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Resumo 

 

A comunicação química desempenha um papel fundamental na vida dos peixes, pois o 

ambiente que estes habitam é muitas vezes desprovido de luz, o que proporcionou a que 

os peixes evoluíssem de forma a detetar e responder a sinais químicos libertados por 

conspecificos (membros da mesma espécies). Esses sinais químicos, feromonas, são 

libertados para o meio, e têm a capacidade de transmitir informação entre conspecíficos, 

desencadeando assim uma resposta fisiológica ou comportamental. Com base na sua 

função, as feromonas podem-se dividir em três categorias: estímulos sociais, 

reprodutivos e anti-predatórios. As feromonas podem induzir alterações endócrinas e de 

desenvolvimento (efeito “primer”) e/ou alterações a nível comportamental (efeito 

“releaser”). Esteróides sexuais, ácidos biliares, prostaglandinas assim como os seus 

precursores e metabolitos são normalmente utilizados pelos peixes como feromonas. De 

forma geral, as feromonas são libertadas na água, principalmente através da urina, 

guelras e pela bílis. Os esteróides sexuais (androgénios, estrogénios e progestogénios) 

desempenham um papel ativo na reprodução. O androgénio mais comum nos teleósteos 

é 11-cetotestosterona, enquanto que o estradiol e a progesterona são importantes 

estrogénios. 17,20β-dihidróxi-4-pregnen-3-ona (17,20β-P) é um progestogénio, 

identificado em mais de 35 espécies de teleósteos.  

A tilápia, Oreochromis mossambicus, teleósteo endémico dos rios e lagos de África 

oriental, devido às suas propriedades físicas e biológicas, tornou-se numa das espécies 

mais estudadas em laboratório. Esta espécie exibe um evidente dimorfismo sexual, no 

qual os machos se destacam principalmente, pelas proporções das maxilas, por 

apresentarem tamanhos superiores em relação às fêmeas, e pelas cores que exibem 

durante a época de acasalamento. Esta espécie apresenta um comportamento sexual 

característico, no qual, os machos formam arenas de reprodução, nas quais constroem e 

defendem ninhos, sendo que os machos dominantes assumem uma coloração escura. 

Quando estão prontas para acasalar, as fêmeas entram nas arenas, onde ocorre a desova 

e escolhem o macho para acasalar. Quando o ritual de acasalamento termina, a fêmea 

transporta o esperma e os ovos na sua boca, onde ocorre a fertilização. O.mossambicus 

são designados como incubadores bucais, uma vez que a fertilização e o 

desenvolvimento dos embriões e da fase larvar ocorre na cavidade bucal da fêmea. 
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De forma geral, sabe-se que a urina transporta feromonas que causam respostas 

endócrinas e comportamentais nas fêmeas. Uma dessas respostas é o aumento dos níveis 

de uma hormona esteróide responsável pela maturação dos oócitos, 17, 20β-P. A partir 

de estudos realizados anteriormente, sabe-se que existe um composto na urina dos 

machos que é detetado pelas fêmeas e que se encontra em concentrações superiores na 

urina de macho dominante quando comparado com a urina de machos subordinados. 

Este composto foi recentemente identificado como sendo um esteróide glucurinado e, 

acredita-se que é um dos componentes ativos responsável pelo aumento dos níveis da 

hormona esteróide responsável pela maturação dos oócitos, 17, 20β-P, nas fêmeas. 

Este estudo teve como principal objetivo identificar qual a fração da urina que 

desempenha um papel feromonal, ou seja, qual parte da urina é responsável por causar 

um aumento nos níveis de 17, 20β-P e determinar se o esteróide glucurinado é capaz, 

por si só, um aumento nos níveis de 17, 20β-P. 

Para tal, primeiramente procedeu-se à recolha de urina de macho, obtendo-se 

posteriormente um pool de urina. Este pool foi fracionado através de um sistema de 

extracção “Solid-phase extraction”, que consiste na passagem da amostra por um 

cartucho de extração, onde os esteróides ficam retidos na matriz de sílica, sendo 

seguidamente obtidos por ação de um solvente, neste caso, o metanol. Assim, após 

extração, obteve-se o filtrado e eluato. Em laboratório, procedeu-se também à 

preparação do esteróide glucurinado, com concentração semelhante à presente na urina. 

Fêmeas de O.mossambicus foram expostas a estes estímulos, tendo-se procedido à 

recolha de 1l de água, uma hora antes da adição do estímulo (tempo 0h) e uma hora 

após a adição do estímulo (tempo 1h). A mesma experiência foi realizada em machos da 

mesma espécie, porém foram expostos a um único estímulo: urina de macho dominante. 

Após extração, as amostras foram submetidas a radioimunoensaios, para determinar a 

concentração de hormonas esteróides presentes. No caso das fêmeas, foram 

quantificadas as concentrações de 17, 20β-P e cortisol, enquanto que para as amostras 

dos machos, se quantificou 11-cetotestosterona e testosterona. 

Uma hora após a exposição à urina, eluato, esteróide glucurinado assim como após 

exposição ao esteróide combinado com o filtrado e eluato juntamente com o filtrado, 

observou-se um aumento significativo nos níveis de 17, 20β-P. Contrariamente, uma 

hora após a exposição ao filtrado e metanol (usado como controlo), não se observou 

nenhuma mudança na taxa de libertação de 17, 20β-P. As taxas de libertação de cortisol 

não sofreram aumentos significativos, com exceção do cortisol glucurinado. 
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Relativamente à experiência realizada nos machos, após exposição à urina de macho 

dominante, de forma geral, observou-se um aumento nos níveis de 11-cetotestosterona 

mas sem alterações nas taxas de libertação de testosterona. 

Estes resultados suportam a hipótese de que, de facto, a urina desempenha um papel 

feromonal, e que a fração responsável pelo aumento dos níveis de 17, 20β-P, é o eluato. 

O facto de o filtrado não causar alterações nas taxas de libertação, ao contrário do 

eluato, sugere que o método de extração foi altamente eficaz, visto que o filtrado não 

continha esteróides. O esteróide glucurinado, é capaz, por si só de causar, um aumento 

significativo nos níveis da hormona esteróide responsável pela maturação dos oócitos. 

Os reduzidos níveis de cortisol sugerem que o método de amostragem foi o mais 

indicado que, apesar da recolha de amostras repetidas, causou níveis reduzidos de stress 

nos indivíduos. Os níveis elevados de 17, 20β-P parecem interferir com o metabolismo 

do cortisol, causando aumentos nos níveis de cortisol glucurinado.  

Relativamente à experiência conduzida nos machos, não se pôde retirar qualquer 

conclusão, uma vez que foi realizada com objetivo de praticar o método de amostragem 

a usar posteriormente nas fêmeas, e como tal, não se obteve controlos com os quais 

comparar os resultados obtidos. Contudo, seria interessante repetir esta experiência, 

explorando também outros estímulos, à semelhança da experiência realizada nas 

fêmeas. 
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Abstract 

 

Several lines of evidence suggest that male Mozambique tilapia (Oreochromis 

mossambicus) release a reproductive pheromone via their urine.  A recently identified 

steroid glucuronide, present in male urine, is probably one of the active components that 

increase levels of a steroid hormone responsible for oocyte maturation, 17,20β-P, in 

females. The aims of this study were to identify which fraction(s) of male urine is 

responsible for this increase and whether the steroid glucuronide is sufficient, on its 

own, to cause a similar increase in 17,20β-P metabolism. 

Pooled male urine was passed through C18 extraction cartridges, thus obtaining 

the filtrate (aqueous/polar) and eluate (hydrophobic/non-polar) fractions. Females were 

exposed to urine, its respective fractions, and the steroid glucuronide (and in 

combination with each-other). One hour after exposure, water samples were collected 

and steroids extracted. The same experiment was conducted in males, using a urine pool 

from dominant males. Steroid levels (17,20β-P, cortisol, 11-ketotestosterone, and 

testosterone) were measured by radioimmunoassay.  

Exposure to male urine, its eluate, and the steroid glucuronide (and combinations 

containing the eluate or steroid) evoked a dramatic increase in release rates of 17,20β-P 

by females. The filtrate alone had no such effect. In males, release rates of 11-

ketotestosterone, but not testosterone, increased after exposure to male urine.  

These results suggest that the pheromonal activity of the urine is contained 

wholly in the C18 eluate. Furthermore, the steroid glucuronide (originally isolated from 

the urine eluate) is sufficient, on its own, to cause an increase in levels of 17,20β-P 

metabolism. Thus, the steroid glucuronide is responsible for the pheromonal activity of 

male urine, at least in this endocrine effect in females. The endocrine response of males 

to this urinary pheromone requires further investigation. 

 

 

 

 

Key-words: 

Endocrine responses; Oreochromis mossambicus; pheromones; steroid glucuronide; 17, 

20β-P. 
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Chemical communication is important in several aspects of fish biology, such as 

migration, the alarm response and – particularly - in reproduction. 

Previous studies have shown that females and males release pheromones that affect the 

sexual behaviour and reproductive physiology of conspecifics. However, few fish 

pheromones have been chemically identified and fully characterized. 

The Mozambique tilapia (Oreochromis mossambicus) is an African cichlid of 

immense scientific interest and economic value; it is also a prolific invasive species in 

countries far from its normal geographical range (e.g. South America and Australasia). 

Therefore, knowledge of its reproductive pheromones may not only increase scientific 

knowledge, but may also help in the management of farmed and invasive stocks. 

Several studies suggest the importance of male urine during courtship and 

spawning in this species; male urination dramatically increases in the presence of ripe 

females, the urine contains potent odorants (the concentration of some depends on 

social status), and the urinary bladder is larger and more muscular in dominant males 

(Barata et al., 2007, 2008; Keller-Costa et al., 2012). Recent studies have shown that 

exposure to male urine dramatically increases the metabolism of 17,20-P, the 

maturation-inducing steroid, in females (Huertas et al., unpublished) and at least one of 

the active compounds is a steroid glucuronide (Keller-Costa et al., unpublished). The 

current study was therefore designed to test the pheromonal activity of this steroid 

glucuronide on female 17,20-P metabolism; does it act on its own, or are other urinary 

components necessary?  

The following literature review intends to introduce and clarify some concepts 

required to understand the world of chemical communication, as well as the objective of 

the current study.  

 

 

1.1. Hormones 

 

The classical definition of a hormone is a specific messenger molecule 

synthesized and secreted by a group of specialized cells (endocrine gland) which is 

carried by the circulatory system to a distant target organ or tissue, where it evokes its 

effect(s). In vertebrates, hormones can be classified, according to chemical structure, as 

steroids (including sex steroids) which are formed in the adrenal glands and gonads; 
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amino acid derivatives, peptide hormones and prostaglandins (Crisp et al., 1998; 

Cornish, 1998). 

Steroids constitute a vast group of natural and synthetic organic compounds with 

a characteristic chemical structure consisting of a four-ring system (figure 1.1), with 

functional groups attached (Stacey & Sorensen, 2011; Gomes et al., 2009). The 

important roles played by steroids include regulating body functions, such as growth, 

digestion, development, reproduction and functioning of the sexual organs (Gomes et 

al., 2009; Crisp et al., 1998). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 – Basic structure of a steroid, showing the four ring structure (A, B, C and D) and the 

numbering of the carbons (Based on Kime, 1993). 

