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Adenosine triphosphate �ATP� is known to be the main energy currency of the living cell, and is used as a
coenzyme to generate energy for many cellular processes through hydrolysis to adenosine diphosphate �ADP�,
although the mechanism of energy transfer is not well understood. It has been proposed that following hy-
drolysis of the ATP cofactor bound to a protein, up to two quanta of amide-I vibrational energy are excited and
utilized to bring about important structural changes in the protein. To study whether, and how, amide-I vibra-
tional excitations are capable of leading to protein structural changes, we have added components arising from
quantum-mechanical amide-I vibrational excitations to the total energy and force terms within a molecular-
dynamics simulation. This model is applied to helical deca-alanine as a test case to investigate how its
dynamics differs in the presence or absence of an amide-I excitation. We find that the presence of an amide-I
excitation can bias the structure toward a more helical state.

DOI: 10.1103/PhysRevB.82.174308 PACS number�s�: 34.50.Ez, 87.10.Tf, 87.15.bd

I. INTRODUCTION

Adenosine triphosphate �ATP� binds to many proteins and
upon hydrolysis to adenosine diphosphate �ADP� leads to an
altered conformational state of the protein, resulting in pro-
tein activation or deactivation. This reaction releases about
8–12 kcal/mol of energy, which is on the order of magnitude
of vibrational excitations. However it is not understood how
the energy released is channeled to contribute to the protein’s
conformational change. While vibrational excitations are
most likely excited, not only are their energies small by com-
parison with other molecular interactions involved in protein
dynamics, but also isolated vibrations have extremely short
lifetimes of on the order of 10−13 s. On the other hand, ac-
cording to the second law of thermodynamics, any work that
is performed by the protein requires the utilization of the
energy released by hydrolysis.

Davydov has formulated a hypothesis about how this en-
ergy transfer might take place. He noted that the energy pro-
vided by ATP hydrolysis is equivalent to approximately two
quanta of amide-I vibrational energy. The amide-I mode con-
sists mainly of stretching the CvO bond, with an additional
component from the NuH bend. This mode seems an at-
tractive candidate for vibrational energy storage since it is
generally isolated and decoupled from other modes. Davy-
dov proposed that vibrational self-trapping in the form of
solitons may serve as a means of stable energy transfer in
protein �-helices.1,2

In an �-helix, hydrogen bonding occurs between each
backbone CvO and the backbone NuH group four resi-
dues ahead of it in the peptide chain; thus three chains of
hydrogen-bonded groups run along its length. When an
amide-I mode is excited in one peptide group, it results in the
alteration of some of the hydrogen bond lengths in this lat-
tice. This deformation leads to localization, or what is known
as self-trapping, of the vibrational state.3

It was originally thought by Davydov that vibrational ex-
citations are trapped as solitons for longer periods but experi-

mental investigations of long-lived vibrational states have
concluded that lifetimes are no longer than a few
picoseconds.4,5 Thus the issue remains of how relatively
short-lived vibrational excitations can perform work.

The dynamics of propagation of an amide-I state has pre-
viously been modeled by propagating vibrational states over
system coordinates that had been precalculated by
molecular-dynamics �MD� simulation. For example, such an
approach was used to estimate energy transfer from water
molecules to a prion described by a fully atomic force field,6

and has also been applied to calculate the linear absorption
spectrum of an �-helix.7 Here we include the bidirectional
coupling between the process of vibrational energy propaga-
tion and the dynamics of the system, by adding an interaction
energy term, coupling the classical dynamics with the
amide-I excitation, to the potential driving an MD simula-
tion. In this way not only does the protein environment affect
the amide-I state but also the amide-I state affects protein
dynamics.

Using this mixed-quantum classical MD implementation,
we investigate whether amide-I excitations are capable of
inducing a conversion of a disordered-helical peptide into a
helical one. This hypothesis arose from the observation that a
helical structure might be expected to allow for optimal in-
teraction of all amide-I moieties, along a chain, with lattice
phonons.

