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Abstract. In recent years, a large number of impressive object categori-
sation algorithms have surfaced, both computational and biologically
motivated. While results on standardised benchmarks are impressive,
very few of the best-performing algorithms took run-time performance
into account, rendering most of them useless for real-time active vision
scenarios such as cognitive robots. In this paper, we combine cortical
keypoints based on primate area V1 with a state-of-the-art nearest neigh-
bour classifier, and show that such a system can approach state-of-the-art
categorisation performance while meeting the real-time constraint.

1 Introduction

Object recognition and categorisation has seen tremendous progress in recent
years. As noted by Boiman et al. [1], in a few years the best-performing methods
went from scoring around 20% on Caltech 101 to almost 90%. This has led to
newer, more challenging datasets like Caltech 256 [2] and PASCAL VOC [3],
with similar progress. These improvements went hand-in-hand with increased
computational power and improvements in machine learning methods, allowing
for learning very complex relationships from training images. But while this re-
search has pushed the boundaries of what is possible, most of the best-performing
methods are very slow. While directly comparing reported runtimes is difficult
due to differences in implementation details and different hardware used, most
authors who report how long it takes to finish processing a benchmark like Cal-
tech 101 mention hours and days. Even with more powerful computers, most of
these methods will not be usable on mobile robots for years.

What is the cause of this slowness? The majority of approaches are based
on machine learning methods [4,5]. Images (or parts of images) are described by
feature vectors, which are often quantised into a codebook, and a set of classifiers
is learned from a training set. With these approaches, most of the time is spent
in the learning stage, which is usually only done once but it can take a long
time. Once the category models have been learned, recognition is usually fast.
However, learning new classes typically requires re-learning all the classifiers,
making these methods less suitable for applications such as cognitive robotics –
a robot should not have to wait many hours to learn a new class.

A second group of approaches do not do any training, but compare descriptors
from a query image directly with all the descriptors from all the labelled model
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images. It has recently been shown that nearest neighbour classifiers can match
the performance of machine-learning classifiers on several challenging bench-
marks, and that they effectively approximate a maximum a posteriori classifier
[1]. Given their ability to learn new categories instantly, this makes them an
attractive option for cognitive robotics, but the absence of a training stage is
countered by increased computational complexity during recognition. In [1], the
authors sample descriptors on a dense grid, leading to reported recognition times
of about 1.6 seconds per class per image, so almost 3 minutes per image for the
Caltech 101 dataset. This too is not acceptable for a cognitive robot.

In this paper, we combine the nearest neighbour classifier from [1] with the
cortical keypoints from [6] and propose a number of practical optimisations
which drastically reduce the required processing. While this efficient method
doesn’t match the classification performance of today’s best algorithms, it man-
ages to match some recent state-of-the-art methods, all while achieving real-time
performance.

1.1 Related Work

In recent years many methods have performed well in object recognition and
categorisation tasks. The majority of them extract feature vectors from images
and use a powerful classifier to discriminate between classes. Support Vector
Machines are most commonly used [7,8,2,5,9,10], but also other types of classi-
fiers, such as random forests [11] and Non-linear Kernel Discriminant Analysis
(NKDA) [4]. These approaches feature an expensive learning stage, after which
recogntion is typically fast. Often improvements come from a proper selection of
the SVM kernel [8,9] or the selection of a proper vector quantisation step.

A second approach to category-level recognition uses non-parametric classi-
fiers, typically nearest-neighbour methods [1,5,12]. Nearest-neighbour search is
usually done using K-D trees, making the problem computationally tractable.
Traditionally, they measure a total image-to-image distance, but recently it has
been shown that image-to-class is a more effective measure [1]. These methods
do not require a learning stage, but since they typically store many labelled
descriptors, recognition is slow.

Features representing an image are often extracted on a grid [5,1,13], but
some methods are based on interest point detectors, such as Harris corners [4],
Difference-of-Gaussians [14] or others [15] in order to first locate most impor-
tant regions in the image, but the selection of the right type of interest points is
crucial. Some detectors detect very general features whereas others detect
highly object-specific ones, and a trade-off is needed for good categorisation
performance.

In this paper, we propose using biologically-inspired multi-scale keypoints for
capturing the most significant regions in the image, and we show that using these
types of keypoints can significantly speed up object categorisation.
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Algorithm 1. Our real-time classification algorithm

1: Select scales Λ← {λmax . . . λmin}
2: ∀λ ∈ Λ extract descriptors Dλ ← {dλ1 . . . dλN} at keypoint locations
3: C ← {c1 . . . cM}
4: ∀c ∈ C distC ← 0
5: for all λ ∈ Λ do
6: ∀dλi ∈ Dλ ∀c ∈ C distc ← distc +

