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ABSTRACT 

The embryo segmental pattern is first established with the formation of 

somites. Somites are embryonic segments of vertebrates, periodically formed in a 

strict temporal precision, which has been believed to be governed by a biological 

clock, called the ‘segmentation clock’. In the mid-70s, the “Clock and Wavefront 

Model” was proposed, predicting the existence of an intracellular clock or oscillator 

in the presomitic mesoderm (PSM) cells. Several years later, Palmeirim et. al., 

identified the first molecular evidence of this clock by discovering and 

characterizing the oscillatory expression of c-hairy1 in the chicken embryo paraxial 

PSM, which strikingly matched the period of somite formation (90 min). 

This present work aims to characterize the chicken Hairy1 protein, and to study 

its expression both in early embryo stages and chicken embryonic fibroblasts 

(CEFs). Bioinformatic tools have predicted the biochemical properties, primary and 

secondary structure, post transcriptional modifications and subcellular localization 

of c-Hairy1 protein. By western blot were established the optimal working 

conditions of the customized monoclonal antibody, as well as the expression of the 

protein in both chick embryos and CEFs. The protein distribution and its subcellular 

localization in CEFs was assessed by immunofluorescence. 

Results of western blot have demonstrated sensitivity of the antibody, although 

its specificity for c-Hairy1 protein remains debatable. Even more, both 

immunofluorescence and bioinformatics analysis showed c-Hariy1 to be localized 

both in nucleus and cytoplasm. Interestingly, it was also demonstrated that the 

nucleus:cytoplasm ratio  distribution varied between cells. 

These work’s findings suggest that c-Hairy1 protein holds much investigation 

potential, and the optimization of the antibody working conditions enables its use 

for further studies. 

Keywords: segmentation clock, chicken embryo, Hes-gene family, c-hairy1, 

bioinformatics, chicken embryonic fibroblasts 
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RESUMO 

Nos vertebrados, o padrão segmentado do embrião é estabelecido com o 

aparecimento de unidades metaméricas na mesoderme pre-somítica (MPS), os 

sómitos, que se formam numa precisão temporal restrita demonstrando um 

comportamento periódico. Estes originam todas as estruturas segmentadas 

presentes no animal adulto: vértebras, discos intervertebrais, costelas, a derme 

das costas e todos os músculos esqueléticos do tronco e membros.  

Em meados dos anos 70, foi proposto o modelo “Clock and Wavefront” que 

previa a existência de um relógio intracelular, ou um oscilador em células da MPS, 

responsável pela regulação da formação dos sómitos, a somitógenese. Vários 

anos mais tarde, Palmeirim et al., identificou pela primeira vez uma evidência 

molecular deste relógio, descrevendo e caracterizando uma expressão oscilatória 

de c-hairy1 na MPS paraxial de embriões de galinha. Surpreendentemente esta 

periodicidade correspondia ao período de formação de um par sómitos em galinha 

(90 min). Vários componentes das vias de sinalização Notch, FGF e Wnt foram, 

mais tarde, descritos como tendo uma expressão dinâmica semelhante ao de c-

hairy1 na MPS de embriões de galinha, ratinho e peixe zebra. Estas vias de 

sinalização parecem estar interligadas e constituem uma rede complexa de vias 

oscilatórias envolvidas na somitogénese. 

Os genes da família Hes, à qual c-hairy1 pertence, são descritos como alvos 

da via Notch e funcionam como repressores de transcrição que regulam a 

proliferação e diferenciação celular. Estes participam em diversos processos do 

desenvolvimento embrionário, funcionando como relógios biológicos, mas também 

mantendo o estado indiferenciado de células progenitoras. A desregulação da 

expressão destes genes tem sido ligada a defeitos do desenvolvimento 

embrionário e oncogénese.  

As proteínas da família Hes possuem três domínios conservados, basic Helix-

Loop-Helix (bHLH), Orange e WRPW, que lhes conferem características únicas 

como repressores e osciladores. A região basic é responsável pela ligação da 

proteína ao DNA, o domínio Helix-Loop-Helix promove a dimerização, o domínio 
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Orange actua como selecionador de um possível heterodímero ao qual o factor 

Hes se liga. O motivo WRPW é responsável pela interação de co-repressores e 

também funciona como sinal de poliubiquitinização. 

Alguns membros da família Hes foram descritos como apresentando 

expressão oscilatória, quer ao nível do RNAm como da proteína. Tal expressão 

parece ser auto-regulada por um mecanismo de feedback negativo, em que o 

homodímero da proteína se liga ao promotor do seu gene, reprimindo-o. Por outro 

lado, o curto tempo de meia-vida do RNAm e da proteína parece também estar na 

origem deste fenómeno. 

Com o objectivo de caracterizar a proteína c-Hairy1, e estudar a sua 

expressão em estadios iniciais de embriões de galinha e em fibroblastos 

embrionários de galinha (FEG), foi requerida a uma empresa a produção de um 

anticorpo monoclonal contra c-Hairy1. Neste contexto, ferramentas bioinformáticas 

foram usadas para analisar as propriedades bioquímicas, estrutura primária e 

secundária, modificações pós-transcricionais, bem como a localização subcelular 

da proteína c-Hairy1. Por western blot foram estabelecidas as condições 

funcionais ótimas do anticorpo monoclonal, assim como a expressão da proteína 

em embriões de galinha e em FEGs. A distribuição da proteína e a sua localização 

subcelular foi determinado por imunofluorescência. 

A análise bioinformática da sequência proteica previu c-Hairy1 como sendo 

uma proteína pequena com características hidrofílicas. A previsão da estrutura 

secundária mostrou uma grande percentagem de regiões coil, apresentando 

algumas hélices-α e folhas-β localizados nos domínios conservados. Tais 

características podem conferir a c-Hairy1 uma estrutura globular.  

A análise de modificações pós-transcricionais usando dois softwares sugeriu 

vários possíveis locais de fosforilação distribuídos principalmente nas 

extremidades da proteína. Foram também sugeridas dez cinases capazes de 

fosforilar estes locais. Um estudo dos da localização subcelular permitiu a 

identificação de um sinal de localização nuclear conservado nas sequências 

proteicas de c-Hairy1 e nos seus homólogos, propondo a localização de c-Hairy1 
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no núcleo. Este estudo revelou ainda dois potenciais sinais de exportação nuclear, 

sugerindo a exportação de c-Hairy1 para o citoplasma. 

Para a optimização das condições de funcionamento do anticorpo monoclonal 

estabeleceram as quantidades mais apropriadas de proteína purificada e de 

extractos proteicos a serem carregadas no gel. A sensibilidade do anticorpo 

monoclonal foi demonstrada pela detecção da banda de peso molecular esperada 

de c-Hairy1, tanto nos extractos proteicos de embriões e FEGs. Contudo, outras 

bandas de peso molecular não esperado foram sistematicamente detectadas, 

apesar do aumento do tempo de desnaturação das amostras. Estas bandas 

podem ser justificadas por diferentes graus de fosforilação, formação de dímeros, 

splicing alternativo, isoformas não descritas, e ainda ligação do anticorpo a outras 

proteínas. Concluiu-se que a especificidade do anticorpo para c-Hairy1 é ainda um 

tema sujeito a debate. Futuramente, poderá ser realizada uma identificação por 

espectrometria de massa de forma a garantir que as bandas detectadas 

correspondem à proteína em estudo. 

Os resultados de imunofluorescência, complementados pela previsão 

bioinformática, mostraram que a proteína c-Hairy1 está localizada tanto no núcleo 

como citoplasma de FEGs. Estas evidências sugerem um possível shuttle de c-

Hairy1 entre o núcleo e citoplasma, possivelmente regulado por diferentes níveis 

de fosforilação da proteína. No entanto, este mecanismo de shuttle deverá ser 

validado em estudos futuros.  

Os resultados de imunofluorescência revelaram ainda um sinal de 

fluorescência mais intenso nas bordas celulares em aproximadamente 40% das 

FEGs analisadas, indicando uma possível interação entre a c-Hairy1 e outras 

proteínas do citoesqueleto. Em mitose, c-Hairy1 apresentou uma distribuição 

homogénea na célula, o que poderá reflectir o papel desempenhado por esta 

como promotor de proliferação celular. 

A análise detalhada da localização de c-Hairy1 em 54 FEGs, demonstrou que 

o rácio de distribuição núcleo:citoplasma variou entre células. Esta variação pode 
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sugerir uma distribuição dinâmica da proteína, apoiando a ideia da existência do 

shuttle de c-Hairy1 entre o núcleo e citoplasma. 

Este trabalho permitiu estabelecer as condições óptimas de funcionamento do 

anticorpo contra c-Hairy1, permitindo a realização de novos estudos de 

caracterização desta proteína a nível da sua expressão e função. 

Palavras-chave: Relógio embrionário, embrião de galinha, Hes-gene family, c-

Hairy1, bioinformática, Fibroblastos embrionários de galinha. 
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1. INTRODUCTION 

Life itself is a complex, intertwining and extraordinary process, full of wonder 

to unveil, and questions to answer. For instance, how does a single cell become a 

complete individual? The more we discover about the mechanism that regulates 

life, the more we realize that there are so many points and steps that can go 

wrong. 

Multicellular organisms do not spring forth fully formed. Rather, they arise by 

a relatively slow process of progressive change. In almost all cases, the 

development of a multicellular organism begins with a single cell, called the 

fertilized egg, or zygote, which divides mitotically to produce all the cells of the 

body (Alberts et al., 2007). The study of animal development from fertilization to 

birth has traditionally been called embryology, however development does not stop 

at birth or even at adulthood. In fact, most organisms never stop developing and so 

the subject responsible for studying embryonic and other development processes 

is called developmental biology (Gilbert, 2010). Developmental biology is one of 

the most exciting areas in biology, as it integrates anatomy, physiology, genetics, 

biochemistry and cellular and molecular biology. It too deals with fascinating 

biologic events, such as changes in form, structure and function of the organism 

(Tuan and Lo, 2000). As the embryos go through growth and differentiation, there 

are three well known dimensions that grant a field for their growth, but the 

mechanisms underlying the processes of life have to be performed in a 

synchronicity of events, so time can be considered as the fourth dimension 

(Andrade et al., 2007). This can lead us to the question, how is temporal control 

achieved?  Biology takes advantage of animal models to answer this and many 

more questions.  

Every model has some characteristics that are more or less advantageous 

to study a particular question. The models which are most commonly used in 

development include the nematode Caenorhabditis elegans, the fruit fly Drosophila 

melanogaster, the zebrafish Danio rerio, the South African clawed toad frog 

Xenopus laevis, the chicken Gallus gallus, and the mouse Mus musculus (Tuan 
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and Lo, 2000). Of these, the chicken was the first model be used in developmental 

studies, and there can be found reports which dates back to ancient egyptians 

(Stern, 2005). 

1.1. CHICKEN EMBRYO AS A MODEL 

For a long time the chick embryo (Gallus gallus) has been used in different 

areas in biology, it has a distinguished history as a major model system in 

developmental biology, and has also contributed with major concepts to 

immunology, genetics, virology, cancer, and cell biology (Siegel et al., 2006; Stern, 

2005)  

Chick embryo gives advantages over other embryo models in embryology 

since the chicken egg is inexpensive, accessible all year, and can be purchased in 

any specified quantity. Chicken eggs can be incubated to any stage of interest, 

which facilitates designing an experiment that requires specific stages of 

development. When the egg is laid, the avian embryo consists of a flat, two-layered 

blastoderm that lies on the surface of the yolk and, therefore, is readily accessible 

for experimentation (Gilbert, 2010).  Chick development occurs with incubation at 

38°C, and the period of incubation is about 21 days, after which the egg will hatch. 

Experimental design and timely data collection gets easier with such rapid 

development. Cultures in ovo and ex-ovo (removed from the shell) can be 

performed during the period of early development when so much is occurring. Two 

great advantages of this model are its semitransparency, making viewing of 

internal tissues possible under the microscope, and their sufficient size that allows 

several types of micromanipulation at these early stages. Due to its many 

advantages, there are many detailed experimental studied on the chick embryo, in 

which its availability adds to the value of chick embryos as a model system for 

studying development (Tuan and Lo, 2000).  

Because the chick embryo forms most of its organs in ways very similarly to 

those of mammals, it has often served as a surrogate for human embryos (Gilbert, 

2010). As so, all the great advances and discoveries in chick have relevance for 
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other vertebrates, including mammals, and some have brought about dramatic 

changes in fundamental understanding of development itself (Siegel et al., 2006). 

1.2. BRIEF VIEW OF AVIAN EMBRYO 

DEVELOPMENT STAGES 

In embryonic development there are some common stages to all vertebrate 

species known. The fertilization is the first step and gives rise to the process of 

development. Immediately following fertilization, a series of extremely rapid mitotic 

divisions occurs wherein the enormous volume of zygote cytoplasm is divided into 

numerous smaller cells, by a phenomenon called cleavage. These smaller cells are 

called blastomeres, and they generally form a sphere known as a blastula, by the 

end of cleavage. Once the rate of mitotic division has slowed down, the 

blastomeres go through dramatic movements where they change their positions 

relative to one another. At this point, the embryo is now in the process of 

gastrulation and is said to be in gastrula stage. As a result of gastrulation, the 

embryo ends up with three germ layers: the ectoderm, the endoderm, and the 

mesoderm. Once the three germ layers are established, the cells interact with one 

another and rearrange themselves to produce tissues and organs. This process is 

called organogenesis. Many organs contain cells from more than one germ layer, 

and it is not unusual for the outside of an organ to be derived from one layer and 

the inside from another (Gilbert, 2010). 

1.3. SOMITOGENESIS AND THE MOLECULAR 

CLOCK 

One of the major tasks of gastrulation is to create a mesodermal layer between 

the endoderm and the ectoderm. A localized and specialized region of the embryo 

is established during gastrulation, and has a role of an organizer. In avian it is 

called Hensen’s node and is found at the rostral end of primitive streak, which is 

the major structural characteristic of avian, reptilian, and mammalian gastrulation 

(Darnell et al., 1999; Gilbert, 2010). As the primitive streak regresses and the 
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neural tube folds, beginning to gather at the center of the embryo, somitogenesis is 

initiated (Gilbert, 2010). Somitogenesis is a periodic and sequential process, 

wherein each successive bilateral somite pair segregates at a regular time interval 

from the anterior end of the pre-somitic mesoderm (PSM) as the body axis 

elongates (Oates et al., 2012).  

Somites consist of epithelial spheres of cells and, although these are transient 

structures, they are of extreme importance for organizing the segmental pattern of 

vertebrate embryos (Figure 1.1A). These structures are the earliest manifestation 

of the segmental pattern of the adult vertebrate body and give rise to the vertebrae 

and ribs, the dorsal dermis, the skeletal muscles of the back, body wall and limbs 

(Andrade et al., 2007; Gilbert, 2010).  Interestingly, the intervals of each somite 

formation and the total number of somites formed are intrinsic to the species 

(Described in Table 1.1) (Andrade et al., 2007). This periodic event, somite 

segmentation, has been believed to be governed by a biological clock, called the 

‘segmentation clock’. In the mid-70s, the “Clock and Wavefront Model” was 

proposed, and it predicted the existence of an intracellular clock or oscillator in the 

PSM cells, which temporal periodicity turns into the spatial periodicity of somites 

(Cooke and Zeeman, 1976). In this model, the wavefront represents the anterior to 

posterior progression of development of the embryo. Thus, this wavefront governs 

the maturation of the PSM to become somites. In this sense, a somite unit forms 

only in the presence of two conditions, the wavefront of maturation must reach a 

group of cells who are at the appropriate phase of the clock. This model postulates 

that somite size is regulated by the speed of the wavefront while the rate of somite 

formation is controlled by the frequency of the oscillator (Gibb et al., 2010).  

Table 1.1 - Number of somites and its periodic formation time in several organisms. 

Specie Total number of somite pairs 
formed 

Time intervals 

Zebrafish 30 (Stickney et al., 2000) 30 min (Stickney et al., 2000) 

Chick 52 (Andrade et al., 2007) 90 min (Andrade et al., 2007) 

Mouse 65 (Tam, 1981) 120 min (Bessho and Kageyama, 2003) 

Human 33 (Gomez et al., 2008) 8h (Bessho and Kageyama, 2003) 
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Several years later, molecular evidences supporting both the intrinsic clock and 

the wavefront were reported (Andrade et al., 2007). For instance, it has been 

described that the wavefront relies on an intersection of gradients and cross 

regulatory activities of three transduction pathways, namely FGF (fibroblast growth 

factor), Wnt and Retinoic acid (RA). Therefore, the determination front is delimited 

by the intersection of these three gradients, and it denotes the position where the 

PSM is already committed (Figure 1.1B). As for the molecular oscillator the first 

evidence came in 1997, when Palmeirim et. al, reported the periodic expression of 

the avian homolog of the Drosophila segmentation gene hairy, in chick embryo 

PSM. Chick hairy1 gene was shown to be cyclically expressed in PSM cells, with 

the same periodicity as somite formation (90 min). This was the first example of the 

molecular oscillator working in embryos (Bessho and Kageyama, 2003), and it 

became known as the segmentation clock.  

 

Figure 1.1 - Representation of the somitogenesis, molecular clock and 
determination front concept. A: Illustration of a HH10 chick embryo, highlighting its 

major structures. Epithelial Somite pairs are periodically formed from the anterior most tip 
of the PSM in an AP manner, and due to new entrance of cells from the tailbud region, the 
embryo elongates posteriorly. B: Enlarged view of posterior embryo highlighting 
determination front (DF), situated more or less in the two third level of the PSM. This 
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illustration indicates as well the three gradients by which the determination front is defined, 
Retinoic Acid (RA) FGF/p-ERK and Wnt. New somites are formed every 90 minutes, 
having the notion of time and space which are provided respectively by the molecular 
clock and the determination front.  Elongation is made in an Anterior Posterior manner. 
The forming somite is represented as S0 and the fully formed somites as SI to SIV. 
Adapted from (Sheeba, 2011). 

Chick hairy1 starts to be expressed rhythmically as early as gastrulation (Jouve 

et al., 2002), and when the embryo elongates and PSM starts to form, it shows a 

very particular expression pattern, since it resembles a wave sweeping the PSM in 

a posterior-to-anterior direction (Figure 1.2). Each cycle of expression goes 

through 3 different phases. In phase I, hairy1 appears in the large caudal domain, 

filling about 70% of the posterior PSM and in the anterior PSM it can be detectable 

a narrow stripe that marks the position where the future somite will form. In phase 

II, while the anterior stripe is maintained, the caudal expression of hairy1 

disappears and it seems to shift anteriorly. In phase III, hairy1 expression shifts to 

the anterior PSM, corresponding to about one somite-length. Simultaneously, a 

new caudal domain arises which corresponds to the phase one of the next cycle of 

expression (Palmeirim et al., 1997).  

 

 

 

 

 

 

 

 

Figure 1.2 - Somitogenesis molecular clock. Illustration of chick PSM, and 
representation of the three phases, by which is defined a cycle of c-hairy1 expression, 

which take place in every 90 minutes. Individual cells over time, turn on and of the gene. 
This dynamic expression at the level of single cells, by virtue of being synchronized across 
the PSM, results in kinematic ‘waves’ of gene expression that ‘move’ across the PSM. 
Adapted from (Gibb et al., 2010). 