 

 

This group is composed of sterols, corticosteroids (mineralcorticoids and 

glucocorticoids), bile acids and sex steroids (Gomes et al., 2009). Some steroids can act 

as hormones, such as 11-ketotestosterone and 17,20β-P (Stacey & Sorensen, 2011).  

 

1.1.1. Sex Steroids  

 

Sex steroids refer to a group of hormones which perform an active role in 

reproduction and in controlling secondary sexual characters (Sunny et al., 2002). These 

hormones are classified as estrogens, androgens and progestogens (Gomes et al., 2009). 

According to Kime (1993), the definition of androgens is associated with C19 steroids, 

estrogens with C18 steroids and progestogens have a C21 structure (figure 1.2). 



5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2- Structure of the androgens (C19), estrogens (C18) and progestogens (C21), showing the 

numbering of carbons.  

 

Androgens can be characterized as “any natural steroid hormone”, involved 

mainly in growth, development, maintenance of the reproductive system (spermiation, 

spermatogenesis, gonadal differentiation) of the male and are also responsible for 

secondary sexual characteristics and regulation of sexual behaviour (Stacey & Sorensen, 

2011; Rocha & Henriques, 1996; Oliveira, 1995). In teleost males, testosterone and 11-

ketotestosterone are the androgens more commonly found in plasma (Oliveira, 1995); 

11-ketotestosterone is the more physiologically active (Kime, 1993). However, 

testosterone is also an important androgen, not only in males, but also in females‟ 

reproductive cycle, since this is the only androgen synthesized by the ovary (Kime, 

1993).  

Stacey and Sorensen (2011) have defined estrogens as “any natural steroid 

hormone that controls female sexual development, secondary sexual characteristics, and 

stimulates egg production”. Estradiol and progesterone are the major estrogens 

regulating female reproductive cycle (Kime, 1993; Stacey & Sorensen, 2011). 

Progesterone is designated as the mammalian pregnancy hormone, thus and according 

to Kime (1993), does not play a role in the majority of teleost fishes. A well-studied 

progestogen is 17,20β-dihydroxypregn-4-en-3-one (17,20β-P), was first isolated in the 

plasma of Pacific salmon (Oncorhynchus nerka) (Kime, 1993; Nagahama, 1987), and 
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since then it was measured in females of more than 35 teleost species (Kime, 1993). 

However, progestogens are not exclusive to females; they also play a role during final 

gamete maturation in reproductive cycle of males in at least some species (Kime, 1993).  

1.1.2. Corticosteroids 

 

In teleost fish, corticosteroids are mainly synthesized in the interrenal tissue 

(Milla et al., 2009; Galhardo, 2010). Cortisol and cortisone are the main corticosteroids 

isolated from fish blood (Milla et al., 2009). Stress hormones, such as glucocorticoids, 

are released when the individual is exposed to a stress factor, such as threat of 

predation, confinement, social conflicts or pollution (Gabor & Contreras, 2012).  

Cortisol is the major glucocorticoid in fishes and, as such, is often used as 

indicator of stress (Gabor & Contreras, 2012; Huang et al., 2007; Galhardo, 2010). 

According to Fox et al (1997), its plasma concentration depends on reproductive and 

social status of an individual and on social situation stability. Cortisol is also an 

important osmoregulatory hormone in fish (Dharmamba, 1979).  

An increase in glucocorticoid release can decrease rates of the sex steroids production, 

since energetic costs of stress affect reproductive processes by altering the production of 

other hormones (Gabor & Contreras, 2012; Scott et al., 2008). 

 

1.2. Chemical Communication 

1.2.1. What is a Pheromone?  

 

Although the environment surrounding fishes – water – is an excellent solvent, it 

is often turbid or devoid of light. Thus, fish have evolved systems to detect and respond 

to chemical cues released by individuals of the same species, rather than rely solely on 

visual and/or auditory cues (Sorensen & Stacey, 2004). To coordinate various aspects of 

their reproductive biology and non-reproductive functions (Cole & Stacey, 2006), and 

to mediate social behaviours (Sorensen & Stacey, 2004), fish use pheromones, chemical 

signals that pass between members of the same species (Stacey & Sorensen, 2006).  

Pheromones were first described by Karlson & Luscher (1959) as “substances 

that are excreted to the outside by an individual and received by a second individual in 

which they release, for example, a definite behaviour or development process” 

(Sorensen & Stacey, 2004). According to Stacey and Sorensen (2006, 2011), a 

pheromone is a “chemical or a mixture of chemicals released into the environment by an 
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individual (the donor), capable of evoking a specific and adaptive response in 

conspecifics (the receivers), the expression of which does not require learning” (Stacey 

& Sorensen, 2006). Although pheromone detection involves specialisation within the 

chemo-sensory system(s) of the receiver, no specialization of the donor is required 

(Sorensen & Stacey, 2004). A pheromone might consist of a single compound, which 

does not need to be a specialized compound; however, pheromones are usually mixtures 

of chemicals (Sorensen & Stacey, 2004). Some fish employ reproductive hormones and 

their precursors and metabolites as “hormonal pheromones”, to induce important 

physiological and behavioural effects in conspecifics (Stacey, 2010). 

Stacey and Sorensen (2006) characterize a reproductive pheromone as a 

“pheromone that induces any behavioural or physiological response associated with 

reproductive activity”, while a hormonal pheromone is any reproductive pheromone 

containing at least one derived compound from a chemical pathway that produces 

hormones, i.e., internal chemical signals. According to the same authors, hormonal 

pheromones can contain unmodified hormones, hormonal precursors and/or their 

metabolites (Stacey & Sorensen, 2006).  

Evidence that hormones can function as pheromones is provided by 17,20β-P, an 

oocyte maturation inducing steroid that is released by female goldfish (Carassius 

auratus) and generates strong endocrinological and behavioural effects in conspecific 

males. Thus, conspecific behaviour and/ or physiology in several species are influenced 

by hormones and related compounds, which act as potent odorants (Stacey & Sorensen, 

2006). 

In 1963, Wilson and Bossert proposed that rapid behavioural and slower 

physiological effects induced by pheromones could be termed “releaser” and “primer” 

respectively (Sorensen & Stacey, 2004). However, these terms led to some confusion 

since the same pheromone can be both a primer and a releaser, and have since fallen out 

of favour (Stacey & Sorensen, 2006). 

 

1.2.1.1 .The Goldfish (Carassius auratus) 

 

A well-known sex pheromonal system in teleosts is that of the goldfish, in which 

hormonal pheromones from females primarily function to synchronize both male and 

female spawning physiology and behaviour (Kobayashi et al., 2002). Male goldfish also 

respond to the presence of male conspecifics, by increasing sperm stores either in 
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response to nearby males with  greater levels of sex steroids “or in response to isolation 

from a group of conspecifics males in a basal endocrine condition”, whilst in females, 

there is some evidence that the released steroids are likewise detected and used as a 

priming pheromones, suggesting that female goldfish synchronize their ovulations 

(Kobayashi et al., 2002; Sorensen & Stacey, 2004; Stacey & Sorensen, 2006). In 

summary, male goldfish enhance reproductive success through a set of physiological 

and behavioural strategies in response to the changing odour of peri-ovulatory females 

(Stacey & Sorensen, 2006). 

 

1.2.2. Functions of Pheromones in Fish Biology 

 

Chemical communication is important in several aspects of fish biology, such as 

migration, the alarm response and reproduction (Sorensen & Caprio, 1998; Smith, 1992; 

Selset & Døving, 1980; Bjerselius et al., 2000 cited in Frade et al., 2002), particularly 

during reproduction (Miranda et al., 2005). Based on their function, pheromones can be 

divided into three categories: social, anti-predator and reproductive cues. Each of these 

categories includes „primer‟ pheromones (that induce endocrine, physiological and 

developmental changes) and/or „releaser‟ pheromones (strong behavioural changes) 

(Sorensen & Stacey, 2004). For example, several teleosts respond to pheromones, 

immediately before and during spawning, by increasing gonadal development and 

hormonal changes, capable of inducing final gamete maturation (priming response 

before spawning) (Sorensen & Stacey, 2004).  

Pheromones include anti-predation and alarm cues: fishes display several 

chemically-mediated responses in order to reduce predation risk; kin and individual 

recognition in dominance hierarchies. Some fishes show a complex social system that 

helps to determine relatedness of conspecifics (including the establishment of 

dominance hierarchies and kin recognition) through the evolution of chemosensory 

mechanisms (Sorensen & Stacey, 2004).  

Species recognition and aggregation, as well as migration, can be also mediated 

by pheromone release. Concerning migratory attraction, some species of migratory 

fishes seem to find spawning and feeding habitats through conspecific odours (Sorensen 

& Stacey, 2004). 
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1.2.3. Chemical nature of pheromones  

 

Pheromones play an important role in the life histories of many fish species 

(Sorensen & Stacey, 2004), particularly in reproduction. However, few have been 

chemically identified and characterized to date: bile acids, sex steroids and F 

prostaglandins (Stacey & Sorensen, 2006). 

Several electrophysiological studies, mostly using the electro-olfactogram 

(EOG), have shown that many species have high olfactory sensitivity to these 

substances (Stacey & Sorensen, 2006).Steroid and prostaglandin hormones, and 

metabolites, are capable of transmitting information to conspecifics, since their 

synthesis is predictably linked with reproductive events (Stacey & Sorensen, 2006). 

Therefore, such steroids and prostaglandins or their metabolites, once released into the 

water, have the potential to be used as hormonal pheromones (Barata et al., 2007).  

Pheromones may be released into the water through several routes, namely via 

the urine, gills, skin, faeces or gonadal fluids (Barata et al., 2007; Stacey & Sorensen, 

2006).  Routes and rates of steroid release are both associated with conjugation of the 

steroids; free steroids are rapidly released across the gills, while sulphated and 

glucuronidated steroids are released in the urine and bile, respectively, although over a 

longer time-scale (Stacey & Sorensen, 2006; Vermeirssen & Scott, 1996). 

 

1.2.3.1. Bile Acids 

 

Bile acids are sterols produced by the liver and released in the bile and play a 

well know role in digestive system. Many fishes produce, release and detect bile acids: 

in the sea lamprey (Petromyzon marinus) a mixture of bile acids act as attractants for 

migratory adults and as male sex pheromone (Stacey & Sorensen, 2006); while in the 

European eel (Anguilla anguilla), Huertas et al (2010) suggested that bile acids could 

act as sex pheromones since the odour of bile depends on gender and changes with 

sexual maturity (Huertas et al., 2007). 

 

1.2.3.2. Prostaglandins 

 

Prostaglandins belong to a group of lipid compounds, derivatives of 20-carbon 

fatty acid, structurally characterized by a five-carbon ring. This class of compounds 

mediates several functions in fishes, such as female sexual behaviour, ovulation 
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(follicular rupture); they also perform pheromonal functions in some species (Stacey & 

Sorensen, 2011). In preovulatory female goldfish, levels of circulating prostaglandins 

F2α increase considerably at ovulation (Sorensen et al., 1995 cited in Sorensen & 

Stacey, 2006); thus being released as a postovulatory pheromone, that attracts male and 

it can increases milt volume (Kobayashi et al., 2002; Fraser & Stacey, 2002). According 

to Appelt and Sorensen (2007), goldfish control the release of urinary prostaglandin 

pheromones to advertise about their location and physiological condition. 

