is the best at categorizing objects, doing it easily in real-time, this 

thesis‟ goal is to develop a biological categorization model that allows (a) creating a 

biologically based descriptor that represents an object, (b) separating objects in categories and 

sub-categories, and (c) categorizing objects using their 2D views.  

The proposed categorization model uses the V1 lines and edges detector from Rodrigues & du 

Buf, 2009b. The main contribution to highlight in this thesis was the principle created for the 

model, as the category assigned to an unknown object is achieved through a consensus among 

different categorization concepts; each concept makes class suggestions for a certain object, 

being the final assigned category obtained by intersecting all concepts class propositions and, 

if the intersection is composed by several categories, the best scored one is then chosen 

through a proper process. This model is thus based on a mutual agreement principle for the 

purpose of increasing the certainty degree of the given final answer. 

This thesis took place in Vision Laboratory –UALG, being also integrated in a project named 

“A neuro-dynamic framework for cognitive robotics: scene representations, behavioural 

sequences, and learning”. This project was funded by EC, CINTAL/UAlg (Vision 

Laboratory), FP7-ICT-2009-6 PN: 270247 (2011-2015). 

1.2 – Thesis overview 

As a starting point, this chapter presented an introduction to the thesis‟ subject, goals, 

contributions and context. Next, chapter 2 presents the general concepts and the state-of-the-

art in the objects categorization field, providing also a brief glance over the HVS and over the 

lines and edges cortical attributes used in the model. Chapter 3 describes the development of 

the categorization model, explaining the way every step was designed; next, chapter 4 reveals 

the tests and results and chapter 5 completes the thesis main work by presenting some final 

conclusions and some future work ideas. In chapter 6 the Appendices are presented, 

consisting on images and tables which support chapters 3, 4 and 5, namely images related to 

the studied objects, and tables which present the categorization numerical results. Finally, 

after the Appendices, the Bibliography is presented. 
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2. General Concepts and State-of-the-

Art 

 

ABSTRACT 

Several models concerning object categorization are presented in this chapter – 

biological and non-biological -, with special focus on the ones which used the ETH-

80 database to achieve their experimental results, as these models are more suited 

to be compared to the model developed in this thesis. In addition, since the latter 

model is bio-inspired and a cortical attributes detection model was used as basis 

for the categorization model developed in this thesis, a description over the HVS 

and over the cortical attributes detection model was given; furthermore, some 

motivations regarding the use of the HVS as inspiration were covered. 

 

Computer Vision is spread among several sub-areas; some of the most important are objects 

detection, categorization and recognition, as well as face detection and recognition. More 

research took place in the recognition area than in the categorization area “in the past” (Pinz, 

2006); although the majority of recognition algorithms isn‟t directly applicable to 

categorization, the success achieved in the recognition field influenced several categorization 

approaches. As examples of the evolution in the object recognition field, Lowe, 2001 

developed a system which uses SIFT (Scale Invariant Feature Transform) features, that is able 

to robustly recognize 3D objects in cluttered natural images, and, Su et al., 2006 implemented 

a framework for 3D object recognition in 2D images, by means of a similarity-based and 

aspect-graph approach. Passalis et al., 2007 showed that face recognition is connected to 

object retrieval, being the latter topic concerned about the search for objects - in a database - 

which are similar to a given query object; the latter authors presented a method for intraclass 

retrieval of 3D objects, which is appropriate for nonrigid object classes, and was applied to 

the face recognition domain. Also regarding object retrieval, Lam & du Buf, 2011 developed 

a 3D polygonal objects retrieval method which uses two sets of multiresolution signatures. 
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The content based 3D retrieval field is covered in Tangelder & Veltkamp, 2008, where the 

literature on methods concerning this subject is surveyed. 

Biologically speaking, at the visual cortex level, the objects invariant detection, categorization 

and recognition depends on a cortical stages hierarchy where invariance is gradually built 

(Grossberg et al., 2011); this involves two data streams - “bottom-up” and “top-down” - in the 

“what” e “where” subsystems (Deco and Rolls, 2004), including also the integration of both 

(Farivar, 2009). Among the existent several cortical areas, there is area V1; the latter area 

contains simple and complex cells which are adjusted to different spatial frequencies, 

orientations and disparity (Hubel, 1995). Rodrigues & du Buf, 2009b presented a model for 

lines and edges (LEs) detection in V1, which is based on simple and complex cells responses. 

The same authors exemplify “the use of the multi-scale line/edge representation” for several 

processes: visual reconstruction (brightness perception), automatic scale selection and object 

segregation; finally, they tested a two-level 2D object categorization setting, and presented “a 

multi-scale object and face recognition model”. Also placed in cortical area V1, the end-

stopped cells combine responses of complex cells tuned to different orientations (Rodrigues 

and du Buf, 2006); this latter cell type allows detecting line and edge crossings, singularities 

and points of large curvature. In Rodrigues and du Buf, 2006 the importance of multi-scale 

keypoint representation is investigated, and also object segregation, automatic scale selection, 

saliency maps building and face detection are approached. Having as basis these neuronal 

processing systems, it was possible to create a cortical architecture for 3D faces recognition 

(Rodrigues et al., 2011) and a first approach to 3D object recognition (Rodrigues et al., 2012). 

Rodrigues et al., 2012 explore the use of 2D projections in cortical 3D face and object 

recognition, as a development from the work presented in Rodrigues & du Buf, 2009b; in 

other words, Rodrigues and du Buf, 2009b presented a biological model in 2D which evolved 

to 3D by using a group of 2D cortical patterns (Rodrigues et al., 2012) for 3D recognition. 

More biologically inspired publications include Rodrigues & du Buf, 2011 where a HVS 

inspired framework for scene categorization was presented, the thesis by Sousa, 2009 about 

human facial emotions recognition, the cortex integrated multi-scale architecture by 

Rodrigues, 2007 and the “biologically plausible model to obtain a saliency map for Focus-of-

Attention (FoA)” by Martins et al., 2009.  

In the next sections the main general concepts presented in the above description are explored 

in detail, as well as the state-of-the-art for the main topics of this thesis.  
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2.1 - Categorization approaches gist and non-biological approaches description 

Several categorization-related publications enriched the CV state-of-the-art, as for example 

the one by Leibe & Schiele, 2003 who studied the efficiency of some appearance- and 

contour-based recognition methods for multi-class object categorization; in the following 

year, Leibe & Schiele 2004 presented a multi-scale object categorization approach “using 

scale-invariant interest points and a scale-adaptive Mean-Shift search”; also, Jiang et al., 

2007b explored various aspects of Bag of Features (BoF) for object categorization and 

semantic video retrieval, Wu et al., 2009 proposed a “scale invariant visual language model,” 

where the supervised information of the image level labeling is used to learn the object 

categories, Kinnunen et al., 2010 proposed an approach for unsupervised visual object 

categorization, Kim & Medioni, 2011 presented a scalable framework for 3D object 

categorization in range images, and, Han et al., 2011 evaluated a canonical correlation- and 

view-based approach both for object recognition and categorization; moreover, Petre & 

Zaharia, 2011 presented a scheme for categorization of 2D objects present in still images, 

which resorted to categorized 3D models, and, Duchenne et al., 2011 presented an object 

categorization approach which sees image matching as an energy optimization problem. For 

further categorization methods see also Savarese & Fei-Fei, 2010 and Stöttinger et al., 2012. 

We also refer to Galleguillos & Belongie, 2010 for a survey regarding the usage of different 

kinds of contextual information for a strong object categorization, and mention as well the 

article by Pinz, 2006, which presents foundations, original research and tendencies in object 

categorization by computer vision methods. Moreover, some biologically inspired 

categorization approaches can be named: Mundhenk et al., 2004 developed a method for 

clustering features - collected from the environment - into classes of objects, Chen et al., 2012 

proposed an algorithm for feedforward categorization of objects (particularly human postures) 

in real-time video sequences and Mutch & Lowe, 2008 investigate the role of sparsity and 

localized features in a biologically-inspired model of visual object classification. Finally, as 

already mentioned, Rodrigues & du Buf, 2009b presented a model which was used as basis 

for this thesis: a model for lines and edges (LEs) detection in V1, which was based on simple 

and complex cells responses; the latter authors also tested a biologically inspired and two-

level object categorization setting. For more biologically based publications on categorization, 

see, for example, Serre et al., 2007, Jiang et al., 2007a and Buckley & Sigala, 2010. 



9 

Along this chapter some of these approaches are described in detail: Leibe & Schiele, 2003, 

Han et al., 2011, Petre & Zaharia, 2011 and Rodrigues & du Buf, 2009b - being the latter the 

only biologically based from the mentioned four. All four publications are related to this 

thesis work; however, the publications by Leibe & Schiele, 2003, Han et al., 2011 and 

Rodrigues & du Buf, 2009b are more suited for comparing the final results because these 

three authors used the ETH-80 database (Leibe & Schiele, 2003) to test their approaches as it 

was done for evaluating the categorization model developed in this thesis. 

Leibe & Schiele, 2003 presented ETH-80 – an 80 objects database specifically intended for 

object categorization. As referred in the latter paragraph, this database was used to test the 

biologically based categorization model developed in this thesis; particularly, the eth80-

cropped256 set (ETH-80, 2013) was used to test the latter model; the database is available for 

download in ETH-80, 2013. ETH-80 comprises 8 different categories, each one being 

represented by 10 objects; the objects show significant intra-class variations, even though 

they clearly belong to their respective categories. Each object is represented by 41 images 

from viewpoints equally spaced over the upper viewing hemisphere (at distances of 22.5 - 

26º), hence, this database comprises a total of 3280 color images (of high-resolution); besides, 

a high-quality segmentation mask is provided for each image and also, a blue chromakeying 

background was used to collect the views (Leibe & Schiele, 2003). In order to explore the 

categorization of natural and human-made objects, ETH-80 includes: 3 “fruits & vegetables” 

categories – apples, pears and tomatoes -, 3 animal categories – cow, dog and horse -, one 

“human-made, small (graspable)” category – cups - and one “human-made, big” category – 

cars. Leibe & Schiele, 2003 used ETH-80 as a benchmark to individually evaluate the 

performance of several appearances and contour based methods for a multi-class object 

categorization purpose; the methods are as follows:  

a) The first method uses color histograms (Swain & Ballard, 1991); in this approach they 

collected a global RGB histogram over all image pixels belonging to the object; by 

comparing histograms, the test image is finally assigned to the category which has the 

closest matching histogram (Leibe & Schiele, 2003).  

b) Moving on to the second used method which is texture-based, Leibe & Schiele, 2003 

used “a generalization of the color histogram approach to histograms of local 

grayvalue derivatives at multiple scales” (Schiele & Crowley, 2000). Two versions of 

this approach were compared: the first is a rotation-variant descriptor, and uses first 
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derivatives in x and y directions over 3 different scales; the second uses the gradient 

magnitude and the Laplacian – rotation invariant features -, also over 3 scales. Finally, 

in these approaches, the matching histograms alternative was used (Leibe & Schiele, 

2003).  

c) In order to use the objects‟ global shape as a tool for categorization, Leibe & Schiele, 

2003 used PCA-based methods (PCA: Principal component analysis), only reporting 

results in one of them; the authors reported results from a PCA-based method which 

consisted in building separate eigenspaces for each category and calculating the 

reconstruction error (Turk & Pentland, 1991), i.e., the class-specific eigenspace 

capability of representing the test image; two approaches were tested: in the first 

experiment they applied PCA to the segmentation masks, and on the second they 

applied it to the segmented grayvalue images (Leibe & Schiele, 2003).  

d) Finally, the last method was local shape based, or, more specifically, it was a contour 

based method. Leibe & Schiele, 2003 chose as reference a method based on the Shape 

Context (Belongie et al., 2001); in this method, an object view is represented by a 

discrete points set, and the referred points are regularly sampled along the internal or 

external contours. Referring to Belongie et al., 2001, Leibe & Schiele, 2003 compared 

two simpler approaches: (a) a dynamic programming approach was used to search a 

continuous path around the object contour; adjacent points in a contour are matched to 

the correspondent point in another contour; (b) the second approach comprises a “one-

to-one matching between contour points using a greedy strategy”. In both approaches, 

the final score is given by the sum over all individual matching costs, and a 

comparison between shape context histograms is made (Leibe & Schiele, 2003).  

Leibe & Schiele, 2003 reported their best results obtained using each of the 7 approaches here 

described. Using a leave-one-object-out cross validation, they used 79 objects for training, 

and tested the methods with the one remaining unknown object; besides, their results were 

averaged over the 80 available test objects. They also mention their experimental conditions: 

“we use the database for a best case analysis: categorization of unknown objects under the 

same viewing conditions, with a near-perfect figure-ground segmentation, and known scale.” 

The highest average categorization rate regarding the results obtained using the described 

approaches was 86.4% - a percentage achieved by both contour approaches. Evaluating the 

results, Leibe & Schiele, 2003 observed that no single method (mentioned above) is superior 
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for all categories, and that almost all of the referred methods are the best choice for at least 

one category. At this point, Leibe & Schiele, 2003 inferred that regarding multi-class object 

categorization, multiple features should be used as well as different combinations of these. 

This way, they explored four different cues - colour, rotation invariant texture, PCA on 

segmentation masks and contours -, obtaining a grouping hierarchy for each of them: “by 

iteratively grouping together those categories that are confused most often, we obtain a 

hierarchy of groupings.” While analysing the grouping hierarchies of the four different cues in 

Leibe & Schiele, 2003, we could notice that the „dog‟ and „horse‟ categories were considered 

a best grouping in terms of colour, rotation invariant texture, global shape and contours, and 

so were „apple‟ and „pear‟ in terms of rotation invariant texture; likewise, „apple‟ and 

„tomato‟ were considered a best grouping regarding global shape and contours. Finally, Leibe 

& Schiele, 2003 proved the significant potential in resorting to multiple features by using a 

decision tree (Duda et al., 2001) which at each level bases its decisions on one cue only; using 

an optimal multi-cue decision tree, the global categorization rate was improved to 93.02% 

(Leibe & Schiele, 2003). 

In Han et al., 2011, a canonical correlation- and view-based approach was presented and 

evaluated both for object recognition and categorization; this approach explores local feature 

sets which are common in different views of the same object, as these sets can be “an 

effective representation of an image”. In order to measure the similarity between two local 

features sets, a canonical correlation analysis is performed, so that the similarity between two 

images can be calculated for object categorization. RGB SIFT is used to represent a local 

region of a colour image; also, an orthogonal subspace is extracted from a local feature set of 

an image, so that the similarity between two images can be measured by using a canonical 

correlation analysis on the orthogonal subspace for image representation. Two different view-

based object datasets were used for different purposes: COIL-100 (Nene et al., 1996) was 

used for an evaluation in object recognition, and ETH-80 supported the object categorization 

tests. As in this thesis the results for the biological categorization model here developed were 

achieved using ETH-80, the experimental setup and results from Han et al., 2011 concerning 

the latter database were considered. As referred before, ETH-80 is organized in 8 different 

categories, each with 10 objects (Leibe & Schiele, 2003); Han et al., 2011 used - from each 

category - 9 objects for the reference (training) set and the remaining object for the test set. 

The training set consists of 5 views from each training object, and the testing set contains all 

views from the test objects. To accomplish object categorization, a canonical analysis was 
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used to compare the input orthogonal subspace to the reference orthogonal subspaces, where 

the similarity between the input and the reference subspaces is represented by the averaged 

correlation value. Several subspace dimensions were explored in the experiments, and an 82% 

categorization success rate was reached (Han et al., 2011). 

The approach by Petre & Zaharia, 2011 is also described in detail, so that another non-

biological categorization approach is provided - besides the ones by Leibe & Schiele, 2003 

and Han et al., 2011. Petre & Zaharia, 2011 developed a novel 2D object categorization 

method, where by means of a matching between unknown 2D objects and categorized 3D 

models, the former objects (present in still images) are semantically labelled. A motivation 

presented by the authors relies on the fact that automatically identifying the semantics of an 

image‟s elements allows a machine to easily retrieve the required content. With the purpose 

of classifying a 2D object, the latter is compared to all 3D models, being the semantical 

matching mentioned above achieved by using 2D/3D indexing methods. The principle of 

2D/3D indexing comprises the presentation of the 3D model as a 2D views set, in turn, each 

view is characterized using a 2D shape descriptors set. To provide a matching between 2D 

objects and 3D models, the same 2D shape descriptor is used for the query objects - which 

were beforehand manually segmented from still images. As to obtain 2D views from the 3D 

models, several projection strategies were also evaluated. The model was tested using (a) 115 

randomly chosen 2D web images against the MPEG-7 3D model database (Zaharia & 

Prêteux, 2004) – which has 23 available categories -, and using (b) 65 of the latter 2D objects 

against the Princeton Shape Benchmark (PSB) (Shilane et al., 2004) – which has 161 

available categories (Petre and Zaharia, 2011); the categorization success rate was explored in 

several cases - regarding the various 2D shape descriptors, projection strategies and number 

of candidate categories for final answer (1, 2 or 3) -, reaching 70.4% on case (a) and 64.6% on 

case (b). These maximum recognition rates were both achieved in the case of 3 accepted 

categories for final answer (Petre and Zaharia, 2011). 

2.2 - Choosing the HVS as an inspiration 

As we could see in Leibe & Schiele, 2003, Han et al., 2011 and Petre & Zaharia, 2011, these 

non-biological categorization models show respectable results, but still our HVS is the fastest 

system for object categorization, being also the most effective, reliable and versatile in this 

regard; various reasons at the level of Neuroscience and Cognitive Psychology substantiate 
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this fact. However, for starters, a common sense justification is the fact that our HVS deals 

with real world complex images, still being able to categorize objects in real-time. We are 

able to decide if a quickly flashed image corresponds to a certain category in less than 150ms 

(Pinz, 2006), while the referred categorization models don‟t assure real-time speed. The HVS 

is selective, as we are capable of being indifferent to most information that is daily presented 

to us, and as well able to be very aware and immediately notice an object moving in our 

peripheral vision. This selectivity has a very specific name: “attention.” Attention is therefore 

one of the most important perception mechanisms; by having this practical ability, our gaze is 

foremost and impulsively oriented to the most interesting zones in our visual field (Ruesch et 

al., 2008). Our brain is, in fact, a selective organ, because as visual attention orients our focus 

to the most interesting areas in the visual field, the brain is also able to choose among these 

areas data its most relevant information, thus storing it (Saleiro, 2011). Humans‟ attention is 

quickly drawn towards “eye-catching” objects and regions in the visual field; the ability of 

identifying these objects/regions is important for humans‟ survival (Elazary & Itti, 2008). 

Attention provides HVS with another significant characteristic: moderation. This feature was 

mentioned by Rensink, 2000, Brady et al., 2008 and Saleiro, 2011 in different words. As 

mentioned by Saleiro, 2011 the level of a person's attention and concentration conditions the 

visual perceptions' memory storage. A bigger attention level originates, this way, more 

detailed memory storage. Thereby, the HVS varies the quantity of absorbed detail depending 

on the circumstances (Brady et al., 2008). If it weren't like that, i.e, if our brain would analyse 

every single detail that is brought to our senses, it would be constantly busy (Rensink, 2000). 