INVESTIGATING THE LOCALIZATION OF AN AVIAN HAIRY HOMOLOG 
(C-HAIRY1) PROTEIN 2013 

 

 
8 

After c-hairy1 discovery, several more genes were found to be dynamically 

expressed in the PSM with cycling times equal to the time taken to form one somite 

(Andrade et al., 2007; Baker et al., 2006; Dequéant et al., 2006; Krol et al., 2011), 

these genes included not only components of the Notch signalling pathway, but 

also Wnt and FGF components (Dequéant et al., 2006; Krol et al., 2011). It is now 

evident that the molecular events underlying somitogenesis are highly conserved 

among vertebrates, since periodic gene transcription has also been described in 

other animal models used in Developmental Biology - mouse, zebrafish, frog and 

medaka (Andrade et al., 2007). Several homologs of the c-hairy1 have been 

identified in humans, and other mammals, as well as frogs and zebrafish, these 

include not only other hairy or Enhancer of split (E(spl), but also hairy/E(spl) (hes), 

hairy/E(spl)-related (her) and hairy/E(spl)-related with YRPW motif (hey) genes 

(Table 1.2). 

Table 1.2 - Compilation of Hes-family genes and its different transcripts described so far in 
Human, Mouse, Chicken, Xenopus leavis and Zebrafish. 

Human Mouse Chicken Xenopus leavis Zebrafish 

hes1 
(Takebayashi et 
al., 1994) 
hes2 (Nishimura 
et al., 1998) 
hey1, hey 1, hey2 
(Steidl et al., 
2000) 
hes6.1, hes6.2 
(Bae et al., 2000) 
hes4.1, hes4.2, 
hes7.1, hes7.2 
(Bessho et al., 
2001) 
hes3 (Katoh, 
2004) 
hes5 (Kamakura 
et al., 2004) 
 

hes1, hes3 
(Sasai et al., 
1992) 
hes2 
(Ishibashi et 
al., 1993) 
hes5 
(Sakagami et 
al., 1994) 
hey1, hey2 
(Leimeister et 
al., 1999) 
hes6 (Bae et 
al., 2000) 
hes7 (Bessho 
et al., 2001) 
 

hairy1a 
(Palmeirim et 
al., 1997) 
hairy2 (Jouve 
et al., 2000) 
hey1, hey2 
(Leimeister et 
al., 2000) 
hairy1b 
(Vasiliauskas 
et al., 2003) 
hes5(Fior and 
Henrique, 
2005) 
 
 

hes4a* (Turner and 
Weintraub, 1994) 
hes1a**(Dawson et al., 
1995) 
hey1 (Pichon et al., 
2002) 
esr10a, 
hes9.1a***(Gawantka 
et al., 1998) 
hes1b, hes2, 
hes3.3**** (Klein et al., 
2002) 
hes3, hes9.2a 
(Deblandre et al., 1999) 
hes4b***** (Davis et al., 
2001) 
hes5.1, hes5.2-b, 
hes9.1b (Takada et al., 
2005) 
hes7.1 (Shinga et al., 
2001) 
 

hey2 (Weinstein 
et al., 1995) 
her1(Muller et al., 
1996) 
her5 (Reifers et 
al., 1998) 
her2, her3, 
her4.2, her6 
(Takke et al., 
1999) 
hey1 (Kudoh et 
al., 2001) 
her7 (Oates and 
Ho, 2002) 
her8a, her9 
(Gajewski and 
Voolstra, 2002) 
hes6 (Yoda et al., 
2003) 
her11 ,her12, 
her13 (Sieger et 
al., 2004) 
her4.3 (Harden et 
al., 2006) 
her15(Shankaran 
et al., 2007) 

* - Previously named hairy2a; ** - Previously named hairy1; *** - Previously named esr9 ; **** - Previously 
named esr2;**** Previously named hairy2b;****  
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1.4. SIGNALLING PATHWAYS REGULATING 

CLOCK GENE OSCILLATIONS 

In addition to the oscillation of hes-related (hairy/Enhancher of split) genes, 

other Notch, Wnt and FGF pathway components have been identified to have a 

similar dynamic expression in the PSM (Andrade et al., 2007; Gibb et al., 2010). 

These genes were identified both by classical method (Andrade et al., 2007) and 

by microarray analysis in mouse, chick and zebrafish (Dequéant et al., 2006; Krol 

et al., 2011) (Table 1.3).  

Table 1.3 - Comprehensive presentation of the PSM oscillatory genes belonging to the 

Notch, FGF and Wnt signalling pathways in mouse, chick and zebrafish. 

 Mouse (82 genes in 

total) 

Chick (182 genes in total) Zebrafish (24 genes 

in total) 

Notch 

 

lfng (Forsberg et al., 1998) 

hes1 (Jouve et al., 2000) 

hey2 (Leimeister et al., 2000) 

hes7 (Bessho et al., 2001)  

hes5 (Dunwoodie et al., 

2002) 

nkd1 (Ishikawa et al., 2004) 

nrarp (Dequéant et al., 2006) 

hey1, Id1, Efna1 (Krol et al., 
2011) 

hairy1 (Palmeirim et al., 1997) 

lfng (McGrew et al., 1998) 

hairy2 (Jouve et al., 2000) 

hey2 (Leimeister et al., 2000) 

nrarp (Wright et al., 2009)  

deltaC (Jiang et al., 

2000) 

her1 (Holley et al., 

2000) 

her7 (Oates and Ho, 

2002) 

nrarp (Wright et al., 

2009) 

her15, her2, her4 (Krol 

et al., 2011) 

Wnt 

axin2 (Aulehla et al., 2003)  

dact1 (Suriben et al., 2006) 

dkk1, sp5, myc, tnfrsf19, 

cyr61,shisa2 (Krol et al., 

2011) 

axin2, T, gpr177, rrm2 (Krol et 

al., 2011) 

tbx16 (Krol et al., 

2011) 

Fgf 

dusp6, spry2 (Dequéant et 

al., 2006) 

snail1 (Dale et al., 2006) 

dusp4 (Niwa et al., 2007)  

spry4 (Hayashi et al., 2009) 

snail2 (Dale et al., 2006) 

raf1, Erk, dusp6 (Krol et al., 

2011) 
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Dequéant’s microarray showed not only a large number of genes cycling in 

mouse PSM, but also that the FGF and Notch components were activated in 

parallel and were cycling in phase, while genes belonging to the Wnt pathway 

exhibit an opposite cycling phase to the Notch/FGF pathway components 

(Dequéant et al., 2006). These signalling pathways seem to interconnect and 

constitute a complex oscillating signalling network involved in somitogenesis 

(Aulehla and Pourquie, 2008). 

To date, most of the genes identified as cycling belong to Notch signalling 

pathway, and among these, it seems that only hairy-related genes have the 

property of oscillating universally among various species (Bessho and Kageyama, 

2003).  

Currently, with the knowledge gathered it is possible to observe a great 

interconnection of these Notch, FGF and Wnt signalling pathways. However, the 

search for the upstream pacemaker of the segmentation clock remains in open, 

and is essential to reach a full understanding of the nature and biological relevance 

of the somitogenesis clock (Andrade, et al 2007). 

1.4.1. ROLES OF NOTCH SIGNALLING PATHWAY 

Notch signalling is an intercellular communication pathway mediated by the 

interaction between the Notch receptors (Notch 1-4) with their ligands (Delta or 

Serrate1 & 2/Jagged1 & 2) by direct cell-cell interaction. When binding occurs, a 

multiprotein complex containing Presinilin1/ Presinilin2 performs a proteolytic 

cleavage of the Notch Intracellular Domain (NICD) (Fortini, 2002). NICD is then 

released from the membrane region and able to translocate into the nucleus, 

where it converts the DNA-binding transcription factor RBPjk from a repressor to 

an activator, forming a complex with it, and activates the transcription of its target 

genes, such as hes and hey genes (Kageyama et al., 2010; Shimojo et al., 2008). 

The mechanism by which cell intrinsic cyclic expression is generated has been 

deeply analyzed. Strikingly, autoregulatory feedback loops seem to be one of the 

main mechanisms by which the oscillations of these genes activity are generated, 

alongside with short lived mRNA and proteins. In fact, several downstream targets 
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with oscillatory expression are known inhibitors of the pathways that induce their 

expression. Such simple feedback mechanisms can generate oscillations, provided 

the presence of a delay in the process (Aulehla and Pourquie, 2008). Dale, et, al 

(2003) first identified a negative feedback loop acting in the chick PSM, in which 

lfng (Lunatic fringe is a Notch target gene encoding glycosyltransferase that 

modulates Notch signalling will act, in turn, to inhibit Notch signalling and thus 

regulate lfng’s own expression. In this model, the NICD domain, after translocated 

to the nucleus, will activate hairy1, hairy2 and lfng genes. Lnfg protein modifies 

Notch, which becomes less sensitive to activation by Delta, yet it’s a transient and 

periodic effect due to the short life and rapid turnover of the Lfng protein. 

Oscillations are thus generated by alternation between activation of lfng expression 

and repression of Notch by Lfng. The influence of NICD on lfng exerted via hairy 

genes will be delayed relative to the influence exerted directly, and this phase shift 

can, in principle, allows the two influences to act in synergy (Giudicelli and Lewis, 

2004).This study proposed that this negative feedback loop involving these genes 

represents a core component of the avian segmentation clock mechanism 

(Giudicelli and Lewis, 2004) (Figure 1.3). 

 

Figure 1.3 – Model of Notch, c-Hairy1/2 and Lnfg feedback loop mechanism. Notch 
signalling activates cyclic gene transcription of lfng and c-hairy1/2. Lnfg protein will in turn 
modulate Notch, which becomes less sensitive to activation by Delta, inhibiting Notch 
signalling. The proteins c-Hairy1/2 will inhibit lfgn transcription, having an indirect influence 
on lfng via Notch signalling. Adapted from (Giudicelli and Lewis, 2004). 
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Although generating gene oscillations is an intrinsic property of individual PSM 

cells and tissue (Masamizu et al., 2006; Palmeirim et al., 1997), several studies 

demonstrated an out of synchronicity of hes1 oscillations in dissociated PSM cells, 

and a necessity of cell-cell contact for synchronized oscillations (Maroto et al., 

2005; Masamizu et al., 2006). Hirata, et. al (2002) demonstrated a Delta1 mediated 

synchronization of hes1 cycles, which are evident as mouse cell lines exposed to 

Delta1 expressing cells maintained a synchronous expression of hes1, which 

otherwise presented out of synchrony expression, pointing Notch signalling 

responsible in synchronizing gene oscillations between neighbouring PSM cells 

(Jiang et al., 2000). Many other studies in zebrafish either using genetic or 

chemical inhibition of Notch signalling, or even mathematical modelling, suggested 

that DeltaC-Notch intercellular interaction synchronize PSM cells oscillations by 

reducing their internal noise (Dequeant and Pourquie, 2008; Giudicelli et al., 2007; 

Horikawa et al., 2006; Riedel-Kruse et al., 2007). Notch signalling in zebrafish 

somitogenesis has been solely assigned to synchronize oscillations of 

neighbouring cells (Ozbudak and Lewis, 2008). More recently, was observed a 

delay on the zebrafish segmentation clock by a disruption of Delta-Notch coupling, 

extending its periodicity and reveled an additional role of Notch signalling in clock 

period regulation (Herrgen et al., 2010). 

1.4.2. ROLES OF FGF SIGNALLING PATHWAY 

FGF signalling is another important pathway for the segmentation clock, as it 

has been demonstrated that it is crutial for the initiation of the expression of dusp4, 

a negative regulator of FGF/MAPK signalling and hes7, in the posterior PSM, 

which is required for their dynamic expression in the anterior PSM (Niwa et al., 

2007). FGF signal initiates hes7 expression as well as oscillation in the posterior 

PSM, which is propagated and maintained in the anterior PSM by Notch signalling, 

implementing FGF signalling as the base for Hes7 generated oscillations (Bessho 

et al., 2003). While the influence of the FGF signalling pathway on the 

segmentation clock appears to be a controversial topic, an interesting finding 

shows that FGF components (dusp6, spry2, snail1) does not oscillate in 
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presenilin1/ presenilin2 double mutant mice lacking NICD, indicating that Notch 

signalling is necessary for FGF component oscillations (Ferjentsik et al., 2009). 

Other intriguing study demonstrated that chemical inhibitors of FgfR1 failed to 

perturb Notch target gene expression in mouse and chick (Delfini et al., 2005; 

Dubrulle et al., 2001; Gibb et al., 2009; Niederreither et al., 2002), whereas, Wahl 

et al. (2007) observed a quick disruption of Wnt target gene axin2 and a slow, but 

abrogated lfng expression in mouse FGFR1 mutants. Despite the constitutive 

expression of Dusp4 in hes7 mutants, axin2 still presents dynamic expression, 

ruling out the possibility of FGF/Dusp4 signalling to be the phasemaker of gene 

oscillations (Niwa et al., 2007; Hirata et al., 2004).   

1.4.3. ROLES OF WNT SIGNALLING PATHWAY 

Until recently it was thought that, although Wnt cluster genes oscillate in 

mouse PSM, there was no indication of these oscillations in chick PSM. However,  

chick Wnt components that included axin2, T, gpr177 (commonly known as 

Wntless)  and rrm2 and zebrafish: tbx16 (Krol et al., 2011), were identified for the 

first time in a genome-wide study as being oscillating (Table 1.3). A linkage 

between Notch signalling and Wnt targets, was disbelieved since it has been 

already described that, in hes7, RBPjk and NICD gain of function mutants, axin2 

retains dynamic expression pattern (Hirata et al., 2004; Feller et al., 2008; 

Ferjentsik et al., 2009). However, abolishing the expression of presenilin1, and 

presenilin2 in mouse PSM, axin2 oscillations ceased to exist (Ferjentsik et al., 

2009) indicating that Notch signalling is operating upstream of Wnt targets. Yet, 

other results indicate Wnt signalling to be upstream of Notch, since wnt3a 

hypomorphic mouse mutants (vestigial tail with less wnt3a expression in the 

tailbud) present downregulated dll1, notch1 and non-dynamic lfng and hes7 

expression in the posterior PSM (Aulehla et al., 2003; Niwa et al., 2007). This 

cross-talk between Notch and Wnt pathways was considered in Gibb et al. (2009), 

wherein it was observed a reciprocal regulation of Notch and Wnt pathways upon 

their components since, the inhibition of any of these pathways affected both 
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component genes suggesting a mutual interaction between Notch and Wnt 

signalling in chick as previously observed in mouse PSM (Ishikawa et al., 2004). 

1.5. HES GENE FAMILY 

Since the initial description of the segmentation clock, multiple other cyclic 

genes have been shown to oscillate at the mRNA level in the PSM of chick, mouse 

(Mus musculus) and zebrafish (Danio rerio) embryos (Gibb et al., 2010). Many of 

these genes belong to the Hes gene family, in which c-hairy1 is included, and are 

described as targets of Notch pathway that act as transcriptional repressors, 

regulating cell proliferation and differentiation (Kageyama et al., 2007; Vasiliauskas 

et al., 2003). Hes family genes are implicated in a number of developmental 

processes such as segmentation of the mesoderm, functioning as biological 

clocks, measuring time (Palmeirim et al., 1997). The molecular clock has also been 

showed to be operating during  limb development in the chondrogenic precursor 

cells (Pascoal et al., 2007). Additionally, these repressor genes have been 

described to play a role in embryogenesis by maintaining the undifferentiated state 

of progenitor cells, and  regulating the binary cell fate decisions  (Kageyama et al., 

2007).  

1.5.1. STRUCTURAL ANALYSIS OF HES FAMILY PROTEINS 

Structurally, Hes family proteins contain three conserved domains which 

endow them with unique features as repressors and oscillators. These are the 

basic Helix-Loop-Helix (bHLH), Orange and WRPW domains (Kageyama et al., 

2007) (Figure 1.4).  
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Figure 1.4 – Schematic representation of Hes family proteins conserved domains, 
and their main functions. Hes family proteins have three conserved domains, the basic 
Helix-Loop-Heix, Orange and WRPW domains. The basic moitif (b), is responsible for DNA 
binding, the helix-loop helix (HLH) domain promotes dimerization, the Orange domain acts 
as the selector of the heterodimer partner which Hes protein will bind, and WRPW is 
responsible for interaction with Hes co-repressors, and acts a poliubiquitination signal. 

The bHLH domain can be distinguished in two regions, the basic region, and 

the Helix-Loop-Helix domain (Kageyama et al., 2007). The basic region, located at 

the N-terminal end of the domain consists of approximately 15 amino acids with a 

high number of basic residues. This motif is present in the majority of proteins 

containing the HLH domain, facilitating binding to the DNA that contains the 

canonical ‘E box’ recognition sequence, CANNTG (Massari and Murre, 2000; 

Toledo-Ortiz et al., 2003). Contemplating the amino acids within the basic region of 

the protein, it has been shown that some of them provide recognition of the core 

consensus site, whereas other residues determine specificity for a given type of 

hexanucleotide sequence E-box. Hes factors have a highly conserved proline 

residue located in the middle of basic region, suggesting that this may confer DNA-

binding specificity, although the exact role has not yet been established (Dawson 

et al., 1995; Sasai et al., 1992). 

The HLH domain is constituted mainly of hydrophobic residues (Toledo-Ortiz et 

al., 2003), which comprise two amphipathic α-helices, each 15-20 residues long, 

separated by a shorter intervening loop that has a more variable length and 

sequence, which mediates protein dimerization with homo and heterodimers 

(Norton, 2000; Toledo-Ortiz et al., 2003). Although the role of DNA binding has 

been assigned to basic region, evidences show residues in the loop and second 

helix also make contact with DNA (Massari and Murre, 2000). 
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The bHLH proteins, in animal systems, have been classified into six main 

groups, in which its classification is based on the evolutionary origin and sequence 

relatedness as well as the information available on their DNA binding specificities 

and functional activities  (Atchley and Fitch, 1997; Ledent and Vervoort, 2001). Hes 

family proteins are classified as belonging to group E (previously considered part of 

group B by Atchley and Fitch [1997]), distinguished from other groups based on the 

presence of several conserved amino acids flanking the bHLH and the presence of 

the WRPW peptide (Ledent and Vervoort, 2001). The members belonging to this 

group are also considered to preferentially bind to N-boxes (CACGGC or 

CACGAC), having low affinity for E-boxes, as well as possessing a Proline instead 

of an Arginine residue at a crucial position in the bHLH domain (Fisher and Caudy, 

1998) 

The orange domain has two amphipathic helices and regulates the selection of 

bHLH heterodimer partners being particularly important for the efficiency of the 

interaction (Kageyama et al., 2007; Taelman et al., 2004)  This domain is also 

shown to mediate transcriptional repression, although a co-repressor interacting 

with this domain is not known yet (Castella et al., 2000) . 