As demonstrated by Moore and Waring (1996) in Atlantic salmon parr (Salmo 

salar), F-type prostaglandins may function as priming pheromones, released by 

ovulated females, via the urine (Moore & Waring, 1996).  

 

1.2.3.3. Sex Steroids  

 

The oocyte maturation-inducing steroid (17,20β-P) released by female goldfish 

acts as a pheromone inducing strong behavioural and endocrinological changes in 

males, such as increase in concentration of male plasma gonadotropin II (GtH II), in 

volume of sperm and seminal fluid, as well as in sexual activity (Zheng et al., 1997; 

Stacey & Sorensen, 2006). 

In tench (Tinca tinca), males demonstrated high olfactory sensitivity to some 

classic teleost sex steroids, in particular, highly sensitive to glucuronidated 17,20β-P 

while 100 times less sensitive to the sulphated form (Pinillos et al, 2002).  Nevertheless, 

tilapia are neither sensitive to androgens found in male urine (testosterone and 11-

ketotestosterone) nor to steroids that act as pheromones in other species (17,20β-P and 

its conjugated forms; Frade et al., 2002). 

 

1.3. Conjugated Steroids 

 

In endocrine studies, it is important to consider that the initial “steroid will be 

excreted in a modified and inactivated form” (Gomes et al., 2009). Therefore, steroid 

metabolism needs to be taken into account. Catabolic pathways are divided into phase I 

and phase II reactions, being the principal goal to transform steroid substrate into a 

more polar and less active form (Kuuranne, 2010).  

During phase I reactions, polarity increases by reduction, oxidation or hydrolysis 

reactions, which introduce new functional groups for the following phase II reactions, 

also designated as conjugation, where the biological activity of the free steroid is 
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reduced, thus converting the non-polar compounds to a more easily excreted form, to be 

subsequently released in the urine (Gomes et al., 2009; Kuuranne, 2010). 

Thus, conjugation implies the addition of sulphate or glucuronide groups to the free 

steroid, thereby promoting its excretion from the body (Gomes et al., 2009). Glucurone 

and sulphate conjugation are catalyzed by enzymes: uridine-5‟-diphosphoglucuronic 

acid (UDPGA), leading to the addition of a polar glucuronic acid to the structure of the 

steroid (glucuronidation) (figure 1.3); sulphotransferase enzymes which transfer 

sulphate group (SO3), from a co-substrate, 3‟-phosphoadenosine-5‟-phosphosulphate, to 

the steroid (sulphation) (figure 1.4) (Kuuranne, 2010). 

 

 

 

 

 
 

 

 

 

Figure 1.3- Basic structure of a steroid with a glucuronic acid attached at carbon 17 (A), however 

this acid can also be attached at carbon 3 in B.  

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 1.4- Basic structure of a steroid, with a sulphate group attached. 

 

1.4. Steroid Measurement 

 

Usually, the endocrine status of an individual is assessed by measurement of the 

concentration of hormones and their metabolites in the blood (Scott et al., 2008). 

Nevertheless, blood sampling may be disadvantageous; in order to bleed the fish, it 

needs to be caught, handled and/or anaesthetised, all of which can modify behaviour 

and physiological condition, and therefore plasma concentrations of the hormones under 
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study. Furthermore, some fish may be too small, rare or valuable to be bled (Scott et al., 

2008). Measuring fish steroids in water enables the study of reproductive physiology of 

the fish through a non-invasive technique, an alternative to measurement in samples of 

blood (Scott & Ellis, 2007; Scott et al., 2008). This technique offers minimal 

intervention (no anaesthetic, bleeding or handling stress), repeated measurements on the 

same individual and given that it involves measurements over time, this integration may 

reduce the short-term fluctuations in hormone levels that may occur in plasma (Scott & 

Ellis, 2007). 

 To understand the hormonal condition of the fish, it is necessary to know how 

much steroid has been released by the fish, over a given time, i.e. steroid release rate 

(Scott et al., 2008). There are two ways of measuring steroid release rate: “static 

sampling procedure” and “dynamic sampling procedure”. The first method has been 

used essentially for behavioural studies and consists of removing the fish from its tank 

and temporarily placing it in a tank with clean water for a given period. While the 

“dynamic sampling procedure” implies keeping the fish in controlled flow-through 

water conditions, and performing at least two water samples to estimate steroid release 

over time (Scott et al., 2008). With only a single measurement, it is not possible to 

determine the amount of steroid that has been released over time and how much has 

been lost by degradation, water replacement or reabsorption by fish (Scott et al., 2008). 

 In theory, since free steroids are released in the water mainly by passive 

diffusion across the gills, their release rate should be directly proportional to their 

concentration in plasma (Scott et al., 2008). However, this correlation between plasma 

steroid and water steroid concentrations is not always direct and is dependent on a 

variety of factors, such as gill surface area, affinity for specific steroid binding proteins 

in plasma, fish size, salinity, water temperature, among others (Scott & Ellis, 2007; 

Scott et al., 2008). Apart from these factors, steroid concentrations in water will also be 

affected by bacterial degradation, reabsorption by fish and adsorption to surfaces, as 

well as steroid instability during storage (Scott & Ellis, 2007). 

 

1.4.1. Measurement of steroids 

 

Glucuronidated and sulphated steroid concentrations are therefore heavily 

influenced by urination and defecation rates, and by the time that taken for the 

conjugation process (Scott & Ellis, 2007).  
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Nevertheless, the measurement of conjugated steroids is followed by advantages 

and disadvantages. It is advantageous to measure conjugated steroids when the goal is 

to reveal physiological and behavioural strategies that would not be seen by only 

measuring free steroids (Scott et al., 2008). It is also advantageous because fishes are 

capable of using some conjugated steroids as pheromones and thus in order to 

understand both physiological and behavioural reactions of conspecifics and to study 

when and how they are released, conjugated steroids need to be measured (Scott et al., 

2008). However, measuring conjugated steroids can also be disadvantageous, since 

pathways from synthesis to release are more complicated than in free steroids and   

according to Scott et al (2008) “conjugated steroids can be temporarily “stored” in the 

bile and urine and their release is, thus, subject to factors such as glomerular filtration 

rate, urination frequency, feeding, gut passage time and defecation”.  

 

1.4.2. Procedures for steroid determination  

 

A specific, relatively cheap and rapid method of steroid measurement is 

immunoassay, such as radio or enzyme-immunoassay (Scott et al., 2008). Immunoassay 

methods, were first described by Yalow and Berson (1960), and are characterized by 

high sensitivity and precision, that allow the measurement of hormone levels at low 

concentrations in biological fluids (saliva, urine, blood) or, in this case, water (Wheeler, 

2006).  

Immunoassays rely on reaction of an antigen (ligand) with a specific antibody (binder). 

These methods are also referred to as “binding assays”, since quantification of a 

substance depends on progressive saturation of the specific antibody by that substance 

and the subsequent determination of its distribution between free and “bound” phases, 

which is achieved by the incorporation of a “tracer” (Chard, 1990). The tracer consists 

of a small quantity of the ligand or the binder labelled with a material that can be 

precisely measured in very small amounts, as radioactive isotopes in radioimmunoassay 

(RIA), fluorescent compounds in fluoroimmunoassay (FIA) or enzymes in 

enzymoimmunoassay (EIA) (Chard, 1990).  

To quantify the amount of a particular steroid present in a given sample, initially 

and before performing immunoassay procedures, steroids need to be extracted from the 

water and subsequently concentrated, since steroid concentrations in water are, in 

general, too low to allow direct determination (Scott & Ellis, 2007). 
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For steroid extraction from aqueous solutions, Solid-phase Extraction (SPE) is the 

preferred approach. This well-established technique allows the isolation of organic 

compounds present in aqueous samples (Junk et al., 1988; Gomes et al., 2009).  

The water sample is pumped through a solid-phase cartridge, where steroid 

molecules are retained in a silica matrix; when using C18 cartridges, for example, the 

silica matrix consists of 18 carbons.  Since steroids are non-polar compounds, they are 

retained by the silica matrix, whereas polar compounds pass through. In order to release 

the retained steroids, they eluted by using an organic solvent such as ethanol or 

methanol.  

 

1.4.2.1. Radioimmunoassay 

 

Radioimmunoassay (RIA) is one of the most sensitive methods for quantitative 

analysis of antigen-antibody reactions, in which radioisotopes are used as tracers and 

are attached to antibodies or antigens (Voller et al., 1976). It involves competition 

between a radioactive labelled antigen (Ag*), an unlabeled antigen (Ag) with a specific 

antibody (Ab) with fixed and limiting concentration. After an incubation period, Ag* 

will be quantified in the free fraction or in binding one (Ag-Ab complex), once antigen 

distribution in both phases is positively related with the amount of antigen in the sample 

(Chard, 1990). 

In competitive immunoassays, where the bound fraction is used to determine 

antigen concentration in the sample, the amount of antigen and the quantity of 

radioactive labelled antigen that bound to antibody are inversely proportional, i.e., the 

higher the antigen concentration in the sample, the lower the amount of Ag*-Ab 

(Andrade, 2006). The amount of antibody to be used in the assay is assessed through a 

dilution curve, which involves the incubation of a fixed amount of labelled antigen with 

different antibody concentrations. Generally, the concentration of antibody to be used is 

the one for which there is a 50% binding of the tracer ligand (Chard, 1990). 

A standard curve is the basic requirement for quantification of the ligand in 

unknown samples, since it allows quantification of the antigen (hormones) present in 

the samples through incubation of fixed amounts of labelled hormone and specific 

antibody with different concentrations of unlabelled antigen (Chard, 1990).  

Radioimmunoassay is advantageous since it can be applied to several types of 

compounds to which there are antibodies available, also because it is extremely 
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sensitive, stable, specific and precise. On the other hand, it can be also disadvantageous, 

because it needs purified antigens for Ag* preparation and it requires special attention 

regarding to handling due to radioactivity (Chard, 1990). The utility of the assay is also 

dependent on the affinity and specificity of the antibody. 

 

 

 

1.5. The Mozambique Tilapia, Oreochromis mossambicus 

 

Tilapia are a large group of teleost fishes belonging to the family Cichlidae  and 

order Perciformes, the most evolutionarily advanced and the largest order of teleosts 

(Cruz, 2006; Huang et al., 2007, Mulero et al., 2007). Due to the exhibition of complex 

social behaviour together with high reproductive rates and nutritional value, tilapia 

became one of the most studied fishes (Cruz, 2006). The Mozambique tilapia, a lek-

breeding maternal mouth-brooding African cichlid, Oreochromis mossambicus 

(Amorim & Almada, 2005; Almeida et al., 2005) was firstly described as Chromis 

(Tilapia) mossambicus by Peters in 1852, from specimens collected in the Mozambique 

region (Oliveira, 1995). The taxonomy of the species is shown below according to the 

Integrated Taxonomic Information System (ITIS): 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

          

Kingdom: Animalia 

Phylum: Chordata 

Subphylum: Vertebrata 

Class: Actinopterygii 

Order: Perciformes  

Suborder: Labroidei 

Family: Cichlidae 

Genus: Oreochromis 

Species: Oreochromis mossambicus 

(Peters, 1852)  

 

Figure 1.5 - Reaction between radiolabelled antigen, antigen to quantify and the antibody. Source: 

Wheeler, 2006 
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The Mozambique tilapia is a euryhaline cichlid fish, endemic to the lakes and 

rivers of the east coast of Africa, though it has been introduced from its native habitat to 

tropical freshwater and marine environments around the world (Oliveira & Almada, 

1998a; Barata et al., 2007; Morgan et al., 1997). Its physical robustness, combined with 

resistance to variation in physical and chemical factors, has allowed the occupation of a 

vast diversity of habitats in a wide geographical distribution that comprises equatorial 

rivers, tropical and subtropical lakes, estuaries and irrigation channels, for instance 

(Oliveira, 1995); tilapia have become a major invasive species in several countries, in 

all five continents (Russell et al., 2012). 

