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Abstract—This work compares the resolution of a pressure
and vector sensor based conventional Bartlett estimator, with
their MVDR estimator counterparts, in the context of bottom
characterization with a short vertical array. Santos et al. [1]
demonstrated the gain of a vector sensor array (VSA) based
linear estimator (Bartlett) for generic parameter estimation.
Moreover, it was shown that for bottom characterization the
highest resolution of the estimates were achieved with the
vertical particle velocity measurements alone. The present work
highlights the gain in parameter resolution of a VSA based
MVDR estimator. It is shown, that also for a MVDR estimator,
the vector sensor array data improves the resolution of parameter
estimation. But, it is also shown, through simulations, that
for bottom parameter estimation, the pressure based MVDR
estimator has higher resolution and sidelobe attenuation than
the VSA based Bartlett estimator. These results were verified for
experimental data acquired by a four element, 30 cm long vertical
VSA in the 8–14 kHz band, during the Makai Experiment 2005
sea trial, off Kauai I., Hawaii (USA).

Index Terms—Vector sensor arrays, bottom parameter estima-
tion, Bartlett estimator, MVDR estimator.

I. INTRODUCTION

Vector sensors, which measure the particle velocity in addi-
tion to pressure, have been widely used for source localization
either as linear array ([2] and references within) or as single
device [3]. The particle velocity is a vectorial field given by
the gradient of the pressure. Therefore vector sensors exhibit
intrinsic spatial filtering capabilities, that for example allow
vector sensor arrays to overcome the left-right ambiguity
problem of linear hydrophone arrays. In the last decade,
vector sensors have been also introduced in other underwater
acoustic applications such as port and waterway security [4],
underwater communications [5] and geoacoustic inversion [1],
[6], [7]. State-of-the-art vector sensor devices are low size,
operate over wide frequency bands of few Hz to several kHz
and have large dynamic ranges [8]. Santos et al. [1] used
data acquired during the MAKAI’05 experiment [9] by a
vertical array of 4 such vector sensors (VSA), 30 cm aperture
to perform geoacoustic parameter estimation with signals in
the ten kilohertz band. Although, the high frequency of the
signals used, the few elements and the small aperture of the
VSA, it was possible to estimate the sediment velocity, density
and attenuation in line with the ground truth for the area. The
estimates were obtained using an extension of the Bartlett
estimator to include particle velocity measurements. It was

shown that the VSA measurements remarkably improve the
resolution of the estimates, when compared with pressure only
data of an array of similar characteristics (number of sensors,
array aperture). Moreover, the highest resolution of the bottom
parameters was achieved when the vertical component of the
particle velocity was considered alone. Since, state-of-the-art
VSA are defence sensitive devices that are not commercially
available, one can consider the usage of a vertical array, which
elements are pairs of closely located hydrophones to explore
the vertical particle velocity for geoacoustic parameter estima-
tion. Felisberto at al. [10] using a normal mode representation
of the particle velocity field discussed the potential gain
provided by particle velocity measurements and settle rules
to design a measurement system (frequency, source depth,
sensor separation) for geoacoustic parameter estimation based
on vector sensors (VS) or alternatively in pairs of closely
located hydrophones. It was shown for the noise free case
that the performance achieved by vertical particle velocity
sensors or pair of hydrophones are similar, when hydrophone
separation obeys the sampling rules applied to high order
modal functions. In the presence of surface ambient noise,
simulated using the model proposed by Kuperman [11], the
performance of the Bartlett estimator based on the hydrophone
pairs slightly degraded, but in the analyzed cases they perform
generally better than using hydrophone arrays directly (i.e.
without estimating the vertical particle velocity field). These
studies give rise to the development of an array of 4 hy-
drophone pairs for bottom characterization that is functionally
equivalent to the vector sensor array described above. The
array named Short Hydrophone Array1(SHA), was tested in
an acoustic tank and will be used in a forthcoming sea trial to
characterize sea bottom covered by seagrasses [12]. Although
the tests performed so far shown that the expected functionality
of SHA was achieved at least in controlled conditions, the im-
plementation of the hydrophone pairs imposed more stringent
requirements to hydrophones (size, phase characteristics and
its tolerance, directivity patterns) and respective signal con-
ditioning electronics than these encountered in conventional
hydrophone arrays.