Localized at C-terminus is a well-defined simple motif, the WRPW, and it 

consists of the tetrapeptide Trp-Arg-Pro-Trp. This motif is responsible for binding to 

the transcriptional corepressor Groucho and its mammalian homologues, the TLE 

(Transducin-like E(spl)) proteins, and thereby functions as the repressor domain of 

this family of transcription factors. WRPW is not, however, the only motif required 

for repression, since functional dissection of the HES proteins revealed other 

important regions for repression, such as the Orange domain. In Drosophila 

deletion mutants for the gene Enhancer of split [E(spl)], it has been demonstrated 

that both the Orange and the interval between the Orange and the WRPW motif 

appear to be important to the repression function of the gene (Giebel and Campos-

Ortega, 1997). WRPW sequence also acts as a polyubiquitination signal, 

controlling the half-life of Hes proteins by promotion of proteasome-mediated 
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degradation, which results in very short half-lives, 22 min for both Hes1 

(Hirata,2002), and  Hes7 (Hirata, 2004). 

1.5.2. HES AND HAIRY-RELATED TRANSCRIPTION 

FACTORS 

Hes factors are similar to but distinct from Hairy-related transcription factors 

(Hrt), also known as Hesr, Hey, CHF, grl, and HERP. For instance, Hes family 

members are characterized by a highly conserved proline residue in the basic 

domain, that contrast a glycine at the comparable position that likely underlies Hrt 

specificity for E box DNA-binding sites (CACGTG) over the N-box site (CACNAG) 

favored by Hes family members. In addition, Hrt proteins contain a carboxy-

terminal YXPW-TEI/VGAF (Y/T) motif that is alike to but distinct from the WRPW 

motif of Hes1. This region is necessary for Hes1’s recruitment of the co-repressor, 

Groucho but the Y/T domain of Hrt proteins does not appear to interact with 

Groucho. (King et al., 2006) 

1.5.3. EXPRESSION AND TRANSCRIPTIONAL ACTIVITIES 

OF HES FACTORS 

Hes family oscillation seems to be generated by an auto feedback loop, as it 

was shown by Hirata, et al. (2002). This study demonstrates that the mouse Hes1 

protein directly binds to the N-box in its own promoter repressing the gene 

transcription. This repression is transient probably due to the short half-life of both 

hes1 (22 min) mRNA and Hes1 protein (Figure 1.5) (Hirata et al., 2002). Data 

suggest that the 3´untranslated region (3´-UTR) of hes1 gene might be responsible 

for the short half-life of hes1 mRNA (Hirata et al., 2002), as it has been previously 

reported for Xenopus hairy2 mRNA stability (Davis et al., 2001). Both the protein 

and mRNA maintain a 2 hour oscillation period, although the protein oscillation is 

delayed ~15min compared to mRNA, probably due to the time required for protein 

turnover by the ubiquitin–proteasome pathway (Hirata et al., 2002) (Figure 1.5). 

When Hes1 protein is constitutively activated either by using proteasome inhibitors 

or an expression vector, hes1 transcription is repressed by the persistently high 
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Hes1 levels. On the other hand, treatment with cyclohexamide, an inhibitor of 

translation, or over-expression of a dominant-negative form of Hes1 (dnHes1) 

constitutively upregulates hes1, blocking its oscillations. Therefore, hes1 

oscillations requires both de novo synthesis and degradation of Hes1 protein and 

the negative feedback loop, in which Hes1 periodically represses its own 

transcription, is the central mechanism for the hes1 oscillations both in cells and in 

the PSM (Hirata et al., 2002) (Figure 1.5). Furthermore, using mathematical 

modeling, the authors predict that alterations in synthesis and degradation rates 

should change the oscillations period. 

 

Figure 1.5 – Schematic representation of Hes auto feedback regulation. When hes1 

transcription activated by Notch, for example, Hes1 protein is produced, allowing it to form 
dimers. The homodimer then will induce the repression of its own gene. Both the proteins 
and mRNA are degraded rapidly due to their very short half-lives, therefore allowing the 
start of a new cycle of expression. Adapted from (Kageyama et al., 2007). 

Hes factores repression is carried out in two manners, it can repress actively or 

passively (Figure 1.6). In the active repression, the WRPW domain is involved, and 

will interact with the co-repressor Transducin-like E(spl) (TLE) genes/Groucho-

related gene (Grg) (Kageyama et al., 2007) (Figure 1.6A). Groucho is able to 

repress transcription by recruiting histone deacetylase, an enzyme responsible for 

inactivate chromatin (Chen and Courey, 2000). Thus, it is likely that the Hes–

Groucho-homolog complex represses transcription by inactivating chromatin. 
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Studies reveal an interaction between the C-terminal portion of chick hairy1 and 

Sap18 (Sin3-associated polypeptide, 18 kDa), a component of the Sin3/histone 

deacetylase (HDAC) transcriptional repressor complex, indicating that in c-hairy1 

may mediate gene transcriptional repression by recruiting the Sin3/HDAC complex 

through a direct interaction with the Sap18 adaptor molecule (Sheeba et al., 2007).  

The passive repression is due to the ability of Hes factors to inhibit bHLH 

activators that bind to the E box, by forming non-DNA-binding heterodimers with 

them. These activators include Mash1 and E47 that normally activate neuronal-

specific gene expression by forming heterodimers and biding to the E box (Figure 

1.6C), a process prevented by intervention of Hes1 (Kageyama et al., 2007) 

(Figure 1.6B). 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.6 - Active and passive repression of Hes1. A – Active repression: Hes 

factors are able to actively repress transcription, by binding to the N box, in form of 
homodimers  (left panel) or heterodimers with Hey (right panel), interacting with co-
repressors, such as Groucho homologs. (C) Passive repression: By forming non-DNA 
binding heterodimers with bHLH activators such as E47, Hes factors are able to passively 
inhibit transcriptional activation (D) Activation: bHLH activators such as Mash1 and E47 

form heterodimers that bind to the E box and activate transcription. Adapted from 
(Kageyama et al., 2007). 

1.5.4. HES FACTORS MISREGULATIONS  

Misregulations of HES family members have been linked to developmental 

defects and oncogenesis (Andrade et al., 2007; Davis et al., 2001). Andrade et al. 

(2007) reviews some development defects associated the segmentation clock, in 

mutant mouse embryos and in human embryos with congenital malformations in 
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the axial skeleton. Mouse mutant models can be very useful to investigate the 

cause of some malformations observed in humans. The most common defect 

observed in these embryos mutated for segmentation clock genes, when not lethal, 

are shorter trunks with fused or bifurcated vertebrae and ribs (reviewed in Andrade 

et al., 2007). Similar segmentation problems can be found in human 

spondylocostal dysostosis (SD), in which patients exhibit a short trunk due to 

multiple hemi-vertebrae formation accompanied by rib fusions, bifurcations and 

deletions  and mutations in Notch-regulated genes such as dll3, lfng and mesp2 

have been observed to induce SD (Giampietro et al., 2009; Turnpenny et al., 

2007). Alagille syndrome, a disorder characterized by developmental abnormalities 

of the liver, heart, eye and skeleton, has been associated with mutations in 

jagged1, a Notch ligand, and notch2 genes. Mutations of fgfr1-3 in human have 

also been shown to result in skeletal disorders, including fusion of the craniofacial 

sutures and short-limbed dwarfisms (reviewed in Chen and Deng, 2005). 

While expanding of the understanding of the mechanisms regulated by Hes-

family members the number of observations associating them with oncogenesis 

also increased. It is, however, controversial whether Hes genes act as a tumor 

suppressor and/or oncogene, since conflicting observations suggest that these 

genes may have a dual role depending on the tumor types and the stages of 

cancer progression (Lee et al., 2012). In the most common of malignant brain 

tumors, medulloblastomas (MBs), expression of HES1 has been associated with 

the worse clinical outcome. Down-regulation of Hes1 expression negatively 

regulates the proliferation rate and anchorage-independent growth of MB cells 

(Garzia et al., 2009). Studies also suggest that Hes1 may have an oncogenic role 

in oral squamous cell carcinoma (OSCC), associated with cancer progression and 

cancer stem cells phenotype in OSCC (Lee et al., 2012). Beyond Hes1, Hes6 adds 

up to the growing list of Notch signalling pathway components involved in the 

process of transformed cell growth, being identified as up-regulated in colon, 

breast, lung ,and renal, primary carcinomas compared to expression in normal 

tissue (Swearingen et al., 2003). 
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1.6. C-HAIRY1 PROTEIN AND ANTIBODY 

PRODUCTION 

Since the discovery of the oscillatory expression of c-hairy1 in the chick 

embryo PSM, many of the studies have been much focused on the understanding 

of the gene expression mechanisms rather that in the protein mechanisms 

(Andrade et al., 2007; Palmeirim et al., 1997). In 2003, Vasiliauskas et al., 

identified an expression of two products in a RT-PCR amplification of the entire c-

hairy1 open frame from stage 19 chick embryos, which led to the discovery of a c-

Hairy1 isoform, c-Hairy1B, since c-Hairy1A have already been described by 

Palmeirim et al in 1997. The isoforms differed in a insertion of 14 amino acids 

between the second and third residues belonging to basic region, resulting on a 

difference in the first two positions of the basic domain, RK (two basic amino acids) 

in c-Hairy1A, and AE (a hydrophobic and an acid residue) in c-Hairy1B. This 

change alters the net charge of the c-Hairy1B from negative to positive, which the 

authors suggest a possibility to change significantly the specificity or weaken the 

affinity of a transcription factor for DNA. Consequently, the two isoforms of c-

Hairy1, by forming homo- or heterodimers, may bind a range of DNA sites. On the 

other hand, c-hairy1B could antagonize the transcriptional repressor function of c-

hairy1A. The study described different functions of these isoforms in regulating the 

limb bud growth, suggesting the differences were due isoforms different activities 

rather than to the efficiency.  

With the purpose to acquire better understanding about the c-Hairy1 protein, 

regarding expression, function, and its cellular localization in chicken, our lab 

ordered the production of an antibody against c-Hairy1 from a commercial 

company. This task was necessary since there was no antibody available in the 

market, nor has any other research group developed it before. In order to validate 

the future results it was crucial to have available the purified protein so it could be 

used as a positive control, and validate the results obtained. Therefore, a 

commercial company undertook the task of purifying the protein. The process 

consisted of the cloning of the c-Hairy1 cDNA fused to a His tag located in the N-
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terminal, into the Invitrogen vector pCRII-TOPO vector, and then expressed in E. 

Coli. The protein was purified by His Tag pull-down assay, and removed the His 

tag from c-Hairy1. The protein was expected to be 90% pure and to have a 

molecular weight of 30,67 kDa. 

At first, a rabbit polyclonal antibody against the c-terminal portion of the 

protein was produced, and by western blot was verified that the antibody was 

sensitive for c-Hairy1. In this test, bands with the expected molecular weight were 

detected in chicken extracts, using the purified protein as a positive control. 

Controversially, several bands of different molecular weights were also detected in 

both extract and the purified protein. The most intense bands in the extract 

corresponded to approximately 32, 49, 63, 72 and 75 kDa, whereas in the purified 

protein the predominant bands corresponded to 15, 35 and 39 kDa. Results 

suggested that a low specificity of the polyclonal antibody (Figure 1.7). 

 

Regarding these results, a monoclonal antibody against the whole protein 

was produced in an attempt to increase specificity, as it only has affinity for one 

epitope (Alberts et al., 2007). Posteriorly serum from several different immunized 

mice, each specific for one epitope, were sent to be tested by western blot. Results 

reveal different staining for each serum, in which some presented a stronger 

staining than others. The serums were selected based on the presence of the 

predicted molecular weight bands in the samples that were tested, and presented 

Figure 1.7 - Test of the polyclonal antibody against c-

Hairy1. Polyclonal anti-c-Hairy1 was tested in western blot, 

using as samples chicken embryo extract, E, (15 µg of protein/ 

lane), and purified c-Hairy1 protein (140 ng of protein/ lane), H1. 

Several bands were detected, including a band with the 

predicted c-hairy1 molecular weight, indicated with an arrow. 

kDa 
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fewer unspecific bands with unpredicted molecular weights (Figure 1.8). Taking 

these conditions in considerations, the serums with the reference 8C9G4A10C11 

(8C9) and 5C6F11E12 (5C6) were selected, as they detected the predicted band 

of c-Hairy1 in both embryo extracts and purified protein lanes. Due the fact that 

8C9 serum detected fewer unspecific bands than 5C6, it was considered to have 

more specificity to c-Hairy1 protein. Thus 8C9 was developed as a monoclonal 

antibody, however the antibody referenced as 5C6 was asked to be kept by the 

company to possibly validate future studies. 

 

Figure 1.8 - Test for specificity of several hybridomas supernatants against c-
Hairy1, in chick embryo extracts and purified protein. Different hybridomas 

supernatants anti-c-hairy1 were tested in western blot, using as samples chick embryo 
extract, E, (15 µg each), and purified c-Hairy1 protein, H1 (140 ng each). Each serum 
reacts against different epitopes, and are distinguished by their own reference: 2F8F6G8 
(2F8); 1B11A9F12 (1B1); 3D3A7F7 (3D3); 3E5C6H9 (3E5); 7B6B10H1 (7B6); 
8C9G4A10C11 (8C9); 3G3E5G10 (3G3); 4C1G1G10 (4C1); 5C6F11E12 (5C6); 
7E10F11E11 (7E1). 
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1.7. AIMS 

The main goal of the present work was to characterize the chick Hairy1 

protein expression and study its subcellular localization, first characterized at a 

bioinformatics level, taking advantage of computational biology tools to study its 

protein sequence, which was expected to provide a starting point and a solid base 

to further investigate c-Hairy1 protein expression in vitro, correspondent to the 

second goal of this work. 

The specific aims of this work were: 

Bioinformatic analysis:  

 Study of the protein sequence in terms of primary and secondary 

structure, also predicting post-translational modifications and 

subcellular localization signals. 

In vitro study: 

 Test for the specificity, sensibility and efficiency of the previously 

produced monoclonal antibody against c-Hairy1, establishing all the 

optimal parameters for its use on western blot and 

immunofluorescence. 

 Study the expression of c-hairy1 protein in chick embryo and chicken 

embryonic fibroblasts (CEFs), and its sub-localization in the cells, 

using the optimized techniques. 
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2. MATERIALS AND METHODS 

2.1. BIOINFORMATIC APPROACH 

2.1.1. SEQUENCES SEARCHES 

The c-hairy1 DNA and protein sequences were obtained from the National 

Center for Biotechnology Information database (http://www.ncbi.nlm.nih.gov/). The 

chosen sets of sequences were manually verified and a filtration process was 

proceeded in order to eliminate duplicated sequences and therefore reduce 

redundancy. 

A BLASTP search (Altschul et al., 1997) against the c-Hairy1A protein 

sequence was performed, obtaining a total of one hundred sequences producing 

significant alignments and displayed by percentage of maximum identification. For 

the sequences of interest selection, three conditions were considered: highest 

similarity; one protein by species; the species must be relevant for developmental 

biology. 

2.1.2. SEQUENCES ALIGNMENT 

Sequences were aligned with T-Coffee (http://tcoffee.vital-it.ch/cgi-

bin/Tcoffee/tcoffee_cgi/index.cgi?stage1=1&daction=TCOFFEE::Regular) in a 

regular computational mode, and saved in ClustalW format. ESPript (Easy 

Sequencing in Postscript, http://espript.ibcp.fr/ESPript/ESPript/), was used to edit 

these sequence presenting graphical enhancements to the Clustalw outputs. 

2.1.3. PHYLOGENETIC ANALYSIS 

The phylogenetic analysis was performed by Phylogeny.fr 

(http://www.phylogeny.fr/), a web server dedicated to reconstructing and analyzing 

phylogenetic relationships between molecular sequences. Phylogeny.fr runs and 

connects various bioinformatics programs to reconstruct a robust phylogenetic tree 

from a set of sequences. This tree has been assigned with genetic distance values, 

correspondent to the genetic divergence between species. Smaller genetic 
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distances indicate close genetic relationship whereas large genetic distances 

indicate a more distant genetic relationship (Dereeper et al., 2008). 

The phylogenetic tree was generated by the program One Click, in which 

the protein sequences were submitted and analyzed in default parameters. 

2.1.4. ASSESSMENT OF THE PHYSICO-CHEMICAL 

PROPERTIES 

ExPASy ProtParam, (http://web.expasy.org/protparam/) predicted the 

physic-chemical properties of c-Hairy1 isoforms. The software calculated several 

parameters, including the molecular weight, theoretical isoelectric point (pI), amino 

acid composition, atomic composition, extinction coefficient, estimated half-life, 

instability index, aliphatic index and grand average of hydropathicity (GRAVY). For 

this study, the parameters considered were the amino acid composition, molecular 

weight, theoretical pI and GRAVY.  

2.1.5. DOMAIN DETERMINATION 

To evaluate the conserved domains, or functional sites present on the studied 

proteins, was used ExPASy Prosite (http://prosite.expasy.org/), in default 

parameters. Prosite is based on an annotated collection of motif descriptors 

dedicated to the identification of protein families and domains (Sigrist et al., 2002). 

2.1.6. PHOSPHORYLATION SITES AND KINASE 

PREDICTION 

ExPASY’s NetPhos, version 2.0 (http://www.cbs.dtu.dk/services/NetPhos/) and 

the DISPHOS (Disorder-Enhanced Phosphorylation Sites Predictor, version 1.3, 

http://www.ist.temple.edu/DISPHOS) predicted the possible phosphorylation sites 

present on c-Hairy1 sequence. Both softwares predicted serine, threonine and 

tyrosine phosphorylation sites, and confered a score, ranged from 0 to 1, giving the 

information of the probability of those sites to be phosphorylated. The accuracy of 

DISPHOS reaches 81.3% +/- 2.2% for Serine, 74.8% +/- 2.5% for Threonine, and 

79.0% +/- 2.4% for Tyrosine, whereas NetPhos ranges its sensitivity from 69 to 
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96% (Blom et al., 1999; Iakoucheva et al., 2004). NetPhos was used with default 

parameters, and DISPHOS was selected the functional category, regulation. 

ExPasy’s NetPhosk ((http://www.cbs.dtu.dk/services/NetPhosk/) was used to 

predict the kinases with affinity for a possible phosphorylation site. Currently 

NetPhosK covers the following kinases: cyclic AMP dependent protein kinase 

(PKA), protein kinase C (PKC), cyclic GMP-dependent protein kinase (PKG), 

casein kinase 2 (CKII), cyclin dependent kinase (cdk1) (Cdc2), Ca2+/calmodulin-

dependent protein kinase II (CaM-II), ataxia telangiectasia mutated (ATM), DNA-

dependent protein kinase (DNA PK), cyclin-dependent kinase 5 (Cdk5), p38 

mitogen-activated protein kinase (p38 MAPK), Glycogen Synthase Kinase 3 

(GSK3), casein kinase 1 (CKI), protein kinase B (PKB), ribosomal s6 kinase (RSK), 

insulin receptor (INSR), epidermal growth factor receptor (EGFR) and proto-

oncogene tyrosine-protein kinase (Src) (Blom et al., 2004). 