In its natural distribution, this eurythermal species can support temperatures 

ranging from 17ºC to 35ºC (Oliveira, 1995); its optimal temperature is around 27ºC 

(±1ºC). From the perspective of feeding, O.mossambicus is an opportunistic species, 

consuming phytoplankton, zooplankton, benthos and detritus (Caskey et al., 2007; 

Oliveira & Almada, 1995). O. mossambicus, as well as other tilapine fishes, exhibits a 

clear sexual dimorphism, including the height of the dorsal and anal fins, the 

proportions of the jaw and in the shape and size of the genital papilla, which is 

emphasized during the breeding season (Oliveira & Canário, 2000) (figure 1.6). Male 

O. mossambicus exhibit characteristic breeding colours and generally they grow faster 

and reach larger sizes than females. Males also present one urogenital opening while 

females have two, and mature males have a thick lip in upper jaw (Oliveira & Almada, 

1995). Females have a larger oral cavity due to a greater development of the pre-

opercular and inter-opercular bones; although males have a larger and stronger mouth, 

they do not mouth-brood (Oliveira & Almada, 1995). 

The highest expression of morphological (dorsal and anal fin height, mandible 

width and pre-maxilla length) and behavioural (nuptial coloration, time defending a 

territory, spawning pit volume and courtship rate) characters are showed by dominant 

fishes (Oliveira & Canário, 2000).  

 

Figure 1.6 – Individuals of Oreochromis mossambicus: it is possible to observe the dimorphism in 

sexual characteristics of the species. Figure 5A shows a male while in Figure 5B shows a female. 

A B 
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This species displays a pronounced dichromatism, which is more evident during 

breeding season; breeding males exhibit an intense black coloration over the entire 

body, only with the lower jaw region displaying white and the edges of dorsal and anal 

fins showing a red coloration. Non-breeding males and females exhibit a grey coloration 

(Cruz, 2006) (figure 1.7). 

 

 

 

 

 

 

 

 

 

Figure 1.7- Male tilapia exhibiting characteristic breeding colours. 

 

In their classic study on cichlid behaviour, Baerends and Baerends van Roon 

(1950) distinguished three basic patterns of social relations: dominance hierarchies, 

territoriality and shoals. According to Oliveira (1995), males tend to be dominant over 

females, while large and medium sized fish tend to be dominant over smaller ones. 

Thus, females of O.mossambicus occupy the lowest places in the hierarchies (Oliveira, 

1995).  

As in many cichlids, in Mozambique tilapia, social status is revealed by the 

colour pattern of the skin, with dominant males having a darker pigmentation (Van der 

Salm et al., 2005), larger gonadosomatic indices, longer dorsal fins,  larger genital 

papilla and larger testes than subordinate males (Oliveira et al., 1996; Oliveira & 

Canário, 2000). Social dominance allows dominant individuals to have priority in 

access to limited resources; either food or reproductive females (Oliveira, 1995). In 

teleosts, a correlation between hierarchical position of the males and reproductive 

success has been observed, where dominant individuals show a higher rate of mating 

and more access to females (Oliveira, 1995). From studies carried out in captivity, it has 

been shown that male tilapia form stable linear hierarchies, with the largest males (alpha 

males) receiving more visits of spawning females (Oliveira & Almada, 1996; Oliveira 

& Almada, 1998a). 

In captivity, males are commonly divided into „territorial‟ (dominant), „floater‟ 

and „sneaker‟. Dominant males usually dig nests, assume a dark coloration, defend a 

centred territory in the nest and dynamically court females. Floater males typically live 
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in the water column, display a light dark coloration and occupy territories for a short 

period (from seconds to minutes), when the owners are away to court females. On the 

other hand, sneaker males usually invade nests during spawning and try to remain near 

the female while exhibiting trembling behaviour, which is normally related to sperm 

release (Oliveira & Canário, 2000). 

 

1.5.1. Sexual Behaviour and Reproduction 

 

In this species, during the breeding season, males gather in breeding arenas or 

leks, forming dense aggregations over sandy or muddy substrates (Barata et al., 2007; 

Oliveira & Almada, 1998b). After males‟ aggregation, dominance hierarchies are 

established, where pheromones may play an important role in modulating aggressive 

interactions (Barata et al., 2007, Keller-Costa et al., 2012).  

Within the arenas, males establish individual territories where they dig spawning 

nests (pits) in the substratum, which they defend, and the associated area, from possible 

invaders, and assume a characteristic black colouration (Barata et al., 2007; Barata et 

al., 2008; Frade et al., 2002; Miranda et al., 2005; Oliveira et al., 1996; Oliveira & 

Almada, 1998b; Galhardo et al., 2008). From a few seconds to a few minutes after the 

formation of the group, some individuals begin to darken and participate in symmetrical 

fights (i.e. when an individual retaliates to an agonistic act with another aggressive 

action), essentially involving circle fights, mouth-to-mouth fighting and mutual displays 

(Oliveira & Almada, 1998c; Oliveira & Canário, 2000; Barata et al., 2007). 

Circle fights consists of two individuals in antiparallel position, exhibiting lateral 

display, moving around a central spot, and as they attempt to bite, both individuals 

attack alternately (figure 1.7) (Oliveira, 1995). In mouth-to-mouth fighting (figure 1.8), 

fishes display frontally to each other and attack with open mouths (Baerends & 

Baerends van Roon, 1950; Oliveira, 1995). Both of these behaviours, as well as mutual 

displays of individuals (fish remains motionless in front of its opponent), are considered 

as symmetrical agonistic interactions (Oliveira, 1995).     
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Figure 1.5 – Agonistic interactions between tilapia males: circle fights (from Oliveira, 1995). 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6- Agonistic behaviour exhibit by tilapia males: mouth-to-mouth fighting (from Oliveira, 

1995). 

 

Females are attracted to spawning pits, which are usually located in shallow 

waters, where males display to attract females for mating, exhibiting a series of 

behaviours, such as nest digging, trembling and circling the female (Amorim & 

Almada, 2005; Almeida et al., 2005).  

Although Mozambique tilapia can spawn repeatedly throughout the year, with 

females having a regular ovulatory cycle of 15–20 days, only when the females are 

ready to spawn do they visit the breeding areas (Barata et al., 2008; Barata et al., 2007). 

In lekking cichlids, with a breeding system analogous to O.mossambicus, 

dominant fish occupy a central position in the nest, dig larger nests, are more effective 

at defending territories, also court at a higher ratio and have a higher breeding 

succession (Amorim & Almada, 2005; Oliveira et al., 1996), which can be explained by 

the fact that females prefer males with larger nests (Amorim et al., 2003). 
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Mature females enter the lekking area, where spawning takes place, and choose 

one or more males with which to mate (Frade et al., 2002). When the mating sequence 

ends, males tremble while circling the nest followed by female, which in turn, takes 

both eggs and sperm into her mouth, where fertilization occurs (Oliveira & Almada, 

1998b; Amorim et al., 2003). After spawning, the female leaves the arena and during 

the next 20-22 days carries the embryos and the offspring in her mouth, to brood in a 

nursery area separate from males (Frade et al., 2002). Hence, parental care is restricted 

to females, which delay their next ovulatory cycle until the brood is released (Oliveira et 

al., 1996; Miranda et al., 2005).  

Throughout the mouth-brooding cycle, females become progressively more aggressive 

to other conspecifics. However, contrary to males, they defend mobile space around 

themselves, instead of defending territories on the substrate (Oliveira & Almada, 1998b; 

Oliveira, 1995). 

In this species, maternal aggression is a well-developed phenomenon; however, 

female agonistic behaviour differs from that of territorial males in that aggressive acts 

are limited to charges, chases and butting (Oliveira & Almada, 1998b). Female 

pigmentation pattern also changes progressively during the mouth-brooding cycle; the 

body becomes light grey with an overlaid pattern of dark stripes, the eyes show 

horizontal bars in the irises, the lips get darken and display a characteristic mandibular 

spot (Oliveira & Almada, 1998b; Oliveira, 1995).   

Maternal aggression seems to function principally to defend the brood against 

predators, conspecifics included. This is different from the aggression directed against 

the brood as a way to impose control over their behaviour (Oliveira & Almada, 1998b).   

Throughout the oral incubation cycle, Oliveira (1995) observed that females 

suppressed almost totally their feeding activity; however, there was no decrease in the 

condition factor of the incubating females, whilst a decrease in the number of 

eggs/juveniles during the incubation cycle was observed. This suggests the existence of 

a partial cannibalism of the eggs as a reproductive strategy of the females (Oliveira, 

1995). 

1.6. Role of urine among conspecifics 

  

 Urine is used as a chemical signal, at least for conspecific females (Almeida et 

al., 2005; Barata et al., 2007). Several studies have shown that Mozambique tilapia 

males regulate urine release depending on the social context; territorial males (males 
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from a higher social rank) may signal their status and aggressiveness to other males, 

potential rivals, through the release of urine (Almeida et al., 2005), which may contain 

male-male pheromones (Barata et al., 2007), as well as by changing behaviour and 

coloration (Almeida et al., 2005). The females‟ olfactory system is extremely sensitive 

to substances released by territorial males into the water as well as to male body fluids, 

demonstrating that urine has a special importance (Barata et al., 2008; Almeida et al., 

2005). 

O. mossambicus males are capable of storing urine: the bladder of a fish 

weighting 100g may contain up to 2 ml of urine (Almeida et al., 2005). According to 

Barata et al (2007), dominant males dynamically release chemical information through 

increasing urination rate during aggression, and in the presence of females, dominant 

males dramatically increase their release of urine (Almeida et al., 2005). Urination rate 

remains high during courtship, being considerably higher in the presence of pre-

ovulatory females, and their urine has higher olfactory potency than that of subordinate 

males (Almeida et al., 2005; Barata et al., 2007). On the other hand, females release 

urine at higher frequency and smaller pulses, and this seems to be unaffected by the 

presence of dominant males (Almeida et al., 2005). 

In a study carried out by Barata et al. (2008), using a liquid chromatography 

linked to mass spectrometry and recording the electroolfactogram (EOG) it was 

demonstrated that female tilapia detect a potent odorant in the non-polar fraction of 

male urine suggested to be a sulphated amino-sterol. This odorant is present at higher 

concentrations in urine from dominant males than in subordinate males. However, 

further work has shown that this compound is, in fact, a steroid glucuronide (Keller-

Costa et al., unpublished).  

