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Abstract 

Nowadays, the demand for high speed, high quality and diversity in distributed services 

presents a challenge for telecommunication technology. Wireless systems provide the accessibility to 

end-user, but are not the solution for long distance links. Currently, the ideal technology for long-

range transmissions at high data rates is optical fiber. Hence, a new concept for high capacity 

networks emerges, with centralized services into Base Stations (BS) engineered to provide flexibility 

and control over the system, and to perform operations such as electrical to optical domain 

conversion and modulation. Such Radio-over-Fiber (RoF) networks also appear as an attractive 

technology because they are efficient and cost effective. 

Orthogonal Frequency Division Multiplexing (OFDM) technology is widely used in a number 

of standards. For instance, it is actually the Multi-Carrier Modulation (MCM) technique applied in 

802.11a/g/n wireless standards and in Digital Video Broadcasting-Terrestrial (DVB-T), among other 

prevailing systems, which makes this subject one particularly pertinent to study. OFDM systems are 

an appealing choice for waveform modulation, as they are very bandwidth efficient comparing to 

others MCM, and provide flexibility in data transmission rates. Additionally, an important advantage 

dwells in its natural robustness against severely interfering environments.  

In this thesis, fundamentals on OFDM technology are extensively described, and its 

application to wireless and optical fiber networks is introduced. The combined channel effects of 

these technologies on OFDM signals are investigated. In terms of performance analysis, this 

exposition focuses on understanding the importance of OFDM modulation parameters, and explores 

some OFDM signal properties. To achieve this, a simulator was implemented with Matlab to create 

arbitrary OFDM waveforms and emulate channel effects. This study also investigates the efficiency of 

OFDM technology over a real Radio Frequency (RF) system with an ideal communication channel. 

Finally, an experimental RoF configuration is implemented and its performance is assessed. 

 

Keywords: OFDM, FFT, 802.11, RoF, EVM, and Matlab. 
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Resumo 

Na área das telecomunicações, as tecnologias dominantes são aquelas que oferecem serviços 

diversificados e de qualidade superior a custos acessíveis para os utilizadores, proporcionando 

simultaneamente flexibilidade e controlo aos fornecedores de serviços. Actualmente, a fibra óptica é 

o meio de transmissão predominante para estabelecer sistemas de comunicação para longas 

distâncias, isto porque suporta taxas de transmissão muito elevadas introduzindo menor atenuação e 

menos interferências do que os meios clássicos. No que respeita à distribuição e acessibilidade de 

serviços de comunicação, verificou-se nos últimos anos, e ainda presentemente com o sucesso 

notável dos sistema de redes sem fios, que estes são os mais adequados para fornecer o acesso final 

aos utilizadores. Tal se deve principalmente à facilidade de acesso e à mobilidade associados a estes 

sistemas, bem como a crescente capacidade em termos de taxas de transmissão e de segurança. 

Deste modo, um conceito surge para um tipo de rede que tira partido das vantagens associadas a 

estas duas tecnologias conhecido como Rádio sobre Fibra (Radio-over-Fiber - RoF), sendo que o sinal 

rádio eléctrico pode ser com fios ou sem fios. Este tipo de redes composta é introduzido em [1], e é 

descrito pelos autores como um sistema constituído por um Sítio Central (Central Site - CS) ligado por 

fibra óptica a um Sítio Remoto (Remote Site - RS). A ideia consiste na implementação de um RS 

simples e de baixo custo, com capacidade para executar de forma centralizada operações como a 

conversão directa do domínio eléctrico para óptico e a modulação de sinais ópticos. Um cenário 

possível poderia ser um conjunto de utilizadores a transmitir informação para o RS através de uma 

rede sem fios. No RS, os sinais rádio eléctricos são combinados e directamente convertidos para o 

domínio óptico, e a informação é encaminhada para o CS. 

Um dos sistemas de redes locais sem fios mais usados é definido pelo standard IEEE 802.11g. 

Este standard pertence à categoria de especificações designadas como IEEE 802.11 que são 

minuciosamente descritas em [2], dentro da qual aperfeiçoamentos e novas especificações 

compatíveis com versões anteriores têm sidos desenvolvidas ao longo dos anos. O standard IEEE 

802.11g foi concebido de forma a ser compatível com os standards anteriores IEEE 802.11a e IEEE 

802.11b, e a definição da sua camada física baseia-se nestes. Assim, este standard mantém-se actual 

e usado em larga escala, pelo que se torna um tópico de estudo particularmente interessante. O 

standard IEEE 802.11a é um dos primeiros sistemas do género a fazer uso de um método de 

modulação de dados conhecido como Multiplexagem por Divisão de Frequências Ortogonais 

(Orthogonal Frequency Division Multiplexing - OFDM). 