2.1.7. SECONDARY STRUCTURE PREDICTION AND 

SURFACE ACCESSIBILITY 

Merilab’s Jufo9D Server predicted the secondary structure from a protein 

sequence, and has an accuracy of 73.2% for three-state secondary structure 

prediction (http://www.meilerlab.org/index.php/servers/show?s_id=5). It calculated 

for each residue a probability for combinations of α-helices, β-strands and coil 

structures.  

2.1.8. PREDICTION OF SUBCELLULAR LOCALIZATION 

SIGNALS  

The prediction of protein localization sites in cells was carried out by NucPred 

(http://www.sbc.su.se/~maccallr/nucpred/cgi-bin/multi.cgi) combined with PSORT II 

(http://psort.hgc.jp/form2.html), in order to increase confidence of the results. In the 

table 2.1 are represented the specificities and sensitivities of the different 

predicting nuclear localization methods. These programs were tested on human 

protein sequences, non-predicted to be transmembrane proteins. The performance 
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of NucPred and PSORT II are roughly equivalent, though presenting different 

sensitivities (Table 2.1). (Brameier et al., 2007). 

Table 2.1 – Specificities and sensitivities for different predictors of subcellular 
localization signal programs. 

 

 

 

The NucPred results should be interpreted based on a score threshold, in 

which scores greater than or equal to this threshold are predicted to spend time in 

the nucleus. Higher thresholds have greater specificity and lower sensitivity, as 

shown in table 2.2. 

Table 2.2 – Specificities and sensitivities correspondent to different NucPred score 
thresholds. 

 

 

 

 

 

PSORT II used a k-nearest neighbor (k-NN) algorithm for assessing the 

probability of localizing at each candidate sites. It assigned a percentage score 

corresponding to the probability of the protein to be nucleus localized (Horton and 

Nakai, 1997). 

Nuclear export signals (NES) were predicted using NetNES 1.1 server, 

which search for leucine-rich nuclear export signals combining neural networks and 

hidden Markov models, assigning a score correspondent to the probability of being 

a NES (la Cour et al., 2004).  

Method Specificity Sensitivity 

NucPred (0.8 threshold) 0.615 0.307 
NucPred (0.5 threshold) 0.480 0.626 
PSORT II 0.466 0.697 
BaCelLo 0.668 0.614 

NucPred score 
threshold 

Specificity Sensitivity 

0.10 0.45 0.88 
0.20 0.52 0.83 
0.30 0.57 0.77 
0.40 0.63 0.69 
0.50 0.70 0.62 
0.60 0.71 0.53 
0.70 0.81 0.44 
0.80 0.84 0.32 
0.90 0.88 0.21 
1.00 1.00 0.02 
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2.2. PREPARATION OF BIOLOGICAL MATERIAL 

2.2.1. EGGS AND EMBRYOS 

Fertilized chick (Gallus gallus) eggs were purchased from a commercial 

source, and until incubated, were maintained at 16ºC. Eggs were then placed in 

incubators at 38ºC with a water container, in order to humidify the environment and 

stabilize the temperature. The eggs were incubated for a specific time period, so 

the embryos reached the stages required, according the development table of 

Hamburger and Hamilton (1992). 

2.2.2. CULTURE AND USE OF PRIMARY CHICKEN EMBRYO 

FIBROBLASTS 

Chicken embryonic fibroblasts (CEFs) isolated from 14 day embryos, were 

maintained at 37 ºC in a humidified 5% CO2 environment and grown as 

monolayers in Dulbecco’s modified Eagle’s medium (31966-021, Gibco) 

supplemented with 10% fetal bovine serum (FBS; 10500, Gibco), 2mM of L-

Glutamine (25030, Gibco) and 550 units of penicillin and 5500µg of an antibiotic-

mixture, Penicillin Streptomycin, (15140, Gibco). Cells were grown to 75-100% 

optical confluence before they were detached by incubation with 0.05% trypsin-

EDTA (25300, Gibco) for 5 min, at 37ºC. Afterwards cells were centrifuged for 5 

min at 1000 rpm and resuspended in medium. Cells were cultured in 75 cm 2 

culture flasks containing a final complete growth media volume of 10 mL. 

Whenever necessary, the cell number was determined with the help of a 

haemocytometer. 

2.3. MOLECULAR BIOLOGY 

2.3.1. PROTEIN EXTRACTION 

Cells were harvested, and washed twice in 10 ml of PBS to eliminate FBS 

residues. Supernatant was discarded and cells were resuspended with lysis buffer 

(Appendix I). The extract was stored at -20ºC. 
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Chick embryos of stages HH10-13, were collected and washed twice with PBS, 

and then added 10 µL/embryo of lysis buffer. Extracts were well homogenized with 

the help of a vortex, and stored at -20 ºC.  

2.3.2. DETERMINATION OF PROTEIN CONCENTRATION  

 Protein concentration was assessed with the Thermo Scientific NanoDrop 

2000c Spectrophotometer, and determined by Bradford assay, using Quick Start 

Bradford Protein Assay reagent from Biorad. As determined by the reagent 

manual, 50:1 reagent / sample volume ratio was used to detect a concentration 

range between 0.125 mg/mL to 1.0 mg/mL, which corresponds to the detection 

limit of the reagent. 

 The Bradford assay requires a standard curve before sample proteins can 

be measured. A standard curve was generated using a serial dilution of BSA 

(Bovine Serum Albumin) ranging from 0,0675 mg/mL to 1 mg/ml, represented in 

the figure 2.1 with its values discriminated in the table 2.3. 

Table 2.3 – Measurement of absorbance of serial dilutions of BSA. 

 

 

 

 

 

 

 

 

 

 

Measure mg/mL Avg Abs. #1 #2 #3 

Standard 1 0,0675 0,009 0,011 0,006 0,010 

Standard 2 0,1250 0,019 0,020 0,019 0,018 

Standard 3 0,2500 0,038 0,038 0,040 0,037 

Standard 4 0,5000 0,067 0,067 0,068 0,067 

Standard 5 1,0000 0,112 0,116 0,111 0,110 

y = 0,1086x + 0,0068 
R² = 0,9868 

0

0,05

0,1

0,15

0 0,2 0,4 0,6 0,8 1 1,2

A
b

so
rb

an
ce

 

Concentration (mg/ml) 

Standart Curve 
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Figure 2.1 – Graphical representation of the standard curve of BSA dilutions. 
Graph was created using measurements of three replicates of different dilutions of BSA 
protein, contained in table 2.3. The linear equation was determined using the average 
absorbance of these values, and corresponds to y=0,1086x+0,0068, with an 
R2=0,9868. 
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Samples were diluted in order to be contained in the standard curve, and 

three replicates of 1 µL of sample were diluted in 50 µL of Bradford reagent, 

waiting for 5 minutes, after which, 2 µL of the solution is pipetted onto a 

measurement pedestal. The final concentration was determined by the mean of the 

results, and multiplied by the dilution factor. 

2.3.3. SDS-PAGE (SODIUM DODECYL SULFATE-

POLYACRYLAMIDE GEL ELECTROPHORESIS) AND 

WESTERN BLOTTING 

Samples were prepared to a determined amount of protein, with 10% of 

loading buffer (Appendix I). Then they were denatured for 10 minutes at 95ºC and 

loaded onto a 10% polyacrilamide gel (Appendix I). In order to monitoring 

electrophoretic separation and determine the molecular weight of the bands, a 5 µL 

of dual color marker was also loaded in the gel (#161-0374, Biorad Precision Plus 

Protein Dual Color Standards). The electrophoresis was carried out by a Mini-

PROTEAN Tetra Electrophoresis System (Bio-Rad) at 15mA/gel for the run in the 

stacking gel and then raised to 30mA/gel. 

After electrophoresis, the proteins on the gel were transferred to a PVDF 

membrane (88518, Thermo Scientific), sandwiched between three chromatography 

paper sheets on each side soaked in transfer buffer (Appendix I). The transfer was 

carried out by a Trans-Blot SD Semi-Dry Transfer Cell (170-3940 Bio-Rad), at 

200mA, for 45 min.  

Blocking of non-specific binding was achieved by placing the membrane in 

a10% (w/v) solution of non-fat milk in PBS 0.1% Tween 20 (PBSw). 

For protein detection, the membrane was incubated with the primary antibody 

in 1% non-fat milk in PBSw, overnight, at 4 ºC, with shaking. After rinsing the 

membrane, three times, with 1% non-fat milk in PBSw, to remove unbound primary 

antibody, the membrane was incubated with the secondary antibody conjugated 

with horseradish peroxidase (HRP) (Appendix II) and diluted at a specific 

concentration in 1% non-fat milk in PBSw. The incubation lasted for 1 hour, at 
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room temperature, with shaking. After rinsing the membrane, the reactivity of HRP 

was developed by Biorad Immun-Star WesternC Chemiluminescent kit (more 

sensitive) (#170-5070, Biorad), or SuperSignal West Pico Chemiluminescent 

Substrate (34080, Thermo Scientific) (less sensitive), depending on the sensitivity 

of the chemiluminescent substrate the desired. Digital images of the western 

blotting were obtained in a ChemiDoc XRS System (Bio-Rad) with Image Lab 

software. The molecular weights of the bands were determined by the Image Lab 

software, using the marker as reference of the molecular weight sizing. 

2.3.4. IMMUNOFLUORESCENCE 

Immunofluorescence uses the specificity of antibodies labeled with 

fluorochromes to target specific biomolecules within a cell, allowing their 

visualization in the sample (Oliver and Jamur, 2010). In this work, 

immunofluorescence was performed using sequentially two antibodies: a primary 

antibody, that recognizes and binds to the target molecule, and a secondary 

antibody, which carries the fluorophore and recognizes and binds to the primary 

antibody. 

Cells were grown on 22x22 mm microscope cover glasses (631-1570, VWR) 

until they reached approximately 70% of confluence. Cells were fixed in 

methanol/2mM EGTA for 3 minutes at 4º C, hydrated three times with TBS 

(Appendix II) permeabilized with TBS 0.1% Triton-X100, washed three times with 

TBS and blocked with 10% (w/v) FBS in TBST (TBS 0,05% Tween 20) for 30 

minutes at 4ºC , and incubated with primary antibody in 5% (w/v) FBS in TBST 

diluted for a specific concentration, for an overnight period at 4ºC. After rinsing 

three times, 5 minutes, with TBS 1X, cells were incubated with the secondary 

antibodies (Appendix II) in 5% (w/v) FBS, TBST diluted to a specific concentration 

for 2 hours, at room temperature. The cover glasses were rinsed, once again, three 

times with TBST and one time with TBS, prior to be mounted in microscope slides 

(H868, ROTH) in Glycerol/n-propyl gallate mounting medium (Appendix I) with 1 

µg/mL of DAPI (4'-6-diamidino-2-phenylindole). Cells were examined with a 

magnification 10000x magnification by standard fluorescence microscopy and 
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differential interference contrast microscopy (DIC). Image stacks with Z-step of 220 

nm were acquired by Zeiss Axio Imager Z2 microscope (Zeiss) using Zeiss 

AxioVision software. 

The same procedures described above were performed for negative controls, 

with the exception of the incubation with the primary antibody. 

2.4. DIGITAL IMAGE PROCESSING AND 

DECONVOLUTION 

The images obtained by immunofluorescence were submitted to a process 

of deconvolution using Huygens Software (Scientific Volume Imaging BV, 

Hilversum, The Netherlands). Deconvolution consists on an algorithm-based 

process used to reverse the effects of convolution on recorded data. It uses the 

imaging properties of the optical system in the form of the point spread function 

(PSF), which describes the response of an imaging system to a point source or 

point object, for ‘putting back the light where it is coming from’. Deconvolution very 

effectively removes noise and background and eliminates stray light and blur 

caused by distortion. The technique yields images of appreciably increased 

contrast and resolution. 

The same deconvolution parameters were used for all the analyzed images, 

using an absolute background value calculated from the average of automatically 

estimated background values using 15 images of negative controls (only stained 

with secondary antibodies). The absolute background value for c-Hairy1 channel 

was 325, and for DAPI channel was used the value 260. 

2.4.1. QUANTIFICATION OF IMAGES  

Huygens Software interactive Object Analyzer, built a 3D image using the 

obtained deconvolved images, and analyzed all the objects present, and obtained 

the objects statistics, including geometrical data, spatial location, relation with 

neighbors and/or reference objects and degree of channels overlap, a parameter 

used to calculate the objects colocalization. 

http://en.wikipedia.org/wiki/Point_source
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For calculations of cell subcellular compartments volume, such as nucleus 

and cytoplasm, a region of interest (ROI), was selected manually (Figure 2.2), and 

the Software calculated the total volume occupied by the selection, and the volume 

of its individual objects. Cytoplasm volume was calculated subtracting the nucleus 

to whole cell total volume. 

  

Figure 2.2 – Representation of the selection of a ROI of a whole cell and its nucleus.  ROI was 
determined manually using image of DIC, and the nucleus stained with DAPI as reference for the 
Whole cell and nucleus ROI selection, respectively. 
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3. RESULTS 

3.1. BIOINFORMATIC ANALISYS OF C-HAIRY1 

SEQUENCE 

3.1.1. PRIMARY STRUCTURE ANALYSIS 

Chick Hairy1A sequence was collected from the NCBI protein database, with 

the accession number of AAP44728.1. ExPASy‘s software, Protparam, predicted 

the physico-chemical properties of the protein, including the molecular weight, 

theoretical isoelectric point, the grand average of hydropathicity (GRAVY) (Table 

3.1) and the amino acid composition (Table 3.2).  

The software predicted a molecular weight of approximately 30,7 kDa, and 

results revealed that c-Hairy1A has a basic isoelectric point, and negative GRAVY 

values. 

Table 3.1 - Protparam predicted molecular weight, theoretical isoelectric point and grand 

average of hydropathicity for c-Hairy1A. 

 

 

 

In terms of amino acid composition, alanine, proline and serine revealed to be 

amino acids with greater percentage of abundance (Table 3.2). 

  

 c-Hairy1A 

Nr of aa 290 

Molecular weight (Da) 30666,1 

Theoretical pI 9,56 

GRAVY -0,268 
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Table 3.2 - Amino acid composition and respective percentage of c-HairyA. 

Residues Nr. of residues Percentage (%) 

Alanine (A) 35 12.1 
Arginine (R) 16 5.5 
Asparagine (N) 10 3.4 
Aspartic acid (D) 8 2.8 
Cystein (C) 4 1.4 
Glutamine (Q) 11 3.8 
Glutamic acid (E) 13 4.5 
Glycine (G) 21 7.2 
Histidine (H) 8 2.8 
Isoleucine (I) 9 3.1 
Leucine (L) 26 9.0 
Lysine (K) 14 4.8 
Methionine (M) 8 2.8 
Phenylalanine (F) 7 2.4 
Proline (P) 33 11.4 
Serine (S) 28 9.7 
Threonine (T) 15 5.2 
Tryptophan (W) 2 0.7 
Tyrosine (Y) 4 1.4 
Valine (V) 18 6.2 

Prosite identified the conserved protein and functional sites of the c-Hairy1 

variants using its sequences, detecting the basic, HLH and Orange domains, and 

also WRPW motif (Table 3.3). 

Table 3.3 - Predicted positions of the conserved domains and motifs predicted for c-

Hairy1A 

Domain Position Length Sequence 

Basic 35-48 14 HRKSSKPIMEKRRR 
HLH 49-93 58 ARINESLGQLKMLILDALKKDSSRHSKL

EKADILEMTVKHLRNLQ 
Orange 111-144 34 YRAGFNECMNEVTRFLSTCEGVNADV

RARLLGHL 
WRPW 287-290 4 WRPW 

    

3.1.2. POST-TRANSLATIONAL MODIFICATIONS 

NetPhos and DISPHOS were used, in order to increase the accuracy of the 

predicted phosphorylation sites. The appendix III contains all the obtained data, 

which includes all the residues analyzed and the assigned scores. 

http://en.wikipedia.org/wiki/Methionine
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Both programs detected a total number of 47 phosphorylation sites, although 

they showed discrepancies on the number of sites that scored higher than 0,5 (27 

and 21 for NetPhos and DISPHOS respectively) (Figure 3.1).  

 

 

 

 

 

 

Figure 3.1- Graphical representation of the total phosphorylation sites predicted by 
NetPhos and DISPHOS and the ones with score higher than 0,5. Data was taken fom 

the tables presented in apendix C. 

Table 3.4 presents the consensus phosphorylation sites in which both 

softwares assigned scores higher than 0,5, and 17 phosphorylation sites were 

selected. 

Table 3.4 - Selected phosphorylation sites predicted by NetPhos (NP) and DISPHOS 

(DP). 

 

 

 

 

 

 

 

 

 

 

Pos. Res. NP 
Score 

DP 
 Score 

Avrg. 

13 S 0,951 0,903 0,927 

21 S 0,593 0,880 0,737 

23 S 0,583 0,926 0,755 

25 T 0,679 0,761 0,720 

31 S 0,997 0,977 0,987 

33 S 0,991 0,988 0,990 

38 S 0,997 0,981 0,989 

39 S 0,879 0,951 0,915 

70 S 0,987 0,884 0,936 

71 S 0,727 0,888 0,808 

74 S 0,997 0,922 0,960 

247 S 0,600 0,742 0,671 

251 S 0,779 0,598 0,689 

257 S 0,986 0,567 0,777 

273 S 0,901 0,546 0,724 

277 S 0,979 0,577 0,778 

285 S 0,994 0,961 0,978 

    

Ser Thr Tyr Ser Thr Tyr

20 

6 1 

19 

2 0 

28 
15 

4 

28 
15 

4 

Phosphorylation Sites 

Score ≥ 0,5 Total

NetPhos DISPHOS 
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Kinase specific phosphorylation sites were predicted by NetPhosK and it 

identified 12 possible kinases with affinity to phosphorylate c-Hairy1A, described in 

Table 3.5 with their correspondent scores. Correlating the phosphorylation sites 

determined in previous results shown in Table 3.4 and the predicted kinases, a 

graphic that constitutes figure 3.2, was constructed showing the distribution of 

these kinases. 

Table 3.5 – Kinases that were predicted to phosphorylate c-Hairy1A. 

Site Kinase Score 

T-5 CKII 0.54 
T-11 PKG 0.59 
S-23 PKC 0.55 
T-25 p38MAPK 0.54 
T-25 cdk5 0.65 
S-31 PKG 0.56 
S-33 RSK 0.54 
S-33 PKC 0.64 
S-39 RSK 0.52 
S-39 PKC 0.54 
S-39 PKA 0.67 
S-54 DNAPK 0.51 
S-54 PKC 0.59 
S-54 PKA 0.59 
S-70 PKC 0.71 
S-71 PKC 0.61 
S-74 CKII 0.54 
S-127 PKA 0.67 
S-127 PKG 0.54 
S-197 cdk5 0.50 
T-243 CKI 0.56 
S-247 PKC 0.63 
T-252 PKC 0.61 
T-252 cdc2 0.52 
T-253 p38MAPK 0.51 
S-257 p38MAPK 0.50 
S-257 cdk5 0.51 
T-263 PKC 0.50 
S-273 DNAPK 0.63 
S-273 ATM 0.52 
S-277 GSK3 0.51 
S-285 RSK 0.66 
S-285 PKC 0.53 
S-285 PKA 0.79 
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3.1.3. SECONDARY STRUCTURE ANALYSIS 

The Jufo9D Server calculated the secondary structure, predicting three 

secondary structures types, α-helices, β-strands and coil (turns, loops or random 

coil), and assigned a probability score for combinations of these structures. 