In order to achieve a higher resolution of the estimates
a number of so called high resolution estimators have been
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proposed [13]. Such estimators have been applied with vector
sensor arrays for direction of arrival estimation [14], [15].
In the present work one discusses the application of the
well known high resolution Minimum Variance Distortionless
Response (MVDR) estimator to bottom characterization with
short array and high frequency signals. One compares through
simulations the resolution of the estimates obtained from a
pressure only (conventional hydrophone array) and vertical
particle velocity using the Bartlett and the MVDR estimators.
The results show that vertical particle velocity based estimators
present higher resolution and side lobe attenuation than their
pressure counterparts, but the pressure based MVDR has
resolution and side lobe attenuation similar to that of Bartlett
vertical particle velocity based estimator. Despite the high
frequency signals used the simulation results were verified for
experimental data acquired during the Makai’05 sea trial.

This paper is organized as follows: Section II reviews the
vector sensor measurement model and the VSA-based Bartlett
estimator proposed by Santos et al [1]. It is derived the VSA-
based MVDR estimator for generic parametric estimation.
The pressure and vertical particle velocity based estimators
are applied for seabed parameter estimation in simulated
context. Section III presents the experimental results of seabed
parameters estimates using high frequency signals. Finally,
Section IV draws some conclusions.

II. THEORETICAL FRAMEWORK

In underwater acoustics very often the parameter estimation
problem is solved by Matched Field Inversion (MFI). The
basic principle of MFI is simple: find a replica - a solution
of the direct problem given a set of parameters, that best
matches the measured data. The match between the data and
the replica is evaluated by a cost function, also known as
processor or estimator. The estimator correlates the measured
data (typically pressure data) with the replica, maximizing the
output power for a given input signal [13]. Hereafter, it is
assumed that one has at hand a convenient propagation model
to compute the replica. Next, following Santos et al. [1] it
is reviewed the particle velocity-pressure joint model and the
VSA based Bartlett estimator. Then, it is introduced the VSA
based MVDR estimator and the performance of the various
estimators are compared through simulations.

A. Measurement model

A vector sensor measures the pressure p and the particle
velocity components v = [vx, vy, vz]. For a monochromatic
signal at frequency ω, the field due to a signal s with power
σ2
s , measured at an L-element VSA, can be written as [1][

yp(Θ0)
yv(Θ0)

]
=

[
1

u(Θ0)

]
⊗ h(Θ0)s+

[
np

nv

]
(1)

where Θ0 is a set of environmental parameters, ⊗ is the
Kronecker product, h(Θ0) is the channel frequency response
(pressure), u = [ux, uy, uz] is a unity vector giving the
direction of the particle velocity field, np, nv, are additive,
zero mean and white noise components, with variance σ2

n,

uncorrelated between each sensor and their components, and
uncorrelated with the signal.

B. Data correlation matrix

The structure of the data correlation matrix, hereafter re-
ferred to as correlation matrix, is a key point on the estimator
design and its performance analysis.

Considering data model (1) and that signal and all noise
components are uncorrelated, the pressure-particle velocity
correlation matrix can by written as

Rpv(Θ0) =

[
Rp(Θ0) 0L×3L

03L×L Rv(Θ0)

]
(2)

where 0L×3L and 03L×L are zeros matrices of dimension
L× 3L and 3L × L, respectively. Rp(Θ0) and Rv(Θ0) are
the pressure and particle velocity correlation matrices.