∑N
i=1 ‖dλi − NNC(d

λ
i )‖2

7: if distci > 2distmin
C then

8: C ← C \ {ci}
9: end if
10: end for
11: Ĉ = argminC distC

2 Method

Our method starts by resizing the image to 300x300 pixels, followed by keypoint
extraction. We use cortical keypoints from [6], which detect meaningful events
both at fine scales (corners, junctions) and at coarse scales (blobs). The choice of
the keypoint detection algorithm is important: we have experimented with other
interest point detectors, such as DoG (SIFT) and DoH (SURF), but they did not
work as well in our categorisation experiments. The keypoints are extracted by a
series of filtering operations: simple cells (8 oriented odd and even Gabor wavelets
with wavelength λ), complex cells (modulus of the simple cells in quadrature),
followed by double-stopped cells and two inhibition schemes (see [6] for details).
We extract keypoints at wavelengths λ ∈ {11 . . .64}, with λ spaced half an
octave apart (6 scales in total). This yields a nice balance between detail and
coarse image features.

We then extract a SIFT descriptor at each keypoint location. The width of the
SIFT descriptor is set to 2λ. Descriptors smaller than 16×16 show little discrim-
inance between classes. The SIFT descriptor is used to facilitate comparisons to
similar work, but we are planning to explore more biologically plausible descrip-
tors in the future. The “learning” stage consists of extracting all keypoints and
their descriptors from all labelled images (training images) and storing them in
class-specific K-D trees to enable a fast nearest-neighbour search.

For each query image (testing image), we extract keypoints and descriptors
as before. For each descriptor di ∈ {d1 . . . dN}, we find the nearest neighbour (in
descriptor space) NNC(di) in each class C and sum all distances per class, as in
[1]:

distC =

N∑

i=1

‖di −NNC(di)‖2. (1)

The winning class is the class which minimises the total distance

Ĉ = argminC distC . (2)

We note that, like in [1], we are grouping descriptors from labelled images per
class, and not per image.
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Focusing attention on keypoints significantly reduces the number of nearest-
neighbour lookups needed. Most nearest-neighbour approaches extract descrip-
tors from a densely sampled grid, which can lead to about 90,000 descriptors
per image. Using Caltech 101, which has 101 categories, typically with 30 im-
ages used for training, categorising a single image requires about 2.5 × 1013

nearest neighbour lookups. It is easy to see why recognition is slow, despite
using efficient nearest neighbour lookups. Our keypoint extraction stage typi-
cally extracts about 500 keypoints per image, reducing the number of lookups
to about 7.5 × 108, a speedup of 30000× in the case of full, exhaustive search!
In practice, the use of K-D trees reduces the nearest-neighbour search to log-
arithmic time, so the speedup is smaller (roughly linear with the reduction of
descriptors per image), but it is still significant. We pay for this speedup by a
drop in classification rate, as will be seen in the following section, but the drop
is acceptable for many applications.

2.1 Real-Time Active Vision

Since 7.5 × 108 is still a large number, we apply a coarse-to-fine strategy moti-
vated by biological vision. Most keypoints are extracted at fine scale, capturing
fine detail, and relatively few are detected at coarse scales, capturing larger
structures. Because of this, the matching of all keypoints at coarse scales is less
expensive. We therefore begin by processing keypoints at coarse scales (λ ≥ 32),
after which we discard all classes whose total distance distC is more than twice
the minimum distance distmin

C . We keep doing this at each finer scale, so descrip-
tors at the finest scales are only matched for a small number of classes which
look promising. With many classes and many labelled images to compare to,
this can cut the processing time by a further factor of 10, without negatively
affecting the classification rate.

The most attractive property of our method is that further speedups are
possible: one can restrict the number of scales used, which will speed up the
processing, but hurt performance. This kind of trade-off is inherent in active
vision, such as biological vision and vision for cognitive robots, where the amount
of processing is task- and context-specific. Using our method, a suitable trade-
off can be chosen during recognition, depending on the number of keypoints
which can be processed in the available time. This is not the case with many
learning-based methods, where the feature vector describing the image has to
match the feature vectors used during training. With our method, an agent can
choose to only process very coarse scales (so feature extraction and matching are
fast) and sacrifice performance, if speed is required. Or it can choose to spend
more time in order to obtain more accurate results, by using more scales. This
way a range of speeds is possible, ranging from processing the entire Caltech 101
dataset in a few seconds (using only keypoints at the coarsest scale), to taking
several minutes to complete the same job. If one samples enough descriptors,
the performance would match the original grid approach from [1], but it would
take days.
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Fig. 1. Comparison with several state-of-the-art algorithms from recent years on the
Caltech 101 dataset, using 15 and 30 training images and one type of descriptor (SIFT
in our method). We compared against Wang et al. [16], Grauman and Darrell [7],
Ommer and Buhmann [4], Zhang at al. [12] and Boimann et al. [1].

3 Evaluation

We have evaluated our nearest-neighbour method on object recognition (COIL-
100 dataset [17]) and object categorisation (Caltech 101 dataset [18]) tasks. We
have primarily compared against the state-of-the-art nearest-neighbour approach
of [1] which we use as a baseline in terms of classification and runtime perfor-
mance, but have also included some other recent state-of-the-art approaches in
the comparison. In these tests, the 130-dimensional descriptors di consist of a
128-dimensional SIFT descriptor and scaled x and y image coordinates of the
descriptor (using scaling factor α = 3).