NetSurfP calculated the surface accessibility, which determines whether residues 

are exposed to the surface or buried in the protein. The c-Hairy1 secondary 

structure and surface accessibility prediction are visual represented in figure 3.3, 

including also the predicted phosphorylation sites described in Table 3.4. The 

conserved domains bHLH and orange domains, and WRPW motif, are also 

highlighted. 
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Figure 3.2 – C-Hairy1 specific kinases and the distribution of the predicted 
phosphorylation sites. This graphical representation was constructed correlating the 

results obtained in table 3.4 and 3.5, showing the kinases that have affinity to 
phosphorylate the most probable phosphorylation sites found in c-Hairy1A sequence. 
PKC- Protein Kinase C,  p38 MAPK - p38 Mitogen-Activated Protein Kinase; Cdk5 - Cyclin-
dependent kinase 5; PKG - GMP-dependent Protein Kinase, RSK - Ribosomal S6 Kinase; 
PKA - cyclic AMP dependent Protein Kinase; CKII - Casein Kinase 2; ATM - Ataxia 
Telangiectasia Mutated; DNAPK DNA-dependent Protein Kinase; GSK3 - Glycogen 
Synthase Kinase 3. 
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c-Hairy1A 

                     *         *         *         *         *         *         *         *         *         * 

Query     1 MPADTGMEKPTASPIAGAPASASHTPDKPRSASEHRKSSKPIMEKRRRARINESLGQLKMLILDALKKDSSRHSKLEKADILEMTVKHLRNLQRAQMAAA 100 

Coil      1 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC      CCC                          CCCCC                          CCC 100 

Strand    1                                                                                                      100 

Helix     1                                <---->   <------------------------>     <------------------------>    100 

Exposed   1 EEEEEEEEEEEEEEE EEE EEEEEEEEEEEEEEEEEEEEE  EEE  EE EE  EE  E   E  EEEEEEEEE E  E  E   E  EE EEEEEEEE 100 

Buried    1                B   B                     BB   BB  B  BB  BB BBB BB         B BB BB BBB BB  B         100 

Phospho   1             +       + + +     + +    ++                              ++  +                           100 

 

 

                     *         *         *         *         *         *         *         *         *         * 

Query   101 LSADPSVLGKYRAGFNECMNEVTRFLSTCEGVNADVRARLLGHLSACLGQIVAMNYLPPPPAGQPAHLAQPLHVQLPPTTTGAVPVPCKLEPTEALSPKV 200 

Coil    101 CCCCCC       C              CCCCC               C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 200 

Strand  101                        SSSSS                                                                         200 

Helix   101       <-----> <------->           <------------> -                                                   200 

Exposed 101 EEEEEE  EE  E  EE  E   E  EE EE EEE  EE  E  EE  EE EE E  EEE          E EEE  EEE EE  EE E EE E    E  200 

Buried  101       BB  BB BB  BB BBB BB  B  B   BB  BB BB  BB  B  B BB   BBBBBBBBBB B   BB   B  BB  B B  B BBBB B 200 

Phospho 101                                                                                                      200 

 

 

                     *         *         *         *         *         *         *         *         *         * 

Query   201 YGGFQLVPATDGQFAFLIPNPAFPPGSGPVIPLYANANVPVSTSGGSGNASTTPSASPVQGLTSFGHSVVPASQAGSPIAERRESVWRPW           300 

Coil    201 CCC   CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC           300 

Strand  201    SSS                                                                                               300 

Helix   201                                                                                                      300 

Exposed 201  E       EE E          EEEE        EEEEE EEEEEE E EEEEEEEEEEEEE EEEE EEEEEEEEEEEEEEEE   EE           300 

Buried  201 B BBBBBBB  B BBBBBBBBBB    BBBBBBBB     B      B B             B    B                BBB             300 

Phospho 201                                               +   +     +               +   +       +                300   

 

Basic    HLH    Orange    WRPW 
 

 

Figure 3.3 - C-Hairy1A secondary structure, surface accessibility and 
phosphorylation sites. Secondary structure was computed by Jufo9D from c-Hairy1A 

sequence. From the protein sequence (Query) is calculated three different secondary 
structures (Helix, Strand Coil), and are represented in the figure the secondary structure 
that registered highest score. Conserved domains are also highlighted in the protein 
sequence (Basic motif, HLH, Orange and WRPW). Surface accessibility was predicted in 
two classes as either exposed or buried. To each residue is associated a secondary 
structure type and surface accessibility class. The phosphorylation sites are represented in 
Table 3.4. Asterisks indicate a 10 residue interval. 

3.1.4. SUBCELLULAR LOCALIZATION OF C-HAIRY1 AND 

ITS HOMOLOGS PREDICTION 

A search for c-Hairy1 homologs was performed, in order to increase 

robustness of the subcellular localization signals prediction. Running a protein 

BLAST against the c-Hairy1A, several homologs were detected as producing 

significant alignments. Four proteins were selected, which fulfilled the requirements 

mentioned in the Material and Methods, and are represented in the Table 3.6, by 

ordained by E-values of the alignment. Sequences of the homologs proteins are 

described in Appendix III. 
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Table 3.6 – Selection of c-Hairy1A protein homologs obtained from BLASTP and its 
respective accession codes, E-value and maximum identity of the alignment. 

Order Accession Name Organism E-value 
Max 

identity 

1º AAP44728.1 c-Hairy1A Gallus gallus 0.0 100% 

7º NP_001082574.1 X-Hes4A  Xenopus laevis 5e-147 74% 

8º NP_571948.1 z-Her1 Danio rerio 2e-146 75% 

41º NP_005515.1 h-Hes1 Homo sapiens 8e-101 59% 

52º NP_032261.1 m-Hes1 Mus musculus 1e-98 65% 

A phylogenetic tree was generated by Phylogeny.fr 

(http://www.phylogeny.fr/) and visualy is possible to distiguish two clusters which 

can be charaterized in non mamalian, and mamalian proteins (Figure 3.4). 

According to the distance scale given by the software it’s observable that the 

zebrafish Hes1 is the closest analised protein to c-Hairy1, next to the Xenopus 

leavis Hes4A. The mammalian Hes1 proteins belonging to mouse and human 

presented a greater genetic distance. 

 

Figure 3.4 – Phylogenetic tree of c-Hairy1A homologs. Distance scale is provided and 
given as a reference for the comprehension of the tree.  

After relating the proteins phylogenetically, a prediction of the proteins 

localization in the cell was performed, using NucPred and PSORT II programs. 

NucPred assigned a score correspondent to the probability of the proteins to spend 

some time in the nucleus, and the results must be analyzed by the aplication of a 

threshold (see Table 2.2, Materials and Methods). 

 PSORT II assignes a k-NN value, which represent a probability of the 

proteins to be localized in different compartiments of the cell, e.g., nucleus, 

cytoplasm, mithocondria, vesicles of secretory system (VSS) and endoplasmic 

reticulum (ER).  
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The results are shown in table 3.7, and according to NucPred results, all the 

homologs scored higher than 0,5. PSORT II predicted all the homologs to be 

localized mainly in the nucleus, although the percentage viried. All the analized 

homologs shared a percentage of 4.3% to be localized either on vesicles of 

secretory system or endoplasmatic reticulum. 

Table 3.7 - Prediction of subcellular localization of c-Hairy1 homologs. 

* Nucleus; **Cytoplasm; *** Mithocondria; **** Vesicles of Secretory System; *****Endoplasmic 

Reticulum 

Figure 3.5 shows the homolog multiple alignemt provided by NucPred. Each 

residue was colored according to the probability of being a nuclear signal, and 

colors range from blue (negative) to red (positive). Observing the results it’s 

possible to notice the presence of a single conserved Nuclear Localization Signal 

(NLS) (KRRR) located at the end of the basic domain. The predicted 

phosphorylation sites (Table 3.4) were also indicated in the alignment, in order to 

observe the conservation of these residues in the homolog sequences. 

  

Protein NucPred 

scores 

PSORT II k-NN (%) 

Nuc* Cyt** Mit*** VSS**** ER***** 

c-Hairy1A 0.56 60.9 17.4 13.0 4.3 4.3 

X-Hes4A 0.81 56.5 17.4 17.4 4.3 4.3 

z-Hes1 0.59 65.2 17.4 8.7 4.3 4.3 

m-Hes1 0.72 60.9 13.0 17.4 4.3 4.3 

h-Hes1 0.67 60.9 13.0 17.4 4.3 4.3 
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c-Hairy1A 0.56 MPADTGMEKPTASPIAGAPASASHTPDKPRSASEHRKSSKPIMEKRRRARINESLGQLKM  

X-Hes4A   0.81 MPADT-MEKPTASPIAGAPASSAQTPDKPKSASEHRKSSKPIMEKRRRARINESLGQLKT  

z-Hes1    0.59 MPADN-MEKQTASPIAGAPASGSHTPDKPKNASEHRKSSKPIMEKRRRARINESLGQLKT  

m-Hes1    0.72 MPADI-MEKNSSSPVAATPASVNTTPDKPKTASEHRKSSKPIMEKRRRARINESLSQLKT  

h-Hes1    0.67 MPADI-MEKNSSSPVAATPASVNTTPDKPKTASEHRKSSKPIMEKRRRARINESLSQLKT  

          cons MPAD  MEK taSPiAgaPASv  TPDKPk ASEHRKSSKPIMEKRRRARINESLgQLKt 

Phospho                    +       + + +     + +    ++    

 

c-Hairy1A 0.56 LILDALKKDSSRHSKLEKADILEMTVKHLRNLQRAQMAAALSADPSVLGKYRAGFNECMN  

X-Hes4A   0.81 LILDALKKDSSRHSKLEKADILEMTVKHLRNLQRVQMTAALTSDPSVLGKYRAGFNECTN  

z-Hes1    0.59 LILDALKKDSSRHSKLEKADILEMTVKHLRNLQRVQMSAALSADTNVLSKYRAGFNECMN  

m-Hes1    0.72 LILDALKKDSSRHSKLEKADILEMTVKHLRNLQRAQMTAALSTDPSVLGKYRAGFSECMN  

h-Hes1    0.67 LILDALKKDSSRHSKLEKADILEMTVKHLRNLQRAQMTAALSTDPSVLGKYRAGFSECMN  

          cons LILDALKKDSSRHSKLEKADILEMTVKHLRNLQRaQMtAALs DpsVLgKYRAGFnECmN 

Phospho                 ++  +   

 

c-Hairy1A 0.56 EVTRFLSTCEGVNADVRARLLGHLSACLGQIVAMNYL---------PPPPAG------QP  

X-Hes4A   0.81 EVTRFLSTCEGVNTEVRTRLLGHLSSCLGQIVAMNYQ---------QPPSS-------Q-  

z-Hes1    0.59 EVTRFLSTCEGVNTEVRSRLLNHLSGCMGQMMAMNYP---------QPAPA-------QQ  

m-Hes1    0.72 EVTRFLSTCEGVNTEVRTRLLGHLANCMTQINAMTYPGQAHPALQAPPPPPPSGPAGPQH  

h-Hes1    0.67 EVTRFLSTCEGVNTEVRTRLLGHLANCMTQINAMTYPGQPHPALQAPPPPPP-GPGGPQH  

          cons EVTRFLSTCEGVNteVRtRLLgHLsnCmgQi AMnYp         pPpp        Qh  

Phopho 

 

c-Hairy1A 0.56 AHLAQPLH--VQLPPTTTGA-VPVPCKLEPTEALSPKVYGG-FQLVPATDGQFAFLIPNP  

X-Hes4A   0.81 ----QPLH--VQLPSSTPAP-MPISCKVNPAEAISPKVFQGGFQLVPATDGQFAFLIPNP  

z-Hes1    0.59 AHLAQPLH--VQLPSTLPINGASMGSKLSPSEAVSPKVFGG-FQLVPATDGQFAFLIPNP  

m-Hes1    0.72 APFAPPPPPLVPIPGGAAPPPGSAPCKLGSQAGEAAKVFGG-FQVVPAPDGQFAFLIPNG  

h-Hes1    0.67 APFAPPPP-LVPIPGGAAPPPGGAPCKLGSQAGEAAKVFGG-FQVVPAPDGQFAFLIPNG  

          cons a  aqPlh  VqlP    pp g apcKlgpqeaespKVfgG FQlVPAtDGQFAFLIPNp  

Phospho 

 

c-Hairy1A 0.56 AFPPGSGPVIPLYANANVPVSTSGGSGNASTTPS-ASPVQGLTSFGHSVVPASQAGSPI-  

X-Hes4A   0.81 AYTSSPGPVIPLYANANV-----TSPGGRQSQ----SPVQGLTTFGHKMPHMAQAVSPLG  

z-Hes1    0.59 AFASATTPVIPLYANASVPVTVNASPVQASSAPTVASPVQGMTSFSG----VPQAVSPVG  

m-Hes1    0.72 AFAHS-GPVIPVYTSNSG------------------------TSVG------PNAVSPS-  

h-Hes1    0.67 AFAHS-GPVIPVYTSNSG------------------------TSVG------PNAVSPS-  

          cons Afa s gPVIPlYanasv                  spvqg Tsfg      pqAvSPs  

Phospho                                 +   +   +                  +   +       

 

c-Hairy1A 0.56 ----AERRESVWRPW--  

X-Hes4A   0.81 GSTGADSAESVWRPW--  

z-Hes1    0.59 VSAGAESNEPVWRPW--  

m-Hes1    0.72 -SGSSLTSDSMWRPWRN  

h-Hes1    0.67 -SGPSLTADSMWRPWRN  

          cons  sgga  aesvWRPW  

Phospho                 + 

 
  

 

 

Figure 3.5 –Multiple alignment of c-Hairy1 colored for the presence of NLS, and 
predicted phosphorylation sites. NucPred performed a ClustalW multiple alignment of 

the set of homologs, c-Hairy1A, X-Hes4A, z-Hes1, m-Hes1 and h-Hes1. Each residue was 
colored from blue (negative) to red (positive), indicating the probability to be part of a NLS.  
In consensus sequence, the residues annotated with uppercase letters represent an 
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unanimity. In cases of nonunanimity the most common residue is annotated with 
lowercase letters. The predicted phosphorylation sites (Table 3.4) were also indicated in 
the alignment. 

The prediction of the nuclear localization of c-Hairy1 does not preclude the 

possibility of it to be export from the nucleus to cytoplasm, and if so, bioinformatics 

prediction of nuclear export signal (NES) would be rather useful. These are short 

sequences comprising four spaced hydrophobic residues (denoted Φ1–Φ4) and 

following the consensus Φ1-(x)2–3-Φ2-(x)2–3-Φ3-x-Φ4, where x is an amino acid 

preferentially negative charged, polar or small (Kutay and Guttinger, 2005).  

NetNES 1.1 searched for nuclear export signals (NES) in the c-Hairy1 

homologs sequences, calculating a score for each residue of the probability to be 

part of a NES. Table 3.8 comprises the two potential NESs showing higher NES 

activity in the homolog sequences. Both potential NES were highly conserved in 

the analyzed homologs. NES1 is not a perfect NES consensus, as it has only one 

amino acid between the second and third hydrophobic residues. The software also 

registered high NES score in alanine residue (Ø4?) of the mammal homologs 

sequences, and a lower but still high score in c-Hairy1 sequence. The leucine 

(Ø5?) next to alanine was also considered to belong to NES since it is a 

hydrophobic residue. Only the isoleucine (Ø2) reveals a consistent high score in 

every analyzed sequence.  

Table 3.8 – Comparison of NetNES predicted nuclear export sequences 
(NESs) with consensus NES motifs in c-Hairy1 protein and homologs. In the 

consensus NES sequence, X indicates any amino acid and Ø indicates a hydrophobic 
residue, such as leucine, isoleucine, valine or methionine. Letters highlighted in green 
correspond to critical residues to NES activity (NetNES score>0.5), in orange are 
highlighted residues that scored between 0.3 and 0.5, and yellow highlighted residues 
indicate residues with low scores, however represent hydrophobic residues. 

 

 
Consensus 

NES1 
Ø1XXØ2XØ3XØ4?Ø5? 

NES2  
Ø1XXXØ2XXØ3XØ4 

c-Hairy1 58 LKMLILDAL 66 76 LEKADILEMTV 86 

X-Hes4A 57 LKTLILDAL 65 75 LEKADILEMTV 75 

z-Hes1 57 LKTLILDAL 65 75 LEKADILEMTV 75 

m-Hes1 57 LKTLILDAL 65 75 LEKADILEMTV 75 

h-Hes1 57 LKTLILDAL 65 75 LEKADILEMTV 75 
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The results are also represented in the form of a graphic, combining results 

of neural network and hidden Markov models, resulting on a score of NES 

calculated by the NetNES server (Figure 3.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 - NetNES prediction of the Hairy homologs. All the analyzed sequences 

presented a region where is evident higher peaks of NES Score, and significant 
disturbances of hidden Markov models (HMM), between residues 50 and 100. Although 
the mammalian homologs revealed more accentuated peaks, and crossed the threshold 
line. NN - Neural Network; HMM – Hidden Markov Model. 
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3.2. ASSESSING THE C-HAIRY1 ANTIBODY SPECIFICITY 

AND SENSITIVITY 

In order to test the specificity and sensitivity of the purchased monoclonal 

antibody against c-Hairy1, protein extracts of chicken embryo stage HH10-13, and 

chicken embryonic fibroblasts (CEFs) were subjected to SDS-PAGE, followed by 

western blot. The purified c-Hairy1 protein was used as positive control, in order to 

confirm that the bands detected in the extracts corresponded to the same 

molecular weights as the purified protein. 

Bradford method was used to determine the protein extracts concentration, 

and the concentration of the chick embryo and CEFs extracts was established as 

13,51 mg/ml and 11,59 mg/ml respectively. The purified protein concentration has 

been already determined by the company that produced it as being 0,14 mg/ml. 

As the purified protein was used as positive control of this experience, it was 

needed to establish the most appropriate loading amount. So, different quantities 

of protein were loaded in the SDS-PAGE gel. Proceeding with a western blot, it 

was possible to detect two bands with 35 and 56 kDa, of which molecular weight 

was estimated by Image Lab software using Marker lane as reference for 

calculation. Results revealed a consistent increase of intensity of the bands in 

higher amounts of protein loaded, but the same was not observed relatively to the 

higher molecular weight band. The optimal loading amount of purified protein was 

settled as 100 ng per lane, as it revealed to be the lowest amount in which the 35 

kDa band was best visible (Figure 3.7). 
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Figure 3.7 - Determination of the most appropriate loading amount of purified 
protein for c-Hairy1 detection by western blot. Amounts of 35, 70, 100 and 140 ng of 

protein/lane of c-Hairy1 purified protein were loaded in a SDS-PAGE gel. Western blot for 
c-Hairy1 detected two bands corresponding to 35 and 56 kDa, and is observable and 
gradual increase of lower band intensity. For detection of c-Hairy1, several amounts of the 
protein were loaded in the SDS-PAGE gel, and membrane was blotted with 1:100 of the 
monoclonal α-c-Hairy1 primary antibody, and 1:1000 of α-mouse secondary antibody. The 

membrane was exposed with Biorad Immun-Star WesternC Chemiluminescent Kit. 