II. METHODS

The Davydov/Scott Hamiltonian Ĥ= Ĥex+ Ĥat+ Ĥint de-
scribes the total energy of the protein system.6 This includes
the second-quantized operator,
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describing the vibrational excitation, where an
+ and an are the

usual creation and annihilation operators for an amide-I ex-
citation on site n, N is the number of amide-I sites, � is the
vibrational frequency of the isolated amide-I mode, and Jnm

are dipole-dipole coupling parameters. Ĥat is the operator
associated with atomic displacements given by the classical
force-field potential, which takes into account both bonded
and nonbonded energy terms depending upon the full atomic
composition of a protein.8,9 Finally,

Ĥint = ��
n=1

N

���R� n
O − R� m

N� − deq�ân
+ân� �2�

is the interaction between the vibrational excitations and the
atomic displacements, and depends on the parameter of non-

linearity �=d� /d��R� n
O−R� m

N��. Here deq denotes the equilib-
rium length of this hydrogen bond, set equal to 0.3 nm ac-
cording to the force field.10 A positive value of � means that
an amide-I vibration favors compression of the hydrogen
bond between the carbonyl oxygen atom on site n at position

R� n
O and the amine nitrogen atom on site m at position R� m

N; for
a negative value, expansion of the hydrogen bond is favored
instead. Estimates of � based on experiments range from 35
to 62 pN, while a high degree of discrepancy exists among
those determined computationally, which range from −60 to
26 pN,11 since it is difficult to determine a suitable basis set
to describe the very elastic hydrogen bond.

The mixed quantum-classical approach, which we use to
determine the motion of the protein system, was imple-
mented as a modification of the GROMACS program.8,9 GRO-

MACS �Refs. 8 and 9� is a classical MD program, which
solves Newton’s equations of motion for atoms modeled as
masses associated with point charges, interacting by spring-
like bonded interactions �bond stretching, angle bending, and
torsions� as well as by nonbonded interactions �electrostatic
and van der Waals interactions�. This approach consists of
coupling the classical Langevin equations of motion for the
atoms in the protein, which are described by the AMBER

potential,10,12 to the time-independent Schrödinger equation
for the amide-I propagation, in order to satisfy both the clas-
sical statistics of the atomic motions and the quantum statis-
tics of the amide-I states, as explained in detail in the Ap-
pendix. The integration of these mixed quantum-classical
equations is comprised of three parts. Starting with a set of
atomic coordinates, we first find the states of the amide-I
vibrational excitation. These eigenstates are expressed in
terms of a basis set consisting of states �n� for which oscil-
lator n is excited and all others are in the ground state:
�� j�=�n=1

N � jn�n�. They are determined as the eigenfunctions
of the Hamiltonian corresponding to the system of coupled
harmonic oscillators, parametrically dependent on the classi-

cal coordinates un= �R� n
O−R� m

N�−deq,
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Dipole-dipole coupling parameters Jnm are determined as in-
teractions between transition dipoles, using the classical ex-
pression for the interaction between two dipoles,

Jn,m =
1

4��0k

��� n���� m�
Rn,m

3 �e�n · e�m − 3�v�n,m · e�n��v�n,m · e�m�� .

�4�

Here �n is the transition dipole moment of site n with unit
direction vector e�n and magnitude 0.30 D, Rn,m and v�n,m are,
respectively, the magnitude and unit direction vectors corre-
sponding to the vector pointing from the center of one dipole
to the center of the other, k is the dielectric constant, and �0
is the vacuum permittivity constant. The direction of the
transition dipole moment is taken to be at a 17° angle to the
CO bond in the direction of the CN bond, in accordance with
experimental findings obtained for �-helices.13,14 The associ-
ated eigenvalues E are the energies of these N states.

The second part of the integration consists of the propa-
gation of the amide-I excitation into one of the N states. The
state with the best overlap with the previous state is chosen,
and then a Metropolis step is performed to decide whether to
retain the previous state or propagate into the new state.15

Specifically, the product of the squared overlap between the
two states with the Boltzmann factor exp�−�Ef −Ei� /kBT�, kB
being the Boltzmann constant and Ef and Ei the energies of
the new and previous states, respectively, is computed. If this
value is less than a random number chosen between 0 and 1,
then the move is accepted. Otherwise the eigenstate that has
the greatest probability in the same site as the previous state
is chosen.