The pressure, particle velocity and pressure-particle velocity
correlation matrices are given by

Rp(Θ0) =h(Θ0)hH(Θ0)σ2
s + σ2

nIL, (3)

Rv(Θ0) =[u(Θ0)⊗ h(Θ0)][u(Θ0)⊗ h(Θ0)]Hσ2
s + σ2

nI3L,
(4)

Rpv(Θ0) =[ue(Θ0)⊗ h(Θ0)][ue(Θ0)⊗ h(Θ0)]Hσ2
s + σ2

nI4L,
(5)

where IN , N = {L, 3L, 4L}, is the identity matrix of di-

mension N × N and ue(Θ0) =

[
1

u(Θ0)

]
is the extended

direction vector. Next, without loss of generality it is assumed
that ||h(Θ0)|| = 1.

C. VSA-Bartlett estimator

Following [1] the pressure and particle velocity Bartlett
estimators, respectively PB

p (Θ) and PB
v (Θ), are given by

PB
p (Θ) = Bp(Θ)σ2

s + σ2
n, (6)

PB
v (Θ) = |uH(Θ)u(Θ0)|2Bp(Θ) + σ2

n, (7)

where Θ represent the set of parameters and Bp(Θ) =
|hH(Θ)h(Θ)|2 is the noise free Bartlett power. The particle
velocity Bartlett estimator is proportional to the pressure coun-
terpart. The weight |uH(Θ)u(Θ0)|2 represent a directivity
factor that improves the estimator resolution and reduces side
lobes [1].

D. VSA-MVDR estimator

The well known MVDR estimator is a solution of a con-
strained optimization problem, which idea is to suppress all
components in the data that do not resemble the replica [16].
When compared with Bartlett, the MVDR estimator presents
narrower main lobe, therefore higher resolution, and improved
side lobe cancelation. Generically, MVDR estimator power
PC(Θ) is given by

PC(Θ) =
[
mH(Θ)R−1m(Θ)

]−1
, (8)

where R is the data correlation matrix and m(Θ) is the replica
for a given set of parameters Θ.



Considering the structure of the pressure and particle ve-
locity correlation matrices, respectively (3) and (4), and the
results presented in [16] page 360 and [1], it is straightforward
to demonstrate that the pressure PC

p (Θ) and particle velocity
PC
v (Θ) MVDR estimator power are given by

PC
p (Θ) = σ2

n

[
L− σ2

s |hH(Θ)h(Θ0)|2

Lσ2
s + σ2

n

]−1

, (9)

PC
v (Θ) = σ2

n

[
3L− σ2

s |uH(Θ)u(Θ0)|2|hH(Θ)h(Θ0)|2

3Lσ2
s + σ2

n

]−1

.

(10)

One can notice that the greater the term in brackets the smaller
the estimator power, which minimum σ2

n/L for the pressure
case and σ2

n/3L for the particle velocity is attained when the
inner product between replica and data are 0 (replica and data
are orthogonal). The directivity factor |uH(Θ)u(Θ0)|2 in the
particle velocity estimator, which represent the square of the
inner product between the replica unity vector uH(Θ) and the
data unity factor uH(Θ0), gives rise to an improved side lobe
attenuation of the particle velocity estimator when compared
to its pressure counterpart.

Fig. 1. Makai’05 baseline environment: geometry (left), sound speed profile
(dashed line, right)

E. Simulation results

In this section a simulation scenario based on Makai’05
experimental setup [1] is considered. Results on experimental
data will be presented in Section III.

The environment is a range independent 104 m water col-
umn over a sediment half-space. The source is deployed at
depth 98 m and the 30 cm aperture VSA at 79.9 m (deepest
sensor). The sound speed profile is represented by the dashed
line in Fig. 1(right), showing a relatively deep thermocline
starting at depth 60 m giving rise to a narrow acoustic channel
bounded by the sea bottom. . The receiver is 1830 m distant
from the source (Fig. 1, left). The bottom is characterized by
a compressional speed cs = 1575 m/s, density ρ = 1.4 g/cm3,
compressional attenuation α = 0.6 dB/λ. The source fre-
quency is 13078 kHz. The pressure and particle velocity field
were synthesized by the TRACEO ray tracing model [17].