With the loading amount of purified protein established, the conditions were 

then settled to determine the optimal loading amount of protein extracts. First, and 

because the protein was expected to be expressed in chick embryos, several 

amounts of protein extracts were tested by western blot for detection of c-Hairy1. β-

tubulin1 detection was used as loading control (Figure 3.8). 

Western blot results revealed several bands in the embryo extracts, 

detecting all the bands found in purified protein (56 and 35 kDa; Figure 3.8), and 

also other molecular weight bands. In all the amounts tested the 56 kDa band was 

the most defined band next to the 35 kDa, indicating a strong signal. Faint bands 

(85, 79, 37 and 33 kDa; Figure 3.8) were also visualized independently of the 

exposure time (Figure 3.8).  

Proportional to the increase of the loaded amounts, an increase of the bands 

intensity was verifiable. However, the amount of 75 µg of protein per lane revealed 

to be the lowest loading amount in which all bands in general were better visible, 

and for that reason was chosen as the most appropriate loading amount (Figure 

3.8). The loading control, β-tubulin1, presented a stronger signal in the higher 

loading amounts, and as it was expected no signal was detected in the purified 

protein lane (Figure 3.8). 
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Figure 3.8 - Determination of the most appropriate loading amount of embryo 

protein extract for c-Hairy1 detection by western blot. Amounts of 50, 75 and 100µg of 

protein/lane of embryo extracts, and 100 ng of c-Hairy1 purified protein (H1) were loaded 
in a SDS-PAGE gel and blotted for c-Hairy1 detection. The blotting detected several bands 
in the embryo extracts lanes, correspondent to a molecular weight of 85, 79, 56,37, 35 and 
33 kDa. In the H1 lane were detected 56 and 35 kDa bands. Membrane was blotted with 
1:100 of the mouse monoclonal α-c-Hairy1 primary antibody, and 1:1000 of α-mouse 
secondary antibody, and then exposed with Biorad Immun-Star WesternC 
Chemiluminescent kit. For detection of β-tubulin1 (loading control), the membrane was 
stripped and incubated with 1:2000 rabbit α-β-tubulin1 antibody following incubation with 
1:4000 α-rabbit secondary, then exposed with Biorad Immun-Star WesternC 

Chemiluminescent kit. The molecular weights were determined by the marker (M). 

A western blot was performed to assess and demonstrate the expression of 

c-Hairy1 in chick embryo fibroblasts (CEFs), using CEFs protein extracts. But 

firstly, the appropriate loading amount had to be established, and several amounts 

of extract, as well as 100 ng of purified c-Hairy1 protein were loaded in the SDS-

PAGE gel, and then blotted for c-Hairy1 detection.  

Results revealed expression of c-Hairy1 in CEFs, in all the tested loaded 

amounts, detecting several bands with different molecular weights, including all the 

bands detected in the purified protein lane (56 and 35 kDa; Figure 3.9)  

Proportional to the increase of the loaded amounts, it was verifiable an 

increase of the bands intensity. However, the loading amount of 75 µg of 

protein/lane revealed to be the lowest amount in which all bands in general were 

better visible, and for that reason this value was chosen as the most appropriate 

loading amount (Figure 3.9). 
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The loading control, β-tubulin1, presented a stronger signal in the higher 

loading amounts, and as it was expected no signal was detected in the purified 

protein lane (Figure 3.9). 

 

Figure 3.9 - Determination of the most appropriate loading amount of CEFs protein 
extract for c-Hairy1 detection by western blot. Amounts of 50, 75 and 100µg of protein/ 

lane of CEFs protein extracts, and 100 ng of c-Hairy1 purified protein (H1) were loaded in 
a SDS-PAGE gel and blotted for c-Hairy1 detection. The blotting detected several bands in 
the embryo extracts lanes, correspondent to a molecular weight of 85, 62, 56, 42, 37, 35 
and 33 kDa. In the H1 lane were detected 56 and 35 kDa bands. Membrane was blotted 
with 1:100 of the mouse monoclonal α-c-Hairy1 primary antibody, and 1:1000 of α-mouse 
secondary antibody, and then exposed with Biorad Immun-Star WesternC 
Chemiluminescent kit. For detection of β-tubulin1 (loading control), the membrane was 
stripped and incubated with 1:2000 rabbit α-β-tubulin1 antibody following incubation with 
1:4000 α-rabbit secondary, then exposed with Biorad Immun-Star WesternC 
Chemiluminescent kit. The molecular weights were determined by the marker (M). 

It was hypothesized that higher molecular weights bands would could result 

of dimer formation, and that an increase of the denaturation time would affect the 

dimer formation, and consequently the higher bands would decrease of intensity. 

The samples used to be denatured for 10 min and then loaded into the gel, as it 

was suggested in the SDS-PAGE protocol. However to verify the hypothesis, 

different denaturation times (5, 10, 15 and 30 min) were tested using 75 µg of 

protein /lane of embryo protein extracts and 100 ng purified protein, and blotted for 

c-Hairy1 detection (Figure 3.10). 
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The membrane was exposed using two chemiluminescent substrates with 

different sensitivities, Pico Chemiluminescent substrate and Biorad Immun-Star 

WesternC Chemiluminescent kit.  

Results demonstrated that exposing with Immu-Star WesternC 

Chemiluminescent Kit, a more sensitive chemiluminescent, several bands were 

detected in all samples in all the denaturation times tested. It could also be 

observable an intensity decreasing of the higher molecular weight bands.  

The exposure with Pico Chemiluminescent substrate, a less sensitive 

chemiluminescent, showed that in embryo extract samples, the lower molecular 

weight bands was only clearly detectable in the 5 minutes denaturation time, 

indicating that higher denaturation times influence not only the higher but also the 

lower molecular weight bands (Figure 3.10). For that matter the 5 min denaturation 

time was considered to be the most suitable denaturation time for detection of c-

Hairy1. 

 

 

 

 

 

 

 

 

 

Figure 3.10 - Determination of the most appropriate denaturation time for c-Hairy1 
detection by western blot. Samples of embryo protein extracts (75 µg of protein/lane) (E) 

and c-Hairy1 purified protein (100 ng of protein/lane) (H1) were denatured for 5, 10, 15 
and 30 min and loaded in a SDS-PAGE gel, then blotted for detection of c-Hairy1. 
Exposing the membrane with Imun-Star WestenC Chemiluminescent Kit, were identified 
several bands in the embryo extract and H1 lanes, in all the tested denaturation times.  
However, exposing with Pico Chemiluminescent Substrate, the 5 min presented a stronger 
detection signal than the other tested denaturation times in both embryo and c-Hairy1 
purified protein, tough all the H1 always presented a strong detection signal. Membrane 
was blotted with 1:100 of the mouse monoclonal α-c-Hairy1 primary antibody, and 1:1000 
of α-mouse secondary antibody, and then exposed Biorad Immun-Star WesternC 
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Chemiluminescent kit. For detection of β-tubulin1 (loading control), the membrane was 
stripped and incubated with 1:2000 rabbit α-β-tubulin1 antibody following incubation with 
1:4000 α-rabbit secondary, then exposed with Biorad Immun-Star WesternC 
Chemiluminescent kit. The molecular weights were determined by the marker (M). 

With the most suitable conditions for detection of c-Hairy1 established, a 

western blot meeting all the conditions was performed, loading 75 µg of embryo (E) 

and CEFs (C) protein extracts and 100 ng of c-Hairy1 purified protein (H1) 

denatured for 5 min, and blotted for c-Hairy1 detection. In embryo and CEFs 

extracts were identified the same bands although presenting intensity differences 

(Figure 3.11). 

 

 

 

 

 

 

 

Figure 3.11 - Detection of c-Hairy1 in embryo and chick embryo fibroblasts (CEFs) 
by western blot. Samples of embryo protein extracts (75 µg of protein/lane) (E), CEFs 

extracts (75 µg of protein/lane) (C) and c-Hairy1 purified protein (100 ng of protein/lane) 
(H1) were denatured for 5 min and loaded in a SDS-PAGE gel, then blotted for detection 
of c-Hairy1. Embryo and CEFs protein extracts lanes presented the same bands, however 
was noticeable a difference of intensity in the 70, 42 and 33 kDa bands. In the H1 lane 
were detected 56 and 35 kDa bands Membrane was blotted with 1:100 of the mouse 
monoclonal α-c-Hairy1 primary antibody, and 1:1000 of α-mouse secondary antibody, and 
then exposed with Biorad Immun-Star WesternC Chemiluminescent kit. For detection of β-
tubulin1 (loading control), the membrane was stripped and incubated with 1:2000 rabbit α-
β-tubulin1 antibody following incubation with 1:4000 α-rabbit secondary, then exposed with 
Biorad Immun-Star WesternC Chemiluminescent kit. The molecular weights were 
determined by the marker (M). 

The negative controls were tested to validate the obtained results, and to 

confirm that the detected bands were not resultant from unspecific secondary 

antibody affinity. Results of the negative controls showed that none of the 

secondary antibody tested showed affinity to any of the samples (Figure 3.12). 
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Figure 3.12 – Test for secondary antibodies unspecific staining by western blot. 

Samples of embryo protein extracts (75 µg of protein/lane) (E) and c-Hairy1 purified 
protein (100 ng of protein/lane) (H1) were loaded in a SDS-PAGE gel, and when 
transferred the membrane was split in four parts, and incubated with different antibodies. 
(A) Positive control for c-Hairy1 detection, showing a strong signal of c-Hairy1 detection. 

Membrane was blotted with 1:100 of the mouse monoclonal α-c-Hairy1 primary antibody, 
and 1:1000 of α-mouse secondary. (A’) Negative control for c-Hairy1 detection, showing 
no detection of c-Hairy1. Membrane was blotted using 1:1000 of α-mouse secondary. (B) 
Positive control for β-tubulin1 detection, presenting a strong signal of detection. Membrane 

was blotted using 1:2000 of rabbit α-β-tubulin1 antibody and 1:4000 of α-rabbit secondary. 
(B’) Negative control for β-tubulin1 detection, showing no sign of detection. Membrane was 
blotted using 1:4000 of α-rabbit secondary. Membranes were exposed with Biorad Immun-
Star WestenC Chemiluminescent kit. The molecular weights were determined by the 
marker (M). 

3.3. SUBCELLULAR DISTRIBUTION OF C-HAIRY1 

PROTEIN BY FLUORESCENCE MICROSCOPY  

An immunofluorescence using the c-Hairy1 monoclonal antibody was 

performed, in order to determine and establish the expression pattern of c-Hairy1 

in chicken embryonic fibroblasts (CEFs) (Figure 3.13). Two secondary antibodies 

were tested, the anti-mouse Alexa Fluor 568 and the Alexa Fluor 488. Alexa Fluor 

568 was chosen, since produced less background and was not as easily excitable 

by UV light as Alexa Fluor 488. Testing several dilutions of both primary and 

secondary antibodies the technique was optimized, and the dilutions 1:50 and 

1:250 were established as the highest dilution with the best staining. After 

acquirement of the immunofluorescence images, it was noticeable that image 

processing, namely deconvolution using SVI Huygens Software, increased greatly 

the definition and sharpness of the taken images. The Huygens  interactive object 
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analyzer tool, also allowed a more detailed analysis of the images, converting them 

in 3D images. 

Immunofluorescence results showed c-Hairy1 as being present both in 

nucleus and cytoplasm, having a granular expression. This expression was 

possible to observe in the original acquired images and the deconvolved, and the 

object analyzer tool allowed a better visualization of this protein distribution. β-

tubulin1 immunostaining was used as positive control and, as a negative control, 

an immunofluorescence using only the secondary antibody anti-mouse Alexa Fluor 

568 was performed (Figure 3.13). 
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Figure 3.13 - Subcellular distribution of c-Hairy1 protein by fluorescence 

microscopy of chicken embryonic fibroblasts. Immunodetection of c-Hairy1 reveals the 

protein to be localized both in nucleus and cytoplasm. This expression pattern is both 

recognizable in original images (A, B), although is clearer in deconvolved images(A’, B’). 

(C, C’) Immunostaining for β-tubulin1 was used as a positive control, (D, D’) 

Immunostaining for anti-mouse Alexa Fluor 568 secondary antibodies was used as 

negative control. With SVI’s Huygens software was possible to convert the staining in 3D 

objects, observed in objects analyzer. Immunodetection of endogenous c-Hairy1 in CEFs, 

using a dilution of 1:50 for c-hairy 1 antibody, and 1:250 for secondary antibody Alexa 

Fluor 568. Nuclei were stained with DAPI (blue). Fluorescence microscopy (original 

magnification: 10000x). Images were acquired with the same exposition time. 

Deconvolution was performed on images to increase the definition and clearance of the 

signal. Scale bar: 10 μm. 
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Following a detailed analysis of immunostained cells, it became evident of c-

Hairy1’s expression at leading edge of some cells (Figure 3.14). The analysis of 54 

cells, revealed leading edge expression in 22 cells, corresponding to an expression 

in approximately 41% of the analyzed cells (Figure 3.14D).  

 

 

 

 

Figure 3.14 - Distribution of c-Hairy1 protein at cell’s leading edges by fluorescence 
microscopy of chicken embryonic fibroblasts. (A-C) C-Hairy1 revealed expression at 

cell’s leading edges of CEFs (arrowheads), presenting high levels of fluorescence intensity 
that stands out from cytoplasmic expression. This expression is noticeable in the 2D 
images and in the 3D image, converted by SVI’s Huygens software. (D) An analysis of 54 

cells, revealed expression in the leading edges of 22 cells. Immunodetection of 
endogenous c-Hairy1 in CEFs, using a dilution of 1:50 for c-hairy 1 antibody, and 1:250 for 
secondary antibody Alexa Fluor 568. Nuclei were stained with DAPI (blue). Fluorescence 
microscopy (original magnification: 10000x). Images were acquired with the same 
exposition time. Deconvolution was performed on images to increase the definition and 
clearance of the signal. Scale bar: 10 μm. 
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Mitotic cells presented a peculiar expression, as c-Hairy1 presented a much 

intense fluorescence comparatively to interphase cells, and its expression was 

homogeneous throughout the cell, except in the presence of DNA (Figure 3.15). In 

all the mitotic phases c-Hairy1s show the same expression pattern, although in 

telophase was noticeable a high level of fluorescence located in the contractile ring 

(Figure 3.15F). 

 

Figure 3.15 – Expression of c-Hairy1 protein in mitotic cells by fluorescence 
microscopy of chicken embryonic fibroblasts. (A-F) C-hairy1 shows an even 

expression along the entire cell, although absent in DNA localization (Blue, DAPI). This 
expression is observable in all phases of mitosis. (B,D) DIC images were not available. (F) 

In telophase is possible to identify high expression of c-Hairy1 in the contractile ring 
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(arrow). This expression is noticeable in the 2D images and in the 3D image, converted by 
SVI’s Huygens software. Immunodetection of endogenous c-Hairy1 in CEFs, using a 
dilution of 1:50 for c-hairy 1 antibody, and 1:250 for secondary antibody Alexa Fluor 568. 
Nuclei were stained with DAPI (blue). Fluorescence microscopy (original magnification: 
10000x). Images were acquired with the same exposition time. Deconvolution was 
performed on images to increase the definition and clearance of the signal. Scale bar: 10 
μm. 

As different fluorescence intensities were observable between cells, a study 

was performed to determine the subcellular distribuition of c-Hairy1, and analyze 

the differences between cells. The Huygens software interactive object analyzer 

tool allowed the calculation of several geometrical parameters of the cell, such as 

the manually outlined cell volume, all the c-Hairy1 objects that were contained in 

that region of interest (ROI) the volume of the nucleus, using the DAPI staining as 

reference, and the objects that were contained in the nucleus. The cytoplasm 

volume was determined, subtracting the volume of the nucleus to the whole cell 

volume.  

In this study, 50 cells were analyzed, and after obtaining the volume data 

correspondent to the cells, several parameters were calculated, such as the signal 

density of the c-Hairy1 objects volume in relation to the whole cell volume and the 

percentages of c-Hairy1 objects contained in nucleus and cytoplasm. These 

parameteres were then correlated and a statistic study was performed (Figure 

3.16A-D). 

Results indicate c-Hairy1’s density to be variable between 0,05 to 0.31, in a 

0 to 1 scale, with an average of 0,15 ± 0,07, and the values variation followed a 

normal distribution. The percentage of c-Hairy1 in the nucleus ranged from 27,12 

to 88,02%, with an average of 64,63% ± 14,62, with an excepction of cells that 

raged from 80-90% of c-Hairy1 in nucleus (Figure 3.16 E, F ). 
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  A B C 

Total 
Volume 
(µm

3
) 

Whole Cell 2953,20 4236,00 6056,80 
Nucleus 270,33 598,85 800,00 
Cytoplasm 2682,87 3637,15 5256,80 

c-Hairy1 
Volume 
(µm

3
) 

Whole Cell 677,09 721,27 1118,19 
Nucleus 183,66 381,35 784,66 
Cytoplasm 493,43 339,92 333,53 

 Density* 0,23 0,17 0,18 

Percentage 
(%) 

Nucleus** 27,12 52,87 70,17 
Cytoplasm*** 72,88 47,12 29,82 

D 

*- Whole cell c-Hairy1 volume/ Whole cell total volume. 

** - Nucleus c-Hairy1 volume/ Whole cell c-Hairy1 volume. 

*** - Cytoplasm c-Hairy1 volume/ Whole cell c-Hairy1.volume. 

E F 

N=50 N=50 
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Figure 3.16 – Differential c-Hairy1 distribution in nucleus and cytoplasm. (A-C) 

Hairy1 protein is differently distributed in nucleus and cytoplasm from cell to cell. (A) C-

Hairy1 is majorly expressed in cytoplasm than in the nucleus. (B) C-hairy1 is distributed in 

the same proportion in nucleus and cytoplasm. (C) C-Hairy1 majorly distributed in the 

nucleus. (D) Table that comprises the determined cell volumes and its compartments, the 

volume occupied by c-Hairy1 objects, density, and percentages. (E,F) Statistics study of 

the variation of c-Hairy1’s expression in cells. (E) Variation of densities of the c-Hairy1 

objects volume in relation to the whole cell volume (n= 50; average= 0,15 ± 0,07; min= 

0,05; max=0,36). (F) Variation of the percentage of c-Hairy1 objects contained in nucleus 

(n=50; average=64,63 ± 14,62; min= 27,12; max: 88,02).  Results were determined by the 

analysis of volume occupied by the cell and c-Hairy1 objects, converted by Huygens 

Professional Objects Analyzer tool. Immunodetection of endogenous c-Hairy1 in CEFs, 

using a dilution of 1:50 for c-hairy 1 antibody, and 1:250 for secondary antibody Alexa 

Fluor 568. Nuclei were stained with DAPI (blue). Fluorescence microscopy (original 

magnification: 10000x). Images were acquired with the same exposition time. 