Finally, in the third part of our implementation, the MD
equations of motion of the classical part of the system,

Mn
d2Rn

dt2 = −
�Hint

�Rn
−

�Hat

�Rn
+ Fn�t� − �

dRn

dt
, �5�

where Mn is the mass of atom n, Fn are stochastic forces, and
�

dun

dt are damping terms, are integrated. Since the interaction
energy term Hint shown in Eq. �2�, which represents the in-
fluence of the amide-I excitation on the classical motion,
depends explicitly upon the positions of the hydrogen-
bonded N and O atoms, for these atoms force terms given by
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are included in Eq. �5�. All other atoms are propagated using
standard molecular dynamics only, i.e., the last three terms in
Eq. �5�.

An explanation of our choice of the semiclassical ap-
proach just described to address the problem of introducing
thermal baths to mixed quantum-classical systems is given in
the Appendix. Equations �3�–�6� have previously been ap-
plied to a lattice model at finite temperature for which it was
shown to predict lattice displacements agreeing well with
those derived from a fully quantum-mechanical model;16 in
addition absorption spectra have been calculated with fea-
tures qualitatively similar to the experimental ones.7,15,17

We chose helical deca-alanine as a test case due to its
simple repeating sequence, and the fact that it has been the
subject of previous studies and is known to display some
level of helicity.18 We first created helical deca-alanine
�Ace-Ala10-NH2� by setting all 	 /
 dihedral angles to
−57.8° /−47.0°. The leap and antechamber modules of the
MD program AMBER9 �Ref. 12� were used to perform the
initial setup, for convenience. Deca-alanine was param-
etrized using the AMBER99SB force field;10 this force field is
an update of the AMBER99 force field19,20 in which parameters
were adjusted to give a better representation of secondary
structure. The peptide was solvated by a periodic box of
transferable intermolecular potential 3 point �TIP3P� water21

extending 12 Å in the x, y, and z directions. Structures were
converted from AMBER to GROMACS-style coordinate and to-
pology formats using the amb2gmx perl script,22 and simula-
tions were then performed with GROMACS V4.8,9 The LINCS
algorithm23 was used for bond constraints in all simulations,
and we used a nonbonded cutoff of 12 Å. The particle mesh
Ewald �PME� method was employed to calculate long-range
electrostatics.

The system was equilibrated by running MD for 200 ps at
a temperature of 300 K; a 2 fs time step was used for equili-
bration as well as throughout all following simulations.
When the simulation is then restarted at 0 K this effectively
anneals the system into a lower energy structure with less
helical character, so that the deca-alanine assumes the struc-
ture of a disordered helix. Classical MD simulation was then
carried out to bring the system to a temperature of 300 K
over a 4 ps time period. Production runs used for analysis
consist of the following 4 ps trajectories, run with periodic
boundary conditions at a temperature of 300 K and at con-
stant pressure. For the sake of statistical analysis, we ob-
tained 20 similar trajectories by varying the seed of the ran-
dom number generator used to obtain starting velocities for
the first 4 ps of classical MD simulations. The simulation
time of 4 ps was chosen based upon the fact that two-
dimensional-IR experiments performed by Hamm and co-
workers have indicated that an amide-I excitation has a life-
time of up to about 2 ps in an �-helix; this is the time
required for the bleach of the anomalous band to recover
after being selectively excited.4,24

III. RESULTS

Mixed quantum-classical simulations were performed us-
ing a range of values of the parameter �, namely, positive
and negative values of 50, 100, 200, 400, and 800 pN. In
addition, classical simulations were performed, for which the
amide-I vibrational excitation was not included.

The number of residues corresponding to the longest he-
lical segment was determined for each time point along the
trajectory using the GROMACS analysis tools do_dssp and
g_helix. The first of these, do_dssp, assigns secondary struc-
ture by identifying patterns of hydrogen bonding using the
DSSP �Ref. 25� algorithm. The second program, g_helix, de-
termines helicity based upon both hydrogen bonds and 	 /

angles.8,9 Values were averaged over the 20 trajectories
which were generated, and cumulative averages are plotted
as a function of time in Figs. 1 and 2.