These authors suggested that the urine of dominant males has a higher 

concentration of this compound and it is related to a higher olfactory potency. The same 

authors also suggested that social dominance, instead of reproductive capability, is 

reflected by both urine volume stored in the bladder and concentration of the odorant 

(Barata et al., 2008). However, according to the same study, the most active and 

important odorant found in male urine is non-polar. Consequently, this study suggested 

that this urinary odorant “is may be detected as part of mixture of odorants and that 

females may use the ratio, rather than the absolute amount, to discriminate between 

dominant and subordinate males” (Barata et al., 2008). In turn, subordinate males are 

able to store less urine in their samller bladder, so they are less capable of increasing 
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their urination rate and are consequently less able to stimulate females (Barata et al., 

2008, Keller-Costa et al., 2012).   

As mentioned before, male urine may act as a pheromone signal, causing 

responses in female endocrine status and behaviour. One such response is the increasing 

the synthesis for of the oocyte maturation steroid. Frade et al (2002) suggested that 

males release a signal in their urine in way to attract females (“releaser” effect), but this 

signal may be also capable of inducing ovulation (“primer” effect). This possibility is 

supported by a recent study where females were exposed to male urine in way to 

explore “primer” effects on females‟ endocrine system. Less than one hour after 

exposure, an increase in the levels of 17,20β-P, responsible for oocyte maturation 

(Huertas et al., unpublished).  

 

1.7. Aims of the study 

 

Pheromones present in male urine, once released, affect steroid levels in 

females. In the case of the Mozambique tilapia, exposure to male urine elevates the 

release rate of the maturation-inducing steroid hormone 17,20β-P by females.  

The main objective of this study was to identify which constituent(s) of male 

urine (filtrate, eluate or both) contain(s) the pheromonal components. In other words, 

which fraction of urine is responsible for causing an increase in the oocyte maturation-

inducing steroid (17,20β-P) in females. 

Specifically, the study aimed to determine whether the steroid glucuronide 

recently identified as the main component in the eluate of male urine is sufficient - on 

its own - to cause the increase in 17,20β-P metabolism in females, or whether other 

urinary components are necessary. 



 

  

 

 

 

 

 

 

 

 
 

 

 

 

2. Material and Methods
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2.1. Experimental Animals 

 

Mozambique tilapia (Oreochromis mossambicus) used in the current study were 

obtained from a stock population previously established at the University of the 

Algarve. This stock originated from wild specimens caught in Mozambique, from the 

River Incomati (early 1970s), kept and raised at Aquário Vasco da Gama (Lisbon) from 

which some individuals were bred at Instituto Superior de Psicologia Aplicada (Lisbon); 

subsequently, individuals were donated to the University of the Algarve (Frade et al., 

2002).  

In order to form families, animals were grouped (one male and four females) in 

fibre-glass tanks (250 l) with sand substratum and kept at 27ºC (±1ºC), where they were 

maintained and fed once a day with an appropriate diet. Under these semi-natural 

conditions, individuals exhibited the normal mating behaviour and, as such, spawning 

occurred in each tank naturally. Nevertheless, after each spawning, eggs were removed 

from the mother‟s mouth, by applying a slight pressure in the posterior area of the 

opercula, to maintain the females‟ ovulatory cycle and to predict the next ovulation. The 

removal date of the eggs was recorded, so that a given female could be designated as 

„pre-ovulatory‟ (predicted to ovulate in the next three days or „post-ovulatory‟ (having 

ovulated during the past three days). 

 

2.2. Urine Sample Collection 

 

Urine samples were collected daily (except at weekends) by application of slight 

pressure at the terminal part of the abdomen, immediately above and anterior to the 

urogenital opening (Frade et al., 2002), and avoiding any possible contamination with 

faeces, from each male (n=7) to 1.5 ml Eppendorf tubes. Males were then replaced into 

their tank of origin. Urine samples were clearly identified (number of the male and 

collection date) and frozen (-20ºC) until a given volume per male was collected. Then a 

pool was made, using an equal volume of urine (4.9 ml) from each male, and this pool 

was subsequently aliquoted, extracted and frozen until use (see below).  
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2.3. Experimental Design 

 

2.3.1. Stimuli Preparation 

 

Of the total volume of the urine pool (34.3 ml), 15 ml was aliquoted into 1.5 ml 

Eppendorf tubes, each with 0.5 ml of urine, designated as “urine pool”. Another 15 ml 

of urine pool was extracted (see Solid-Phase Extraction),  to obtain 15 ml of filtrate 

(aqueous fraction), which was aliquotted into Eppendorf tubes, each  with 0.5 ml; and 5 

ml of eluate (hydrophobic fraction), which was stored in glass vials containing 1 ml 

each.  

Two glucuronidated steroids present at high concentration in dominant male 

urine and previously identified as the most potent olfactory stimuli in the eluate, [5β-

pregnane-3α,17α,20β-triol-3α-glucuronide (20β-P-Gluc) (main compound); 5β-

pregnane-3α,17α,20α-triol-3α-glucuronide (20α-P-Gluc) (minor compound)] (Keller-

Costa et al., unpublished) were mixed in a proportion of 4:1, respectively (figure 2.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1- Structures of steroid present in high concentrations in urine of dominant male, 

identified by Keller-Costa et al (unpublished), consisting of two steroid glucuronides: 5β-Pregnan-

3α, 17α, 20β-triol-3α-glucuronide (main compound); 5β-Pregnan-3α, 17α, 20α-triol-3α-glucuronide 

(minor compound).  

 

Each steroid has a molecular weight of 534.6 g mol
-1

  and to achieve a steroid 

concentration of 5x10
-3

M (2.673 mg/ml, see table 1), it was added 1.407 ml and 0.449 

ml of methanol to 3.76 mg of steroid 20β-P-Gluc and 1.2 mg of 20α-P-Gluc, 

respectively (see table 1). From these stock solutions, 1.2 ml of 20β-P-Gluc, 

corresponding to 4-fold of 20β-P-Gluc (5x10
-3

M), and 0.3 ml of  20α-P-Gluc, 
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equivalent to 1-fold of 20α-P-Gluc (5x10
-3

M) was then taken and mixed together in 

glass vial. This 1.5 ml of 4:1 20β-P-Gluc/20α-P-Gluc (5x10
-3

M) mixture was diluted 

with 13.5 ml of ethanol to a total volume of 15 ml, thus achieving a total mixture 

concentration of 5x10
-4

M, approximately the same concentration as in urine. This 

stimulus was then divided into glass vials (with a capacity of 1.5 ml), each containing 

1ml of the stimulus and stored at -20ºC. 

 

Table 2.1: Preparation of the stimulus "Steroid" in order to achieve a concentration of 5x10
-4

 M 

Preparation of the stimulus: 

20--P-Gluc-sodium salt (charge III) in mg mg 3.76   

20--P-Gluc-sodium salt (charge III) in mg mg 1.2   

molecular weight (each) in g /mol g/mol 534.6   

concentration of the stock solution 5x10
-3

M: mmol/ml mmol/ ml 0.005   

steroid concentration_ 5x10
-3

M: mg/ml mg/ml 2.673 
Methanol 

volume (ml) to 20--Gluc to obtain stock solution ml 1.407 

volume (ml) to 20--Gluc to obtain stock solution ml 0.449   

4x 20--P-Gluc 5x10
-3

M ml 1.2   

1x 20--P-Gluc 5x10
-3

M ml 0.3   

4:1 20-/20- MIX total: 5x10
-3

M ml 1.5 
Ethanol 

4:1 20-/20- MIX total: 5x10
-4

M ml 15 

 

All the four stimuli obtained (urine pool, filtrate, eluate, “steroid”) were stored at 

-20ºC until further use. Some of the stimuli were combined during the experiment: 

eluate plus filtrate and filtrate plus “steroid”. Methanol (Sigma-Aldrich or VWR) was 

also used as control stimulus. 

 

2.3.2. Exposure of Females to Male Urine and Derivatives 

 

Firstly, females (n=8) were selected from the family tanks according to their 

ovulatory stage; pre-ovulatory females with a regular ovulatory cycles were preferred. 

The weight and length of each female were recorded, and the female was then isolated 

in a glass aquarium with 6l of de-chlorinated tap-water at 27ºC (±1ºC) and equipped 

with an air supply, and maintained over-night. The next day, females were transferred to 

an identical aquarium with a volume of clean de-chlorinated tap-water normalized to the 

weight of the fish (1 litre of water per 10 g of fish; Huertas et al., unpublished). An hour 

after the transfer, one litre of water was collected (control sample, at time 0h), through 

siphoning with a tube previously placed in the tank. This sample was extracted (see 

Solid-Phase Extraction). 
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After collection of the first water sample, sufficient stimulus was added to the 

aquarium to obtain a final dilution of 1:10 000 (e.g. to 100 g fish in 10 l of water, 1 ml 

of stimulus would be added). The volume previously collected (1l) was then replaced 

with clean de-chlorinated tap-water.  In this case, each female was exposed to each 

stimulus (n=7: urine pool, filtrate, eluate, “steroid”, filtrate plus eluate, “steroid” plus 

eluate and methanol) in a randomized order, but no female was exposed to more than 

one stimulus during one ovulatory cycle. In the case of the eluate, since it was three 

times more concentrated, it  a third of the volume was used; for example, in 10 l of 

water (100 g female) to achieve the desired dilution (1:10 000) 1 ml of stimulus (such as 

the urine pool) would be necessary; for the eluate, only  0.33 ml would be used.   

One hour later, another water sample (1l) was collected (treatment sample, at 

time 1h), used the same sampling method as before. Each water sample collected was 

identified with the females‟ number, stimuli number and time of collection (0h or 1h).  

After the experiment, females were placed back into the family tank, to which they 

belonged.  

 

2.3.3. Exposure of Males to Male Urine 

 

Initially, males (n=8) from the main stock were randomly selected and their 

weight and length were recorded. Subsequently, each male was placed in a glass 

aquarium with 6 l de-chlorinated tap-water at 27ºC (±1ºC), equipped with an air supply, 

where individuals were isolated and maintained over-night. By using the same 

procedure described above for the female experiment, males were exposed to male urine 

from a pool previously obtained from males of the same species. Water samples were 

collected for further extraction (see Solid-Phase Extraction) in the same way as 

described for the females. Each water sample collected was identified with the males‟ 

number and the time of collection (0h or 1h), reaching in the end a total of 16 samples. 

After the experiment, males were placed back in the stock tank. 

 

2.3.4. Hormone Analysis 

2.3.4.1. Solid-Phase Extraction  

 

In this assay, solid-phase extraction (SPE) was used to extract non-polar 

compounds present in urine of male tilapia and in water samples collected before and 

after the exposure to stimuli, both in males and females. In order to activate the 500 mg 
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C18  SPE cartridge („Isolute‟; International Sorbent Technology Ltd., Hengoed, UK), 5 

ml of methanol was passed through (Sigma- Aldrich or VWR) followed by 5 ml 

distilled water. 