It was shown [1], [10] that the vertical particle velocity
is the most relevant particle velocity component for bottom

(a)

(b)

(c)

Fig. 2. One-dimensional ambiguity curve obtained with normalized Bartlett
(solid) and MVDR (dash-dot) processors at frequency 13078 Hz, for cp =
1575m/s, ρ = 1.4 g/cm3 and α = 0.6 dB/λ considering the acoustic
pressure only (black) and the vertical particle velocity (red) for: sediment
compressional speed (a), sediment density (b) and compressional attenuation
(c).

characterization. The horizontal components have a behavior
similar with pressure. Therefore, this work shows only results



Fig. 3. Makai’05 bathymetry map of the area with the position of the acoustic
sources TB1, TB2 and the VSA on September 20th 2005.

from pressure and particle velocity based estimators. The
Bartlett and MVDR pressure and vertical particle velocity
estimator is determined when the parameters vary in the range:
[1500, 1800] m/s for bottom compressional speed, [1, 2] g/cm3

for density and [0.1, 0.9] dB/λ for compressional attenuation.
In these simulations it was considered a SNR of 20 dB and
the estimator power was normalized by its overall maximum.

The resulting one-dimensional ambiguity curves for bottom
compressional speed, density and compressional attenuation
are shown in Fig. 2(a),(b) and (c), respectively, where the
pressure related curves are in black and the vertical particle
velocity related ones are in red. The solid lines represent
Bartlett estimator power, whereas the dash-dotted lines repre-
sent MVDR estimator power. It can be seen, both for Bartlett
and MVDR estimators, that the main lobe of the particle
velocity based estimator for all parameters is significantly
narrower (higher parameter resolution) than their pressure
only counterparts. When comparing the Bartlett and MVDR
estimators, one can notice that even the pressure only MVDR
estimator outperforms the vertical particle velocity Bartlett
estimator. Under present simulation conditions, the results
show that for bottom compressional speed the vertical par-
ticle velocity MVDR estimator does not show a significant
improvement compared with its pressure counterpart. These
simulations suggest that using a MVDR estimator with high
frequency signals and a short pressure array, high resolution
of the bottom parameter estimates are attained.

III. EXPERIMENTAL RESULTS

The data analyzed herein was acquired by a four-element
vertical VSA in the 100−14000 Hz band, during the Makai’05
experiment,off Kauai Island, Hawai (USA), on September
20th, 2005 [9]. The VSA was suspended close to the stern of
the R/V Kilo Moana. The probe signals were transmitted from
bottom moored acoustic sources, TB1 along a range dependent
bathymetry, and TB2 along a range independent bathymetry.
The bathymetry map and the location of the equipment are

shown in Fig. 3. The geometry between the VSA and the
TB2 is similar to that used in simulations (Fig. 1).

The pressure only and vertical particle velocity only Bartlett
and MVDR estimators were applied to approximately two
hours of a 13078 Hz tone transmitted from TB2. Results
obtained by applying both Bartlett estimators to this data
set for the purposes of bottom compressional speed and
attenuation, and density were already presented in [1], [18].
The present results addresses the estimation of same set of
bottom parameters, but herein the replicas were generated by
an updated version of the ray tracing model TRACEO [17]
which accounts for shear effects. The replicas used in this
work consider a constant shear speed of 67 m/s and a shear
attenuation of 1.0 dB/λ, obtained previously in [19] applying
a genetic algorithm based inversion with an extended set of
geometric and environmental parameters. Herein, the results
were obtained by an exhaustive search for the three bottom
parameters.

The estimation results of sediment compressional speed,
during this data acquisition period, are shown in Fig. 4. These
results were achieved taking into account the most likely
values for density and attenuation, 1.35 g/cm3 and 0.5 dB/λ
respectively. Fig. 4 (a) and (b) present the estimation results
for sediment compressional speed considering the Bartlett
estimator for pressure and vertical particle velocity, respec-
tively, while Fig. 4 (c) and (d) present the estimation results
considering the MVDR estimator. It can be seen that the
bottom compressional speed results obtained by the pressure
estimators are the most stable along time and the MVDR
pressure estimator remarkably improves the resolution when
compared with its Bartlett equivalent. The vertical particle
velocity based estimators presents higher resolution than their
pressure counterparts, but on other hand the outliers have an
higher impact on the ambiguity surface. It can be seen that
the pressure MVDR estimator is the estimator that presents a
compromise between stability and resolution.