Interestingly the results confirm our hypothesis that the
amide-I excitation leads to changes in the degree of helicity
of the peptide. In the classical simulation, the number of
helical residues calculated by either of the two methods re-
mains roughly constant with time. However in the mixed
quantum-classical simulations, this number either increases
or decreases with time, depending on the sign of �. Positive
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FIG. 1. Cumulative average of the number of helical residues as
a function of simulation time �ps� determined by the g_helix GRO-

MACS analysis tool �Refs. 8 and 9�.
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FIG. 2. Cumulative average of the number of helical residues as
a function of simulation time �ps� determined by the do_dssp GRO-

MACS analysis tool �Refs. 8 and 9�.
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values of � bias the peptide structure toward a more helical
form, and negative values show the opposite effect.

In Fig. 3 we plot distances from the acetyl group at the
N-terminal end of the peptide to the NH2 cap at the
C-terminal end. Contraction of the peptide is evident for
positive values of �, due to the compression of hydrogen
bonds described by Eq. �2�. Likewise there is a reverse trend
toward extension of the peptide when � is negative.

We also analyzed the degree of localization of the amide-I
excitation. This can be described by a parameter known as
localization, given by Lj =�n=1

N �� jn�4, where 
� jn� are the co-
efficients in the expansion of eigenstate j in terms of the
states �n� for which oscillator n is excited and all other os-
cillators are in the ground state. In this way, localization
equals 1 for a completely localized state corresponding to a
single nonzero coefficient, and equals 1 /N for a completely
delocalized state for which all coefficients in the expansion
are equal. Computed values of localization, averaged over
time and over each of our 20 data sets, range from 0.22 to
0.24 depending on the value of �; these are tabulated in
Table I. As the magnitude of � is increased, states become
more localized for negative �, but they become less localized

for positive �. The former trend is what is expected to occur
if structure remains static since decreasing the magnitude of
� increases the relative magnitude of off-diagonal elements
of the Hamiltonian matrix in Eq. �3�. However increased
helicity leads to higher symmetry and thus also to more de-
localization, explaining the trend for positive values of �.

We determined maximum values of the probability ampli-
tude of the amide-I excitation on any given site ranging from
0.4 to 0.9, by comparison with the value of 0.2 found in the
study of a protein �-helix performed by Brizhik et al.26 This
smaller localization is most likely due to the use of a per-
fectly helical structure and the neglect of thermal noise in
that study.

In Fig. 4�a�, we plot the residue number corresponding to
the highest content of vibrational excitation for a typical tra-
jectory computed for �=800 pN; only the first 2 ps are
shown for better resolution. It can be seen that the amide-I
excitation is transmitted throughout the entire peptide during
the 2 ps simulation. There is, in general, a tendency for the
excitation to be located on residue 5, i.e., at the middle of the
peptide, or at one of the two ends. This is most likely due to
greater flexibility of middle and end residues, as may be seen
in the plot of root-mean-square fluctuation �RMSF� of � car-
bon atoms shown in Fig. 5. For this trajectory, �L�=0.21;
when localization is larger, the amide-I excitation remains at
the same site for longer periods of time, as in the trajectory
shown in Fig. 4�b� for which �=100 pN and �L�=0.25.

The dynamical trajectories of the amide-I excitations seen
in Fig. 4 correspond to the motion of a Brownian particle

TABLE I. Average localization. The second column gives the
standard deviation over the 20 data sets.

�
�pN� Localization Stdev

−800 0.243 0.019

−400 0.234 0.021

−200 0.232 0.012

−100 0.233 0.010

−50 0.236 0.008

50 0.233 0.011

100 0.230 0.009

200 0.230 0.008

400 0.220 0.009

800 0.223 0.011
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FIG. 3. Cumulative average of the minimum distance from the
N-terminal Ace group to the C-terminal NH2 group as a function of
simulation time �ps� determined by the g_mindist GROMACS analysis
tool �Refs. 8 and 9�.
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FIG. 4. Residue number at which the amide-I excitation is pri-
marily located, i.e., for which the coefficient in the expansion in
terms of basis functions localized on individual residues is largest,
plotted as a function of simulation time �ps� for trajectories corre-
sponding to �a� �=800 pN and �b� �=100 pN.
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rather than to that of a coherent excitation or soliton. This is
in contrast to what has been seen in simulations run at low
temperature, which used the same scheme to determine in-
tersite transfer of the amide-I excitation. That is, when ther-
mal energy was weak by comparison to the soliton binding
energy �defined below�, a coherentlike excitation could be
found.15 However because the strength of the approach taken
here lies in its computation of equilibrium averages consis-
tent with correct mixed quantum-classical statistics, rather
than in its rigorous time propagation, a detailed understand-
ing of the dynamics of a vibrational excitation will depend
upon the future development of methods more suitable for
treating time dependence.