The urine pool from males (15 ml) was passed through under vacuum (flow rate 

approximately 1 ml.min
-1

) according to the instructions given by the manufacturer. The 

filtrate was collected in a glass extraction tube and then was divided into the Eppendorf 

tubes, as previously described (see Stimuli’ Preparation). To elute, after passing the 

urine pool, 5 ml of methanol was passed through the cartridge, and this was collected 

and distributed into glass vials (1ml each). 

 The same technique was used to extract water samples derived from the 

experiments with females and males (1l of water before and after exposure to the 

stimuli). However, the volume used in these cases was 1l of water and the filtrate was 

discarded, only the eluate (5 ml) was collected and frozen at -20ºC until be processed 

for use in radioimmunoassay (see below). 

 

2.3.4.2. Steroid Extraction 

 

Methanol eluates from SPE were dried under nitrogen gas (2 bar), in a water 

bath at 40ºC. After the methanol had totally evaporated, 100 µl  distilled water 3 ml of 

diethyl ether (Merck), were added to the tubes, being then stirred for 10 minutes and 

centrifuged at 500 rotations per minute (rpm) for 5 minutes, to separate the two phases 

(aqueous and diethyl ether). 

The aqueous phase was frozen by submerging the extraction tube in liquid 

nitrogen and the ethyl ether phase was decanted into glass assay tubes (round bottomed 

tubes Normax [10x75x0, 6 mm]. The diethyl ether was evaporated in the water bath at 

(±) 40ºC. Since only approximately 70% of the steroids are extracted during the first 

extraction, this process was repeated twice in order to increase the efficiency.  

Phosphate buffer (1 ml) with gelatin (Sigma G-9382) (0.05mM sodium-

phosphate buffer, 0.1% gelatin and 0.01% sodium azide) was added to the assay tubes, 

thus obtaining the free steroid fraction, which was frozen at -20ºC. 

 

 

Extraction of sulphates  

The aqueous phase resulting from the previous procedure was evaporated under 

nitrogen gas, in a bath at 40ºC. One ml of tri-fluoroacetic acid (TFA) (Merck) in ethyl 
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acetate (VWR) (1:100) was added to the extraction tubes, containing the dried residues 

of each sample and the extraction tubes were maintained in a water bath at 40ºC stirring 

overnight and evaporated with nitrogen gas. 

To these extraction tubes 500 µl acetate buffer (8.2% sodium acetate and 8.5 % 

HCl at 10:2.8) was added along with 3 ml of diethyl ether, stirred for 5 minutes and 

centrifuged at 500 rpm for 5 minutes. The remaining procedure was the same as for the 

extraction of free steroids (see above). 

Thereafter, extraction tubes were submerged in liquid nitrogen, thus freezing the 

aqueous phase while ether remained liquid, which was poured into assay glass tubes. 

These tubes were then placed in a bath at 40ºC, to evaporate the ether. This process was 

done twice, so as to maximise recovery. Then 1 ml of phosphate buffer with gelatin was 

added and the samples were frozen at -20ºC.  

 

Extraction of Glucuronides  

The diethyl ether traces from the acetate buffer was removed by evaporation 

with nitrogen gas and 10µl of the enzyme β-glucuronidase (Sigma G-7019) was added 

to the aqueous phase and left to incubate at 37ºC, overnight, stirring in a water bath. 

Extraction followed with diethyl ether as previously described. 

 

2.3.4.3. Radioimmunoassay 

 

In the current study, radioimmunoassays were used to quantify the 

concentrations of sex steroids in eluates resulting from the previously described 

experiments with males and females: testosterone (T), 11-ketotestosterone (11KT), in 

the case of males‟ samples; and 17,20β-dihydroxypregn-4-en-3-one (17,20β-P) and 

cortisol, as regards to females‟ samples (figure 2.3).  

The concentrations of steroids in some samples were higher than the highest 

standard used in the construction of the standard curve (see below). It was therefore 

necessary perform some dilutions (see table 2). In these cases, samples were diluted in 

phosphate buffer with gelatin. 
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Figure 2.3 – Structures of steroids quantified by radioimmunoassay: testosterone (A); 11-

ketotestosterone (B); 17,20β-dihydroxypregnen-4-en-3-one (17,20β-P) (C) and cortisol (D). 

 

In each radioimmunoassay, 100 µl of each extracted sample (free fraction, 

sulphated and glucuronides) was placed in duplicate into polypropylene 0.5ml vials 

[RIA tubes (Sarstedt)], previously allocated on metal racks (Sarstedt). 

 

Table 2.2 - Table of dilutions used in this experiment. Depending on the quantity of steroid present 

in the samples, it was necessary to repeat assays, diluting some of the samples, in accordance with 

the following table. 

 

Dilution Sample Volume Volume of Phosphate Buffer with Gelatin 

1x 100 µl  

2x 50 µl 50 µl 

5x 20 µl 80 µl 

10x 10 µl 90 µl 

20x 5 µl 95 µl 

25x 10 µl 240 µl 

26x 10µl 250 µl 
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50x 10 µl 490 µl 

50x 5 µl 245 µl 

60x 5µl 295 µl 

75x 5µl 370 µl 

100x 10 µl 990 µl 

200x 5 µl 995 µl 

400x 5µl 1995 µl 

 

Standard Curve  

For each assay, a standard curve was performed, with successive dilutions of a 

standard solution of the steroid in question (see table 3), with known amounts of the 

steroid, ranging from 0.5 to 500 pg per tube. These standard solutions were then loaded 

into separate vials, designated as standard vials (from S1-S12); each one was loaded 

with a certain volume of the standard solution, using phosphate buffer with gelatin to 

make a total volume of 100 µl (see table 4). 

In each assay, three tubes were also prepared, designated as Blank (B), 

Maximum (M) and Total (T); to these tubes 100 µl phosphate buffer with gelatin was 

added.  

 

Table 2.3 - Dilutions of steroid stock in order to prepare Standard Solutions. 

 
 Standard Solutions 

 
#1 #2 #3 #4 #5 #6 

Steroid Stock 

(0.5mg/ml of ethanol) 
50µl 

50µl         

#1 

100µl      

#2 

100µl      

#2 

100µl      

#3 

100µl      

#4 

Phosphate Buffer with 

Gelatin 
5ml 5ml 900 µl 4900µl 4900µl 4900µl 

 

 

Table 2.4- Volume of each standard solution (#1 to #6) added to each standard RIA vial, in order to 

obtain known concentrations of the steroid. 

 

 
Standard RIA Vials 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

 
100µl 

#3 

50µl 

#3 

25µl 

#3 

100µl 

#4 

50µl 

#4 

25µl 

#4 

100µl 

#5 

50µl 

#5 

25µl 

#5 

100µl 

#6 

50µl 

#6 

25µl 

#6 

[Steroid] 
pg/tube 500 250 125 100 50 25 10 5 2,5 2 1 0,5 
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Antibody and Label Preparation 

The antibody solution was prepared in a 20 ml polyethylene vial (Packard). For 

this, the total volume of phosphate buffer with gelatin for all samples and standard tubes 

was determined, considering that 100 µl was needed for each RIA tube. 

Then the concentration of labelled steroid previously established was added to 

this flask, so that each tube contained about 1500 cpm (counts per minute) of [
3
H], 

mixed and 100 µl added to the blank tube.  

To obtain approximately 50% maximum binding, sufficient antibody was added 

to the former solution. The required quantity of antibody was established through a 

tritation.  After mixing, 100 µl of the solution was added to each tube, with exception of 

the blank tube.  

A suspension of dextran-charcoal was prepared according to the volume needed, 

usually 110 ml of phosphate buffer with gelatin to 0.165g of dextran (Sigma D-4751) 

and 1.65g of charcoal (or activated carbon) (Sigma), and stored in the fridge over-night. 

The “charcoal suspension” was added (250µl) to all 0.5ml tubes, with exception of 

“Total” tube, which received 250 µl of phosphate buffer with gelatin. After 12 minutes 

incubation on ice, the metal racks with the tubes were centrifuged at 2500 rpm for 12 

minutes at 4ºC. The supernatant was transferred into plastic scintillation tubes 

(Sarstedt), which were filled with 3 ml scintillation liquid (EcoliteTM (+) ICN). The 

radioactivity in the vials was then counted by using a scintillation Microbeta Trilux 

counter; each tube was counted for 10 minutes. 

Free molecules are adsorbed by charcoal, thus separating bound and free label; 

only the antigen-antibody complex remains in solution.  

 

2.4. Steroid Release Rates 

 

Data from radioimmunoassay were available in an excel spread sheet. From this, 

it was possible to calculate release rate at time 0h and at time 1h. 

From steroid concentration in 100 µl (pg), it was necessary to calculate the 

concentration of steroid in 1l of water (ng):  

 

Equation 1: Steroid Concentration in 1l of water 

 

                            (  ) 
(                  )   
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Total steroid concentration in the total water volume was calculated through 

equation 2, where steroid concentration (ng) represents the steroid concentration in 1l of 

water and water volume (l) corresponds to the water volume normalized to the weight of 

the individual. 

 

Equation 2: Total Steroid (ng) 

 
              (  )                             (  )              ( ) 

 

After the total steroid, the steroid release rate at time 0h was calculated by the 

following equation:  

 

Equation 3: Release Rate at time 0h (ng.kg
-1

.hr
-1

) 

 

                        
              (  )

       (  )
 

 

where the total steroid (ng) represents the amount of steroid in total water 

volume normalized to the weight at time 0h, depending on the weight of the female 

(kg).  

Through equations 1 and 2 it was calculated the steroid concentration and total 

steroid in 1l of water at time 1h. To the total steroid (1h) was subtracted the steroid 

concentration in the total volume of water  minus one litre, from time 0h, in order to 

obtain only the total steroid released at time 1h (equation 4). Then, release rate at time 

1h was calculated through equation 5: 

 

Equation 4: Total Steroid at time 1h (ng) 

 
              (  )(  )               (  ) (              (  )                             (  )) 

 

Equation 5: Steroid Release Rate at time 1h (ng.kg
-1

.hr
-1

) 

 

                        
                 (  )

       (  )
  
                  (  )

       (  )
 

 

For each stimulus, the mean and standard error of the mean (SEM) of the steroid 

release rates at time 0h and time 1h were calculated. 
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2.5. Statistical Analysis  

 

Data for female steroid release rates were analyzed using two-way repeated-

measures (TW-RM ANOVA). When TW-RM ANOVA was significant, the Holm-

Sidak post-hoc test was performed to identify the differences between treatments and to 

compare each stimulus to a control group (urine). Data failed on normality test, but data 

were of equal variance (F-test).  

Male steroid release rates were analysed using paired Student‟s t-test; when data 

failed the normality test, Wilcoxon Signed Rank Test was used to compare release rates 

of androgens before and after exposure to stimulus. All data are shown as mean ± SEM 

and statistical significance was established at p<0.05. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Results
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3.1. Exposure of Females to Male Urine and Derivatives 

 

 To evaluate the effect of the male urine-derived stimuli on the release of 17, 

20β-dihydroxypregnen-4-en-3-one (17,20β-P) by females into the water, release rates of 

this steroid was calculated one hour before (time 0h) and one hour after (time 1h) 

exposure to a given stimulus: male Urine, Steroid 5β-pregnen-3α, 17α-20α-triol-3-

glucuronide and 5β-pregnen-3α, 17α-20β -triol-3-glucuronide (from now on designated 

as “Steroid”), Filtrate, Eluate, “Steroid” plus Filtrate, Eluate plus Filtrate and Methanol 

(as vehicle control).  