Deconvolution was performed on images to increase the definition and clearance of the 

signal. Scale bar: 10 μm. 
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4. DISCUSSION 

4.1. C-HAIRY1 IS LIKELY TO BE A GLOBULAR PROTEIN 

Bioinformatics allows the study of biological data in many ways, for instance, it 

makes possible the identification of genes and their respective proteins, prediction 

and comparison of protein structures, multiple sequences alignment (MSA), studies 

of homology of sequences, and many other procedures. Although bioinformatics 

undeniable potential, the results obtained must be carefully analyzed, since they 

can lead to misinterpretations and errors. As so, it is important to evaluate the data 

through different and complementary strategies, bearing in mind that the results 

obtained are estimated, still lacking biological confirmation (Mount, 2004). 

Biochemical parameters prediction indicated c-Hairy1 to be a small protein, as 

it revealed a molecular weight of approximately 30,6 kDa, (Table 3.1). The small 

size may facilitate the protein synthesis, degradation and transportation in the cell. 

Regarding the theoretical pI, c-Hairy1A is negatively charged at physiological 

pH (approximately 8 (Sieger et al., 1993)). The negative GRAVY value suggests 

that c-Hairy1 is a hydrophilic protein. 

Amino acid composition analysis demonstrated that alanine, proline and serine 

presented higher abundance percentage, of approximately 12, 11 and 9,6% 

respectively. Amino acid composition analysis demonstrated that alanine, proline 

and serine presented higher abundance percentage, of approximately 12, 11 and 

9,6% respectively (Table 3.2). Alanine is one of the most common amino acids 

occurring in proteins (Fasman, 1989), consistent with the high abundance 

observed. Proline is often found in protein "turns" (Krieger et al., 2005), suggesting 

a predisposition of c-Hairy1 to contain a turns in its structure. Serine, alongside 

with threonine and tyrosine, possesses phosphorylation properties (Blom et al., 

1999), increasing the propensity of c-Hairy1 to be phosphorylated. 

The domain analysis of the protein sequences (Table 3.3) detected all the 

described conserved domains belonging to the Hes protein family (Kageyama et 

al., 2007).  
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Regarding the secondary structure, the protein showed a mainly coiled 

structure, presenting some α-helices and a low percentage of β-strands most of 

them localized within the conserved domains (Figure 3.3). As expected, the HLH 

domains presented two α-helices separated by a 5 residue coiled region, which can 

correspond to the loop, reinforcing the accuracy of this prediction (Figure 3.3). The 

Orange domain was also predicted to have a more organized structure, consisting 

of α-helices and β-strands, and presenting low coiled structure (Figure 3.3). This 

structural organization must be conserved as it may confer the domains their 

activity. 

The secondary structure doesn’t provide the information of the tertiary 

structure, since currently it can only be properly determined by experimental 

techniques, such as X-ray crystallography or nuclear magnetic resonance 

spectroscopy of proteins (NMR) (Jin and Dunbrack, 2005). However, the 

secondary structure may present a clue on how structured is the protein, and the 

high percentage of coiled regions alongside with its hydrophilic properties may 

confer a globular structure to the protein. 

4.2. BIOINFORMATIC RESULTS SUGGEST A HIGH 

PROPENSITY OF C-HAIRY1 TO BE 

PHOSPHORYLATED 

NetPhos and DISPHOS softwares were used to predict the phosphorylation 

sites, in order to increase the accuracy and sensitivity of the analysis. Both 

softwares detected the same number of possible phosphorylation sites, although 

with different scores assigned to the residues (Figure 3.1). For a more stringent 

analysis, only the residues that scored higher than 0.5 in both softwares were 

selected. This restricted to 17 probable phosphorylation sites, where almost half of 

which (8/17) presented an average score higher than 0.9 (Table 3.4). 

Regarding the distribution of these phosphorylation sites, three zones of 

phosphorylation could be observed at both protein ends, and in the HLH possible 

loop (Figure 3.3), indicating greater exposure to kinases.  
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The surface accessibility analysis predicted which residues were exposed to 

the surface and accessible to kinases or other interactor proteins with c-Hairy1. 

This way, combining the phosphorylation sites distribution and surface accessibility 

results could increase the accuracy of the prediction. Results revealed that all the 

selected phosphorylation sites were predicted as exposed residues (Figure 3.3).  

The c-Hairy1 and its homologs sequence alignment revealed that 9 of 17 

predicted phosphorylation sites were highly conserved in all the studied proteins, 

indicating these sites to be crucial for regulation of protein function (Figure 3.5). 

A wide variety of kinases were predicted as having affinity to phosphorylate 

c-Hairy1A (Table 3.5). However, the correlation of the obtained results in Table 3.5 

and the most probable phosphorylation sites (Table 3.4), narrowed to 10 the 

kinases shown to have affinity to the most probable phosphorylation sites (Figure 

3.2). 

The predicted kinases have been implicated in a variety of functions. Table 

4.1 gives an insight on the different functions in which the predicted kinases have 

been involved. 
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Table 4.1 - Described cell functions to the predicted kinases. 

Kinase Function Reference 

ATM 

 DNA damage signaling; 

 Cell cycle regulation; 

 Involved in apoptotic events. 

(Lee and Paull, 2007) 

cdK5 

 Neuronal activity modulation; 

 Neuronal migration regulation during 
development; 

 Neurite outgrowth 

(Wang et al., 2006) 

CKII 

 Cell cycle regulation. 

 Involved in: 

 Gene expression, protein synthesis, cell 
proliferation, apoptosis. 

(Pinna and Meggio, 1997) 
(Gao and Wang, 2006) 
 

DNAPK 
 DNA damage signaling;  

 Cell cycle regulation. 

(Moll et al., 1999) 

GSK3 

 Cell proliferation and migration regulation; 

 Inflammation; 

 Immune responses mediation; 

 Glucose regulation; 

 Apoptosis regulation. 

(Jope et al., 2007) 

p38 
MAPK 

 Immune response mediation; 

 Inflammation 

(Johnson and Lapadat, 2002) 

PKA 

 Exocytosis regulation and modulation 

 Cell Cycle Regulation  

 cAMP signaling in cells 

(Seino and Shibasaki, 2005; 
Stork and Schmitt, 2002) 
 

PKC 

 Membrane structure events modulation; 

 Transcription regulation; 

 Immune responses mediation; 

 Cell growth regulation; 

(Newton, 1995) 

PKG 

 Smooth muscle tone regulation; 

 Platelet activation inhibition; 

 Neuronal functions modulation.  

(Casteel et al., 2010) 

RSK 

 Cell growth regulation; 

 Cell cycle regulation; 

 Nuclear signaling. 

(Dufner and Thomas, 1999) 
(Roux et al., 2003) 

Many of the predicted kinases are involved in cell cycle and proliferation 

regulation, which is consistent with evidences already published role of c-Hairy1A 

to participate in the maintenance of cell undifferentiation, and promotion of 

proliferation (Andrade et al., 2007). The cdk5 and PKG are involved in neuronal 

modulation and development, which agrees with studies that associate Hes family 

genes with neurogenesis regulation (Kageyama et al., 2007). 
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The affinity of CKII to phosphorylate c-Hairy1A is interesting, since 

experimental evidence shows that CKII phosphorylates drosophila Hairy (Kahali et 

al., 2008). Other studies have reported the involvement of CKII in molecular clocks 

such as circadian, as it is a well-conserved clock component modulating the 

stability and subcellular localization of essential clock proteins (Allada and 

Meissner, 2005; Lu et al., 2011; Mehra et al., 2009). These evidences can provide 

a hint that c-Hairy1 localization may be modulated by phosphorylation of CKII or 

other kinases. 

It becomes important to note that the fact that this software only makes 

predictions for some kinases, it doesn’t exclude the possibility that c-Hairy1 might 

be phosphorylated by other kinases. 

4.3. C-HAIRY1 IS PREDICTED TO BE LOCALIZED IN 

BOTH NUCLEUS AND CYTOPLASM 

As the main goal of this work was to describe c-Hairy1 localization in the cell, it 

would be important to verify the presence of some signals in the sequences that 

could provide a hint on its subcellular localization. Experimental validation of 

subcellular locations is expensive and time-consuming, and, bioinformatics tools 

can make fast and accurate predictions (Brameier et al., 2007). 

A search for c-Hairy1A homologs was advantageous for the prediction of 

subcellular localization signals, since a conserved nuclear localization signal (NLS) 

reinforces the accuracy of the prediction. BLASTp identified several possible 

homologs, although only the homologs belonging to some developmental animal 

models were selected. All of the selected proteins belong to Hes protein family 

(Table 1.2), with maximum identity values raging form 59-95%. A phylogenetic tree 

provided information on how genetically distant these proteins are. Two protein 

clusters could be observed, one of non-mammalian, including c-Hairy1A and 

another of mammalian homologs. Consistent with blast results the mammalian 

proteins revealed a greater distance to c-Hairy1A (Figure 3.4).  
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The protein transport to the nucleus is mediated by short binding sites on the 

protein sequence, called NLSs (Brameier et al., 2007). The task of searching for 

NLS was performed with NucPred and PSORT II. NucPred results assigned a 

score higher than 0,5 to all of the studied proteins, which could indicate that these 

spend at least some time in the nucleus. However, these results must be analyzed 

based on a threshold representing different specificities and sensitivities of the 

prediction (See table 2.2, Chapter 2). When considering a threshold of 0.5, all the 

proteins are considered to spend some time in the nucleus (Table 3.7). Evaluating 

the multiple alignment of the homologs, a conserved NLS was detected, KRRR, in 

the c-terminus end of basic region of the proteins (Figure 3.5), supporting the 

prediction of an NLS on these proteins. PSORT II results revealed that all the 

homologs had higher probability to be located in the nucleus, than in other cell 

compartments, with low percentage variability between homologs (Table 3.7). 

Overall, all bioinformatics evidences suggest c-Hairy1A and its homologs to 

be nuclear proteins, and any indication suggesting an opposite idea hasn’t been 

found, consistent with the attributed function to these proteins as transcription 

factors. 

NetNES 1.1 searched for possible nuclear export signals (NES), which 

consist on a short amino acid sequence of 4 hydrophobic residues, that targets the 

protein for export from the cell nucleus to the cytoplasm through the nuclear pore 

complex (la Cour et al., 2004). This transport is most likely lead by biding NES to 

the exportin CRM1 (Fischer et al., 1995).  

The NETNES 1.1 identified two regions with a pronounced NES activity, in 

which a deep analysis recognized two potential NES localized in the HLH domain, 

as these sequences have followed the consensus Φ1-(x)2–3-Φ2-(x)2–3-Φ3-x-Φ4, 

even though they did not correspond perfectly to it. The NES2’s hydrophobic 

residues have not been assigned high scores, with the exception of the isoleucine 

(Φ2), however this motif followed the consensus sequence, and for that reason, it 

is more likely to be a potential NES than the NES1. 

http://en.wikipedia.org/wiki/Nuclear_pore
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In these results, the potential NESs located region can be observed in every 

sequence, where higher scores were registered, highlighted from the rest of the 

sequence (Figure 3.6). The mammalian homologs, however, in comparison with 

the non-mammalian ones presented highest peaks and scores in more than one 

residue, which may indicate a higher NES activity on mammalian homologs (Figure 

3.6). 

4.4. THE MONOCLONAL ANTIBODY RECOGNIZES C-

HAIRY1 PROTEIN 

The determination of the most adequate loading amount of purified protein 

was a crucial step in order to test the sensitivity of the antibody. The antibody was 

not only capable to detect c-Hairy1 but also to detect it in 35 ng of protein extract.  

Western blot results revealed the presence of two persistent bands in the 

purified protein, one with a higher molecular weight of 56 kDa, and another with 35 

kDa. The 35 kDa band was considered to represent c-Hairy1A protein, since the 

purified protein was produced from the c-Hairy1A sequence, and for that reason it 

would serve as guide for its identification in protein extracts (Figure 3.7). The 

molecular weight difference between the bioinformatically predicted 30.7 kDa and 

the experimental determined 35 kDa, may be due to a weaker capacity of migration 

of the protein in the gel. Also the marker’s buffer may provide the marker an 

different migration dynamics than the samples buffer. 

The protein was purified by cloning c-Hairy1A c-DNA fused to a His-tag, and 

the company guaranteed a purification degree of minimum 90%. This suggests that 

the higher band would not be result of other unspecific proteins and may be 

derived from c-Hairy1 protein interactions, for instance dimer formation. Data from 

literature also supports the dimer formation hypothesis, as c-Hairy1 has a great 

propensity to form dimers (Sheeba et al., 2007), The dimer binding may be so 

resistant that even with strong denaturing conditions it fails to totally eliminate the 

interactions between the proteins. This hypothesis could explain why the gradual 

increasing of the amount of purified protein did not represent a gradual increase of 
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the 56 kDa band, since the ability to form dimers may be relative and dependent on 

the denaturing conditions. 

Theoretically, a dimer would be expected to be twice the molecular weight of 

a single protein, though a band with such molecular weight was never found. 

However, the denaturing conditions may be causing different conformations of the 

homodimers, which may result in different folding degrees, explaining the smear 

and blurry band observed most of the times. Also dimers could present a 

conformation that migrates easily on the gel and would confer the 56 kDa band. On 

the contrary, the 35 kDa appeared always much sharper and defined than the 56 

kDa band, indicating a stable migration of this denatured conformation of the 

protein in the gel.  

The most suitable loading amount of purified c-Hairy1 was considered to be 

100 ng of protein/lane, as results revealed it to be the lowest amount in which the 

35 kDa band was better visualized. 

Having demonstrated that the antibody showed affinity to the purified 

protein, the assessment process continued with the detection of c-Hairy1 in protein 

extracts, using the purified protein as a positive control. Despite the blur and lack of 

definition, several bands were identified in the embryo protein extract lanes, two of 

them also detected in the purified protein lane, indicating a sensitivity of the 

antibody to the embryo c-Hairy1 (Figure 3.8).  

The need of high amount of extracts used for the antibody proper function, 

can suggest two conditions, the antibody may have low sensitivity for detection of 

c-Hairy1 in the extracts or the protein may be present at low concentrations in the 

embryo extracts, however data not shown revealed the presence of the 56 kDa 

band in lower loading amounts of embryo protein extracts. In order to spare the 

most protein extract, and because 75 µg of protein/lane showed the best definition 

of the bands, it was considered as the most appropriate loading amount of embryo 

protein extract (Figure 3.8). 

Although the expression of c-Hairy1 in chicken embryonic fibroblasts had 

never been published, an oscillatory expression of Hes1 (c-Hairy1 homolog) in 



INVESTIGATING THE LOCALIZATION OF AN AVIAN HAIRY HOMOLOG 
(C-HAIRY1) PROTEIN 2013 

 

 
71 

mouse embryonic fibroblasts has been demonstrated (Hirata et al., 2002). For that 

matter, since the antibody was already proven to recognize c-Hairy1 in the purified 

protein and embryo extracts by western blot, the conditions were settled to assess 

the expression of c-Hairy1 in CEFs extracts. The best loading amount had to be 

established, and results revealed that in amounts superior to 50 µg of protein/lane 

it was possible to detect bands of c-Hairy1. The 75 µg of protein/lane was the 

amount in which the best definition of the bands was observable. Similar to embryo 

extracts, the CEF extracts blotting for c-Hairy1 detected several bands with 

different signal intensities (Figure 3.9).  

Also, several denaturation times were tested in order to investigate whether 

the high molecular weight bands were resultant of dimer formation. Despite of the 

blurry results, it was noticeable that increasing the denaturation time did not 

completely eliminate the higher bands of 56, 79 and 92 kDa, however it decreased 

these bands intensities. The lower bands of 37, 35 and 33 kDa were still 

observable in the samples denatured for 30 min, even though they didn’t present 

much definition (Figure 3.10). Analyzing the purified protein signal, it is observable 

that the increase of the denaturation time lowered the protein detection signal, 

however becoming more delineated. The exposure of the membrane with Pico 

chemiluminescent, less sensitive than the Immun-Star WesternC kit, revealed that 

the c-Hairy1 bands in the embryo extracts were best detectable at 5 min, 

suggesting that higher denaturation time may be degrading the proteins, and for 

that reason it was chosen as the most suitable denaturation time (Figure 3.10). 

4.5. C-HAIRY1 IS LIKELY TO BE EXPRESSED 

DIFFERENTLY IN CHICK EMBRYOS AND CEFS 

After establishing the best SDS-PAGE and western blot conditions analysis 

of c-Hairy1 expression in embryo and CEF extracts, detected the protein in both 

extracts, with the same identified bands presenting different intensities (Figure 

3.11). CEFs presented relatively stronger signal of the 42 and 33 kDa bands than 

the embryo, indicating a higher expression of these protein forms (Figure 3.11). 
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These differences may be caused by the fact that CEFs were isolated from a much 

later embryonic stage (14 days) than the chick embryos (10-20 somites), being 

already differentiated, unlike chick embryo cells which still present a high rate of 

proliferation and undifferentiated cells (Gilbert, 2010).  

Three close molecular weight bands with 33, 35 and 37 kDa were identified 

in the protein extracts lanes, values approximated to the predicted c-Hairy1 

molecular weight of 30.7 kDa. The 35 kDa band identified in the purified c-Hairy1 

protein lane was considered to represent the isoform c-Hairy1A. This band was 

also clearly identifiable in the protein extracts, indicating the expression of this 

isoform in chick embryo end CEFs. As previously described in the introduction, c-

Hairy1 has two known isoforms, c-Hairy1A and B (Vasiliauskas et al., 2003) , of 

which the last has an insertion of 14 amino acids which results in an estimated 

difference of 1,6 kDa. Taking these results into account, the 37 kDa may be 

considered to represent c-Hairy1B isoform, while the 33 kDa band remains 

unidentified, not excluding the possibility of the existence of another c-Hairy1 

isoform. As bioinformatic results predicted c-Hairy1 to have high propensity to be 

phosphorylated, it could also be suggested that different phosphorylation degrees 

may explain these close molecular weight bands. 

The other detected bands of 75, 70 56, 42 (Figure 3.11) may be due to 

dimer formation, alternative splicing, unpublished isoforms or affinity of the 

antibody to other proteins. Post-translational modifications, such as ubiquitination 

may be causing the detection these bands, as it is known that c-Hairy1 has to be 

ubiquitinated in order to be degraded by proteasome (Kageyama et al., 2007). 

Ubiquitin is a small protein with a molecular weight of 8,5 kDa, that covalently 

marks proteins for degradation (Hochstrasser, 2009). This bond may be so 

resistant that the strong denaturing SDS-PAGE conditions cannot break them, 

increasing the c-Hairy1 protein molecular weight. 