This capability of just attending to certain parts of the visual field, selecting these areas' most 

important data and being capable of varying the detail absorption, are some of the many 

quality-features of the HVS. As selective and moderated, the HVS is also versatile; while 

walking on the beach, the country or other different scenarios, we are capable of recognizing 

and categorizing various objects which in turn may be different in appearance, or even belong 

to different classes. Cognitive psychology evidence shows that humans deal with 

approximately 30.000 different categories (Pinz, 2006 referring to Biederman, 1995), 

however, “this would require solving currently intractable computational complexity” (Pinz, 

2006). Bornstein et al., 2010 stated that young infants have noteworthy categorization skills, 

being able to easily categorize objects - like faces, animals, furniture, vehicles, tools and 

plants. Also interestingly, object categorization in 6-month-old infants is flexible in its 

capacity of transcending variation in object–context relations (Bornstein et al., 2010). Having 

been presented the arguments which denote the superiority of the HVS, the following 
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paragraphs are intended to complement the information regarding object categorization and its 

link to Neuroscience and Cognitive Psychology. 

While Bornstein et al., 2010 stated that robust object categorization is adaptive, Leibe & 

Schiele, 2003 - referring to Rosch et al., 1976 -, stated that categories are a learned 

representation which depends on education and experience (Leibe & Schiele, 2003). 

Bornstein et al., 2010 also wrote that object identification, memory, and categorization may 

depend on contextual cues; in this regard, Galleguillos & Belongie, 2010 denote the work by 

Palmer, 1975 who found that the object categorization task was eased if the target object was 

presented after an adequate scene, and impaired if the object and scene combination wasn‟t 

coherent. Analysing an object‟s surrounding context contributes for the object‟s 

categorization; a proper visualization for this statement is given by Fig. 1 in Galleguillos & 

Belongie, 2010, where these authors refer that the features of a certain object - which is 

shown isolated from its environment - are not enough to classify it. For more information 

about the use of contextual data in object categorization see Galleguillos & Belongie, 2010.  

Kourtzi & Connor, 2011 refer to object vision as an incredible ability that is still mostly 

unexplained concerning the neural coding mechanisms. As Leibe & Schiele, 2003, Kourtzi & 

Connor, 2011 also denoted the importance of experience, mentioning that the latter is central 

in shaping structural and categorical coding for object perception; structure and category are 

distinct domains, however, it‟s still not clear how these interrelate (Kourtzi & Connor, 2011). 

Stating the last authors “learning optimizes the neural processes that mediate binding of local 

elements and parts into objects, recognition of objects across image changes that preserve 

identity (e.g., position, orientation, clutter), and selection of behaviorally relevant features for 

object categorization.” Understanding the mechanisms which mediate the adaptive coding of 

classes is very important to comprehend our capacity of making flexible perceptual decisions 

(Kourtzi & Connor, 2011). Again citing the latter authors: “extensive behavioral work on 

visual categorization (e.g., Goldstone et al. 2001) suggests that the brain learns the relevance 

of visual features for categorical decisions rather than simply representing physical 

similarity.”  

The HVS was often thought as a processes sequence - detection, segregation, categorization 

and recognition; however, these processes cannot occur entirely in a series (Bar et al., 2006); 

as mentioned by Saleiro, 2011, recent researches suggest that objects categorization and 

segregation occur simultaneously, or that categorization takes place before segregation 
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(Rodrigues & du Buf, 2009a). Despite the researches made in this regard, the processes exact 

sequence is still unknown as are the cases of processes parallelization (Saleiro, 2011). 

Understanding the HVS, proposing hypotheses about its behaviour and trying to integrally 

reproduce it, is a subject of much work, once the brain's behaviour is not entirely known.  

As mentioned in chapter 1, this thesis goal is to categorize 2D objects using a biologically 

inspired model which is based on V1 LEs cortical attributes. In the next section, some basic 

concepts regarding the HVS are presented.   

2.3 - General concepts about the Human Visual System  

Our eyes gather exterior information in the form of light which is projected in the 

photosensitive retina and converted in electrical signals; the signals from the two retinas are 

forwarded to the optic nerve and next to “two peanut-size nests of cells” – the lateral 

geniculate bodies (Lateral Geniculate Nucleus - LGN). The LGN‟s ending fibres connect to 

the visual cortex -, or more specifically, the striate cortex (primary visual cortex) -, from 

which the information is sent to several neighbouring higher visual areas (Hubel, 1995).  

Retina is a plate composed by rods and cones - cells which are photosensitive in different 

ways. The cones provide us our detailed and colourful vision, while the other photosensitive 

cells – the rods – make us capable of perceiving the environment in dim light (Hubel, 1995). 

The human retina is composed by one single type of rod, and yet, three types of cones 

(Troncoso et al., 2011). The latter photoreceptors, “responsible for color vision, are called L 

(or red) cones, M (or green) cones, and S (or blue) cones”, having each cone type its 

maximum sensitivity in different wavelengths of the light spectrum. Rods represent a bigger 

ratio in the retina than the cones; the concentration of the latter cells varies across the retina: 

although cones are found spread in the entire retina, only these cells are found in this organ‟s 

central area - named fovea -, a rod-free area, where our fine-detail vision is the best (Hubel, 

1995). Additionally, more cell types take place in the retina, such as the ganglion cells, 

bipolar cells, horizontal cells, and amacrine cells (Hubel, 1995).  

Nerve cells, or neurons, are composed mainly by their nucleus, dendrites and axons. A nerve 

cell has several dendrites for receiving the input signals from the other cells, and one axon (a 

nerve fibre) which allows the first to transmit a response. The optic nerve, which makes the 
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connection between retina and the LGN, is composed by a group of axons from “the third 

stage retinal cells” - the ganglion cells (Hubel, 1995).  

Moving from the retina, and through the optical nerve, the signals are forwarded to the LGN; 

the latter is found in the thalamus and is a part of the central nervous system (Hubel, 1995). 

The LGN receives its main input from the retina, being indirectly connected to a certain 

population of rods and cones; this clustered cells population in the retina, which feeds into a 

certain cell in the visual pathway, comprises the receptive field of this cell; in other words, the 

receptive field is “the outer world as seen by a single cell”, contrasting with the concept of 

visual field which is our perceptions of the external environment. In addition, the LGN cells‟ 

receptive fields are characterized by the same disposition of ganglion cells that feed into them 

(Hubel, 1995). 

When in presence of a stimulus in the receptive field (RF) region, the neuron may fire a 

signal. As an example, ganglion cells - which have a circular shape and two concentrical 

regions - are divided in two types: on-center and off-center cells. The on-center cells fire a 

signal if light-stimulated on their RF, suppressing the response when stimulated outside this 

region, and firing again when the light is turned off; the two last phenomena – suppression 

followed by signal discharging comprise an “off response”, being the first referred occurrence 

denominated “on response”. The off-center cells have an inverse reaction: their RF provided 

off responses, and its surroundings presented on responses (Hubel, 1995). In addition, citing 

Hubel, 1995: “because convergence occurs at every stage, receptive fields tend to become 

larger: the farther along the path we go, the more fuzzy this representation-by-mapping of the 

outside world becomes”; also, the receptive fields of the primary cortex cells are more 

complex than those “behind in the visual pathway” from the retina and LGN, increasing their 

complexity as far as they are localized in the pathway (V1, V2, V3, etc.). 

As referred before, the data moves forward and mainly to an area in the visual cortex named 

primary cortex V1, nevertheless, the visual cortex is also composed by other cortical areas. 

For further details concerning the HVS, see Hubel, 1995 and Troncoso et al., 2011. Also 

noteworthy, is the fact that the existing connections between visual cortex and LGN are 

retinotopic projections, i.e, the left-right and up-down relations in the spatially transported 

data are preserved in the retina, LGN and visual cortex (Sousa, 2009). For a better 

visualization of the named regions, consider the top-left image from Fig. 2.3.1, which shows 

the brain‟s horizontal cross section, giving some perspective about the LGN position in the 
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brain as well as the optic nerves‟ and the visual cortex‟s; consider also the top-right image 

which shows the anatomical regions of the human brain. 

At the visual cortex level, the objects invariant detection, categorization and recognition 

depends on a cortical stages hierarchy where invariance is gradually built (Grossberg et al., 

2011); this involves two data streams - “bottom-up” and “top-down” - in the “what” e 

“where” subsystems (Deco and Rolls, 2004), including also the integration of both (Farivar, 

2009).  For a proper visualization, consider the bottom image in Fig. 2.3.1 which illustrates 

the datastream based on the cortical architecture from Deco & Rolls, 2004.   

 

   

 

 

Figure 2.3.1 Top-left: Brain‟s horizontal cross section, adapted from Fisiologia ocular, 2013. Top-right: the 

brain‟s anatomical regions, adapted from Fig. 3.3 in Sousa, 2011; bottom: the datastream based on the cortical 

architecture from Deco and Rolls, 2004, adapted from Fig. 1 from Deco & Rolls, 2004. 
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Cortical area V1 is composed by a stack of selective spatiotemporal filters; accordingly, 

among other spatiotemporal functions, the latter are able to execute several processing tasks 

concerning frequency, orientation, movement, direction, velocity (Olshausen & Field, 2005). 

Cortical area V2 receives signals from V1, forwarding them to V3, V4 and to the middle 

temporal area (MT). Although V2 is characterized by more complex functions than V1, both 

areas are known for having similar functions (Qiu & von der Heydt, 2005); object 

segregation, a complex function, is an example for the latter consideration. 

V3 takes place in the dorsal datastream, receiving inputs from V2 and V1; some of its cells 

are sensitive to orientation, being many of them tuned to movement and depth (Gegenfurtner 

et al., 1997). Cortical area V4 – the third area in the ventral datastream - is the first area which 

shows strong attention modulation (Chelazzi et al., 2001). Although dealing with more 

complex shapes, V4 deals with the same attributes that concern V1: orientation, scale and 

colour. Another cortical region is the Inferior Temporal area (IT); this region deals with more 

complex shapes than cortical area V4 (Hubel, 1995), and it‟s found upper in the ventral 

datastream, dealing with shapes‟ and objects‟ visual representations (Logothetis et al., 1995); 

additionally, IT sends data to the prefrontal cortex (PF) which is involved in the connection 

between perception, and, memory and action (Miller, 2000). Finally, finishing the visual 

cortex areas description, the previously mentioned MT area is composed by many neurons 

which are movement selective, and also sensitive to complex attributes, such as lines‟ and 

curves‟ endings; this region processes more complex movement stimuli (Hubel, 1995).   

In terms of “brain networks” regarding categorization, “a large network of cortical and 

subcortical areas has been implicated in visual category learning” (Kourtzi & Connor, 

2011).These authors mentioned that areas in the prefrontal cortex, the basal ganglia, the 

medial temporal cortex and occipitotemporal regions are related to categorization (see Fig. 

2.3.1, top-right and bottom): areas in the prefrontal cortex have been connected to rule-based 

tasks in which the category structure is defined by a single stimulus dimension, the basal 

ganglia have been linked primarily to information-integration tasks, the medial temporal 

cortex has been connected to category-learning tasks which rely on memorization, and, 

occipitotemporal regions are engaged by prototype-distortion tasks (Kourtzi & Connor, 2011).  

Some general concepts about the HVS were covered in this section; the following section was 

reserved for the explanation about the V1 LEs detection model (Rodrigues & du Buf, 2009b) 

which was used as a basis for the categorization model developed in this thesis.  
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2.4 - Cortical attributes: LEs detection and classification   

Hubel and Wiesel report the existence of several cell types in V1 and V2; among these are the 

simple, complex and hypercomplex cells (Hubel, 1995). These cells can be modelled using 

Gabor filters which are also used in Computer Vision applications such as texture, document 

analysis, retina identification, coding, and image representation (e.g. Weldon et al., 1996). 

The complex cell‟s modelling can be done through simple cells, and hypercomplex cells can 

be modelled by complex cells; the hypercomplex cells can be also named „end-stopped‟ 

(Rodrigues & du Buf, 2009a). 

Gabor filters possess a very proximate response to the simple cells‟ (Lee, 1996), being as well 

the best solution - presented until now - to mathematically model this cell‟s type (Sousa, 

2009). These cells have several scales and orientations, being type, orientation and scale of 

the stimuli influence factors for their response; also, simple cells can either be even or odd 

(Sousa, 2009). The receptive field of simple cells can be approximated by 

function              , which is centred in the origin:  

 .                 (2.4.1) 

In the simple cells‟ receptive field function,  ̃ and  ̃ are respectively given by   ̃        

      and  ̃             ; γ is the spatial aspect ratio - responsible for determining the 

ellipticity of the RF (γ = 0.5); σ is the standard deviation of the Gaussian factor, which 

directly influences the size of the RF; λ is the wavelength; 1/λ is the cosine factor‟s spatial 

frequency; σ/λ is a ratio which reflects the bandwidth of the spatial frequency, or, in other 

words, the number of parallel excitatory and inhibitory stripe regions (see left image in Fig. 

2.4.1); θ defines the orientation; φ defines the symmetry of the RF‟s function (Eq. 2.4.1) with 

respect to the origin (Grigorescu et al., 2003). The ratio σ/λ was used equal to 0.56, which 

yields a half-response width of one octave (Rodrigues & du Buf, 2009b); as a reference to the 

angle parameter θ, 8 orientations were used; the φ variable was used equal to 0 for an RF‟s 

even symmetry, and -π/2 for an odd one (Grigorescu et al., 2003). 

The left image in Fig. 2.4.1 presents a Gabor function‟s intensity map (adapted from  

Grigorescu et al., 2003) which models a simple cell‟s RF profile; Grigorescu et al., 2003 

explain that grey levels lighter than the background are positive values, being the darker the 
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negative ones. Also the visible denoted ellipse designs “the boundary of the (classical) 

receptive field outside which the function takes negligibly small values” (Grigorescu et al., 

2003). As said before, simple cells can either be even or odd. As an illustration for the 

modelling of these two cell types, the even simple cells‟ are represented in the first and third 

column of the right image in Fig. 2.4.1, and the odd simple cells‟ are in the remain columns. 

As well in this figure, the two most left columns represent a certain scale, being the remaining 

columns illustrating another scale, and, each of the three rows are linked to a different 

orientation (Sousa, 2009). 

Considering the receptive field function given by Eq. 2.4.1, the response of a simple cell to an 

input image with luminance spatial distribution f(x,y) can be given by  

, , , , , , , , ,( , ) ( , )* ( , ) ( , ) ( , )d dx y f x y x y f u v x u y v u v           


   R g g  .           (2.4.2) 

Considering even and odd simple cells, the responses of both are given, respectively, by  

),(, yxRE
is

 (for φ=0) and ),(, yxRO
is

 (for φ = -π/2), which are correspondent to the Gabor filter‟s 

real and imaginary parts (Rodrigues & du Buf, 2009b);  s refers to the scale of analysis which 

was given in terms of λ expressed in pixels, where λ=1 corresponds to 1 pixel (Rodrigues & 

du Buf, 2009b); moreover, i is the orientation (        ) and    is the number of 

orientations (    ) (Rodrigues & du Buf, 2009b). This way, complex cells are modeled by 

two simple cells responses with a phase difference of  
 

 
    (Rodrigues & du Buf, 2009b)
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Figure 2.4.1 - Left: Intensity map of a Gabor function, which models the receptive field profile of a simple cell 

(adapted from Fig. 3 in Grigorescu et al., 2003); Right: Modeling even/real simple cells (first and third column), 

and odd/imaginary simple cells (second and fourth column) (adapted from Fig. 3.4 in Sousa, 2009).    
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Several attributes can be obtained using the simple and complex cells, such as lines and edges 

(LEs). These cells respond beyond line and edge terminations; also, at line or edge crossings 

and junctions, detection leads to continuity of the dominant events with biggest amplitudes 

but to gaps in the sub-dominant events – gaps which must be reduced for the purpose of 

rebuilding continuity (Rodrigues & du Buf, 2009b). These issues were solved by using a 

lateral (L) and cross-orientation (C) inhibition (Rodrigues &du Buf, 2009b) 

               (2.4.4) 

 
                        (2.4.5) 

with   iNi  2 ,          ,          , d=0.6s and [.]
+
 denoting a halfwave rectification to 

suppress negative responses (Rodrigues & du Buf, 2009b). Also, inhibition is applied to the 

responses of complex cells, where β controls the strength of inhibition. Rodrigues & du Buf, 

2009b used d=0.6s and β=1,  

                               (2.4.6) 

Once detected, events (lines and edges), can be found in four distinct combinations of type 

and polarity in an image: positive lines, positive edges, negative lines and negative edges. 

Each of these events corresponds to three simultaneous occurrences regarding the different 

cells used; see Table 2.4.1. As an example, positive lines represent (simultaneously) a 

maximum response from even simple cells, an odd simple cells zero-crossing, and a complex 

cells maximum response after inhibitions were applied (Rodrigues &du Buf, 2009b). A 

positive line corresponds to a white line in black background, and a negative line to a black 

line in a white background; moreover, a negative edge corresponds to a white to black 

transition, and the inverse sequence links to the positive edge. As an example, the images in 

Fig. 2.4.2 illustrate LEs detection in an apple and a horse from ETH-80 (Leibe and Schiele, 

2003), using two different scales: a fine (   ) and a coarse one (    ); the positive lines 

are represented in white, the negative lines in lighter gray, the positive edges in dark gray, and 
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the negative edges in black. For more details about the LEs cortical attributes, see Rodrigues 

&du Buf, 2009b. 

Table 2.4.1 - Cells responses combination for lines and edges detection (Max. - Maximum, Min .- Minimum , 

Z.C. – Zero-Crossing). Further details can be seen in Rodrigues & du Buf, 2009b.  

Cell: Simple, even Simple, odd Complex 

Positive line Max. Z.C. Max. 

Positive edge Z.C. Max. Max. 

Negative line Min. Z.C. Max. 

Negative edge Z.C. Min. Max. 

  

   

   

(a) (b) (c) 

Figure 2.4.2 - Lines and edges detected in (a) an apple and a horse from ETH-80 (Leibe and Schiele, 2003), 

using (b) a fine scale     and (c) a coarse scale     ; four event types can be spotted: positive lines (white), 

negative lines (light-gray), positive edges (dark-gray) and negative edges (black). 