We first looked at object recognition on the COIL-100 dataset. We used 6
training views and 66 testing views for each class. Our performance is slightly
lower than [1] (93.5% vs. 95.5%) but considerably faster, classifying 6600 images
in 2’44” vs. 122 minutes, or 40 vs. 0.9 frames per second. For the baseline, we used
a grid of descriptors 3 pixels apart; a more densely spaced grid would improve
the performance but further increase the time difference. Please note that in this
comparison we only measured matching time, not feature extraction, although
our approach is also faster there.

We used the Caltech 101 dataset for testing categorisation performance. We
emphasise that we only compare against methods which use a single descriptor,
not against those which combine many different features. As expected, our al-
gorithm is fast, managing to process the entire Caltech 101 dataset (about 6000
testing images compared against 3000 models) in about 30 minutes, including
feature extraction. The classification itself took only 15 minutes with 6 scales and
30 labelled images per class, i.e. feature extraction and matching are balanced
in terms of CPU time. As can be seen from Fig. 1, our results are lower than those
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Fig. 2. Runtime vs. accuracy trade-off. Our method can classify all the images from
the Caltech 101 dataset in about 7 seconds, and additional processing time gradually
improves performance. Note that the time is measured in seconds as opposed to hours.

of state-of-the-art methods [12,1], but are competitive with some methods from
only a few years ago, like [16,7,4]. We achieve 50.2% and 58.9% with 15 and 30
labelled images, respectively. At the same time, our method is much faster than
all the listed methods. We note that the multi-scale coarse-to-fine approach did
not negatively effect the classification rate in our experiments, same results were
obtained when all points were used. It should be emphasised that the two best-
performing methods in this comparison both use grids, which are a bit adapted
to special properties of the Caltech dataset (see the discussion in [13]), which
improves their performance. Also, the approach from [4] uses a very complex
hierarchical model, and we can match its performance by using a much simpler
approach which requires only a fraction of the time.

Fig. 2 shows the effect of runtime on the classification rate on the Caltech 101
dataset. At one extreme, using only the coarsest scales leads to a classification
rate of only 20%, but the entire dataset is processed in only a few seconds. At
the other extreme, we reach a competitive classification rate of 59%, using all
available scales. We could extend our feature set by adding more descriptors
until they cover the entire grid as used by [1], and we would match both their
performance and their runtime. Using the standard parameters used throughout
this paper (6 scales, coarse-to-fine strategy), we get a compromise: a classification
rate 10-15 percentage points below the state of the art, but orders of magnitude
faster than competing methods. An active agent can choose how much processing
time to invest in a classification task, and get an appropriate classification rate.



320 K. Terzić, J.M.F. Rodrigues, and J.M.H. du Buf

4 Discussion

Evaluation shows that our keypoint-based method significantly outperforms the
nearest-neighbour baseline in terms of runtime, achieving real-time performance
on a standard i5 quad-core processor. At the same time, classification perfor-
mance is somewhat lower. Even so, it is amazing that it can compete with some
older methods, which took many hours for training and optimising non-linear
kernels to reach such a high performance. We find this trade-off acceptable:
many applications only feature a relatively small number of classes, but abso-
lutely require fast learning and real-time recognition. For such applications, most
state-of-the-art approaches are unsuitable, and our method clearly fills this gap.

The most interesting property of the presented algorithm is that the runtime
vs. accuracy trade-off is a fluent one, and can be selected at any time during
recognition. This allows for real-time and task-driven vision, where limited re-
sources (such as on a cognitive mobile robot) can be optimally allocated to
solve a wide range of problems – from rough but fast landmark detection dur-
ing navigation, to close inspection of scene objects before performing complex
tasks. Given enough time, the performance of our algorithm approaches that
of the best nearest-neighbour algorithms, which are known to be among the
best-performing categorisation methods.

5 Conclusions

We presented a very fast object categorisation algorithm which is orders of mag-
nitude faster than all state-of-the-art categorisation algorithms known to us.
Although the classification performance matches that of algorithms from a few
years ago, it is not competitive with today’s state of the art. However, its speed
and ability to choose the accuracy vs. performance trade-off during recognition
make it extremely attractive for cognitive robotics and other applications where
runtime is an issue.

Our work shows that world-class categorisation performance need not be slow.
Although there is still a significant gap in classification rate between our work
and best-performing methods, the difference in computational complexity is huge
while the results are sufficient for many applications. We believe that this work
is only the beginning, and that further tweaks can bring performance closer to
the leading methods, while still maintaining real-time performance.

We are currently working on a more biologically plausible model, which re-
places SIFT descriptors by descriptors based on simple and complex cell re-
sponses. We are also exploring hierarchical representations, using co-occurrences
of features and feature clusters to improve classification performance.
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