  

3.1.1. Release Rate of 17, 20β-dihydroxypregnen-4-en-3-one (17,20β-P) 
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Figure 3.1- Comparisons of release rate of free (A), sulphated (B) and glucuronidated 17,20β-P (C) 

(mean ± SEM; ng/kg/h), before (white bars) and after exposure to stimulus (grey bars). The 

asterisks indicate the significant differences between release rates before and after exposure to 

stimulus: * p<0, 05; ** p<0, 01; *** p<0,001.   
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Exposure to male urine dramatically increased the release rate of free, sulphated 

and glucuronidated 17,20β-P. Higher increases were shown by glucuronidated 17,20β-P 

(32.1 ± 6.1 ng/kg/h to 2249.7 ± 572.5 ng/kg/h) and by free 17,20β-P (161.3 ±27.6 

ng/kg/h to 1121.1 ± 273.9 ng/kg/h). The less pronounced increased was showed by 

sulphated 17,20β-P (12.7 ± 3.4 ng/kg/h to 279.7 ± 92.5 ng/kg/h). 

Concerning the “Steroid” stimulus, a response similar to that evoked by urine 

was seen, with free 17,20β-P (181.2 ± 47.1 ng/kg/h to 2319.2 ± 837.6 ng/kg/h) and 

glucuronidated 17,20β-P (26.2 ± 11.2 ng/kg/h to 2146.9 ± 993.6 ng/kg/h) showing a 

more accentuated response than sulphated 17,20β-P (18.5 ± 5.9 ng/kg/h to 324.3 ± 

106.6 ng/kg/h). 

However, “Steroid” caused higher release of free 17,20β-P than urine. On the 

other hand, glucuronidated 17,20β-P showed similar release rates after exposure to urine 

and to “Steroid”. 

After addition of the filtrate into the holding water of females, the release rate of 

free 17,20β-P and its conjugated forms did not change. 

 Exposure to the eluate alone caused an increase in release rate of 17,20β-P, both 

free and conjugated forms, similar to that seen with untreated urine, except that the 

increase in 17,20-P glucuronide was slightly less.  

“Steroid” and filtrate, combined a single stimulus, caused a sharp increase in 

release rate of 17,20β-P.  Again, the more pronounced effect was seen in free and 

glucuronide. However, the increase was slightly greater than that evoked by untreated 

urine or eluate. 

Eluate and filtrate, combined as a single stimulus, induced an increase in release 

of 17,20β-P conjugated and free alike. In the case of free 17,20β-P, the observed 

increase was greater than that of untreated urine or eluate. However, the increase in 

sulphated 17,20β-P release by eluate plus filtrate was similar to that for untreated urine, 

and eluate. The effect on 17,20-P glucuronide release was similar to that of untreated 

urine but slightly higher than that evoked by the eluate alone. 

Exposure to the control carrier, methanol, had no effect on the release rates of 

free or conjugated 17,20-P. 
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3.1.2. Comparisons of responses to different stimuli 

 

Urine was assumed as control and all stimuli, one hour after the treatment, were 

then compared to it. Regarding to free 17,20β-P, the effect observed after exposure to 

urine was significant different from the effects observed after exposure to “Steroid” 

(t=3.007, p=0.003), were also different from those observed after exposure to “Filtrate” 

(t=3.108, p=0.003), those observed after exposure to “Steroid plus Filtrate” (t=2.635, 

p=0.010) and different from effects observed after exposure to methanol (t=3.017, 

p=0.003). 

Regarding to sulphated and glucuronidated 17,20β-P, only the effects after 

exposure to “Filtrate” (t=3.539, p=<0.001; t=3.543, p<0.001, respectively) and 

“Methanol” (t=3.962, p<0.001; t=3.607 p<0.001, respectively) were significantly 

different from urine effect.  

 

3.1.3. Release Rate of Cortisol 

 

In general, release rates of cortisol were lower than 17,20β-P, both before and 

after stimulus addition. 
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Figure 3.2- Release rates of free (A), sulphated (B) and glucuronidated Cortisol (C) (mean ± SEM; 

ng/kg/h) before addition of the stimulus (white bars) and after exposure to stimulus (grey bars). 

The asterisks indicate the significant difference between release rates before and after exposure to 

stimulus: p<0, 05; ** p<0, 01; *** p<0, 001.  
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Both in release rate of free and sulphated cortisol, the differences in the mean 

values among stimuli and time were not great enough to exclude the possibility that the 

observed difference was due to random sampling variability. Therefore, there was not a 

statistically significant difference between stimuli (p=0.202) and time (p=0.531), 

according to two way repeated measures ANOVA performed.  

When individuals were exposed to “Steroid”, the release rate of glucuronidated 

cortisol demonstrated a significantly increase: from 14.2 ± 4.3 ng /kg/h to 129.7 ± 39.6 

ng /kg/h (t=3.965, p<0.001). The same effect could be observed after exposing females 

to eluate, where was observed an increase in the release rate of glucuronidated cortisol 

(13.4 ± 3.5 ng.kg
-1

 to 86.3 ± 21.4 ng/kg/h; t=2.502; p=0.016). The increase noticed in 

release rate of glucuronidated cortisol (17.9 ± 5.3 ng/kg/h to 99.7 ± 47.8 ng/kg/h), after 

exposure to “Steroid plus Filtrate”, was also greater enough to be considered as 

statistically significant (t= 2.898; p= 0.007). 

 

3.2. Exposure of Males to Male Urine 
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Figure 3.3- Comparisons between release rates (mean ± SEM; ng/kg/h) of 11-ketotestosterone and 

testosterone before (white bars) and after (grey bars) exposure to urine pool of dominant male. The 

asterisk indicate the significance of the treatment (before vs. after exposure to stimulus): ** p<0, 

01; *** p<0, 001.  
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When males were exposed to urine pool of dominant males, the release rate of 

free and glucuronidated 11-ketotestosterone (11-KT) increased within an hour of 

treatment. The greatest increase was observed in free 11-KT, where there was a 

statistically significant increase from 131.4 ± 34.3 ng/kg/h to 823 ± 92.1 ng/kg/h (paired 

Student‟s t-test, N=8, t =7.647, p<0.001).  Release rate of glucuronidated 11-KT also 

exhibited a statistically significant increase from the sample without stimulus to the 

sample after stimulus exposure (51.9 ± 25.4 ng/kg/h to 261.6 ± 63.2 ng/kg/h; paired 

Student‟s t-test, N=8, t =3.674, p=0.008).  

There were no significant effects in the release rate of testosterone, free or 

conjugated, into the water after exposure to dominant male urine.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Discussion
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The present study clearly demonstrates that the pheromonal components of male 

urine are contained wholly in the eluate. In other words, this is the fraction of male urine 

responsible for causing an increase in levels of the oocyte maturation-inducing steroid 

(17,20β-P) in females. Moreover, the steroid glucuronide is sufficient, on its own, to 

cause a similar increase in 17,20β-P metabolism, thus suggesting that this is the urinary 

pheromone used by male tilapia. 

The “primer” effects on females‟ endocrine system suggested by Frade et al 

(2002) were observed in a recent study where females were exposed to male urine: less 

than one hour after exposure, it was observed an increase in the levels of 17, 20β-P, 

both in free and its conjugated forms (Huertas et al, unpublished). Thus,  male urine 

may play a pheromonal role, since it is a mixture of compounds that are released into 

the environment by an individual and it is capable of evoking a specific response in 

conspecifics (Stacey & Sorensen, 2006); in this specific case, male urine synchronizes 

spawning through induction of final maturation of the eggs (Huertas et al., 

unpublished).  

The study carried out by Huertas et al. (unpublished) is similar to the present 

study and was conducted in the same lab. However, when compared release rates of 

both experiments, the responses observed by Huertas et al are about 10 times lower. 

Differences may be due to different labelled antigen, standard solution of the steroid and 

different antibody. Regarding to the antibody, the one used in the present study may be 

detecting not only the desired steroid (17,20β-P), but other components present in 

samples, in other words, the antibody may not be as specific, and thus it is reacting with 

other steroids. 

Despite this, Huertas et al (unpublished) observed that release rate of 

glucuronidated 17,20β-P was notably higher than free or sulphated forms, also seen in 

the current study; after exposure to male urine,17,20β-P release dramatically increased, 

particularly free and glucuronidated 17,20β-P.  

Exposure to eluate causes a dramatically increase in levels of 17,20β-P; whereas 

filtrate does not.  Indeed, after exposure to filtrate, the release rate of 17,20β-P did not 

change. Therefore, this suggests that the solid-phase extraction was highly efficient, 

being supported by Huertas et al (unpublished), since a recovery rate between 80 and 95 

% was calculated for all steroids, using the same extraction method.  

Levels of 17,20β-P after exposure to urine eluate show a significant increase 

within an hour of treatment. Since this fraction should contain the steroid(s) present in 
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untreated urine, it would be expected to cause a similar increase in release rates of 

17,20β-P. Thus, the eluate has a similar effect to urine and, therefore, contains the 

component(s) responsible for causing the increase in 17,20β-P metabolism.  

Internal and external signals (hormone levels and social interactions, for 

instance) regulate reproduction in vertebrates. Environmental cues that influence 

reproduction, such temperature, photoperiod, food availability and social interactions, 

need to be integrated by the nervous system and, via the hypothalamus-pituitary-

gonadal (HPG) axis, regulate the gonads (Soma et al, 1996). Therefore, all external cues 

that have an influence on reproduction, act at the level of the HPG axis (Soma et al, 

1996). 

Gonadotropin-Releasing Hormone (GnRH) is the “key reproductive regulatory 

peptide” (White et al, 2002). It is produced and secreted by a group of neurons, which 

are the central nucleus of the hypothalamus-pituitary-gonadal axis (Rissman, 1996).  

Production of gonadal steroids and gonadal growth are stimulated by 

gonadotropin hormones released by the pituitary (follicle-stimulating hormone, FSH, 

and luteinising hormone, LH) which, in turn, are regulated by GnRH secretion (Soma et 

al, 1996). 

According to Ramakrishnan and Wayne (2009), social cues modulate cell 

physiology of an “additional population of GnRH neurons”, present in teleost fish, the 

terminal nerve, which is associated with the olfactory bulb. In turn, Rissman (1996) 

suggests that steroids regulate GnRH release, by acting through negative feedback on 

gonadotropin secretion, which may modulate behaviour directly or indirectly (Oliveira, 

1995).  According to Huertas et al. (unpublished), hypothalamic-pituitary-gland axis is 

modulated by male urine, inducing the production of 17,20β-P. 

Hence, if there is no exposure to any social cue, such as pheromones, GnRH is not 

secreted, there is no release of gonadotropin hormones from the pituitary and, 

consequently, there is a reduction on gonadal steroid production. 

Assuming that the pheromone in male urine is a steroid, the filtrate should not 

cause an increase in levels of 17,20β-P, since it does not contain any steroids. In the 

present study, exposure to filtrate did not cause any increase in release of 17,20β-P. 