IV. CONCLUSION

The results just presented raise the possibility that, fol-
lowing ATP hydrolysis, the vibrational energy created could
instigate biologically significant secondary-structural transi-
tions within a protein system. Various examples are known
of minor conformational changes occurring within �-helical
protein segments that are key to large-scale biomolecular
events. For example, a helical/unfolded double-state system
has been reported to be associated with the hydrolysis of
ATP in actin.27,28 Additional examples include the highly
conserved relay helices of kinesin and of myosin, which are
believed to undergo conformational transitions responsible
for instigating the power strokes in these two motor proteins
following ATP hydrolysis.29 Such a conformational change
of a protein arising from a localized vibrational mode would
represent a specifically quantum-mechanical effect, since
previous studies have demonstrated that in the case of a sys-
tem of classical oscillators, vibrational energy becomes
quickly delocalized.15,17,30–32

The values of � for which an amide-I state was found to
significantly impact helical content, in this study, are greater
than existing estimates. However, the same types of terms
arise in the interaction energy term, Eq. �2�, for the NH
stretch as for the amide-I vibration, and thus results are ex-
pected to be similar when considering the NH vibration

which has previously been proposed in the literature to be
the molecular vibration key to protein energy transfer.11,33–36

The parameter of nonlinearity � is proportional to the square
root of the binding energy, which is given by the energetic
difference between the lowest energy state and that which is
completely delocalized.11,37 It has been estimated experimen-
tally that the binding energy of the NH stretch is about 20
times as large as that of the amide-I excitation,34 and so the
value of � corresponding to the NH stretch may be expected
to be four to five times larger than that for the amide-I vi-
bration. In this context, it is reasonable to estimate that �
may be as large as several hundred piconewton.

In summary, we propose that a vibrationally excited state,
created following ATP hydrolysis, could work toward driving
the system along a reaction pathway corresponding to a
structural transition to a more helical state, by effectively
subtracting the energy of the vibrational excitation directly
from the activation energy required for this transition. Once
the reaction product, i.e., the more helical structure, has been
created, there are two thermodynamic possibilities. It is pos-
sible that in the presence of the hydrolyzed nucleotide, the
helical form is more stable than the less structured form,
which was thermodynamically favored before hydrolysis.
However, a second distinct possibility is that the less struc-
tured form remains favored thermodynamically, in which
case after some time the structure would be expected to re-
turn to the less helical form. Speculatively, reversions of this
type may be important stages in certain chemomechanical
cycles of proteins, such as corresponding, for example, to the
rescue of microtubules, i.e., their growth subsequent to a
period of catastrophic shrinkage, for which a satisfactory ex-
planation is currently lacking.38
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APPENDIX

In this appendix we review how the finite-temperature
equations of motion, Eqs. �3�–�6�, were arrived at. In the
current study they have been used because they provide a
proper representation of the quantum statistics of the amide-I
states, as well as a proper representation of the classical sta-
tistics of the atoms in the protein. The problems that arise in
a dynamical description of a mixed quantum-classical system
when the classical part is coupled to a classical bath have
been pointed out in a number of publications,30,39,40 and are
described briefly below. Equations �3�–�6� used here consti-
tute one solution to these problems.