After the LEs model‟s description, the biologically-based categorization scenario from 

Rodrigues & du Buf, 2009b which was also based on the V1 LEs detection model (Rodrigues 

& du Buf, 2009b) is provided next, in the following section, among other biologically 

inspired categorization models. 
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2.5 - Biologically inspired categorization models  

The last section described the model for LEs detection in V1 by Rodrigues & du Buf, 2009b – 

an important model for this thesis, since it was used as basis for the biologically inspired 

categorization model here developed. As referred before, the LEs detection model by 

Rodrigues & du Buf, 2009b was based on simple and complex cells responses (Rodrigues & 

du Buf, 2009b), being as well multi-scale “with no free parameters” (Rodrigues & du Buf, 

2009b). Rodrigues & du Buf, 2009b demonstrated that very promising results can be obtained 

using a cortical model, having exemplified “the use of the multi-scale line/edge 

representation” for several processes: visual reconstruction (brightness perception), automatic 

scale selection, and, also, object segregation (Rodrigues & du Buf, 2009b); Rodrigues & du 

Buf, 2009b also applied the detected LEs to object categorization and recognition: they tested 

a two-level 2D object categorization setting, using coarse scales for pre-categorization, and, 

coarse and fine scales for a final categorization level; besides, the latter authors presented “a 

multi-scale object and face recognition model”. Finally, processing schemes were “discussed 

in the framework of a complete cortical architecture” (Rodrigues & du Buf, 2009b). Once 

given a gist of the work by Rodrigues & du Buf, 2009b, we focused specially on the 

categorization scenario that was created.  

Rodrigues & du Buf, 2009b used the ETH80 database (Leibe & Schiele, 2003) to test their 

two-level categorization approach. They chose 10 distinct images from 8 categories – dogs, 

horses, cows, apples, pears, tomatoes, cups/mugs and cars – which were a total of 80 images. 

The explored two-level categorization approach worked as follows: “three types of objects 

(horses, cows, dogs) are first grouped (animal), which we call pre-categorization, after which 

categorization determines the type of animal” (Rodrigues & du Buf, 2009b). The first level, 

pre-categorization, was based on LEs contours templates (solid objects) which were obtained 

through segregation, in order to generalize shape and remove surface detail. Once the object 

views were normalized, “and because different objects within each group are characterized by 

about the same line/edge representations at coarser scales, group templates can be constructed 

by combining randomly-selected images” (Rodrigues & du Buf, 2009b). The multi-scale LEs 

representation was made within   ∈ [4, 32] by means of 8 equally spaced scales. The aim of 

the pre-categorization task was to select one among the following groups: animal, fruit, cup or 

car. At this point, the three coarsest scales within   ∈ [4, 32] were used: 24, 28 and 32 pixels. 

Group templates were created in 3 ways: (a) all 80 images were used - 30 animals, 30 fruits, 
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10 cups, 10 cars -, (b) half of the images were randomly selected and used as templates, where 

a 30 images group was reduced to 15 and a 10 images group was reduced to 5, and, finally, 

(c) a third of the images were randomly selected and used as templates, where a 30 images 

group was reduced to 10, and a 10 images group was reduced to 3. Stating Rodrigues & du 

Buf, 2009b: “for each group template, at each of the three scales, a positional relaxation area 

was created around each responding event cell, by assuming grouping cells with a dendritic 

field size coupled to the size of underlying complex cells (Bar, 2003). These grouping cells 

sum the occurrence of events in the input images around event positions in the templates (a 

sort of local correlation). Mathematically, at every scale and at every position where events of 

a template are stored in memory, local grouping cells with circular dendritic fields at a certain 

position are activated. The “activities of all activated local grouping cells”, grouped together, 

are calculated through a global correlation. Next, the “global groupings were summed over 

scales” and the template which held the highest response was chosen (Rodrigues & du Buf, 

2009b). Without performing spatial relaxation, the model remains almost the same with the 

exception of the circular dendritic field which was reduced to 1 pixel, and the fact that the 

local grouping works fundamentally as the logical AND function. Table 2.5.1 presents the 

categorization results in the form of mean (standard deviation); furthermore, the majority of 

the errors occurred between car/animal and cup/fruit (Rodrigues & du Buf, 2009b).  

Table 2.5.1 – This table corresponds to Table 1, in Rodrigues & du Buf, 2009b. 

 

For the next level - categorization -, the tests were performed using the 8 templates, all 80 

images, and also the multi-scale LEs maps were applied at all 8 scales of the real input 

images. Like in pre-categorization, templates were built by means of random selections. 

Global correlations were compared considering the 8 scales, being selected the one with 

highest number of correspondences. Finally, Table 2.5.1 presents the results achieved for the 

categorization tests using positional relaxation. Rodrigues & du Buf, 2009b mentioned that 

“typical miscategorizations were dog/cow, horse/dog, horse/cow and apple/tomato” 

(Rodrigues & du Buf, 2009b). Finally, stating Rodrigues & du Buf, 2009b: “only about 9 
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errors in 80 images (the “50/50 training and testing” scenario) is a very promising starting 

point for refining the algorithms” (Rodrigues & du Buf, 2009b). 

There is more literature in CV concerning object categorization, however much less in 

biological vision (Rodrigues and du Buf, 2009b). Regarding biologically inspired methods, as 

mentioned before, we also name those designed by and Mundhenk et al., 2004, Mutch & 

Lowe, 2008 and Chen et al., 2012. Mundhenk et al., 2004 developed a method for clustering 

features - collected from the environment - into classes of objects; these features (including 

intensity, orientation and colour) were collected from the image‟s most salient points; for the 

latter purpose, a biologically inspired saliency program was used (Mundhenk et al., 2004). 

Mutch & Lowe, 2008 investigated “the role of sparsity and localized features in a 

biologically-inspired model of visual object classification” (Mutch & Lowe, 2008). The latter 

authors used Gabor filters at every position and scale, and also built up feature complexity 

and position/scale invariance (Mutch & Lowe, 2008). Increasing sparsity was found 

beneficial to improve generalization performance; sparsity was “increased by constraining the 

number of feature inputs, lateral inhibition, and feature selection” (Mutch & Lowe, 2008). 

Finally, Mutch & Lowe, 2008 denote as well the importance of “retaining some position and 

scale information above the intermediate feature level” (Mutch & Lowe, 2008). Chen et al., 

2012 proposed “an algorithm for feedforward categorization of objects” (particularly human 

postures) “in real-time video sequences” (Chen et al., 2012). Stating Chen et al., 2012: “the 

system employs an innovative combination of event-based hardware and bio-inspired 

software architecture” (Chen et al., 2012); the software module collects size and position 

invariant line features which were inspired by primate visual cortex models. The latter authors 

employed “a simplified line segment Hausdorff distance scheme” for the purpose of 

measuring similarity, and achieved size and position invariance “by deriving size and position 

information from event clusters” (Chen et al., 2012). For more details on the models by 

Mundhenk et al., 2004, Mutch & Lowe, 2008 and Chen et al., 2012, please take a look at the 

respective publications. 

This chapter - which covered some general concepts and state-of-the-art -, started by 

providing a gist regarding object categorization publications; detailed descriptions of some of 

these publications were given, namely of the publications Rodrigues & du Buf, 2009b, Leibe 

& Schiele, 2003, Han et al., 2011 and Petre & Zaharia, 2011. Given the fact that the LEs 

detection model by Rodrigues & du Buf, 2009b was used as basis for the categorization 
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model developed in this thesis, a proper description about the former was as well provided. 

Being the categorization model developed in this thesis biologically inspired, some general 

concepts related to the HVS were also described. Next, the following chapter comprises a 

detailed description of the biologically inspired categorization model developed in this thesis.  
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3. Categorization Model 

 

ABSTRACT 

This chapter presents a detailed description of the categorization model’s 

development.  

 

The previous chapter covered the state-of-the-art and the main concepts related to this thesis: 

detailed descriptions of some categorization approaches were given – biologically inspired or 

not. As our HVS is the best for the categorization task, the categorization model here 

developed was based on the LEs detection model by Rodrigues & du Buf, 2009b, thus, a 

proper description of the latter model was already provided (section 2.4), as well as some 

HVS biological background. The developed categorization model is thereby described in this 

chapter, and the proof of concept – which was made using the ETH-80 database (Leibe and 

Schiele, 2003) - is provided in the next chapter.  

3.1 – The categorization model: an introduction 

There are several available databases that could be used to test the model, such as Caltech 101 

(Fei-Fei et al. 2004) or ETH-80 (Leibe & Schiele, 2003). The latter database was chosen for 

the proof of concept because: (a) the objects in this database are „almost‟ segregated (this 

topic is brought up latter in this section). (b) ETH-80 has different available categories and 

several objects per category and (c) the achieved results can be easily compared with previous 

categorization results from Rodrigues and du Buf, 2009b obtained with ETH-80.  

As referred before, the eth80-cropped256 set was used; in this dataset, 8 categories were 

available: apples, cars, cows, cups, dogs, horses, pears and tomatoes (Leibe & Schiele, 2003; 

ETH-80, 2013). As an example, Fig. 3.1.1 shows a sample object from each category: a) fruits 

and vegetables, b) man-made objects and c) animals. 

By observing Fig. 3.1.1, it can be noticed that each image in the eth80-cropped256 dataset is 

composed by one centred object; moreover, all the images are rescaled to a size of 256 256 

pixels, they have a 20% border area, and all images of a particular object have equal scale. 
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For more information on this dataset see Leibe and Schiele, 2003 and ETH-80, 2013; the 

database is available for download in ETH-80, 2013. 

a) 

   

b) 

  

 

c) 

   

d) 

  

 

Figure 3.1.1 - Objects samples from the eth80-cropped256 set (ETH-80, 2013). a) to c) a sample object from 

each category in the eth80-cropped256 set: (a) fruits and vegetables - apple, pear and tomato, (b) man-made 

objects - car and cup and (c) animals: cow, dog and horse. Bottom line (d): horse7 shown in left and right profile.  

As already mentioned, in the ETH-80 database each category has 10 objects, being each of the 

latter available in 41 views (see examples in Fig. 6.1.1, Appendix 6.1). From all the 41 views, 

two specific ones were chosen to work with: left and right profile - see in Fig. 3.1.1 d) horse7 

in both views. This way, there were chosen 160 objects images: 80 objects in left and right 

profile. The algorithm was trained using a sub-group from the chosen 160 images. Half of 
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these images - 80 images (40 objects in both views) - was used for training (templates 

images), and the other half (80 images) was used to evaluate the validity of the built model 

(test objects images). In summary, from the original database all the objects are used in two 

views; there are 10 objects per category, from which 5 were used as template/training objects, 

and the remaining 5 were used as test objects.  

It was mentioned above that the objects were „almost segregated‟, as Leibe & Schiele, 2003 

applied “a blue chromakeying background for easier segmentation” (Leibe & Schiele, 2003). 

However, in the figures distinguished until this point in this chapter, it can be noticed that the 

ETH-80 objects images‟ background isn‟t truly homogeneous; moreover, when the lines and 

edges detector algorithm from Rodrigues and du Buf, 2009b was used directly on ETH-80‟s 

objects, many lines and edges were detected in the images background, especially at the 

bottom - on the base on which the objects were positioned. This is illustrated in Fig. 3.1.2, 

where a horse is presented in right profile, and also the horse‟s LEs detected for λ = {5, 20} 

are shown. Furthermore, a previous example of LEs detection in objects images was already 

shown in Fig. 2.4.2, in section 2.4. We also refer to the same section for a detailed 

explanation about these cortical attributes. 

    

Figure 3.1.2 - From left to right, an horse shown in right profile, corresponding lines and edges detected using 

λ=5 and λ=20. In the right most image the same horse image with the background homogenized. 

Being objects categorization the goal of the thesis and segregation a topic out of the focus, the 

background of all 160 images was manually homogenized, so that the found LEs in the 

images would only belong to the used objects. This homogenization is shown in the right 

most image of Fig. 3.1.2; more examples are shown in Fig. 6.1.2 in Appendix 6.1. In the 

following section we present a simplified gist of the categorization model which was 

developed surrounding the 8 formerly presented categories: apple, car, cow, cup, dog, horse, 
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pear and tomato. The model‟s explanation is gradually completed throughout this chapter, i.e., 

more details are presented as far as this chapter is read. 

This model aims to categorize an object, i.e., to calculate which of the 8 categories in ETH-80 

the latter is more similar to. This computation is made using the LEs cortical attributes 

collected from the object and from all the template objects in several lambdas. Examples of 

detected LEs in objects images are provided in Appendix 6.2. The first main idea behind this 

model was to compare an object‟s LEs to a category‟s LEs and generate a similarity 

percentage sp which represents the resemblance degree between both. As 8 categories were 

available in ETH-80 (Leibe & Schiele, 2003), an object could be assigned 8 similarity 

percentages (later, we mention that in fact 24 similarity percentages are assigned to an object; 

however, for now, it‟s important to consider 8 similarity percentages for an easier explanation 

about the model). Afterwards, these 8 percentages could be analysed in order to decide which 

category the object is more similar to. For an illustration about this description, see Fig. 3.1.3.  

 

Figure 3.1.3 - Diagram describing a simplified gist of the categorization model.  

It‟s important to refer that the diagram on Fig. 3.1.3 is just a very simplified illustration 

provided to explain the model more easily, because this diagram doesn‟t exactly represent the 

model; however, this diagram represents very well the fact that in order to obtain the 

similarity percentages, object‟s and categories‟ LEs must be compared, and afterwards, the 

final category is found; the way these processes occur is explained along this chapter. The 

LEs of a certain category - or a category‟s templates set - are originated through the LEs of 

Categorization model’s simplified gist 
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this category‟s templates objects. The category‟s LEs can be seen as „memory‟ located in pre-

frontal cortex. Detailed information about how a category‟s templates set is built is given in 

section 3.2. As referred before, the LEs are explored in several scales: the categorization 

model works with 15 values of λ, in order to give some robustness to the model; this way, the 

comparison between an object and each category‟s templates set is made in 15 levels. The λ 

values are given by 

                           .                   (3.1.1) 

In order to calculate a similarity percentage between an object and a category, it‟s necessary 

to calculate a similarity score Sc, which is the numerator of the similarity percentage. The 

similarity score is the number of common events found between object and category 

templates in all these lambdas. Fig. 3.1.4 provides a simplified diagram that shows how the 

similarity score is obtained.  

Analysing the diagram in Fig. 3.1.4, it can be noticed that a comparison between object‟s LEs 

and a category‟s LEs (set of templates) is made at every  ; as illustrated, all of these 

comparisons contribute for the final similarity score, and therefore, for the final similarity 

percentage. As can be seen, the object‟s events and each category‟s events are only compared 

when both belong to the same view and were achieved using the same  ; when testing an 

object in left profile, the available categories‟ template sets for comparison are as well in left 

profile, as the latter were previously built using the template objects in left profile; if the input 

test object is in right profile, it‟s only compared with right profile sets. As it was not the focus 

to recognize a view automatically, the view is manually chosen while using the algorithm, 

and, having this data, the algorithm does the rest automatically, i.e., it picks the corresponding 

categories files that contain the information for comparison. Basically, the model will be 

applied to each view independently, so that the former is demonstrated to work independently 

of the input view.      
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Figure 3.1.4 – Simplified illustration for a similarity score calculation; the referred score represents the 

similarity between the „unknown object‟ and the apple category. 
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3.2 - Obtaining each category’s template set 

Regarding Fig. 3.1.4, this section explains how to obtain a category‟s set of templates for a 

certain   and view (e.g. Apple‟s set of templates for λ = 5). Considering a certain   and a 

view, a category‟s templates set has 4 templates – each one providing different information 

about the category. Each template is composed by different information from the 5 template 

objects LEs within a category, view, and λ: (a) the 1
st
 template combines all positive 

responses of line cells, (b) the 2
nd

 template combines all the negative responses of line cells, 

(c) the 3
rd

 template combines all positive responses of edge cells, and (d) the 4
th
 template 

combines all negative responses of edge cells, see Fig. 3.2.1.  

The combination is done considering each cell response as active. All active cells of the same 

type and polarity (within the same λ) contribute to a certain template; active cells of another 

combination of type/polarity contribute for another template for the category. As there are 4 

built templates for each category, view and λ, there is a total of 60 templates per category and 

view:                                                        . The number of 

categories templates per view can as well be calculated: as 8 categories were available (Leibe 

& Schiele, 2003), the templates sets for all categories have 480 templates for each view: 

15(scales)                               = 480 templates / view. As an illustration, Fig. 

3.2.1 shows for the horse category in right profile the templates used for scale λ=5 (from left 

to right) - the positive lines, the negative lines, the positive edges and the negative edges 

templates. More category sets examples can be found in Appendix 6.3. 

       

Figure 3.2.1 - Templates set for the horse category in right profile, for λ = 5 - from left to right: positive lines, 

negative lines, positive edges, negative edges templates. 
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3.3 - Calculating the similarity percentages between an object and a category 

As mentioned in section 3.1, we consider, for now, that an object is assigned one similarity 

percentage for each of the 8 categories (we will see later that in fact an object is assigned 3 

different similarity percentages for a single category). This section describes several 

conceptualized ways for calculating a similarity percentage between an object and a category, 

hence explaining as well how to obtain the similarity score and other parameters. 

Independently of the way through which a similarity percentage is calculated, the number of 

common events that exist between object and category‟s templates is important to achieve. In 

order to calculate a similarity score, several comparisons are made between the object‟s 

events and the templates sets‟ events for each λ (object and category‟s templates should have 

the same view); all these comparisons contribute to the referred integer number (Fig. 3.1.4). 

So, considering a certain λ, this calculation is done choosing every object‟s event, and testing 

if each event exists in a certain region of interest (RoI) of the (previously prepared) category‟s 

templates; the RoI is defined by a circular dendritic field whose centre has equal coordinates 

to the searched event of the object. 

The calculation of the common events number is based on accumulation of evidence: if the 

type and polarity of the event is not considered, if at least one event (line or edge cell 

response) is found inside this area in any of the category‟s templates, this category‟s score is 

increased by 1 - a common event was found. However, if the events type and polarity are 

considered, in order for the category to score 1 point this event has to be found within the RoI 

localized in the category‟s template correspondent to the same type and polarity. For the latter 

case, similar line and edge cells are tested in terms of being firing (or not) in the same scale in 

the object and template within the same RF. If the score is increased by 1, it is said that 

there‟s one common event between the category and the object; also, a certain category scores 

a maximum of 1 point per searched event.  

Consider Fig. 3.3.1 which presents a diagram showing the way the categorization model 

calculates the similarity score between an object and a category, and also Fig. 3.3.2 which 

presents a diagram showing the way the categorization model decides if an object‟s event – in 

a certain λ – is found common to at least one category‟s event. As can be seen, while testing if 

an object‟s event is common to any of a category‟s (within a certain  ), if no event is found in 

the RoI of the category‟s templates, the category doesn‟t score; if one or more events exist in 
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the RoI of one or more category templates, and the type and polarity are considered, the 

category scores if at least one of these events has the same type and polarity of the object‟s 

event; if one or more events are found within the RoI of one or several category templates and 

the type and polarity are not considered, the category scores 1 point, no matter the type and 

polarity of the object‟s event and of the category templates‟ events in the RoI.   

Another illustration is provided in Fig. 3.3.3, where a positive line is searched within a 

circular dendritic field (delineated in dark red) in the positive lines apples‟ template for λ=5 

(see below for the details about the radius of the circular dendritic field function deduction). 