Being a monoclonal antibody greatly improves the antibody specificity, as all 

the proteins that were detected contained the same epitope against what the 

antibody was produced (Alberts et al., 2007). On the other hand, most of the 
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probable proteins the antibody would have affinity to would be member of the Hes 

family proteins, such as Hes1-B-like, or even Hes5, however data from NCBI 

(HES-1-B-like [Gallus gallus], 213 aa, NCBI reference sequence: 

XP_003641836.1; HES-5 [Gallus gallus], 157 aa, NCBI reference sequence: 

NP_001012713.1) suggest these protein to be smaller than c-Hairy1 (390 aa), 

which doesn’t explain the presence of the higher molecular weight bands. 

The negative controls were tested in order to exclude the possibility that the 

unspecific affinity of secondary antibodies may be responsible for the detection of 

the unpredicted bands. As it was confirmed that the bands in question were not 

detected by the α-mouse negative controls, the results suggest that the 

unpredicted bands were originated only by affinity of the primary monoclonal 

antibody against c-Hairy1 (Figure 3.12). The α-rabbit negative control also showed 

no signal of affinity to any protein contained in the embryo extract or the purified c-

Hairy1 protein, and, as expected, the β-tubulin1 labeling was detected only by the 

primary antibody conjugated with the secondary (Figure 3.12). 

One way to prove whether the bands correspond to other forms of c-Hairy1 

would be by identification of the bands by mass spectrometry, and confirmation of 

the c-Hairy1 identity. This analysis could only make sense sending the purified 

proteins bands for examination, since the process consists in removing the bands 

of interest directly from gel for analysis, and the protein extract lanes contain 

several proteins. Another validation of the specificity of the antibody would consist 

on using a morpholino for c-Hairy1 in CEFs, making protein extracts and blotting 

for c-Hairy1. In this case, the antibody would only detect unspecific bands. 

Overexpression of c-Hairy1 in CEFs would also help to verify the blotting results, 

as differences in c-Hairy1 expression would increase the detection signal of the 

specific bands. 

Even though the specificity has not been totally clarified, the identification of 

the bands of interest (35 and 37 kDa) by western blot, and evidenced sensitivity of 

the monoclonal antibody to the c-Hairy1 protein, opens a door of possibilities for 

new studies on this protein. For instance, immunohistochemistry of c-Hairy1 
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protein in several tissues, studies on the oscillatory expression of the protein, 

functional studies, immunocytochemistry, or even studies on the subcellular 

localization of the protein using fractioned CEFs protein extracts.  

4.6. IMMUNOFLUORESCENCE RESULTS INDICATE A 

DIFFERENT C-HAIRY1 DISTRIBUITION IN NUCLEUS 

AND CYTOPLASM 

As the monoclonal antibody against c-Hairy1 had already been tested and 

proved to be working, it allowed the possibility to perform an immunofluorescence 

in order to determine the expression pattern of c-Hairy1 in cells. CEFs were 

chosen to perform this task, since c-Hairy1 expression has already been shown by 

western blot, and also they are relatively easy to isolate and maintain in culture.  

Results from immunofluorescence indicated a high expression of c-Hairy1 in 

the nucleus, and some expression in the cytoplasm, with variable levels of intensity 

from cell to cell (Figures 3.13 and 3.16). These results were complemented with 

positive and negative controls, in which the positive control presented an expected 

staining of the cell cytoskeleton, and negative control revealed no specific 

expression. These results could be observed both in original and deconvolved 

images, however the deconvolution treatment to the images decreased the noisy 

signals, increasing the definition and clarity of the staining, allowing a better 

analysis of the results (Figure 3.13). 

C-Hairy1 being described as a transcription factor would not be predictable 

to be localized in cytoplasm, consistent with the bioinformatic prediction of an NLS 

which indicated a high probability of c-Hairy1 to be a nuclear protein. Two potential 

NES motif have also been predicted in the c-Hairy1 sequence, raising the question 

of whether c-Hairy1 shuttles from nucleus to cytoplasm. In this case transportation 

proteins responsible for carrying c-Hairy1 would still need to be identified, being 

CMR1 a possible candidate, as the nucleus to cytoplasm transport is most likely 

lead by biding NES to the exportin CRM1. The shuttle may be regulated by the 

protein phosphorylation state and the high number of probable phosphorylation 
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sites may be involved in c-Hairy1 transportation. In order to validate this shuttle, is 

would be plausible to construct a vector with a Green Fluorescence Protein (GFP) 

fused to a protein extremity and evaluate in vivo the shuttle of c-Hairy from nucleus 

to cytoplasm. 

A possible experimental validation of this shuttle would consist on the 

inhibition of CRM1 with Leptomycin B, and in this way verifying the c-Hairy1 

exportation and also if CRM1is indeed exporting c-Hairy1 from the nucleus.  

Results from an unpublished Bimolecular Fluorescence Complementation 

(BiFCo) performed in Isabel Palmeirim’s lab have identified the c-Hairy1 

homodimer formation in Hella cells cytoplasm (Palmeirim et al., unpublished). Two 

different cloned vectors containing c-Hairy1 cDNA, each of them possessing the N 

and C-terminus portions of the Yellow Fluorescent protein (YFP) were transfected. 

Since the YFP protein portion have no affinity to each other, the interaction of the 

YFP portions must have been driven by c-Hairy1 dimerization (Kerppola, 2006). 

This data is consistent with the found c-Hairy1 cytoplasm localization and 

reinforces the idea of a biological function of c-Hairy1 in this cell compartment, 

since the dimer is a functional active conformation of c-Hairy1 (Sheeba et al., 

2007) 

Nevertheless, the presence of c-Hairy1 in cytoplasm may be also justified by 

proteosomal degradation of protein, as it has to migrate to the cytoplasm in order 

to be degraded. 

The detailed analysis of c-Hairy1’s expression indicated it to be highly 

expressed at cells leading edges, with a registered occurrence in 41% of the 

analyzed cells (Figure 3.14). The leading edges structures are highly dynamic, 

based on actin filaments and are implied on cell motility, propelling it or functioning 

as anchors (Alberts et al., 2007). This peculiar localization of c-Hairy1 is curious, 

as it may give a clue of the interaction of c-Hairy1 with cytoskeleton proteins. Other 

hints have been provided by results of a non-published yeast-two-hybrid screening 

assay that revealed interaction of the c-Hairy1 c-terminus portion with some 

cytoskeleton protein, such as Stathmin1, Dynactin6, Tubulin beta chain (TUBB) 
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(Andrade, et al unpublished). In the future, an immuno co-localization between c-

Hairy1 and these proteins would be useful to better understand its interactions. 

In mitotic cells c-Hairy1 is homogeneously distributed throughout the cell 

(Figure 3.15). The high expression of c-Hairy1 in mitotic cells revealed to be an 

interesting finding, which could correlate with the described function of c-Hairy1 as 

a repressive transcription factor that prevents cellular differentiation, and promotes 

cellular proliferation. As so, high levels of c-Hairy1 may be necessary for mitosis 

and its proper occurrence. The actin and myosin contractile ring expression would 

reinforce even more the interaction between the c-Hairy1 and cytoskeleton 

proteins. 

Intriguingly, none of the analyzed cells were absent of c-Hairy1’s 

expression, although varied levels of c-Hairy1 signal density between cells were 

noticeable, as well as the percentage of c-Hairy1 localized in nucleus versus 

cytoplasm. Relatively to the density variation, values ranged from 0,05 to 0,31 with 

an average of 0.15 ± 0,07, which can be considered as the lowest and highest 

levels of expression of this protein.  

The study revealed that 84% of the cells present more than 50% of c-Hairy1 

in the nucleus, which is consistent with the previous predictions to be localized 

mainly in the nucleus. A direct correlation between a great percentage in nucleus 

and the density of c-Hairy1’s expression is not assumable, since the nucleus only 

occupies a small fraction of the whole cell. In this case, a high percentage in the 

nucleus may be inversely proportional to the signal density of c-Hairy1 in the whole 

cell.  

The analysis of c-Hairy1 density variation from cell to cell followed a normal 

distribution, as it would be expected in a cyclically expressed protein (Figure 

3.16E). For that matter, the minimum levels of c-Hairy1 encountered may be 

correspondent to be the initiation or the ending of an expression cycle and the 0.36 

correspondent to the highest peak on the expression cycle. The variation of the 

percentage of c-Hairy1 in nucleus also followed a normal distribution with the 

exception of the point that ranged from 80-90% (Figure 4F). These evidences 
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indicate a dynamic distribution of c-Hairy1 in cell, supporting the suggestion of the 

protein shuttle between the nucleus and cytoplasm, 
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5. CONCLUSION 

The central aim of this work was to study the c-Hairy1 protein in order to 

increase the understanding of its working mechanism in the cell. The bioinformatic 

prediction of c-Hairy1 protein regarding its biochemical properties, secondary 

structure and even the subcellular localization contributed to the understanding and 

supporting of the experimental results. 

The optimal working conditions of the monoclonal antibody, as well as the most 

adequate sample preparation criteria were established. The detection of the 

expected protein bands in the purified protein, and the tested protein extracts, 

indicated a sensitivity of the antibody and confirmed the expression of c-Hairy1 in 

chick embryo and chicken embryonic fibroblasts. Other bands with different 

molecular weight were also systematically detected, even in severe denaturation 

conditions. For that reason, more studies may be performed to prove the specificity 

of the antibody.  

The subcellular localization of c-Hairy1, predicted by the bioinformatics 

analysis, was confirmed by the immunofluorescence results that revealed c-Hairy1 

in both nucleus and cytoplasm. Moreover, a detailed analysis of c-Hairy1 

localization showed that the nucleus:cytoplasm ratio  distribution varied between 

cells. However, a biological function of the protein in the cytoplasm is far from 

being completely understood. In the future, and taking advantages of the 

monoclonal antibody, several studies may be performed in order to address this 

question. Further studies will be also needed to unravel an oscillatory property of 

the protein. 

Overall, the findings herein presented uncover new aspects of the c-Hairy1 

protein and will hopefully open several possibilities for further studies relevant to 

the line of work that has been developed in Palmeirim’s lab. 
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APPENDIX I 

Solutions recipes 

Lysis Buffer (1 mL) 200 µL 100mM Hepes Buffer 
250 µL 200 mMGlicerophosphate 
200 µL 10mM EGTA 
100 µL Glicerol 
10 µL 0.01% Triton-X100 
10 µL 100 mM Sodium Vanadate 
10 µL Protease Inibitor Cocktail 

220 µL H2O 

Loading Buffer 10x Tris-CL (0.5 M, pH 6.8) 
SDS 20% (w/v) 
Bromophenol Blue 0.2% 
β-Mercaptoethanol 7% 
Glicerol 40% 

4% acrylamide stacking gel (1 mL) 680 µL H20 
170 µL 30% Acrylamide mix 
130 µL Tris-Cl (1.0 M, pH 6.8) 
10 µL SDS (10% w/v) 
10 µL Ammonium Persulfate 
1 µL TEMED 

10% acrylamide gel (5 mL) 1.9 mL H20 
1.7 mL 30% Acrylamide mix 
1.3 mL Tris-Cl (1.5 M, pH 8.8) 
50 µL SDS (10% w/v) 
50 µL Ammonium Persulfate 
2 µL TEMED 

Running Buffer (1L) 

 

14,4g Glicine 
3,0g Tris-Base 
10 mL SDS (10% w/v) 
Dilute to 1L of distilled water 

Transfer Buffer (1L) 14,4g Glicine 
3,0g Tris-Base 
Add 200 mL of Methanol 
Dillute to 1 L of distilled water 

TBS 50 mM Tris.HCl, pH 7.4  
150 mM NaCl. 

Glycerol/n-propyl gallate mounting medium 9 mL Glycerol 
1mL Tris-Cl (pH 8.0) 
0.05 g n-Propyl gallate 
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APPENDIX II 

Antibodies list: 

 Primary antibodies 

 

 Secondary antibodies 

 

APPENDIX III 

Protein sequences 

Protein RefSeq Sequence 

c-Hairy1A AAP44728.1 MPADTGMEKPTASPIAGAPASASHTPDKPRSASEHRKSSKPIM

EKRRRARINESLGQLKMLILDALKKDSSRHSKLEKADILEMTV

KHLRNLQRAQMAAALSADPSVLGKYRAGFNECMNEVTRFLSTC

EGVNADVRARLLGHLSACLGQIVAMNYLPPPPAGQPAHLAQPL

HVQLPPTTTGAVPVPCKLEPTEALSPKVYGGFQLVPATDGQFA

FLIPNPAFPPGSGPVIPLYANANVPVSTSGGSGNASTTPSASP

VQGLTSFGHSVVPASQAGSPIAERRESVWRPW 

c-Hairy1B NP_989803.1 MPADTGMEKPTASPIAGAPASASHTPDKPRSASEHRKVNGSGW

RRARGRAESSKPIMEKRRRARINESLGQLKMLILDALKKDSSR

HSKLEKADILEMTVKHLRNLQRAQMAAALSADPSVLGKYRAGF

NECMNEVTRFLSTCEGVNADVRARLLGHLSACLGQIVAMNYLP

Antibody Host Clone Concentration 
Expected 

protein size 
Reference 

α-cHairy1 Mouse Monoclonal 2,15 mg/mL ≃ 31 kDa ____ 

α-β-tubulin1 Rabbit Polyclonal 1 mg/mL 50 kDa 
Abcam 
ab6046 

Reactivity Host Label Concentration Reference 

Mouse Sheep 
Horseradish 
Peroxidase 

2 mg/ml 
Abcam 
ab6808 

Rabbit Goat 
Horseradish 
Peroxidase 

2 mg/ml 
Abcam 
ab6721 

Mouse Goat Alexa Fluor 568 2 mg/ml 
Molecular Probes 

A-11019 
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PPPAGQPAHLAQPLHVQLPPTTTGAVPVPCKLEPTEALSPKVY

GGFQLVPATDGQFAFLIPNPAFPPGSGPVIPLYANANVPVSTS

GGSGNASTTPSASPVQGLTSFGHSVVPASQAGSPIAERRESVW

RPW 

X-Hes4A NP_001082574.1 MPADTMEKPTASPIAGAPASSAQTPDKPKSASEHRKSSKPIME

KRRRARINESLGQLKTLILDALKKDSSRHSKLEKADILEMTVK

HLRNLQRVQMTAALTSDPSVLGKYRAGFNECTNEVTRFLSTCE

GVNTEVRTRLLGHLSSCLGQIVAMNYQQPPSSQQPLHVQLPSS

TPAPMPISCKVNPAEAISPKVFQGGFQLVPATDGQFAFLIPNP

AYTSSPGPVIPLYANANVTSPGGRQSQSPVQGLTTFGHKMPHM

AQAVSPLGGSTGADSAESVWRPW 

z-Hes1 NP_571948.1 MPADNMEKQTASPIAGAPASGSHTPDKPKNASEHRKSSKPIME

KRRRARINESLGQLKTLILDALKKDSSRHSKLEKADILEMTVK

HLRNLQRVQMSAALSADTNVLSKYRAGFNECMNEVTRFLSTCE

GVNTEVRSRLLNHLSGCMGQMMAMNYPQPAPAQQAHLAQPLHV

QLPSTLPINGASMGSKLSPSEAVSPKVFGGFQLVPATDGQFAF

LIPNPAFASATTPVIPLYANASVPVTVNASPVQASSAPTVASP

VQGMTSFSGVPQAVSPVGVSAGAESNEPVWRPW 

m-Hes1 NP_032261.1 MPADIMEKNSSSPVAATPASVNTTPDKPKTASEHRKSSKPIME

KRRRARINESLSQLKTLILDALKKDSSRHSKLEKADILEMTVK

HLRNLQRAQMTAALSTDPSVLGKYRAGFSECMNEVTRFLSTCE

GVNTEVRTRLLGHLANCMTQINAMTYPGQAHPALQAPPPPPPS

GPAGPQHAPFAPPPPPLVPIPGGAAPPPGSAPCKLGSQAGEAA

KVFGGFQVVPAPDGQFAFLIPNGAFAHSGPVIPVYTSNSGTSV

GPNAVSPSSGSSLTSDSMWRPWRN 

h-Hes1 NP_005515.1 MPADIMEKNSSSPVAATPASVNTTPDKPKTASEHRKSSKPIME

KRRRARINESLSQLKTLILDALKKDSSRHSKLEKADILEMTVK

HLRNLQRAQMTAALSTDPSVLGKYRAGFSECMNEVTRFLSTCE

GVNTEVRTRLLGHLANCMTQINAMTYPGQPHPALQAPPPPPPG

PGGPQHAPFAPPPPLVPIPGGAAPPPGGAPCKLGSQAGEAAKV

FGGFQVVPAPDGQFAFLIPNGAFAHSGPVIPVYTSNSGTSVGP

NAVSPSSGPSLTADSMWRPWRN 

   

 

C-hairy1 Isoform 1 predicted phosphorylation sites. 

Position Residue Sequence NetPhos Score DIPHOS Score 

5 T MPADTGMEK 0.917 0.377 
11 T MEKPTASPI 0.024 0.597 
13 S KPTASPIAG 0.951 0.903 
21 S GAPASASHT 0.593 0.880 
23 S PASASHTPD 0.583 0.926 
25 T SASHTPDKP 0.679 0.761 
31 S DKPRSASEH 0.997 0.977 
33 S PRSASEHRK 0.991 0.988 
38 S EHRKSSKPI 0.997 0.981 
39 S HRKSSKPIM 0.879 0.951 
54 S RINESLGQL 0.186 0.479 
70 S LKKDSSRHS 0.987 0.884 
71 S KKDSSRHSK 0.727 0.888 
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74 S SSRHSKLEK 0.997 0.922 
85 T ILEMTVKHL 0.738 0.059 
102 S AAALSADPS 0.405 0.513 
106 S SADPSVLGK 0.030 0.404 
111 Y VLGKYRAGF 0.008 0.038 
123 T MNEVTRFLS 0.039 0.058 
127 S TRFLSTCEG 0.990 0.303 
128 T RFLSTCEGV 0.259 0.026 
145 S LGHLSACLG 0.003 0.068 
156 Y VAMNYLPPP 0.020 0.108 
179 T QLPPTTTGA 0.043 0.083 
180 T LPPTTTGAV 0.489 0.115 
181 T PPTTTGAVP 0.718 0.097 
193 T KLEPTEALS 0.048 0.108 
197 S TEALSPKVY 0.992 0.334 
201 Y SPKVYGGFQ 0.047 0.289 
210 T LVPATDGQF 0.022 0.088 
227 S FPPGSGPVI 0.021 0.527 
234 Y VIPLYANAN 0.658 0.379 
242 S NVPVSTSGG 0.981 0.486 
243 T VPVSTSGGS 0.654 0.143 
244 S PVSTSGGSG 0.120 0.447 
247 S TSGGSGNAS 0.600 0.742 
251 S SGNASTTPS 0.779 0.598 
252 T GNASTTPSA 0.096 0.177 
253 T NASTTPSAS 0.821 0.139 
255 S STTPSASPV 0.020 0.620 
257 S TPSASPVQG 0.986 0.567 
263 T VQGLTSFGH 0.104 0.124 
264 S QGLTSFGHS 0.181 0.428 
268 S SFGHSVVPA 0.957 0.375 
273 S VVPASQAGS 0.901 0.546 
277 S SQAGSPIAE 0.979 0.577 
285 S ERRESVWRP 0.994 0.961 

 