The first study of the effect of thermal agitation on the
Davydov/Scott system was made by Lomdahl and Kerr.32

They started from the Ehrenfest equations of motion for an
amide-I excitation in a one-dimensional chain,
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FIG. 5. RMSF of the � carbons of deca-alanine plotted as a
function of residue number, averaged over 20 trajectories corre-
sponding to �=100 pN; error bars represent standard deviation.
RMSF was determined by the g_rmsf GROMACS analysis tool �Refs.
8 and 9�.
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i�
d�n

dt
= ��n − V��n−1 + �n+1� + ��un+1 − un−1��n,

�A1�

M
d2un

dt2 = ����n+1�2 − ��n−1�2� + ��un+1 − un−1 − 2un� ,

�A2�

where Jnm=V, i.e., only nearest-neighbor dipole-dipole inter-
actions are considered, � is the elasticity of the lattice, and
where the atomic Hamiltonian of Eqs. �3�–�6� was substi-

tuted by the phonon Hamiltonian: Ĥph= 1
2�n=1

N ���Ûn

− Ûn−1�2+
P̂n

2

M �.
Equations �A1� and �A2� provide an accurate representa-

tion of the dynamics of a mixed quantum-classical system
when the quantum particle remains in a single energy state.
When quantum transitions can occur, another method, the
surface hopping method, has been proposed.41 However,
both Ehrenfest and surface hopping dynamics lead to incor-
rect thermal equilibrium properties in the case of a mixed
quantum-classical system.15,30,40,42 On the other hand, the
equations of motion we use Eqs. �3�–�6� not only allow for
amide-I quantum transitions but also make sure that this
quantum subsystem remains correctly thermalized in the pro-
cess.

To understand the full problem, let us start by considering
the classical thermalization of Ehrenfest Eqs. �A1� and �A2�,
as implemented in Ref. 32,

i�
d�n

dt
= ��n − V��n−1 + �n+1� + ��un+1 − un−1��n,

�A3�

M
d2un

dt2 = ����n+1�2 − ��n−1�2� + ��un+1 − un−1 − 2un� + Fn�t�

− �
dun

dt
, �A4�

where the only difference with respect to Eqs. �A1� and �A2�
is that stochastic forces Fn and damping terms �

dun

dt have
been added to the equation of motion of the classical degrees
of freedom, Eq. �A2�. When these latter terms obey the
fluctuation-dissipation theorem, i.e., when �Fn�t�Fm�t���
=2M�kBTnm�t− t��, the corresponding Langevin equations
are known to lead to the correct thermalization of all classi-
cal systems. On the other hand, it can be shown that such a
thermalization of a mixed quantum-classical system leads to
a classical behavior of the quantum subsystem. Indeed, as
pointed out in Ref. 15, Eqs. �A3� and �A4� are identical to
the equations of motion of the fully classical system that is
obtained when the variables �n are taken to be classical am-
plitudes instead of probability amplitudes. Such classical
equations lead of course to a diffusion in the total phase
space of the system that obeys classical statistics. Put in an-
other way, this means that the equilibrium average of any
classical variable B�
un� , 
�n��, dependent on the classical
displacements un and on the classical amplitudes �n, as ob-
tained from sufficiently long dynamical simulations of Eqs.
�A3� and �A4�, is equal to the thermal average that can be
obtained in a completely independent Monte Carlo simula-
tion of the following fully classical expression,31

��B�
un�,
�n���� =


2N unit sphere


d�n
r�
d�n

i � 
dun�e−�H�
un�
�n��B�
un�,
�n��


2N unit sphere


d�n
r�
d�n

i � 
dun�e−�H�
un�
�n��

. �A5�

Here ��¯ �� stands for equilibrium average, �=1 /kBT, and
H�
un� , 
�n

r�
�n
i �� is the fully classical Hamiltonian whose

dependence on the classical displacements un and on the real
and imaginary parts 
�n

r� , 
�n
i �, respectively, of the classical

amplitudes �n is formally identical to the dependence of the
mixed-quantum classical Hamiltonian on displacements un
and on probability amplitudes �n. Thus, both Eq. �A5� and
Eqs. �A3� and �A4� pertain to descriptions of the fully clas-
sical Davydov/Scott system. On the other hand, as is pointed
out in Ref. 15, the correct expression for the equilibrium
average of a mixed quantum-classical variable