At the top, the event is found and the apples category scores 1 point (there‟s 1 common 

event), and at the bottom the event is not found and the apples category doesn‟t score. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.1 – Diagram presenting the way the categorization model calculates the similarity score between an 

object and a category. 
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Figure 3.3.2 - Diagram presenting the way the categorization model decides if an object‟s event – in a certain λ 

– is found common to at least one category‟s event. 

As mentioned before, in order to attain the similarity score between an object and a certain 

category – or the number of common events -, several comparisons are made between the 

object‟s events and the category‟s template set for each  . This score is achieved by summing 

all the common events found, considering fifteen values of  ,  
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                        (3.3.1) 
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not only needs to exist inside the previously mentioned RoI, but also to be of the same type 

and polarity. The score will, logically, tend to be lower in this case than in the situation when 

the event type and polarity are not considered in order to score (        ). Concluding, two 

ways for calculating the number of common events between an object and a category - or 

similarity score          – were found:        and        .  

As mentioned before, the final categorization is made using similarity percentages, and not 

just scores: a decision that is explained at this point. Imagine that a certain         has 25.000 

events, and a certain         has 30.000, and that these objects are compared to          . 

Consider that the similarity score   (                 ) was 25.000, and the same number 

was achieved for the                       score. Considering that the        ‟s events 

were all common to those of          , this object is more entitled to           than 

        whose common events found were 25.000/30.000      of its own events. 

Following this logic, the score (   ) is important when compared to the number of events of 

the object in question. Hence, a new parameter was introduced: object reference (  ), which 

is calculated through the sum of all objects events along all considered values of  ,  

    ∑        
    
                          (3.3.2) 

 

Figure 3.3.3 - At the left a horse‟s LEs (λ=5) are shown; a positive line cell response is searched within a RoI 

(circular dendritic field) in the positive line apples template. At the top: the event is found and the apples 

category scores 1 point; at the bottom: the event is not found and the apples category doesn‟t score. 
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Referring to Eq. 3.3.2 which calculates the object reference   ,     is the number of an 

object‟s events for a certain  . The object reference was decisive to find a first similarity 

percentage formula (  ), 

         
        

  
.                      (3.3.3) 

Recalling that the    represents two options -        and         -, Eq. 3.3.3 actually 

represents two similarity percentages:            considering the events‟ type/polarity, 

and             not considering the events‟ type/polarity. Consider, this way, Eqs. 3.3.4 

and 3.3.5 which represent the two first conceptualized ways of calculating a similarity 

percentage between an object and a category, 

    
      

  
;                      (3.3.4) 

    
       

  
.                     (3.3.5) 

Like   , another reference emerged. The previous equations represent the percentage of 

common events found among the object events; in the same logic, it was thought that it would 

be interesting to use the percentage of common events found among the evaluated category‟s 

events, i.e., the ratio of events in a category that were found common to the objects events. 

Accordingly, a category reference (    is calculated by summing all the events found in all 4 

category templates (for all lambdas) without repetition, i.e.: considering a certain  , and the 

256x256 size of the category templates, a single pixel counts as 1 point if an event is found in 

this pixel in one or more category templates; this sum for a certain lambda is added the other 

sums of the remaining lambdas. Consider, this way, Eq. 3.3.6 that was used to calculate a 

category‟s reference.   

    ∑      
    
                             (3.3.6) 

Referring to Eq. 3.3.6,       is the number of events found in one or more category templates 

within a certain  ; as an example to clarify this parameter, if (for a certain  ) each of the 

256x256 pixels was found to correspond to one to four events (four category templates), the 

value of       would be 256x256. With the new reference -    - two other similarity 

percentages equations emerge:  
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                     (3.3.7) 

and 

    
       

  
                                (3.3.8) 

   ,    ,     and     – the four similarity measures - are called, correspondingly, the 

similarity percentage for concept 1, concept 2, concept 3 and concept 4. Summarizing, four 

concepts were considered: 

 Concept 1 - The similarity percentage between an object and a category is calculated 

as the quotient between the similarity score and the sum of the number of object‟s 

events in all  . The similarity score is calculated considering the events‟ type and 

polarity (   ). 

 Concept 2 –The similarity percentage between an object and a category is calculated 

as in concept 1, with the exception that the similarity score is calculated not 

considering the events‟ type nor polarity     ). 

 Concept 3 - The similarity percentage between an object and a category is calculated 

as the quotient between the similarity score and the category reference. The similarity 

score is calculated considering the events‟ type and polarity (   ). 

 Concept 4 - The similarity percentage between an object and a category is calculated 

as in concept 3, with the exception that the similarity score is calculated not 

considering the events‟ type nor polarity      . 
 

At this point another parameter needed to be defined: the radius of the dendritic field (RoI). 

The latter parameter was defined as a function of  . Considering         , for a category to 

score 1 point when compared to an object, it means that what happened was while searching a 

certain object‟s event within a RoI in the category‟s set‟s templates, this event was found in 

one or more templates. This area is circular and centred in a pixel of a category‟s set‟s 

templates, which has the same coordinates as the searched object‟s event. The radius of the 

circle depends on the   that was used. This radius is called dendritic field radius, as the event 

is being searched in a circular area which is a group of pixels, and not just in the analogous 

pixel.  
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The dendritic field radius, being equal to the number of pixels, and, being also a function of  , 

was conceptualized as a linear function, with integer values, starting from the value 3 (pixel) 

for λ=5, and reaching the value 10 (pixel) for λ=47, being this calculated empirically. So, the 

dendritic field radius function was calculated, starting from the general formula of a linear 

function (3.3.9), in which m is the slope and b the ordinate of the linear function that crosses 

the vertical axis,  

                                         (3.3.9) 

Considering the two points mentioned before, whose coordinates were (5, 3) and (47, 10), the 

variables m=1/6 and b=13/6 were calculated through a two equations system. Given the fact 

that the radius unity is given in pixel (an integer number), the radius was calculated using the 

round half up rule (“int”),  

           (
 

 
    

  

 
), with                 .                             (3.3.10) 

As all the parameters were defined, the four concepts were tested separately, using the 

template objects images chosen from ETH-80 (Leibe & Schiele, 2003) for training and testing 

the model. It was considered that the final category attributed to an object is simply the one 

which had the highest similarity percentage. The results of these experiments were helpful to 

decide which concepts are the best, and how to use these similarity percentages to categorize; 

the following parameters were used: (a)      , (b)                 , (c) the tested objects 

were the template objects: 40 objects in left and right profile (80 images) and (d) the same 

template objects on left and right profile were used to build the categories templates sets.  

The tests returned that the first three concepts (        and    ) - when testing individual 

templates objects - were 100% successful, and the 4
th
 (   ) had most objects well categorized 

(80%). Further information about the similarity percentages between each object and each 

category is presented in detail in Appendix 6.4, in the Tables 6.4.1 to 6.4.5. As predicted 

before, the similarity percentages are lower when, using the same reference, the events‟ type 

and polarity are considered. This can be realized when comparing Tables 6.4.2 and 6.4.3 in 

Appendix 6.4, which respectively correspond to concept 1 and concept 2. It was also noticed 

in each object‟s similarity percentages that the latter follow a „similarity percentages pattern‟ 

depending on the object‟s true category; as an example, an apple always has a higher 

similarity percentage for the tomato category rather than the car category, as a cow has a 
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higher similarity percentage for the horse category rather than the pear category. Considering 

the 100% success rate of concept 1, concept 2 and concept 3, and the 80% result achieved for 

the 4
th

 concept, the next step is to combine the best concepts in order to build a robust model.  

3.4 - Final categorization model  

Choosing one of the first three concepts to finally categorize the test objects is an option, 

because, theoretically, all had a 100% categorization rate. But, what if one of the three 

concepts is the best since the proof of concept will be made using test objects? There‟s a 

chance that this will happen, and, at this point, there‟s no evidence of one concept being better 

than the other two; the only evidence is that the 4
th

 concept had an 80% result, which is lower 

than 100%, and therefore it was not used. 

Continuing the deliberation, choosing one of the concepts is, metaphorically, taking a step 

blindfolded. With this consideration, another option emerged: what if all the three concepts 

were used? This way all of the three could be taken advantage of. In this regard, Fig. 3.4.1 

illustrates the main idea of the proposed model: intersecting the three concepts‟ answers to 

obtain the final category and provide robustness to the model. Thus, 24 similarity percentages 

are calculated for each object, i.e., there are 3 similarity percentages calculated to define the 

resemblance between an object and a category. So, if concept 1 (   ) says „it‟s an apple‟, if 

concept 2 (   ) says „it‟s an apple‟, and if concept 3       says „it‟s an apple‟, the three agree 

and that is the final answer. Also, following the previous example, in the eventuality of 

concept 3 (   ) having the highest similarity percentages linked to the “apple” and “tomato” 

categories, the final intersection would, as well, be “apple.”  

If the result of the intersection is considered as the final category result, this will, supposedly, 

build a more robust model. An analogy that can be done is the fact that if it is asked to one 

person: “which category do you think it belongs to?” and the person answers “I‟m certain it‟s 

a cow”, one will be almost convinced because of this person‟s certainty. But, if three people 

answer saying “I‟m certain it‟s a cow”, the certainty degree of being a cow is increased, 

because, not one, but three people said the same thing, with a very good level of conviction. 

Hence, the intersection of the three concepts presents itself as a good option. 
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Figure 3.4.1 - The model‟s main principle: intersecting the categories answers of concept 1, concept 2 and 

concept 3, in order to find a common agreed category for classifying an object. 

However, it‟s possible that a basic intersection will have an empty answer; therefore, the final 

category answer was not calculated only as a simple intersection. As an example, concept 1 

and 2 would say “it‟s an apple” but concept 3 would say “it‟s a tomato”. One can ask “why 

would concept 3 say it‟s a tomato if the odds of the category result to be right are 100%?”; 

well, given the fact that test objects are not equal to the template objects, it‟s possible that 

they will have different similarity percentages; following the same thought, there‟s the 

possibility that the highest percentage will not correspond to the true category. Even though 

the probability of this to happen is not known, it‟s still possible, and, given that assumption, 

the three concepts may disagree in the final answer, and a basic intersection will just originate 

an empty answer in this case - and that‟s not what‟s intended. As the previous supposition 

takes its place, a new variable was defined: the threshold percentage     . 

The threshold percentage was introduced in order to define a margin of error around the 

maximum similarity percentage achieved for an object within a concept. To better understand 

this parameter‟s usage, let‟s consider the example given in Table 3.4.1 which presents the 

similarity percentages for a hypothetical object (       ) which is an apple. 

Table 3.4.1 - Hypothetical similarity percentages between an object (       ) and the 8 categories in ETH-80, 

using concept 1, 2 and 3. 

[%] Apple Car Cow Cup Dog Horse Pear Tomato 

Concept 1 (   ) 75 25 30 50 35 30 60 76 

Concept 2 (   ) 71 20 25 45 30 25 55 70 

Concept 3 (   ) 56 5 10 30 15 10 40 50 

 

Final 

category 
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Table 3.4.1 shows that this object, which is an apple, is - at the moment - being categorized as 

a tomato (76%) regarding concept 1 (   ), and as an apple regarding concept 2 (   ) and 3 

(   ), because these are the categories which have the highest percentage within each 

concept; the final category would be an empty answer if a simple intersection was applied. 

However, the intersection wouldn‟t be null if a margin of error was defined. For this, we 

defined the minimum percentage or threshold (T), which is achieved by multiplying the 

maximum similarity percentage by the threshold percentage. It should be noticed that 

although the threshold percentage is a constant, the threshold T is object dependent, as Eq. 

3.4.1 suggests: 

   
 

   (  )
                     (3.4.1) 

Regarding the example in Table 3.4.1, in order for the apple to be included in concept 1‟s  

answer (   ), this threshold percentage (   ) should have the value of     
  

  
        

Considering two decimal places, for this example,     is rounded down to 0.98; using this 

threshold percentage in the three concepts, the two first concept‟s final answer would be 

“apple or tomato” as            and           ; also, the third concept‟s final 

answer would be “apple”, and therefore, the final intersection would also be “apple” which is 

the true category. Given the logic presented in this example, the proposed solution to achieve 

a non-empty answer is shown in Fig. 3.4.2. In order for an object to be categorized, the three 

concepts have to agree, at least, in a common category. In the meantime, each time the 

intersection is null, the threshold percentage is diminished by a decreasing factor   ; this will 

tangentially increase the number of categories in one or more concept‟s answers, providing, at 

one point, a categories common ground. Furthermore, the initial threshold percentage is 1, 

and the used decreasing factor (  ) was 0.01. 

As mentioned before, Fig. 3.4.2 shows a solution for the problem in which the three concept‟s 

intersection was empty. In an initial iteration, if the three concepts don‟t agree in a common 

category when    is 1, the next iteration is done with a threshold percentage equal to 0.99 for 

the 3 concepts, and, if this doesn‟t solve, 0.98 is used, etc., i.e., the threshold percentage is 

decreased in 1 percentual point (pp) each time, until the three concepts agree in a categories 

common ground. The ideal situation is that the intersection is just one final category, and that 

this category is the true one; however, it‟s possible to obtain more than one common category 

in the intersection result – an issue that will be solved next. 
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Figure 3.4.2 – Solution presented to the problem in which the three concept‟s intersection was empty. The 

diagram considers only one object for test. 

Imagining now that the categories resulting from the intersection are more than one, let‟s 

consider Table 3.4.2 which shows some hypothetical cases in this regard. In case 1, cow, 

horse and dog (originated from the intersection) have different similarity percentages for each 
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concept. In order to select the winning category, one might be lead to the conclusion that the 

category with the highest similarity percentages on the three concepts is the winning category: 

that‟s the example represented in case 1; by selecting the category with the best percentage 

within concept 1, cow would be the winner with a percentage of 95%, as well as in concept 2 

with 85% and in concept 3 with 90%. In this case, finding the category with the best score in 

each concept is enough to find a winning category.  

Table 3.4.2 – Examples showing the similarity percentages between a hypothetical object and the categories 

which originated from the intersection. 

Case 1 

 Concept 1      Concept 2 (   ) Concept 3     ) 

Cow 95% 85% 90% 

Horse 80% 75% 65% 

Dog 50% 55% 53% 

Case 2 

 Concept 1      Concept 2 (   ) Concept 3     ) 

Cow 80% 85% 90% 

Horse 80% 75% 65% 

Dog 50% 55% 53% 

Case 3 

 Concept 1      Concept 2 (   ) Concept 3     ) 

Cow 95% 85% 90% 

Horse 95% 95% 65% 

Dog 50% 95% 53% 

Case 4 

 Concept 1      Concept 2 (   ) Concept 3     ) 

Cow 95% 85% 90% 

Horse 80% 90% 65% 

Dog 50% 55% 96% 

Car 49% 53% 63% 

Case 5 

 Concept 1      Concept 2 (   ) Concept 3     ) 

Cow 80% 70% 60% 

Horse 80% 70% 60% 

Dog 65% 55% 50% 

 

However, there are other case scenarios. Exploring other possibilities, what if there‟s a tie in 

one of the concepts, having cow and horse the same percentage? For this, consider case 2 in 

Table 3.4.2. Applying the same logic as in case 1, the winning category should be found in 

each concept; in concept 1 cow and horse are both winners (80%), in concept 2 cow wins 

(85%), and in concept 3 cow wins again (90%). The tie between cow and horse in concept 1 

doesn‟t allow applying the same logic as before, because no category is a single-winner for 

the three concepts; on the other hand this example allows moving on to a more flexible rule: 

as the concepts-score (the number of wins in a category) has a maximum value of 3 (3 
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concepts), the category whose concepts-score is equal to 2 or 3 is the winner. Therefore, in 

case 2 cow wins in 3 concepts, horse wins in 1 and dog in 0, being cow the winning category. 

Case 3 in Table 3.4.2 has a special challenge for the latter rule: cow wins in 2 concepts (1 and 

3), horse wins also in 2 concepts (1 and 2) and dog wins in concept 2; even if dog is put aside 

by having the lowest concepts-score, cow and horse have both a concepts-score equal to 2. 

For this case, a solution was found: for each category the average percentage between concept 

1 and 2 can be found,    

  
       

 
 .                                                                                                                       (3.4.2) 

 

Therefore, choosing the categories with the best concepts-score – cow and horse – their 

averages can be calculated:      
       

 
                

       

 
      

These two categories were then untied, as the horse‟s average is higher than the cow‟s, being 

horse the final winning category. Another example for a tie is shown in case 4 where cow 

wins in concept 1, horse wins in concept 2, dog wins in concept 3, and car wins in none: 

there‟s no category with concepts-score equal to 2 or 3. For this case, the solution found will 

be the same theorized for case 3: cow, horse and dog are chosen as they had the highest 

concepts-score, and then their average percentage between     and     is calculated. The 

average percentages achieved were 90% for cow, 85% for horse and 52.5% for dog, thus cow 

is the winning category in case 4. 

Case 5 shows the last presented challenge: if two categories - which resulted from the 

intersection – have exactly the same concepts-score, and also the same average percentage 

(75%), how can the final category be obtained? The immediate solution found is choosing the 

category which had the highest similarity percentage in concept 3; however, in the presented 

case the latter percentages are equal, therefore the winning category can‟t be obtained through 

that way. Therefore, the final category is proposed to be chosen by selecting which category 

had the highest similarity score when considering the events type and polarity,       . The 

similarity score between an object and a category is a guiding line; furthermore, this quantity 

is unique for each category in this situation. To prove the latter statement, let‟s consider Eq. 

3.3.7 which allows calculating the similarity percentage for concept 3,    ; according to Eq. 

3.3.7, if the     percentages are equal for all categories (Table 3.4.2, case 5) while the 

category references are all different (see Appendix 6.4, Table 6.4.5), it‟s certain that the 
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similarity score is different, allowing definitely to choose a final winning category. The 

situation considered in case 5 - where several categories have the same percentage in the three 

concepts - is highly unlikely considering the results achieved with the templates objects, 

presented in Appendix 6.4, where the similarity percentages tend to be all different; either 

way, this case was already predicted and solved.  

The previously presented cases from Table 3.4.2 consisted in eventual situations that could be 

faced while in the categorization process – cases which now have a solution. The solutions 

previously discussed are shown in Fig. 3.4.3 in a compendium-diagram which describes how 

the final category is chosen once a common ground (one or more categories) is found among 

the three concepts. Moreover, Fig. 3.4.4 presents a more general diagram which summarizes 

the way a final category is chosen for one or several objects: essentially, after finding a non-

empty intersection between the 3 concepts‟ answers through the diagram on Fig. 3.4.2, the 

final category is found through the solution shown on the diagram in Fig. 3.4.3. 

The model built in this section was tested using the template objects. The following 

parameters were used: (a)      , (b)                 , (c) the tested objects were the 

template objects: 40 objects in left and right profile (80 images) and (d) the same template 

objects on left and right profile were used to build the categories templates sets. A final 

categorization rate of 100% was obtained; this was expected, considering the already referred 

similarity percentages obtained from the template objects, which are presented in Appendix 

6.4; i.e., for each object, in either concept, the highest similarity percentage found was unique 

and linked to the true object's category, thus the three concepts' intersection was always the 

true category. 