“Steroid” has a similar effect to the untreated urine, suggesting that the 

pheromone present in male urine is the “steroid” acting on its own. However, the 

differences observed between release rate after exposure to urine and “steroid”, in 

particular, the higher release rate of free 17,20β-P after addition of “steroid” may be 
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explained due to a lower concentration of the “steroid” in the used urine pool when 

compared to the concentration of the synthetic steroid, since its concentration in urine 

was estimated to be around 5x10
-4

M (Keller-Costa, personal communication) and the 

exact steroid concentration in the used urine pool was unknown.  

Interestingly, when filtrate was combined with eluate as a single stimulus, and 

with “steroid”, the effect in release rate of free 17,20β-P was greater than urine, but only 

the effect after exposure to “steroid plus filtrate” was significantly different from the 

effect of urine, probably due to steroid concentration. However, when all responses 

were compared with that of urine, only increases in release rate of free 17,20β-P were 

evoked by “steroid” and “steroid plus filtrate” were greater.  

Vermeirssen and Scott (1996) demonstrated that fish release steroids into the 

water by three main routes: gills, urine and bile. In this study, the authors injected 

rainbow trout (Oncorhynchus mykiss) with tritiated 17,20β-P, and then conclude that 

40% of free17,20β-P was excreted unaltered via the gills, whereas 50% was converted, 

by the liver, to glucuronide and sulphate and stored in the bile, for consequent excretion 

through the faeces. The remaining 10% was converted to sulphate and released via the 

urine. Therefore, free steroids are released mainly via gills, sulphated steroids via urine 

while glucuronidated steroids are released through the bile (Vermeirssen & Scott, 

1996). However, the tilapia urinary pheromone appears to be a steroid glucuronide and 

yet is released in the urine. 

 In the current study, it is possible to observe that free and glucuronidated 

17,20β-P show higher release rates than 17,20β-P sulphated. Free steroids are released 

via gills due to passive diffusion, a result of the concentration gradient between plasma 

and water (Vermeirssen & Scott, 1996; Scott et al, 2008; Scott & Ellis, 2007). Since 

free fraction is released by passive diffusion through the gills in favour of concentration 

gradient, it is non-polar, poorly water-soluble and its degradation rate is lower, this may 

explain the observed release rates of free 17,20β-P after exposure to several stimuli.  

On the other hand, the observed high release rate of free 17,20β-P can also be 

due to degradation of released sulphated and glucuronidated 17,20β-P, which were 

rapidly de-conjugated after release to the water (Scott et al, 2008; Scott & Ellis, 2007), 

thus exaggerating the release rate of free steroids. 

Conjugation is the main method of deactivating steroids in vivo, making them 

more water-soluble (Scott et al, 2008), but also greatly reducing their affinity for their 
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receptors. In general, glucuronidated 17,20β-P exhibits high release rates, thus 

suggesting that glucuronidated form of 17,20β-P is more easily released. 

Sulphated form of 17,20β-P is excreted mainly via the urine and, in the current 

study, it is possible to observe that sulphated 17,20β-P shows lower release rates when 

compared with free and glucuronidated 17,20β-P. This may be due to the fact that only 

10% of 17,20β-P is converted to sulphate and excreted in urine (Vermeirssen & Scott, 

1996). Moreover, female urination rates are unaffected by the presence of males. 

Furthermore, females release urine in higher frequency and shorter pulses than males 

(Almeida et al, 2005; Barata et al, 2008). Since it is not advantageous to females to 

advertise their reproductive status (Almeida et al, 2005) while in the presence of males, 

females may control their urination rate. This may explain why sulphated 17,20β-P is 

released at lower rates; given that sulphated steroids are released in the urine, the lower 

levels of sulphated 17,20β-P may be explained due to a reduction in urination frequency 

of females, after exposure to male urine, or the steroid glucuronide. 

 

Cortisol is commonly used as an indicator of stress and for this reason is also 

known as the stress hormone (Galhardo, 2010; Gabor & Contreras, 2012). The low rates 

of cortisol release during the experiment suggest that the experimental design did not 

cause stress to the fish. During the experiment, cortisol release showed no significant 

increases, with exception of the glucuronidated form. The values obtained were within 

the range of values reported for undisturbed tilapia (Foo & Lam, 1993; Huertas, et al, 

unpublished). 

Due to the temporal relationship between the increase in 17,20β-P and the death 

of some salmonids species after spawning, Barry et al (2010) hypothesized that excess 

in cortisol levels in Pacific salmon was regulated by the pre-spawning increase of 

17,20β-P. Therefore, these authors suggested that “under normal physiological 

conditions, even in face of elevated stress-induced cortisol levels, peripheral targets are 

protected from cortisol excess by cortisol-metabolizing enzymes, which inactivate 

cortisol before it bind to cellular receptors and thus initiate a biological response” 

(Barry et al., 2010). During the spawning season, when 17,20β-P levels are elevated, 

17,20β-P inhibits the metabolism of peripheral cortisol, exposing cortisol receptors in 

various targets to high concentrations of cortisol (Barry et al., 2010). 

17,20β-P can be considered as a substrate for cortisol biosynthesis, therefore 

competing with cortisol for binding to corticosteroid binding protein, thus raising the 
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concentrations of biologically active cortisol (Barry et al., 2010), and its subsequent 

release to the water.  

The elevated levels of 17,20β-P demonstrated after exposure to “steroid”, eluate 

and “steroid plus filtrate” may cause a competition with cortisol, thus explaining the 

increases observed in glucuronidated cortisol release. In other words, these stimuli 

caused an elevated release of 17,20β-P, which in turn competed with cortisol for 

attaching to corticosteroid binding protein, thereby causing an increase of biologically 

active free cortisol. Only glucuronidated cortisol exhibited a significant increase over 

time, because glucuronidation as well as sulphate conjugation act in a way to transform 

free form of a steroid into a more polar and less active form (Kuuranne, 2010).  Hence, 

elevated levels of 17,20β-P probably compete with cortisol in its metabolic pathways, 

resulting in high levels of free cortisol, which in turn is transformed in its 

glucuronidated form to be more easily excreted.  

Stress in fishes can be minimised by using non-invasive sampling as 

demonstrated by Gabor and Contreras (2012) in a study carried out in Poecilia 

latipinna, which suggested that to non-invasive water-borne hormones collection causes 

minimal stress to P. latipinna, and allows repeated measures without causing additional 

stress. In the current study, “dynamic sampling procedure” was used as a non-invasive 

technique to measure steroid concentration in fish-holding water. As suggested by Scott 

et al (2008), this technique seems to be the most suitable approach, since it allows 

taking several samples from the same fish, causing minimal disturbance in individual 

which is shown by low rates of cortisol, besides that it is also useful to estimate release 

rate of steroids by the fish over time after exposure to a given stimulus (Huertas et al., 

unpublished; Scott et al., 2008). Therefore, the used sampling technique does not cause 

severe stress to tilapia and it is the most suitable approach to determine endocrine 

responses, at the level of steroids, of the species. 

 Regarding the measurement of conjugated steroids, we can assume that is an 

advantageous when we want to know about physiological strategies that would not be 

noted only by measuring free steroids (Scott et al., 2008). In the current study, 

measuring conjugated steroids enabled us to conclude that glucuronidated forms appear 

to be more easily excreted (possibly by the bile), thus suggesting that is more effective 

to release glucuronidated forms, instead releasing sulphated forms. Whereas, control of 

urination frequency by females and consequently the release of sulphated forms, seems 

to be a strategy used by females, in order to not advertise males about reproductive 
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status, when they are not ready to spawn. Therefore, measuring conjugated steroids may 

allow us to determine which the preferential routes of excretion of metabolites and 

conjugated steroids.  

 

The experiment conducted in tilapia males had, as a primary goal, to practice the 

sampling technique prior to use in the female experiment. Furthermore, males were 

randomly selected from the main stock, thus we did not record their social status, 

dominant or subordinate.  

11-ketotesterone (11-KT) is considered the most biologically active androgen in 

teleosts (Kime, 1993; Hirschenhauser et al, 2008), although testosterone is also 

important (Kime, 1993). As a result of exposure to the urine pool from, levels of 11-KT 

demonstrated a significant increase of free and glucuronidated form, while, levels of 

testosterone decrease within one hour of treatment.  

According to Hirschenhauser et al (2008), free fraction of 11-KT reflects 

“systemic circulating” levels of 11-KT diffuse through the gills and conjugated fractions 

contain urinary and faecal components, and it seems that social interactions affect the 

release rate of conjugated fraction. Specific social stimuli seem to cause variations in 

urination behaviour. “Male intruder stimulus” reflected the levels of free 11-KT and 

also caused modification in conjugated 11-KT fraction. Thereby, if individuals used in 

this experiment were subordinate males, the fact that they were exposed to urine of 

dominant males, thus, in order not to advertise the “dominant male” about their social 

status, the experimented males, may have reduced their urination and defecation rate 

(principal routes of releasing conjugated steroids), therefore explaining why free 11-KT 

exhibits higher rates of release, since they are released through the gills, similar to 

Hirschenhauser et al. (2008); free 11-KT shows a higher release rate after exposure to 

“male intruder stimuli” than its conjugated forms, though glucuronidated form exhibits 

slightly higher levels than sulphated fraction. However, this hypothesis needs further 

investigation.  

Control of sexual and agonistic behaviour is one role of androgens, in particular 

testosterone (Oliveira et al, 1996). According to the same authors, testosterone is 

probably involved in agonistic behaviour thus, and since males were on their own and 

therefore had no-one to be agonistic with, this may explain why levels of testosterone 

did not increase. Moreover, cytochrome-P450-11β-hydroxylase is the responsible for 

catalysing the conversion from testosterone to 11β- hydroxytestosterone, which is the 
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“immediate precursor of 11-KT” (Pfenning et al, 2012). For that reason, if 11-KT is a 

metabolite of testosterone, it is possible to assume that if levels of 11-KT increase, 

levels of testosterone should decrease.  

Nevertheless, and as mentioned before, we did not expect to have significant 

responses and the experiment was not conducted in the most recommended way, thus, 

in order to better understand this results, it is necessary to repeat this experiment with 

males in order to clarify the obtained responses.  

 

5. Conclusion  

 

This study aimed to identify which fraction of male urine (filtrate, eluate or 

both) is responsible for causing an increase in the oocyte maturation-inducing steroid in 

females, 17,20β-P and determine whether the recently identified steroid glucuronide is 

sufficient - on its own - to cause the increase in 17,20b-P metabolism, or whether other 

urinary components are necessary. Indeed, urine plays a pheromonal role and the 

fraction responsible for causing an increase in levels of 17,20β-P is the eluate. The 

filtrate, on its own, does not cause any response. Furthermore, the steroid glucuronide is 

sufficient - on its own - to cause an increase in levels of 17,20β-P, thus it may be 

assumed as the pheromone present in male urine. 

 

 

6. Future Research 

 

In order to understand the physiological response of males to the urine of a 

dominant male, it would be necessary to repeat the experiment carried out in this study, 

however, this time with respective controls and knowing the social status of individuals 

used in the experiment. 

It would also be interesting to perform the same experiment but with males 

being exposed to the same stimuli to which females were exposed, however, to analyse 

the release rate of 11-ketotestosterone, 17,20β-P and cortisol. 
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