B̂�
un� , 
ân
†� , 
ân�� dependent on the classical displacements

un and on the quantum operators �
ân
†� , 
ân�� is

��B̂�
un�,
ân
†�,
ân���� =

 
dun�e−�Hat �
j=1,N

e−�Ej�	 j�B̂�	 j�

 
dun�e−�Hat �
j=1,N

e−�Ej

,

�A6�

where Ej is the energy of eigenstate 	 j of the �quantum�
amide-I vibration for a conformation 
un� of the �classical�
lattice and the summation is over all N eigenstates of the
quantum particle.
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Equation �A6� expresses mathematically the quantum sta-
tistics rule that stipulates that the quantum states must be
taken with all possible random phases so that ultimately only
eigenstates contribute with a nonzero weight to the equilib-
rium averages while Eq. �A5� includes the contributions of
all possible superpositions of eigenstates as well. The prob-
lem with equations of motion, Eqs. �A3� and �A4�, is pre-
cisely that they allow the amide-I wave function to visit all
possible superpositions of eigenstates, thus leading to classi-
cal statistics. In order to obey quantum statistics, a constraint
should be imposed on the dynamics provided by Eqs. �A3�
and �A4� to restrict the diffusion in quantum phase space in a
suitable manner. The equations of motion used here, Eqs.
�3�–�6�, by coupling the time-independent Schrödinger equa-
tion for the amide-I vibrations to the classical equations of
motions for the atoms in the protein, provide such a con-
straint and can indeed lead to the correct mixed quantum-
classical thermal equilibrium averages.15,31

Finally, it should be stressed that the problem discussed
here is absolutely general. It arises whenever any mixed
quantum-classical system is coupled to a classical bath,40,42

and the equations of motion, Eqs. �3�–�6�, used here are only
one of the solutions that have been proposed. In the Car/
Parrinello method,43 the solution is to periodically bring
down the electrons to the ground state, which is valid as long
as the energetic difference of the first excited state with re-
spect to the ground state is much higher than thermal energy
�kBT�. Another solution that has been implemented in a
quantum-classical dimer was to introduce, in the Ehrenfest
equations of motion, a term with a Lagrange multiplier to
force the density matrix to tend to its exact analytical
expression.39,44 Neither of these two solutions can be used in
the case of the Davydov/Scott system. Indeed, as determined
in a simulation of the thermal equilibrium properties of the
full quantum Davydov/Scott system,45 the energy of the ex-
cited states of the amide-I vibration are only 11kB higher
than the ground state; that is, above 11 K, the excited states

will have a high probability of being populated. This is why
the Davydov soliton, which is the ground state of the system,
is not thermally stable at biological temperatures.15,17 The
second solution mentioned above is not feasible either be-
cause the Davydov/Scott system �and even more so the ex-
tension of it that we use here� is too complicated and an
analytical expression for the partition function is not avail-
able. The equations of motion, Eqs. �3�–�6�, are thus a third
possible solution to the thermalization problem that is appli-
cable even to this extended Davydov/Scott system and in-
deed to any other mixed quantum-classical system. However
it is not without its own limitations. One limitation is that
Eqs. �3�–�6� are only strictly valid when the amide-I vibra-
tion adapts very quickly to the changes in the atomic
coordinates;15 a second limitation of Eqs. �3�–�6� is that they
do not keep any memory of the phases of the wave functions
and thus cannot describe quantum effects such as �de�coher-
ence and entanglement. However, we think that, in the noisy
environment in which proteins work, such quantum effects
do indeed fade out very fast and do not play a role in the
energy-transfer processes that we are interested in. One other
quantum effect that we are interested in, that is, amide-I lo-
calization in a few amino acids, however, is important. In-
deed, localization has been shown to be a truly quantum
effect since the fully classical system, represented by dy-
namical Eqs. �A3� and �A4� and by the corresponding equi-
librium Eq. �A5�, does lead to delocalized amide-I
vibrations,31,32 while the exact mixed quantum-classical sys-
tem �as well as the full quantum system� leads to localized
amide-I vibrations.15,16,30,45 Thus, while for other mixed
quantum-classical systems the surface hopping method may
provide a reasonably good approximation of the thermal
equilibrium properties,40 if we want to have the correct lo-
calization of the amide-I state in the �extended� Davydov/
Scott system, we need to use other equations of motion, such
as those we use here.
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