Next, the model was evaluated using the test objects. In chapter 4, a description of this 

evaluation is provided, as well as the final results of the performed tests. 
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Figure 3.4.3 - Diagram that illustrates how to find the winning category using the similarity percentages, once a 

non-empty intersection among concepts‟ answers was found. 
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Figure 3.4.4 – General diagram of the model, which summarizes the way a final category is chosen for one or 

several objects. 
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4. Tests and Results 

 

ABSTRACT 

This chapter describes an evaluation made to the categorization model: several tests 

were performed in order to assess it by comparison to other models’ results and also 

further tests took place to test the model in terms of rotation, noise and scale invariance. 

 

 

In order to complete the proof of concept, the model was tested using 80 test objects images, 

which correspond to 40 objects shown in left and right profile. Furthermore, other tests took 

place so that the model could be evaluated in terms of rotation, noise and scale invariance. 

4.1 – Comparing the categorization model’s results to other models’ results 

Summarily, 75 of the 80 images were correctly categorized, representing a 93.75% success 

rate (see Table 6.4.6 in Appendix 6.4, which shows the test objects references, Table 6.4.7 

which presents the final category results for each of the 80 tested objects, and also Table 6.4.8 

which summarizes the mentioned results). Just 5 of the objects images were „miscategorized‟; 

however, the false categories attributed were relatively comparable to the true ones: apple10 

(left profile) was mistaken for being a tomato, and dog4 and dog9 (both views) were mistaken 

for being horses. The apple10‟s error (left profile) was considered minor, because tomatoes 

are round as apples, and, we only analyse LEs, and not colour nor texture; in this case 

“tomato” had the highest similarity percentage in the three concepts, validating the 

assumption made in section 3.4: the test objects are different than template objects, and there's 

a chance that the highest similarity percentage is not connected to the true category. This also 

happened, for example, with dog4. As referred by Rodrigues & du Buf, 2009b, the animals 

are relatively similar regarding their heads, necks and tails, therefore, the dog/horse error was 

considered as well a minor one. In a view perspective, 95% of the 40 objects in right profile 

were correctly categorized, as were 92.5% of the 40 objects in left profile (see Table 6.4.8 in 

Appendix 6.4). Moreover, considering a category perspective, 90% of the apples and 60% of 

the dogs were well categorized; also, positively, the majority of the categories was 100% 

successfully categorized: car, cow, cup horse pear and tomato. 
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Considering the performed tests and the diagram shown in Fig. 3.4.3, when the algorithm 

reached the point „How many categories resulted from the intersection?‟, the answer was 

always „1‟. The diagram – which was available in the algorithm – just needed technically, for 

these specific tests, to return the intersection of the categories because all the intersections 

comprised just one category in each of the 80 cases. At this point it was thought that the entire 

diagram just comprised a good plan B, but later in this chapter we discuss that indeed it was 

necessary.  

Other publications where the ETH-80 database (Leibe & Schiele, 2003) was also used for 

categorization tests were Rodrigues & du Buf, 2009b, Han et al., 2011 and Leibe & Schiele, 

2003 (see Chapter 2). The first publication comprises the best comparison link to this thesis 

work, as Rodrigues & du Buf, 2009b also used the LEs cortical attributes (V1) detection 

model as a basis for their categorization approaches. In order to test their categorization 

model, Rodrigues & du Buf, 2009b selected 10 images from each 8 categories: a total of 80 

images. They explored a two-level categorization approach: „pre-categorization‟ and 

„categorization‟. The „categorization‟ test set was more similar to this thesis‟ experimental 

setup, because (a) on pre-categorization, LEs contour templates were used (differently from 

the performed tests in this thesis), (b) the pre-categorization level just divides between animal, 

fruit, cup or car, and, in our tests we distinguished among all categories similarly to what 

happens in the „categorization‟ level of Rodrigues & du Buf, 2009b, and (c) on pre-

categorization only coarse scales were used, whereas on the „categorization‟ level of 

Rodrigues & du Buf, 2009b, coarse and fine scales were used – similarly to our tests; 

however, while we used 15 scales, Rodrigues & du Buf, 2009b used 8. Similarly to this thesis 

experimental setup, in Rodrigues & du Buf, 2009b 40 objects were chosen for training (for 

the „half‟ test); however, while 40 objects images per view were used for test in this thesis, 

Rodrigues & du Buf, 2009b used all 80 images from 80 objects in the same view for this 

purpose. Another comparison point is the fact that while the background of the test/training 

object images used in this thesis was previously homogenized, Rodrigues & du Buf, 2009b 

used the images directly from ETH-80. Here, the obtained categorization rate considering two 

views was 93.75%, while Rodrigues & du Buf, 2009b achieved for the „half‟ categorization 

test scenario a categorization rate of about 88.75% (71/80). Also, while the same authors 

mentioned that “typical miscategorizations were dog/cow, horse/dog, horse/cow and 

apple/tomato” (Rodrigues & du Buf, 2009b), the categorization model in this thesis was able 

to successfully distinguish among almost all categories (regarding the test described in this 
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section) - the exception resided in the dog/horse and apple/tomato miscategorizations. Finally, 

the test conditions used for both models weren‟t exactly the same; however, the average rate 

obtained in this thesis is about 5 percentage points (pp) higher than the one obtained by 

Rodrigues & du Buf, 2009b. 

Leibe & Schiele, 2003 proved the potential of resorting to multiple features in categorization, 

by using a decision tree which at each level bases its decisions on one cue only. In order to 

compare the results obtained in this thesis to the ones from Leibe & Schiele, 2003, both 

experimental setups were evaluated. The background of the images used in this thesis was 

manually homogenized, which is an advantage for the significance of the results of Leibe & 

Schiele, 2003, once these authors categorized unknown objects with “a near-perfect figure-

ground segmentation” (Leibe & Schiele, 2003). Leibe & Schiele, 2003 presented a more 

accurate result regarding the ETH-80 database, once they tested all 41 views from each test 

object and the 93.75% categorization rate obtained in these thesis‟ tests corresponds to testing 

2 views per test object; however, while they used a “leave-one-object-out crossvalidation” - 

79 objects for training and one for test –, in this thesis only 40 objects were used for training 

(40 objects images per view), and the remaining 40 objects (40 objects images per view) were 

used to test the categorization model. So, while less objects in less views were tested to obtain 

the 93.75% average categorization rate of this thesis, Leibe & Schiele, 2003 used a higher 

number of training images. Comparing the average categorization rates, the one obtained in 

this thesis was 93.75% and the one obtained by Leibe & Schiele, 2003 was 93.02%; these 

rates are numerically very close, however, they aren‟t directly comparable due to the 

differences in the experimental setups. Finally, considering these thesis results, 5 objects 

images were miscategorized among all 80 tested images: 4 dog images were mistaken for 

horse images, and 1 apple image was mistaken for a tomato image. Interestingly, „dog and 

horse‟ and „apple and tomato‟ were best category groupings regarding the grouping 

hierarchies obtained for the cues explored in Leibe & Schiele, 2003. 

Finally, Han et al., 2011 presented a canonical correlation- and view-based approach; the 

latter was evaluated both for object recognition and categorization. Using ETH-80 for the 

categorization tests, Han et al., 2011 used - from each category - 9 objects for the reference 

(training) set and the remaining object for the test set. Moreover, the training set comprised 5 

views from each training object, and the testing set contained all views from each test object. 

The average rate obtained considering all 80 possible test objects was 82% (Han et al., 2011). 
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As understood, Han et al., 2011 used 9 objects per category for training, or, more precisely, 

9 5=45 objects images per category; moreover, 80 objects were used for test, or more 

precisely, 80 41=3280 objects images. Comparing the referred experimental setup to the one 

in this thesis, here there were used 5 objects per category for training (5 training objects 

images per category and view) and 40 objects for test in two views (a total of 80 training 

objects images and 80 test objects images), and the average result of 93.75% was obtained. 

On one hand, there were used less training objects per category in this thesis‟ performed tests 

than in Han et al., 2011 (5<9), being this thesis' categorization model „less experienced‟ with 

objects – which is an advantage in terms of the significance of the 93.75% result here 

obtained; moreover, Han et al., 2011 used 5 views per training object while here only 2 views 

were used in this regard; on the other hand, they tested their model using more views per 

object (41 images/object) which is an advantage for the significance of their 82% result. Also 

an advantage for the significance of their 82% result is the fact that the background of the 

training/test objects images used in this thesis was homogenized, while in Han et al., 2011 the 

objects images were directly used from ETH-80. Hence, the 93.75% rate obtained in these 

thesis tests isn‟t directly comparable to their 82% result; however, 93.75% is 11.75 pp higher 

than the result by Han et al., 2011. Considering the latter 3 comparisons – to Rodrigues & du 

Buf, 2009b, Leibe & Schiele, 2003 and Han et al., 2011 – we consider 93.75% a very 

acceptable rate. Besides, 100% of the objects in most objects categories were well categorized 

in both views - cars, cows, cups, horses, pears and tomatoes (see Table 6.4.7 in Appendix 

6.4). 

4.2 - Evaluating the categorization model in terms of invariance  

As referred in the beginning of this chapter, we conclude this model‟s evaluation by 

performing other tests which assessed the model in terms of rotation, noise and scale 

invariance. For that, we used, as reference, the test objects in right profile, and also, the same 

right profile template sets used before; in other words, the template and test objects groups 

remain the same, being the test images the only difference between the test described in 

section 4.1 and the ones here described.  

For examining the model in terms of rotation invariance, using the right profile view as 

reference, the available rotation variations available in the eth80-cropped256 set (ETH-80, 

2013) were left and right pan variations and a „one-way‟ tilt variation; moreover, 22 degrees 
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is the angle difference that defines these slight variations. For the rotation test, we used the 

same 40 test objects tilted in minus 22 degrees (instead of using the „090-000‟ view, another 

was used: „068-000‟); consider Fig. 4.2.1 which shows in (a) a test object (horse7) in right 

profile, and in (b) the same test object image tilted in minus 22 degrees.  

    
(a) (b) (c) (d) 

Figure 4.2.1 - Test object (horse7) shown (a) in right profile. The same object is shown in (b) with a minus 22 

degrees tilt rotation, in (c) with a 10% Gaussian noise rate addition, and in (d) with a 10% size increase rate. 

As we can see by Fig. 4.2.1, the background of these 40 images was also homogenized. The 

results of this test are shown in Table 6.4.9, Appendix 6.4: a successful 95% rate was 

achieved, like in the tests before in section 4.1 regarding the right profile view (see Table 

6.4.8, Appendix 6.4). In a class perspective, the most successful categories which had a 100% 

categorization rate were: apple, car, cow, cup, horse, pear, tomato (the majority of them); 

once more, the „dog‟ category, which represents 12,5% of the test objects, had a 60% success 

rate, because 2 dog images were mistaken for horses. At this point, regarding the 

categorization success rate (95%), we can say that this model is rotation resistant when 

considering a -22 degrees tilt variation. Consider Table 6.4.13 in Appendix 6.4, which 

compares the results between the tests in section 4.1 (a) and the rotation tests described at this 

point (b). Regarding the results of the tests (a) and (b), the practical difference between these 

results resides in terms of threshold percentage needed in order to categorize the objects 

images. As expected, because the test objects in (b) are slightly rotated from right profile, the 

majority of the objects needed the same or a decreased threshold percentage (a decreased 

threshold percentage means a bigger margin for the concepts to agree) so that the objects 

could be categorized; however, there were “exceptional objects” for which there was an 

increase of the necessary threshold percentage - cow8, horse4 and horse7 – being still these 

objects correctly categorized, as the test in (a). Considering Table 6.4.9, we can notice that the 

objects which used less resources in order to reach a categorization result were cow, cup, pear 

and tomato, as they had the highest average necessary threshold percentage: 1. After those 
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objects, the ones which used less resources were, sorting by an increased resource use: horse 

(0.998), apple (0.994), dog (0.990) and car (0.890). Moreover, considering all categories, the 

average necessary threshold was 0.984, which is lower than the necessary average threshold 

needed in (a) for right profile: 0.997; a lower number means that a bigger margin for 

agreement between concepts was needed, which makes sense, once the template sets‟ view 

was not exactly the same as the objects‟. Summarily, this test came to prove that the model is 

still stable even when the objects don‟t exactly have the same position as the template sets‟. 

For the noise tests, a 10% Gaussian noise (GN) rate was added to the 40 test objects in right 

profile (40 images) in order to test the resistance of the model in this regard. As an 

illustration, consider Fig. 4.2.1c) which shows a test object (horse7) in right profile when 

added a 10% GN rate. The results of this test are shown in Table 6.4.10 in Appendix 6.4: 

again, a successful 95% categorization rate was achieved, and the success rate of each 

category is once more maintained – the majority of them had a 100% categorization rate; 

again, the same two dogs were mistaken for horses. Therefore, considering the achieved rate, 

we can consider that the model is GN resistant as regards to a 10% GN rate. As mentioned for 

the previous test, the practical difference among the results in test (a) and the GN tests 

described at this point (c), resides in terms of threshold percentage that was necessary for 

categorizing the objects images. For this consideration, see Table 6.4.13 in Appendix 6.4. As 

expected, the necessary threshold from (a) to (c) was maintained or decreased for each object; 

this was expected because, although the objects position is the same, the fact that the 

background is different alters the LEs of the tested image - influencing the similarity 

percentages within the concepts, and, therefore, the final categorization result; also, as 

referred before, a smaller threshold means that a bigger margin for agreement among concepts 

was needed: more resources were expended. Nevertheless, for most objects the necessary 

threshold was exactly the same with the exception of dog9 and horse4. Consider again Table 

6.4.10; the categories which needed a maximum threshold percentage (1), or in other words, 

the ones which used fewer resources in order to reach a categorization result were apple, cup, 

pear and tomato, being the latter 3 categories common in this regard to the latter test (b). After 

those objects, the ones which used fewer resources were, sorting by an increased resource use: 

car (0.998), dog (0.996), cow and horse (0.990). Furthermore, considering all categories, the 

average necessary threshold percentage was approximately 0.997: the same necessary average 

threshold percentage needed in (a) (right profile); once the categorization rates in (a) (right 

profile), (b) and (c) were the same, and for (a) (right profile) and (c) the average necessary 
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threshold percentage was 0.997 while for (b) was 0.984, the model seems to be even more 

resistant to a 10% GN rate (c) than to a minus 22 degrees tilt rotation (b), i.e., being the 

concepts more stable in their agreement for test (c). 

Finally, the model was tested in terms of scale (size) invariance. In order to do so, the size of 

the 40 test objects in right profile (40 images) was altered, while the objects remained centred 

in the images (the background is homogeneous); see for e.g. Fig. 4.2.1d), which shows a test 

object whose size was increased by 10%. Considering the categorization tests (d) where the 

40 test objects in right profile were increased in size by 10%, the results are shown in Table 

6.4.11 in Appendix 6.4: 92.5% of the test objects were correctly categorized. Once more, the 

majority of the categories had a 100% categorization rate (apple, car, cup, horse, pear, 

tomato), with the exception of dog (as before) and cow; the same two problematic dogs were 

again mistaken for horses, and, this time, a cow (cow8) was also mistaken for a horse. These 

are acceptable errors, as dog/horse and cow/horse inaccuracies are within the animal category 

(they have roughly the same shapes). At this point we can consider that the model is scale 

resistant regarding a +10% scale change. Once more, the main practical difference among the 

results in test (a) and (d) resides in terms of threshold needed in order to categorize the objects 

images; for this consideration, see Table 6.4.13, Appendix 6.4. Again, in the results from (a) 

to (d) most of the necessary threshold percentages were maintained or decreased, for the same 

reasons stated before (an altered test image influences the LEs representation, and therefore 

the final categorization results). Consider again Table 6.4.11; the categories which used fewer 

resources in order to reach a categorization result were apple, car, pear and tomato; pear and 

tomato seem to be the winning categories in this regard until now. After those objects, the 

ones which used fewer resources were, sorting by an increased resource use: dog (0.994), cup 

and horse (0.992), and cow (0.984). Furthermore, considering all categories, the average 

necessary threshold was approximately 0.995, which is higher than the same parameter 

measured in (b) (0.984), but lower than the one in (c) or (a) (0.997). Considering the fact that 

the rate difference between 92.5% and 95% is just one image, we can say that the model is 

more stable in terms of a +10% scale variation than it is in a -22 degrees tilt rotation. 

However, among all tests described in this section until this point, the model performed best 

with a 10% GN rate adding, regarding categorization rate and average necessary threshold 

percentage. 
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Considering the categorization tests (e) where the size of the 40 test objects in right profile 

was decreased by 10% (40 images), the results are shown in Table 6.4.12 in Appendix 6.4: 

82.5% of the test objects were correctly categorized. This time, half of the categories had a 

100% categorization rate: car, cup, horse and pear; apple and cow had an 80% categorization 

rate, dog had a 40% rate, and tomato a 60% rate. The existing errors were apple/pear (1 error), 

cow/horse (1 error), dog/horse (3 errors), tomato/cow (1 error) and tomato/cup (1 error) – a 

total of 7 errors in 40 images (hence, an 82.5% categorization rate). Most errors until now 

were understandable because they existed among fruits/vegetables and among animals; 

however, we still had (only) one error between a fruit and an animal: tomato/cow. An increase 

in the scale seems to be better than a decrease, regarding the final categorization results in 

general, but we still consider that the model is moderately scale resistant regarding a -10% 

scale change. As referred before in section 4.1, the entire diagram - for choosing the winning 

category - on Fig. 3.4.3, was thought at first to be a good plan B, but it was indeed necessary; 

for example, in order to categorize dog7 – considering the conditions for the (e) categorization 

tests –, the intersection wasn‟t enough, because two categories remained: dog and horse. 

However, thanks to the diagram on Fig. 3.4.3, a final category was found: the answer to the 

questions „did it return only one category? And is also the maximum concepts-score found 

equal to 2 or 3?‟ was „yes: horse‟. Furthermore, consider Table 6.4.13; comparing the 

necessary threshold percentages of test (a) to the ones of test (e), from (a) to (e) most have 

been maintained or decreased, as expected. Considering again Table 6.4.12, Appendix 6.4, 

this time, only car, cup and pear needed the fewest resources (average necessary threshold 

percentage = 1); after those objects, the ones which used fewer resources were, sorting by an 

increased resource use: cow (0.992), horse (0.988), dog (0.986), apple (0.964) and tomato 

(0.944). Furthermore, considering all categories, the average necessary threshold was 

approximately 0.984, as was the same parameter for the rotation invariance test (b). Finally, 

consider Table 6.4.14 from Appendix 6.4, where the rotation, noise and scale test results are 

summarized. 

This chapter described a set of tests which evaluated our categorization model. We started by 

comparing the achieved results to other models‟ results, and described some extra tests made 

to evaluate the model in terms of rotation, GN and scale invariance. The next chapter will 

conclude this thesis work, presenting some final considerations and future work. 
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5. Conclusions and Future Work 

 

ABSTRACT 

This chapter summarizes this thesis work, presenting conclusions about the results 

obtained through testing the developed categorization model. Some final considerations 

and future work are presented.  