After the estimation of the sediment compressional speed,
the density and the compressional attenuation were estimated
taking into account the estimated value of 1535 m/s for the
sediment compressional speed. Since MFI is less sensitive
to such parameters, the results presented in Fig. 5 were
achieved considering the geometric mean of the ambiguity
surfaces over time, to enhance the best estimation results for
both parameters. However, the estimates at instants where
bottom sound speed values deviates significantly from its
most likely value (outliers) were discarded. Fig. 5 (a) and (b)
show the estimation results considering the Bartlett estimator
for pressure and vertical particle velocity, respectively, while
Fig. 5 (c) and (d) present the estimation results considering
the MVDR estimator.

The results show the low sensitivity of the pressure Bartlett
estimator to bottom density and compressional attenuation
giving rise to a wide main lobe. The pressure MVDR estimator
improves significantly the resolution of these parameters,
without the trend shown in simulations, where this estima-
tor outperformed vertical particle velocity Bartlett estimator.



The highest resolution were obtained by the vertical particle
velocity estimators, particularly by the MVDR estimator.

Figure 6 presents one dimensional cuts of the bottom
compressional speed ambiguity surfaces in Fig. 4 at min. 27
(a) and min. 55 (b), and one dimensional cuts of the bottom
density-compressional attenuation ambiguity surfaces in Fig .5
for density (c) and compressional attenuation (d). The peaks of
pressure and particle-velocity curves appear at slight different
positions. Most likely this difference is due to deviations
from the baseline environment on sound speed profile or/and
geometric parameters not considered in inversion, which have
different impact on the pressure and on the particle velocity
field.

IV. CONCLUSION

This work shows that the MVDR estimator, both for pres-
sure and vertical particle velocity, significantly improves the
bottom estimates resolution. Despite the high frequency of the
probe signal, the estimates obtained from experimental data
using the MVDR estimators, particularly the pressure only,
are stable along time. Although, simulation results suggested
that pressure MVDR estimator outperforms vertical particle
velocity Bartlett estimator, experimental results showed that
their resolution are similar, but pressure MVDR estimates
were more stable along time. The lower value of bottom
compressional speed obtained in this work than previously
reported values for the same data set can be ascribed to
shear parameters, but this issue requires further investigation.
Bearing in mind that actually VS are not widely available,
the present work shows that using a MVDR estimator one
can attain a sufficient resolution for the bottom parameter
estimation, even with a short vertical pressure only array.
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(a) (b)

(c) (d)

Fig. 4. The experimental data normalized ambiguity surfaces for sediment compressional speed during data acquisition period (two hours), using the Bartlett
estimator with pressure (a) and vertical particle velocity (b), and using the MVDR estimator with pressure (c) and vertical particle velocity (d).



(a) (b)

(c) (d)

Fig. 5. The experimental data normalized ambiguity surfaces for compressional attenuation and density using the geometric mean over time of estimates
along the acquisition period, taking into account the sediment compressional speed of 1535 m/s (outliers discarded) considering the Bartlett estimator with
pressure (a) and vertical particle velocity (b), and using the MVDR estimator with pressure (c) and vertical particle velocity (d).



(a) (b)

(c) (d)

Fig. 6. One-dimensional ambiguity curves (cut) obtained from experimental data presented in Fig. 4 (bottom compressional speed) and Fig. 5 (bottom density
and compressional attenuation) for bottom compressional speed at min. 27 (a) and min. 55 (b) and the geometric mean of bottom density (c) and compressional
attenuation (d). (Bartlett pressure - solid black, Bartlett vertical particle velocity - solid red, MVDR pressure - dash-dotted black, MVDR vertical particle
velocity - dash-dotted red)


	Select a link below
	Return to main menu
	Return to previous view