 

This thesis‟ goal was to build a biological model for object categorization, based on objects‟ 

2D views. The model was based on multi-scale cortical attributes: V1 events, which are 

classified by type: line/edge, and polarity: positive/negative (Rodrigues & du Buf, 2009b). As 

a contribution, this model differs from the other categorization approaches - by Rodrigues & 

du Buf, 2009b, Leibe & Schiele, 2003 and Han et al., 2011 - thanks to its mutual agreement 

principle, created for the purpose of increasing the certainty degree of the given final category 

answer. The category assigned to an unknown object is obtained through a consensus among 

three different categorization concepts based on V1 events (LEs); each concept makes class 

suggestions/recommendations for a certain object, being the final assigned category present in 

the intersection of these suggestions. If the intersection is null, a „bigger margin for 

consensus‟ is created - through a parameter named „threshold percentage‟ –, in order to find at 

least one category on which „all concepts agree on‟; if the intersection is one category, that is 

the final answer; otherwise, if the intersection comprises several categories, the best scored 

one is then chosen through a proper process.  

Each of the three concepts defines a unique way of calculating a similarity percentage 

between a certain object and a category. Therefore, as we used ETH-80 for our tests – a 

database which has 8 available categories (Leibe & Schiele, 2003) – an object is assigned 8 

similarity percentages per concept (therefore, 24 in total). Ideally, for each concept, the true 

object‟s category would always be associated to the maximum similarity percentage; as this 

doesn‟t always happen, the „threshold percentage‟ parameter was created to build a margin 

around the maximum similarity percentage found within the 8 similarity percentages of a 

concept; this is done for all three concepts, allowing each concept to give more categories 
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suggestions, thus facilitating a consensus. This way, the final category attributed to an object 

is the multi-scale convergence of three similarity concepts‟ responses. 

The ETH-80 database (Leibe & Schiele, 2003) has 80 available objects: 40 were chosen for 

training (template objects) and the remaining for test. Moreover, 2 views were used for testing 

the model - left and right profile -, and also the background of all 160 used objects images 

was previously homogenized. The template objects were used to obtain left and right profile 

multi-scale templates sets for the 8 categories; these sets - whose events were used to compare 

to an unknown object‟ LEs - can be seen as the descriptors of the categories. In any of the 

three concepts, object‟s events were compared to the categories‟ sets in the same scale and 

view. Besides the fact that the template objects were used to train the model about each 

category (for both views), the former were also used to obtain some „template results‟ for 

each concept; these results were crucial for structuring the model. When the model was finally 

built, it was evaluated using the template objects as test objects, reaching a 100% 

categorization success rate. Furthermore, the proof of concept comprised tests (a) and (b): 

a) The model was tested using left and right profile images from 40 test objects; the left 

and right profile multi-scale template sets were used to compare to each „unknown 

object‟. The 93.75% achieved average categorization success rate (Table 6.4.8, 

Appendix 6.4) was compared to other models‟ results (Rodrigues & du Buf, 2009b, 

Leibe & Schiele, 2003 and Han et al., 2011). 

 

b) The model was evaluated in terms of rotation, noise (GN) and scale invariance. As we 

only tested objects in right profile (or approximately in this view), the template sets 

used were the same as in (a) for that view. The right profile test objects were also the 

same as in (a), however, the used images were different: for the rotation test the 

objects were slightly rotated from right profile (a -22º tilt rotation), for the Gaussian 

noise test the test objects images on right profile were added GN in 10%, and for the 

scale test the objects in right profile were rescaled in ±10%. The background of the 

images used for the rotation and the scale tests was homogenized; the images for the 

GN test were obtained by adding a 10% GN rate to the right profile test images. On 

the rotation and GN tests, a 95% categorization success rate was achieved; on the 

+10% and the -10% scale tests, a 92.5% and an 82.5% categorization success rates 

were reached, respectively.     
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Regarding test (a) a categorization success rate was achieved: 93.75%; 92.5% was the success 

rate achieved for left profile, and 95.0% the one achieved for right profile. By comparison to 

other models‟ results, 93.75% was considered a very acceptable rate. 100% of the objects in 

most categories (6) were well categorized in both views and even the miscategorized objects 

were attributed a category which is similar to their true one: one apple image was mistaken 

for being a tomato image, and two dogs images were mistaken for being horses images. 

Besides the success of the tests in section 4.1 (categorizing the test objects in left and right 

profile), the model was also considered resistant to small rotation, noise and scale (size) 

variations (section 4.2).   

Overall, the model was considered a success. In order to improve it, we propose the following 

future work: 

1. In order to categorize an object, the model considers only one view. In the real world, 

when a person sees an object, several views are perceived. Thus, it is proposed that 

several views from an object are considered, with the aim of increasing the probability 

of a successful categorization.  

 

2. Regarding this model‟s basic principle – mutual agreement among different concepts 

– other concepts could be added: 

 

 Once the object area is defined, its colors could be analyzed. 

 An object‟s contours could be analyzed in terms of derivatives, and encoded in 

order to describe this object in a certain view; using several descriptors from 

objects which belong to the same category and are shown in the same view, a 

category descriptor for that view could be obtained. 

 Concerning the latter suggestion, some “common points” in objects from a 

category could be obtained, which could be used for pre-categorization; these 

points can be used to define category common regions that can be useful to 

categorize an object. 

 As a pre-categorization descriptor, the quotient between an object‟s shortest 

length and its longest length could be calculated. 
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3. It was noticed that objects from the same category have always a pattern in their 

similarity percentages: some categories‟ percentages are generally higher than others. 

This being said, an object can be evaluated not only by finding the common category 

with the best similarity percentages, but also by evaluating all calculated similarity 

percentages (between this object and every category). 

 

4. Implementing the suggestions 1 to 3 will expend more computational resources - (1) 

analyze more views, (2) implement more concepts, (3) enhance the „winning category 

search system‟ by adding an additional module. In order to create a balance, as a next 

step, a higher performance model could be achieved by decreasing the number of 

explored scales to a minimum. 

 

5. Finally, object segregation could be developed as a step to place before the 

categorization process. 
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6. Appendices 

Appendix 6.1 – ETH-80 database: some samples, and ‘segregated’ template objects 

Some sample objects from the ETH-80 database (from the eight available categories) are 

presented (Leibe & Schiele, 2003). Therefore, Fig. 6.1.1 shows 5 category samples in right 

profile from each category in the ETH-80 database: a) apples; b) cars; c) cows; d) cups; e) 

dogs; f) horses; g) pears; h) tomatoes; the background of these objects images was manually 

homogenized, and they were posteriorly used as template or test objects (Fig. 6.1.2).  

a) 

     
b) 

     
c) 

     
d) 

     
      

 Figure 6.1.1 - Sample objects from the ETH-80 database, in right profile. Top to bottom: a) apples; b) cars; c) 

cows; d) cups; e) dogs; f) horses; g) pears; h) tomatoes. 
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e) 

     
f) 

     
g) 

     
h) 

     

Figure 6.1.1 (cont.) - Sample objects from the ETH-80 database, in right profile. Top to bottom: a) apples; b) 

cars; c) cows; d) cups; e) dogs; f) horses; g) pears; h) tomatoes. 

As referred before, the background from the 160 ETH-80 object images was manually 

homogenized; these objects were divided in two groups - template and test objects; both sets 

have the same objects number in each category. Fig. 6.1.2 shows examples of the template 

objects in right profile, after the homogenization of the background (for the eight categories). 

     

     

Figure 6.1.2 – Some examples of template objects shown in right profile. These objects resulted from the 

manual „segregation‟ of those in the ETH-80 database. 
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Figure 6.1.2 (cont.) - Template objects shown in right profile. These objects resulted from the manual 

„segregation‟ of those in the ETH80 database. 
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Appendix 6.2 - Examples of the lines and edges from some template objects  

Two template objects from each category were chosen from Fig. 6.1.2, and their events (LEs) 

are shown in Fig. 6.2.1; λ={5,20,47} were used to detect them, being fine to coarse scale 

shown from left to right. 

λ=5 λ=20 λ=47 

   

   

   

   

   

   

Figure 6.2.1 - The events of two template apples, cars and cows used from ETH-80, detected using λ={5,20,47}; 

fine to coarse scale is shown from left to right.  
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λ=5 λ=20 λ=47 

   

   

   

   

   

   

Figure 6.2.1 (cont.) - The events of two template cups, dogs and horses used from ETH-80, detected using 

λ={5,20,47}; fine to coarse scale is shown from left to right. 
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λ=5 λ=20 λ=47 

   

   

   

   

Figure 6.2.1 (cont.) - The events of two template pears and tomatoes used from ETH-80, detected using 

λ={5,20,47}; fine to coarse scale is shown from left to right. 
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Appendix 6.3 - Example of the animals’ templates sets 

Template sets were used as a descriptor that allows distinguishing one category from another. 

As the objects events were obtained in several scales and two views, a category has several 

sets, being the number of sets obtained by multiplying the number of scales by the number of 

used views. Tables 6.3.1 to 6.3.3 present a few templates set examples for the animals 

categories in right profile, for three scales λ = {5, 20, 47}: some horses‟ sets are shown in 

Table 6.3.1, the cows‟ in Table 6.3.2, and the dogs‟ in Table 6.3.3.  

Table 6.3.1 - Templates set examples for the horse category in right profile, using three scales  λ = {5, 20, 47}.  
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Table 6.3.2 - Template set examples for the cow category in right profile, using three scales  λ = {5, 20, 47}.  
 λ=5 λ=20 λ=47 

P
o
si

ti
v
e 

li
n
es

 

   

N
eg

at
iv

e 
li

n
es

 

   

P
o
si

ti
v
e 

ed
g
es

 

   

N
eg

at
iv

e 
ed

g
es

 

   



70 

Table 6.3.3 - Template set examples for the dog category in right profile, using three scales  λ = {5, 20, 47}.  
 λ=5 λ=20 λ=47 
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Appendix 6.4 - Detailed categorization results  

The four concepts explored in section 3.3 were tested using the template objects; three of 

these were chosen to build the categorization model. Hence, Table 6.4.1 shows the 

categorization results achieved for the first three used concepts when the latter were still being 

explored; Tables 6.4.2 to 6.4.4 show the similarity percentages between each template object 

and category, for the three concepts that had the best score (100%) - concepts 1, 2 and 3. 

Table 6.4.1 - Categorization results achieved using the template objects to test the three concepts; the template 

objects were tested in left and right profile. A – apple, Ca – Car, Co-Cow, C - Cup, D – dog, H – horse, P – pear, 

T – tomato. 

 Left profile Right profile  

Object‟s id Object reference Object reference Cat. Result 

A,1 26075 28036 A 

A,2 18526 36916 A 

A,3 28510 31041 A 

A,4 18238 18533 A 

A,5 28552 27145 A 

Ca,1 14715 14073 Ca 

Ca,2 16115 16280 Ca 

Ca,5 15508 15902 Ca 

Ca,7 16235 16152 Ca 

Ca,9 18499 16406 Ca 

Co,1 19350 21275 Co 

Co,2 22436 22060 Co 

Co,5 19413 18148 Co 

Co,6 24267 25872 Co 

Co,7 23318 22480 Co 

C,1 13661 14602 C 

C,3 17758 16806 C 

C,4 28236 27574 C 

C,9 18924 18450 C 

C,10 14192 14581 C 

D,1 22284 23790 D 

D,2 23477 24815 D 

D,5 20513 21220 D 

D,8 22344 24235 D 

D,10 28362 28632 D 

H,1 20746 23253 H 

H,2 20705 19899 H 

H,3 20614 20493 H 

H,5 20967 20582 H 

H,10 25000 23585 H 

P,1 23561 20438 P 

P,3 25209 22219 P 

P,4 19808 19828 P 

P,5 20607 18427 P 

P,9 17870 19014 P 

T,2 25166 24799 T 

T,6 26994 27599 T 

T,8 25387 23649 T 

T,9 27385 28165 T 

T,10 28305 29178 T 
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Table 6.4.2 - Categorization results achieved using the template images (in left and right profile) to test concept1 

(A – apple, Ca – Car, Co-Cow, C - Cup, D – dog, H – horse, P – pear, T – tomato). Regarding this test, the 

dendritic field radius function deduced in section 3.3 was used, the events‟ type and polarity are considered, and 

the reference is given by the objects.  
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A,1 100 17.70 37.46 33.35 25.92 30.48 31.63 73.57 100 16.61 35.73 41.73 26.21 28.85 28.51 64.87 A 

A,2 100 10.74 32.63 44.41 23.42 20.10 27.99 54.75 100 18.88 37.22 41.30 32.48 35.19 29.55 56.47 A 

A,3 100 18.55 40.90 42.35 30.79 30.63 31.67 70.34 100 18.99 38.14 46.45 28.85 30.74 30.78 80.00 A 

A,4 100 11.64 39.48 47.83 28.87 27.72 41.75 67.95 100 11.73 31.53 39.78 25.03 25.64 36.82 64.24 A 

A,5 100 17.41 35.91 36.71 31.32 31.60 35.13 67.55 100 23.11 40.92 42.95 39.26 34.21 33.78 76.50 A 

Ca,1 36.68 100 57.72 38.26 49.69 46.97 24.68 43.24 46.22 100 66.48 36.42 51.34 48.93 23.86 47.74 Ca 

Ca,2 36.44 100 59.03 42.09 61.13 51.96 21.26 41.92 47.72 100 60.46 44.17 62.79 55.93 26.50 44.14 Ca 

Ca,5 33.12 100 61.75 35.39 65.12 53.37 28.38 45.85 47.22 100 58.16 37.66 65.02 50.11 28.48 48.45 Ca 

Ca,7 33.87 100 58.47 39.44 53.37 52.63 23.81 43.31 47.15 100 63.58 37.28 54.04 53.01 25.71 43.69 Ca 

Ca,9 28.96 100 57.41 38.39 61.61 50.12 22.67 41.25 49.45 100 58.14 40.10 58.67 48.84 29.67 45.31 Ca 

Co,1 34.94 27.95 100 45.29 53.08 60.33 31.52 42.89 48.31 33.35 100 44.24 58.44 66.13 23.34 46.31 Co 

Co,2 36.13 31.77 100 43.47 58.70 61.79 29.36 44.08 44.82 27.12 100 44.07 58.01 58.93 30.50 44.13 Co 

Co,5 32.19 36.49 100 46.87 60.11 57.38 33.63 30.65 46.69 44.06 100 44.87 70.55 58.44 30.00 40.35 Co 

Co,6 39.15 42.36 100 48.56 47.34 46.16 30.45 42.49 44.36 41.38 100 48.03 48.33 44.51 31.89 40.95 Co 

Co,7 33.94 40.41 100 47.39 67.82 72.68 33.88 40.56 48.75 35.34 100 44.07 65.06 67.73 31.53 45.67 Co 

C,1 51.04 20.28 42.32 100 40.16 37.22 35.61 44.21 60.05 21.29 44.51 100 39.76 36.32 32.51 55.22 C 

C,3 42.64 27.34 49.09 100 49.18 39.09 28.76 42.23 49.96 27.16 44.94 100 45.19 36.49 32.68 51.30 C 

C,4 38.19 33.95 52.50 100 45.73 50.52 34.92 42.10 50.97 32.20 54.89 100 43.09 47.66 29.88 45.00 C 

C,9 34.46 31.85 52.82 100 44.40 44.25 16.98 42.43 43.25 31.07 50.21 100 47.41 41.85 23.07 43.86 C 

C,10 32.91 30.12 71.03 100 45.52 44.84 26.83 46.80 39.88 27.03 68.99 100 45.26 41.09 31.62 44.65 C 

D,1 28.44 33.70 54.77 37.50 100 56.09 33.85 27.97 35.47 32.72 56.68 32.43 100 53.59 39.30 30.59 D 

D,2 29.30 43.86 69.15 41.06 100 69.43 36.83 37.94 43.84 42.36 66.35 39.11 100 70.95 38.12 45.76 D 

D,5 30.67 36.24 63.95 38.69 100 85.12 41.53 39.78 47.82 34.63 61.31 44.98 100 80.34 38.93 43.08 D 

D,8 33.69 36.74 60.20 42.75 100 54.50 39.81 38.98 43.31 32.47 61.23 40.12 100 64.93 36.84 38.00 D 

D,10 29.91 40.74 56.12 38.92 100 59.77 37.28 33.29 39.73 43.66 53.39 38.77 100 63.04 38.82 33.19 D 

H,1 34.74 34.85 63.09 41.96 66.03 100 31.47 41.30 44.85 37.27 60.56 44.81 68.06 100 30.00 42.13 H 

H,2 29.49 44.10 65.22 44.60 75.09 100 38.41 40.22 50.64 36.93 66.73 41.37 76.97 100 31.21 43.19 H 

H,3 34.63 41.74 65.11 39.95 79.86 100 38.49 40.12 47.27 40.89 67.49 45.00 78.01 100 37.94 42.83 H 

H,5 35.26 38.90 68.48 40.30 59.09 100 28.02 45.61 48.16 42.17 67.33 45.92 67.52 100 33.63 44.05 H 

H,10 31.38 39.36 72.14 44.11 72.63 100 38.45 45.94 49.71 39.12 71.30 38.47 79.75 100 35.57 43.02 H 

P,1 42.18 23.17 44.20 34.89 47.45 42.17 100 43.33 54.15 23.67 37.71 38.29 47.58 42.09 100 50.57 P 

P,3 38.94 24.53 43.89 31.32 45.21 42.71 100 38.22 57.01 22.73 36.87 37.19 50.78 47.34 100 46.19 P 

P,4 46.33 18.73 39.43 28.91 36.31 31.65 100 38.46 54.08 21.03 38.24 26.88 43.94 36.05 100 42.93 P 

P,5 43.37 20.65 31.60 35.07 33.98 30.43 100 37.41 50.24 18.34 32.43 33.15 42.51 36.28 100 39.43 P 

P,9 52.45 15.72 36.07 39.36 40.99 32.76 100 46.46 60.41 19.81 32.09 35.72 43.12 34.12 100 53.94 P 

T,2 51.44 34.92 42.16 31.53 40.79 45.43 37.05 100 64.55 36.26 46.07 38.49 51.41 46.66 39.66 100 T 

T,6 73.72 20.54 34.45 34.67 28.78 30.57 27.82 100 80.57 19.28 40.49 41.55 30.40 29.62 26.86 100 T 

T,8 63.27 18.74 40.26 42.20 27.88 32.30 29.63 100 72.71 22.46 42.29 46.53 28.01 30.15 26.17 100 T 

T,9 82.44 20.70 37.16 38.66 28.27 33.30 23.64 100 84.15 20.90 38.42 44.11 26.99 30.42 26.72 100 T 

T,10 65.72 15.68 39.75 37.05 29.38 30.40 22.57 100 81.30 17.34 37.45 46.22 32.72 30.01 27.74 100 T 
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Table 6.4.3 - Categorization results achieved using the template images (in left and right profile) to test concept2 

(A – apple, Ca – Car, Co-Cow, C - Cup, D – dog, H – horse, P – pear, T – tomato). Regarding this test, the 

dendritic field radius function deduced in section 3.3 was used, the events‟ type and polarity were not 

considered, and the reference is given by the objects.  

 Similarity percentages [%]  

 Left profile Right profile  
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A,1 100 33.23 57.28 64.30 52.59 46.18 51.02 92.32 100 29.04 56.55 64.44 54.57 47.88 39.55 91.29 A 

A,2 100 21.61 51.51 60.09 49.23 42.73 35.10 92.27 100 32.23 60.01 68.05 61.10 57.96 54.97 90.45 A 

A,3 100 30.10 62.97 67.83 60.44 53.13 40.77 91.88 100 30.86 62.03 69.45 58.17 53.55 39.13 94.91 A 

A,4 100 21.89 52.75 65.08 55.59 49.70 48.27 96.15 100 24.26 44.63 55.18 51.38 42.15 44.56 96.32 A 

A,5 100 27.66 61.71 65.73 63.01 54.12 49.40 93.02 100 35.12 64.03 66.44 65.79 55.13 43.72 92.79 A 

Ca,1 74.56 100 91.99 76.34 78.95 64.42 43.59 83.45 86.59 100 94.73 73.18 78.68 66.73 48.28 87.91 Ca 

Ca,2 70.30 100 90.67 83.69 89.46 69.13 48.58 77.94 84.08 100 95.39 83.78 88.73 73.05 49.83 84.91 Ca 

Ca,5 66.20 100 93.04 77.61 87.11 74.07 58.62 79.12 83.30 100 91.05 78.25 86.76 72.96 57.22 82.33 Ca 

Ca,7 63.32 100 91.91 78.57 86.60 70.53 54.50 80.14 81.08 100 93.80 77.09 86.09 69.89 57.47 81.28 Ca 

Ca,9 61.99 100 92.06 76.08 85.35 67.33 54.25 79.10 80.92 100 95.21 77.05 84.38 67.94 53.60 80.70 Ca 

Co,1 70.84 52.83 100 83.91 83.91 84.98 52.04 79.21 86.87 59.96 100 86.26 87.46 89.37 50.23 81.31 Co 

Co,2 74.63 58.69 100 81.79 87.75 89.37 48.56 85.13 84.90 55.22 100 87.29 88.93 88.39 53.16 79.46 Co 

Co,5 64.22 66.67 100 82.72 89.20 75.88 54.21 70.94 80.61 68.29 100 87.24 90.21 79.49 55.58 72.15 Co 

Co,6 75.97 62.75 100 80.92 74.41 65.14 47.83 79.75 84.93 63.68 100 81.56 73.89 64.16 55.00 77.11 Co 

Co,7 69.02 58.79 100 88.29 93.56 92.45 55.93 74.15 84.77 55.18 100 87.00 90.23 89.92 56.33 75.95 Co 

C,1 74.69 33.18 61.45 100 70.87 61.24 52.77 80.07 81.56 35.17 63.87 100 70.78 67.46 49.88 82.65 C 

C,3 69.54 43.59 81.95 100 75.36 61.80 49.17 75.36 78.12 42.64 82.45 100 77.01 64.52 49.39 75.27 C 

C,4 65.17 53.53 79.54 100 78.17 73.46 65.42 75.89 83.55 49.95 77.48 100 73.83 72.90 58.78 78.23 C 

C,9 79.95 47.33 91.69 100 76.98 67.08 43.73 80.59 85.34 47.62 91.36 100 78.44 68.68 48.03 83.18 C 

C,10 64.51 46.41 97.27 100 80.24 70.15 47.96 73.70 81.61 42.78 95.77 100 79.15 70.26 46.46 75.22 C 

D,1 64.93 59.71 83.36 74.68 100 77.35 65.19 72.16 78.56 55.51 83.14 73.70 100 83.10 66.42 70.35 D 

D,2 68.44 59.57 94.01 81.04 100 87.38 61.30 73.83 81.89 60.50 93.65 80.90 100 89.62 59.47 73.56 D 

D,5 68.47 53.93 86.09 78.05 100 96.89 74.08 77.65 84.59 56.08 85.18 80.66 100 97.00 64.67 79.33 D 

D,8 67.58 54.16 89.90 80.04 100 75.29 63.73 70.97 81.14 50.87 86.26 77.51 100 82.03 61.79 72.95 D 

D,10 61.19 61.77 87.33 77.70 100 77.84 71.55 66.24 79.25 62.21 84.73 75.37 100 81.09 67.92 71.24 D 

H,1 75.30 56.47 91.07 81.44 95.75 100 62.87 82.76 88.49 53.83 87.56 82.07 92.63 100 56.34 81.59 H 

H,2 62.83 63.14 90.16 82.91 96.09 100 75.79 71.70 84.60 56.68 86.57 83.73 95.84 100 64.02 73.67 H 

H,3 69.02 56.45 88.28 79.37 95.31 100 72.37 74.95 84.50 58.54 88.25 85.18 94.36 100 71.89 73.88 H 

H,5 69.40 64.48 97.06 80.18 91.59 100 62.24 82.01 83.10 65.87 97.07 85.38 92.84 100 65.23 80.95 H 

H,10 70.65 54.92 92.90 83.60 94.46 100 62.61 79.07 84.05 57.97 92.02 83.85 96.09 100 60.93 75.63 H 

P,1 72.20 41.31 69.30 73.53 72.97 68.34 100 75.49 83.17 39.42 60.32 73.52 71.27 65.19 100 77.60 P 

P,3 64.77 42.36 65.22 68.55 74.87 71.55 100 72.80 84.06 40.02 60.21 68.86 76.66 73.17 100 73.34 P 

P,4 71.69 34.09 59.24 65.63 63.87 61.40 100 72.80 84.78 38.04 58.10 61.67 63.14 58.98 100 76.85 P 

P,5 68.90 35.60 53.25 66.85 58.70 57.21 100 73.72 83.44 31.48 50.71 68.70 58.92 59.43 100 76.79 P 

P,9 74.61 29.44 52.13 71.35 58.23 54.52 100 80.17 88.19 32.98 50.37 65.74 61.77 56.26 100 81.04 P 

T,2 81.79 46.72 74.48 70.80 70.41 68.41 60.55 100 89.97 49.70 71.94 68.84 71.32 65.38 62.95 100 T 

T,6 91.77 34.03 62.10 65.24 58.71 50.62 43.62 100 94.91 33.61 60.99 64.46 58.55 51.28 38.34 100 T 

T,8 88.46 33.69 69.13 76.87 58.86 52.22 48.08 100 93.79 38.21 68.98 76.27 60.49 56.23 46.17 100 T 

T,9 93.85 35.99 70.97 72.74 61.56 54.14 44.92 100 96.29 36.77 62.00 67.52 58.87 52.31 43.92 100 T 

T,10 92.02 33.43 72.52 76.85 62.24 52.00 40.68 100 96.31 30.68 63.28 75.41 61.18 53.43 41.87 100 T 
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Table 6.4.4 - Categorization results achieved using the template images (in left and right profile) to test concept3 

(A – apple, Ca – Car, Co-Cow, C - Cup, D – dog, H – horse, P – pear, T – tomato). Regarding this test, the 

dendritic field radius function deduced in section 3.3 was used, the events‟ type and polarity were considered, 

and the reference is given by the category. 

 Similarity percentages [%]  

 Left profile Right profile  
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A,1 25.86 6.94 10.36 10.62 6.83 8.86 9.45 16.54 23.83 7.26 10.57 14.47 7.11 8.96 9.81 15.74 A 

A,2 18.37 2.99 6.41 10.05 4.39 4.15 5.94 8.74 31.37 10.86 14.50 18.85 11.60 14.38 13.39 18.04 A 

A,3 28.27 7.95 12.37 14.75 8.88 9.74 10.34 17.29 26.38 9.19 12.50 17.83 8.67 10.57 11.72 21.49 A 

A,4 18.09 3.19 7.64 10.66 5.32 5.64 8.72 10.68 15.75 3.39 6.17 9.11 4.49 5.26 8.37 10.31 A 

A,5 28.31 7.48 10.87 12.80 9.04 10.06 11.49 16.62 23.07 9.78 11.73 14.41 10.31 10.28 11.25 17.97 A 

Ca,1 5.35 22.13 9.01 6.88 7.39 7.71 4.16 5.48 5.53 21.94 9.88 6.34 6.99 7.63 4.12 5.82 Ca 

Ca,2 5.82 24.24 10.09 8.28 9.96 9.34 3.92 5.82 6.60 25.38 10.39 8.89 9.89 10.08 5.29 6.22 Ca 

Ca,5 5.09 23.32 10.15 6.70 10.21 9.23 5.04 6.13 6.38 24.79 9.76 7.40 10.01 8.82 5.56 6.67 Ca 

Ca,7 5.45 24.42 10.07 7.82 8.76 9.53 4.43 6.06 6.47 25.18 10.84 7.44 8.45 9.48 5.09 6.11 Ca 

Ca,9 5.31 27.82 11.26 8.67 11.52 10.34 4.80 6.58 6.89 25.57 10.07 8.13 9.32 8.87 5.97 6.43 Ca 

Co,1 6.70 8.13 20.52 10.71 10.38 13.02 6.99 7.15 8.73 11.06 22.46 11.64 12.03 15.58 6.09 8.53 Co 

Co,2 8.04 10.72 23.79 11.91 13.32 15.46 7.55 8.52 8.40 9.32 23.29 12.02 12.39 14.40 8.26 8.43 Co 

Co,5 6.20 10.65 20.59 11.11 11.80 12.43 7.48 5.13 7.20 12.46 19.16 10.07 12.39 11.75 6.68 6.34 Co 

Co,6 9.42 15.46 25.73 14.39 11.61 12.50 8.46 8.89 9.75 16.69 27.31 15.36 12.10 12.75 10.12 9.17 Co 

Co,7 7.85 14.17 24.73 13.50 15.99 18.90 9.05 8.15 9.31 12.38 23.73 12.25 14.16 16.86 8.70 8.89 Co 

C,1 6.91 4.17 6.13 16.69 5.55 5.67 5.57 5.21 7.45 4.85 6.86 18.05 5.62 5.87 5.83 6.98 C 

C,3 7.51 7.30 9.24 21.69 8.83 7.74 5.85 6.46 7.14 7.12 7.97 20.78 7.35 6.79 6.74 7.46 C 

C,4 10.69 14.42 15.72 34.49 13.05 15.91 11.29 10.25 11.94 13.84 15.98 34.09 11.50 14.55 10.11 10.74 C 

C,9 6.47 9.07 10.60 23.12 8.50 9.34 3.68 6.92 6.78 8.94 9.78 22.81 8.47 8.55 5.22 7.00 C 

C,10 4.63 6.43 10.69 17.34 6.53 7.10 4.36 5.73 4.94 6.14 10.62 18.03 6.39 6.64 5.66 5.64 C 

D,1 6.29 11.30 12.94 10.21 22.53 13.94 8.64 5.37 7.17 12.13 14.23 9.54 23.03 14.12 11.47 6.30 D 

D,2 6.82 15.49 17.22 11.77 23.73 18.18 9.90 7.68 9.24 16.38 17.38 12.00 24.02 19.50 11.61 9.83 D 

D,5 6.24 11.18 13.91 9.70 20.74 19.48 9.76 7.03 8.62 11.46 13.73 11.80 20.54 18.88 10.14 7.91 D 

D,8 7.47 12.35 14.26 11.67 22.59 13.58 10.19 7.51 8.92 12.27 15.67 12.02 23.46 17.43 10.96 7.97 D 

D,10 8.41 17.38 16.88 13.48 28.67 18.91 12.11 8.14 9.67 19.49 16.14 13.72 27.71 19.99 13.64 8.23 D 

H,1 7.15 10.88 13.88 10.63 13.85 23.14 7.48 7.39 8.86 13.51 14.87 12.88 15.32 25.75 8.56 8.48 H 

H,2 6.06 13.73 14.32 11.28 15.72 23.10 9.11 7.18 8.56 11.45 14.02 10.18 14.82 22.04 7.62 7.44 H 

H,3 7.08 12.94 14.23 10.06 16.64 22.99 9.09 7.13 8.23 13.06 14.60 11.40 15.47 22.69 9.54 7.60 H 

H,5 7.33 12.27 15.23 10.32 12.53 23.39 6.73 8.24 8.42 13.53 14.63 11.69 13.45 22.79 8.49 7.85 H 

H,10 7.78 14.80 19.12 13.47 18.36 27.89 11.01 9.90 9.96 14.38 17.75 11.22 18.20 26.12 10.29 8.78 H 

P,1 9.86 8.21 11.04 10.04 11.30 11.08 26.98 8.80 9.41 7.54 8.14 9.68 9.41 9.53 25.08 8.95 P 

P,3 9.74 9.30 11.73 9.64 11.52 12.01 28.87 8.30 10.76 7.87 8.65 10.22 10.92 11.65 27.26 8.88 P 

P,4 9.10 5.58 8.28 7.00 7.27 6.99 22.69 6.57 9.11 6.50 8.00 6.59 8.43 7.92 24.33 7.37 P 

P,5 8.86 6.40 6.90 8.83 7.08 6.99 23.60 6.65 7.87 5.27 6.31 7.55 7.58 7.40 22.61 6.29 P 

P,9 9.29 4.22 6.84 8.59 7.41 6.53 20.47 7.16 9.76 5.87 6.44 8.40 7.94 7.18 23.33 8.88 P 

T,2 12.84 13.22 11.25 9.69 10.38 12.75 10.68 21.69 13.60 14.02 12.06 11.80 12.34 12.81 12.07 21.47 T 

T,6 19.73 8.34 9.86 11.43 7.85 9.20 8.60 23.27 18.90 8.29 11.80 14.18 8.12 9.05 9.10 23.89 T 

T,8 15.93 7.15 10.84 13.09 7.16 9.15 8.61 21.88 14.61 8.28 10.56 13.61 6.41 7.90 7.59 20.47 T 

T,9 22.39 8.52 10.79 12.93 7.83 10.17 7.41 23.60 20.14 9.17 11.42 15.36 7.36 9.49 9.23 24.38 T 

T,10 18.45 6.67 11.93 12.81 8.41 9.60 7.32 24.40 20.16 7.88 11.54 16.67 9.24 9.70 9.93 25.26 T 
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In order to achieve the results shown in Table 6.4.4, the categories references were used; these 

are shown in Table 6.4.5. 

Table 6.4.5 - Categories references shown for both views – left and right profile. 

 Category‟s reference 

View Apples Cars Cows Cups Dogs Horses Pears Tomatoes 

Right 

profile 
117669 64154 94725 80878 103322 90301 81493 115532 

Left 

profile 
100838 66487 94299 81866 98914 89649 87313 116014 

 

Finally, after the model was built (in section 3.4), other results were achieved using the test 

objects in left and right profile. Therefore, the test objects references are shown in Table 

6.4.6, and the categories references shown in Table 6.4.5 should be also recalled, as both 

count for the results shown in Tables 6.4.7 and 6.4.8. 

Table 6.4.6 – Test objects‟ reference in both views: right (000) and left (180).  

Object's name 
Object's 

reference 
Object's name 

Object's 

reference 
Object's name 

Object's 

reference 
Object's name 

Object's 

reference 

Apple6-090-000 43141 Cow3-090-000 22931 Dog3-090-000 24047 Pear2-090-000 18272 

Apple6-090-180 44948 Cow3-090-180 23663 Dog3-090-180 25164 Pear2-090-180 17037 

Apple7-090-000 27747 Cow4-090-000 25215 Dog4-090-000 24628 Pear6-090-000 15731 

Apple7-090-180 33803 Cow4-090-180 23692 Dog4-090-180 27863 Pear6-090-180 16032 

Apple8-090-000 26441 Cow8-090-000 24954 Dog6-090-000 25283 Pear7-090-000 17908 

Apple8-090-180 27365 Cow8-090-180 22073 Dog6-090-180 23128 Pear7-090-180 20688 

Apple9-090-000 32587 Cow9-090-000 21435 Dog7-090-000 31302 Pear8-090-000 15641 

Apple9-090-180 28782 Cow9-090-180 21663 Dog7-090-180 28849 Pear8-090-180 15814 

Apple10-090-000 25604 Cow10-090-000 21814 Dog9-090-000 27442 Pear10-090-000 19588 

Apple10-090-180 31214 Cow10-090-180 23890 Dog9-090-180 24900 Pear10-090-180 15104 

        

Car3-090-000 16154 Cup2-090-000 15857 Horse4-090-000 20156 Tomato1-090-000 24676 

Car3-090-180 17184 Cup2-090-180 16438 Horse4-090-180 19261 Tomato1-090-180 23848 

Car6-090-000 17463 Cup5-090-000 14669 Horse6-090-000 18617 Tomato3-090-000 24205 

Car6-090-180 17634 Cup5-090-180 16101 Horse6-090-180 18782 Tomato3-090-180 25720 

Car11-090-000 17450 Cup6-090-000 15470 Horse7-090-000 25880 Tomato4-090-000 19577 

Car11-090-180 16790 Cup6-090-180 15613 Horse7-090-180 25624 Tomato4-090-180 21992 

Car12-090-000 18333 Cup7-090-000 18115 Horse8-090-000 21113 Tomato5-090-000 22805 

Car12-090-180 16332 Cup7-090-180 17237 Horse8-090-180 21315 Tomato5-090-180 22378 

Car14-090-000 13867 Cup8-090-000 17123 Horse9-090-000 24081 Tomato7-090-000 29143 

Car14-090-180 13842 Cup8-090-180 16654 Horse9-090-180 22151 Tomato7-090-180 29019 
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Table 6.4.7 - Categorization results achieved by using the test objects, in right (090-000) and left (090-180) 

profile views. For the winning category (Wcat) results, the correspondences are as follows: A – apple, Ca – car, 

Co – cow, C – cup, D – dog, H – horse, P – pear, T – tomato. For each object, we show the necessary threshold 

percentage (NTP) that the model needed in order to provide a final categorization result. Also, the average NTP 

for each category and view was calculated.  

Object's name 

Intersected categories (IC), and respective 

similarity percentages[%] Wcat NTP 
    

 

LP 

    
 

RP 
IC Concept 1 Concept 2 Concept 3 

Apple6-090-000 Apple 77.40 94.68 28.38 A 1 

0.998 1 

Apple6-090-180 Apple 63.47 87.15 28.29 A 0.99 

Apple7-090-000 Apple 85.58 96.06 20.18 A 1 

Apple7-090-180 Apple 63.78 87.81 21.38 A 1 

Apple8-090-000 Apple 86.34 96.21 19.40 A 1 

Apple8-090-180 Apple 72.24 90.46 19.60 A 1 

Apple9-090-000 Apple 74.92 94.04 20.75 A 1 

Apple9-090-180 Apple 74.47 87.91 21.26 A 1 

Apple10-090-000 Apple 68.63 94.67 14.93 A 1 

Apple10-090-180 Tomato 62.68 88.34 16.86 T 1 

Car3-090-000 Car 91.10 97.97 22.94 Ca 1 

1 0.998 

Car3-090-180 Car 90.57 98.39 23.41 Ca 1 

Car6-090-000 Car 83.14 95.75 22.63 Ca 0.99 

Car6-090-180 Car 83.49 96.46 22.14 Ca 1 

Car11-090-000 Car 77.19 96.65 20.99 Ca 1 

Car11-090-180 Car 78.34 95.84 19.78 Ca 1 

Car12-090-000 Car 85.19 97.64 24.34 Ca 1 

Car12-090-180 Car 85.86 97.62 21.09 Ca 1 

Car14-090-000 Car 84.69 99.35 18.31 Ca 1 

Car14-090-180 Car 87.57 99.87 18.23 Ca 1 

Cow3-090-000 Cow 79.47 97.46 19.24 Co 1 

1 0.990 

Cow3-090-180 Cow 77.70 95.48 19.50 Co 1 

Cow4-090-000 Cow 76.80 95.17 20.44 Co 1 

Cow4-090-180 Cow 74.39 96.10 18.69 Co 1 

Cow8-090-000 Cow 71.53 93.90 18.84 Co 0.95 

Cow8-090-180 Cow 79.38 98.53 18.58 Co 1 

Cow9-090-000 Cow 75.02 96.31 16.98 Co 1 

Cow9-090-180 Cow 75.03 97.49 17.24 Co 1 

Cow10-090-000 Cow 81.98 99.12 18.88 Co 1 

Cow10-090-180 Cow 76.42 97.85 19.36 Co 1 

Cup2-090-000 Cup 87.63 95.79 17.18 C 1 

1 1 

Cup2-090-180 Cup 82.05 94.91 16.47 C 1 

Cup5-090-000 Cup 74.70 96.31 13.55 C 1 

Cup5-090-180 Cup 71.23 95.04 14.01 C 1 

Cup6-090-000 Cup 85.79 98.07 16.41 C 1 

Cup6-090-180 Cup 87.19 97.53 16.63 C 1 

Cup7-090-000 Cup 66.16 90.18 14.82 C 1 

Cup7-090-180 Cup 69.52 93.08 14.64 C 1 

Cup8-090-000 Cup 88.49 98.95 18.73 C 1 

Cup8-090-180 Cup 89.07 98.92 18.12 C 1 
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Table 6.4.7 (cont.) - Categorization results achieved by using the test objects, in right (090-000) and left (090-

180) profile views. For the winning category (Wcat) results, the correspondences are as follows: A – apple, Ca – 

car, Co – cow, C – cup, D – dog, H – horse, P – pear, T – tomato. For each object, we show the necessary 

threshold percentage (NTP) that the model needed in order to provide a final categorization result. Also, the 

average NTP for each category and view was calculated. 

Object's name 

Intersected categories (IC), and respective 

similarity percentages[%] Wcat NTP 
    

 

LP 

    
 

RP 

IC Concept 1 Concept 2 Concept 3 

Dog3-090-000 Dog 84.83 97.85 19.74 D 1 

0.996 0.998 

Dog3-090-180 Dog 88.26 98.42 22.45 D 1 

Dog4-090-000 Horse 77.65 96.33 21.18 H 1 

Dog4-090-180 Horse 75.10 94.47 23.34 H 1 

Dog6-090-000 Dog 83.61 98.92 20.46 D 1 

Dog6-090-180 Dog 82.72 98.93 19.34 D 1 

Dog7-090-000 Dog 70.32 85.91 21.31 D 1 

Dog7-090-180 Dog 67.96 88.38 19.82 D 1 

Dog9-090-000 Horse 77.02 93.02 23.41 H 0.99 

Dog9-090-180 Horse 78.50 94.86 21.80 H 0.98 

Horse4-090-000 Horse 84.13 96.51 18.78 H 0.99 

0.988 0.992 

Horse4-090-180 Horse 83.55 98.41 17.95 H 1 

Horse6-090-000 Horse 88.02 99.41 18.15 H 1 

Horse6-090-180 Horse 91.43 99.65 19.15 H 1 

Horse7-090-000 Horse 81.02 94.24 23.22 H 0.97 

Horse7-090-180 Horse 76.27 93.01 21.80 H 0.94 

Horse8-090-000 Horse 79.73 99.06 18.64 H 1 

Horse8-090-180 Horse 83.54 99.39 19.86 H 1 

Horse9-090-000 Horse 82.95 97.93 22.12 H 1 

Horse9-090-180 Horse 86.93 98.14 21.48 H 1 

Pear2-090-000 Pear 72.07 96.64 16.16 P 1 

1 1 

Pear2-090-180 Pear 89.04 99.29 17.37 P 1 

Pear6-090-000 Pear 89.84 98.50 17.34 P 1 

Pear6-090-180 Pear 91.72 99.22 16.84 P 1 

Pear7-090-000 Pear 88.80 97.73 19.51 P 1 

Pear7-090-180 Pear 83.53 98.05 19.79 P 1 

Pear8-090-000 Pear 92.97 99.03 17.84 P 1 

Pear8-090-180 Pear 91.90 99.34 16.64 P 1 

Pear10-090-000 Pear 85.40 97.48 20.53 P 1 

Pear10-090-180 Pear 91.13 99.28 15.77 P 1 

Tomato1-090-000 Tomato 87.20 98.37 18.62 T 1 

1 1 

Tomato1-090-180 Tomato 86.03 97.95 17.68 T 1 

Tomato3-090-000 Tomato 81.17 95.65 17.01 T 1 

Tomato3-090-180 Tomato 84.11 94.57 18.65 T 1 

Tomato4-090-000 Tomato 81.01 96.48 13.73 T 1 

Tomato4-090-180 Tomato 77.80 96.64 14.75 T 1 

Tomato5-090-000 Tomato 85.53 97.97 16.88 T 1 

Tomato5-090-180 Tomato 82.65 97.85 15.94 T 1 

Tomato7-090-000 Tomato 83.26 94.35 21.00 T 1 

Tomato7-090-180 Tomato 82.30 94.90 20.59 T 1 

Table 6.4.8 - Categorization results achieved by using the test objects, in right (090-000) and left (090-180) 

profile views: average NTP and categorization success rate for each view. 

Average NTP Categorization success rate (CSR) 

ALP ARP ALP ARP 

              92.5% 95% 

Average CSR: 93.75% 
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The categorization model was also tested in terms of small invariance to rotation, Gaussian 

noise and scale. These tests were performed using as base the right profile view. These results 

are shown in Tables 6.4.9 to 6.4.14. 

Table 6.4.9 – Results achieved when testing the categorization model in terms of rotation invariance, more 

specifically, using the previous template sets for right profile to identify test objects slightly rotated (tilt rotation 

of -22º) from the latter position. 

Object name Final categorization result NTP     
 

Apple6-068-000 Apple 1 

0.994 

Apple7-068-000 Apple 1 

Apple8-068-000 Apple 1 

Apple9-068-000 Apple 1 

Apple10-068-000 Apple 0.97 

Car3-068-000 Car 0.88 

0.890 

Car6-068-000 Car 0.86 

Car11-068-000 Car 0.91 

Car12-068-000 Car 0.87 

Car14-068-000 Car 0.93 

Cow3-068-000 Cow 1 

1 

Cow4-068-000 Cow 1 

Cow8-068-000 Cow 1 

Cow9-068-000 Cow 1 

Cow10-068-000 Cow 1 

Cup2-068-000 Cup 1 

1 

Cup5-068-000 Cup 1 

Cup6-068-000 Cup 1 

Cup7-068-000 Cup 1 

Cup8-068-000 Cup 1 

Dog3-068-000 Dog 1 

0.990 

Dog4-068-000 Horse 1 

Dog6-068-000 Dog 1 

Dog7-068-000 Dog 0.98 

Dog9-068-000 Horse 0.97 

Horse4-068-000 Horse 1 

0.998 

Horse6-068-000 Horse 1 

Horse7-068-000 Horse 0.99 

Horse8-068-000 Horse 1 

Horse9-068-000 Horse 1 

Pear2-068-000 Pear 1 

1 

Pear6-068-000 Pear 1 

Pear7-068-000 Pear 1 

Pear8-068-000 Pear 1 

Pear10-068-000 Pear 1 

Tomato1-068-000 Tomato 1 

1 

Tomato3-068-000 Tomato 1 

Tomato4-068-000 Tomato 1 

Tomato5-068-000 Tomato 1 

Tomato7-068-000 Tomato 1 

 Categorization success rate:  Global average: 

 95%  0.984 
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Table 6.4.10 – Results achieved when testing the categorization model in terms of Gaussian noise (GN) 

invariance, more specifically, using the previous template sets for right profile to identify test objects in right 

profile which were previously subjected to a 10% GN rate. 

Objects subjected to a 

10% GN rate 
Final categorization result NTP     

 

Apple6-090-000 Apple 1 

1 

Apple7-090-000 Apple 1 

Apple8-090-000 Apple 1 

Apple9-090-000 Apple 1 

Apple10-090-000 Apple 1 

Car3-090-000 Car 1 

0.998 

Car6-090-000 Car 0.99 

Car11-090-000 Car 1 

Car12-090-000 Car 1 

Car14-090-000 Car 1 

Cow3-090-000 Cow 1 

0.990 

Cow4-090-000 Cow 1 

Cow8-090-000 Cow 0.95 

Cow9-090-000 Cow 1 

Cow10-090-000 Cow 1 

Cup2-090-000 Cup 1 

1 

Cup5-090-000 Cup 1 

Cup6-090-000 Cup 1 

Cup7-090-000 Cup 1 

Cup8-090-000 Cup 1 

Dog3-090-000 Dog 1 

0.996 

Dog4-090-000 Horse 1 

Dog6-090-000 Dog 1 

Dog7-090-000 Dog 1 

Dog9-090-000 Horse 0.98 

Horse4-090-000 Horse 0.98 

0.990 

Horse6-090-000 Horse 1 

Horse7-090-000 Horse 0.97 

Horse8-090-000 Horse 1 

Horse9-090-000 Horse 1 

Pear2-090-000 Pear 1 

1 

Pear6-090-000 Pear 1 

Pear7-090-000 Pear 1 

Pear8-090-000 Pear 1 

Pear10-090-000 Pear 1 

Tomato1-090-000 Tomato 1 

1 

Tomato3-090-000 Tomato 1 

Tomato4-090-000 Tomato 1 

Tomato5-090-000 Tomato 1 

Tomato7-090-000 Tomato 1 

 Categorization success rate:  Global average: 

 
95% 

 
 0.997 
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Table 6.4.11 – Results achieved when testing the categorization model in terms of scale invariance, more 

specifically, using the previous template sets for right profile to identify test objects in right profile which were 

previously subjected to a 10% size increase rate. 

Objects subjected to a 

10% size increase rate 
Final categorization result NTP     

 

Apple6-090-000 Apple 1 

1 

Apple7-090-000 Apple 1 

Apple8-090-000 Apple 1 

Apple9-090-000 Apple 1 

Apple10-090-000 Apple 1 

Car3-090-000 Car 1 

1 

Car6-090-000 Car 1 

Car11-090-000 Car 1 

Car12-090-000 Car 1 

Car14-090-000 Car 1 

Cow3-090-000 Cow 1 

0.984 

Cow4-090-000 Cow 1 

Cow8-090-000 Horse 0.92 

Cow9-090-000 Cow 1 

Cow10-090-000 Cow 1 

Cup2-090-000 Cup 0.96 

0.992 

Cup5-090-000 Cup 1 

Cup6-090-000 Cup 1 

Cup7-090-000 Cup 1 

Cup8-090-000 Cup 1 

Dog3-090-000 Dog 1 

0.994 

Dog4-090-000 Horse 1 

Dog6-090-000 Dog 1 

Dog7-090-000 Dog 1 

Dog9-090-000 Horse 0.97 

Horse4-090-000 Horse 1 

0.992 

Horse6-090-000 Horse 1 

Horse7-090-000 Horse 0.96 

Horse8-090-000 Horse 1 

Horse9-090-000 Horse 1 

Pear2-090-000 Pear 1 

1 

Pear6-090-000 Pear 1 

Pear7-090-000 Pear 1 

Pear8-090-000 Pear 1 

Pear10-090-000 Pear 1 

Tomato1-090-000 Tomato 1 

1 

Tomato3-090-000 Tomato 1 

Tomato4-090-000 Tomato 1 

Tomato5-090-000 Tomato 1 

Tomato7-090-000 tomato 1 

 Categorization success rate:  Global average: 

 92.5%   0.995 
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Table 6.4.12 – Results achieved when testing the categorization model in terms of scale invariance, more 

specifically, using the previous template sets for right profile to identify test objects in right profile which were 

previously subjected to a 10% size decrease rate. 

Objects subjected to a 

10% size decrease rate 
Final categorization result NTP     

 

Apple6-090-000 Apple 1 

0.964 

Apple7-090-000 Apple 1 

Apple8-090-000 Apple 1 

Apple9-090-000 Apple 1 

Apple10-090-000 Pear 0.82 

Car3-090-000 Car 1 

1 

Car6-090-000 Car 1 

Car11-090-000 Car 1 

Car12-090-000 Car 1 

Car14-090-000 Car 1 

Cow3-090-000 Cow 1 

0.992 

Cow4-090-000 Cow 1 

Cow8-090-000 Horse 0.96 

Cow9-090-000 Cow 1 

Cow10-090-000 Cow 1 

Cup2-090-000 Cup 1 

1 

Cup5-090-000 Cup 1 

Cup6-090-000 Cup 1 

Cup7-090-000 Cup 1 

Cup8-090-000 Cup 1 

Dog3-090-000 Dog 1 

0.986 

Dog4-090-000 Horse 1 

Dog6-090-000 Dog 1 

Dog7-090-000 Horse 0.93 

Dog9-090-000 Horse 1 

Horse4-090-000 Horse 0.97 

0.988 

Horse6-090-000 Horse 1 

Horse7-090-000 Horse 0.97 

Horse8-090-000 Horse 1 

Horse9-090-000 Horse 1 

Pear2-090-000 Pear 1 

1 

Pear6-090-000 Pear 1 

Pear7-090-000 Pear 1 

Pear8-090-000 Pear 1 

Pear10-090-000 Pear 1 

Tomato1-090-000 Cow 0.91 

0.944 

Tomato3-090-000 Tomato 0.95 

Tomato4-090-000 Tomato 1 

Tomato5-090-000 Tomato 1 

Tomato7-090-000 Cup 0.86 

 Categorization success rate:  Global average: 

 82.5%   0.984 
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Table 6.4.13 - Categorization results comparison: joining results from Table 6.4.7 to 6.4.12, in order to compare 

them in terms of winning category (Wcat) and necessary threshold percentage (NTP). For the winning category 

results, the correspondences are as follows: A – apple, Ca – car, Co – cow, C – cup, D – dog, H – horse, P – 

pear, T – tomato. The global average of NTP (GA) and the categorization success rate (CSR) are also shown for 

each test.  

 Test objects (reference view: right profile) 

Object's 

name 

Objects in right 

profile 

Objects with 

a tilt 

variation of -

22 degrees 

Objects in 

right profile 

subjected to a 

10% Gaussian 

noise rate 

Objects in right 

profile subjected 

to a 10% size 

increase rate 

Objects in right 

profile subjected 

to a 10% size 

decrease rate 

Wcat NTP Wcat NTP Wcat NTP Wcat NTP Wcat NTP 

Apple6 A 1 A 1 A 1 A 1 A 1 

Apple7 A 1 A 1 A 1 A 1 A 1 

Apple8 A 1 A 1 A 1 A 1 A 1 

Apple9 A 1 A 1 A 1 A 1 A 1 

Apple10 A 1 A 0.97 A 1 A 1 P 0.82 

Car3 Ca 1 Ca 0.88 Ca 1 Ca 1 Ca 1 

Car6 Ca 0.99 Ca 0.86 Ca 0.99 Ca 1 Ca 1 

Car11 Ca 1 Ca 0.91 Ca 1 Ca 1 Ca 1 

Car12 Ca 1 Ca 0.87 Ca 1 Ca 1 Ca 1 

Car14 Ca 1 Ca 0.93 Ca 1 Ca 1 Ca 1 

Cow3 Co 1 Co 1 Co 1 Co 1 Co 1 

Cow4 Co 1 Co 1 Co 1 Co 1 Co 1 

Cow8 Co 0.95 Co 1 Co 0.95 H 0.92 H 0.96 

Cow9 Co 1 Co 1 Co 1 Co 1 Co 1 

Cow10 Co 1 Co 1 Co 1 Co 1 Co 1 

Cup2 C 1 C 1 C 1 C 0.96 C 1 

Cup5 C 1 C 1 C 1 C 1 C 1 

Cup6 C 1 C 1 C 1 C 1 C 1 

Cup7 C 1 C 1 C 1 C 1 C 1 

Cup8 C 1 C 1 C 1 C 1 C 1 

Dog3 D 1 D 1 D 1 D 1 D 1 

Dog4 H 1 H 1 H 1 H 1 H 1 

Dog6 D 1 D 1 D 1 D 1 D 1 

Dog7 D 1 D 0.98 D 1 D 1 H 0.93 

Dog9 H 0.99 H 0.97 H 0.98 H 0.97 H 1 

Horse4 H 0.99 H 1 H 0.98 H 1 H 0.97 

Horse6 H 1 H 1 H 1 H 1 H 1 

Horse7 H 0.97 H 0.99 H 0.97 H 0.96 H 0.97 

Horse8 H 1 H 1 H 1 H 1 H 1 

Horse9 H 1 H 1 H 1 H 1 H 1 

Pear2 P 1 P 1 P 1 P 1 P 1 

Pear6 P 1 P 1 P 1 P 1 P 1 

Pear7 P 1 P 1 P 1 P 1 P 1 

Pear8 P 1 P 1 P 1 P 1 P 1 

Pear10 P 1 P 1 P 1 P 1 P 1 

Tomato1 T 1 T 1 T 1 T 1 Co 0.91 

Tomato3 T 1 T 1 T 1 T 1 T 0.95 

Tomato4 T 1 T 1 T 1 T 1 T 1 

Tomato5 T 1 T 1 T 1 T 1 T 1 

Tomato7 T 1 T 1 T 1 T 1 C 0.86 

 CSR: GA: CSR: GA: CSR: GA: CSR: GA: CSR: GA: 

 95%        95% 0.984 95%  0.997 92.5%  0.995 82.5%  0.984 
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Table 6.4.14 - Summary of the main categorization results regarding the tests of rotation, GN and scale 

invariance. 

Test 
Categorization 

success rate 

Global average of the necessary 

threshold percentage (GA) 

(a) Reference: testing objects images in right profile 95%        

(b) Rotation invariance test (-22º, tilt) 95% 0.984 

(c) Gaussian noise test (+10%) 95%  0.997 

(d) Scale invariance test (+10%) 92.5%  0.995 

(e) Scale invariance test (-10%) 82.5%  0.984 
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