Esta técnica de modulação, descrita ao pormenor para um modelo de rede sem fios em [3], 

surgiu na década de 1960. É uma tecnologia que tem sido cada vez mais adoptada em sistemas 
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eléctricos com fios e sem fios devido às diversas vantagens que a caracterizam. Em primeiro lugar, 

comparada com outras técnicas de modulação com múltiplas portadoras, a modulação OFDM 

proporciona uma utilização muito mais eficiente da largura de banda. Esta eficiência deve-se à 

disposição particular das suas sub-portadoras (Subcarriers - SC), isto é, à ortogonalidade existente 

entre as suas frequências. Esta propriedade possibilita a sobreposição espectral de componentes das 

SCs, cada uma delas centrada numa frequência múltipla da frequência de base, sem que sejam 

introduzidas interferências entre elas. Outra vantagem associada a esta tecnologia é a sua grande 

robustez em ambientes que introduzem altos níveis de distorção e atrasos no sinal, tais como 

ambientes de multi-percurso. Sendo o sinal composto por SCs com frequências distintas, os efeitos 

de atenuação dependentes da frequência apenas influenciam algumas delas, ou seja, apenas parte 

da informação transmitida é corrompida. Esta característica, aliada de mecanismos de codificação da 

fonte, permite recuperar grande parte da informação distorcida. No que respeita a atrasos, o 

principal mecanismo de protecção baseia-se em gerar uma periodicidade no sinal através do Prefixo 

Cíclico (Cyclic Prefix - CP), que estende a duração do símbolo OFDM. Este prefixo é simplesmente 

constituído por uma cópia de parte das amostras que definem o sinal, que são colocadas a frente de 

cada símbolo durante o Intervalo de Guarda (Guard Interval - GI). Recorrendo ao uso de SCs piloto, 

erros de fase são facilmente estimados e corrigidos sem necessitar de recorrer a equalizadores 

complexos e dispendiosos. Algumas desvantagens também estão associadas a esta tecnologia. Em 

primeiro lugar, é extremamente sensível a erros de sincronismo, quer a nível de frequência, quer a 

nível de tempo. Em segundo lugar, na modulação OFDM existe uma tendência em se gerar altos 

níveis de Relação Pico-Valor Médio de Potência (Peak-to-Average Power Ratio - PAPR). Tal acontece 

porque no processo de multiplexagem as SCs são somadas entre elas. Quando várias destas 

portadoras são somadas num período, se em dado instante todas têm elevadas amplitudes, tal é 

reflectido no sinal OFDM resultante através de um pico naquele instante, elevando-se muito acima 

da média. Estes altos picos exigem muito por parte dos amplificadores que podem saturar, bem 

como dos filtros e conversores analógico/digital existentes num sistema real. 

Nesta dissertação, como primeiro objectivo pretende-se estudar de forma compreensiva os 

comportamentos conhecidos da modulação OFDM em diversas situações, baseando as 

características dos sinais gerados nas especificações de modulação e de tempo descritas no standard 

IEEE 802.11a. Mecanismos de sincronismo e de estimação do canal são igualmente baseados nestas 

especificações. Numa primeira fase, um simulador desenvolvido em Matlab é usado para gerar 

formas de ondas OFDM complexas em banda base. Estas são sujeitas a modelos de  distorção por 

falta de sincronismo, por canais multi-percurso e ruído Gaussiano, pondo à prova os mecanismos de 

recuperação e demonstrando os seus efeitos. O principal mecanismo de análise do desempenho 

consiste no cálculo da Magnitude do Vector de Erro (Error Vector Magnitude - EVM), implementado 
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conforme descrito no standard IEEE 802.11a. Além disso, as influências sobre os sinais são 

observadas através de representações clássicas, como a Relação Sinal-Ruído (Signal-to-Noise Ratio – 

SNR) e a contagem percentual da Taxa de Bits Errados (Bit Error Rate – BER). De modo a observar os 

efeitos dos filtros e de pequenos desvios que podem ocorrer numa transmissão real, o simulador 

também é implementado para sinais em banda. 

O segundo objectivo deste trabalho consiste em estudar o comportamento da técnica de 

modulação OFDM num sistema RoF, implementando fisicamente uma rede e recorrendo a 

instrumentos para gerar os sinais e para adquiri-los de volta. De modo a formar um sistema 

completo, flexível e controlado a partir do simulador, foram desenvolvidas ferramentas para 

comunicação com os instrumentos através de um interface GPIB, bem como para geração e 

extracção de ficheiros específicos à cada instrumento. A configuração implementada representa um 

RS em comunicação com um CS. Assim, o RS recebe quatro sinais rádio centrados em frequências 

distintas, em que um deles é o sinal OFDM em estudo. Estes sinais são combinados, passando a 

circular todos juntos pelo mesmo meio eléctrico. O sinal eléctrico é então modulado directamente 

numa portadora óptica pelo RS, e esta é transmitida. No receptor, que corresponde ao sinal que 

chega no CS vindo do RS, o sinal é convertido de volta para o domínio eléctrico usando um foto-

detector, e o sinal OFDM é separado dos restantes e processado digitalmente. Por fim, a análise das 

constelações é efectuada, sendo caracterizada através do cálculo do EVM. 

 

Palavras Chaves: OFDM, FFT, 802.11, RoF, EVM, e Matlab. 
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Chapter 1. Introduction 

1.1. Wireless Radio-over-Fiber Networks 

In present days, the demand for high speed, high quality and diversity in distributed services 

through networks presents as a challenge for telecommunication technology. Wireless systems 

provide the accessibility to end-user, but are not a solution for long distance links. Currently, the 

ideal technology for long-range transmissions at high data rates, with reduced distortions and lower 

power consumption is optical fiber. By combining electrical and optical technologies, a new concept 

of networks emerges, which is known as RoF. 

A RoF consists of a Central Site (CS) connected to a Remote Site (RS) through an optical fiber 

link. This is a technology where electrical signals, which can be baseband data, modulated 

Intermediate Frequency (IF) or an RF carrier, are used to modulate the optical source. Using this 

approach the optical network can deliver directly the RF signal to the RS, thus avoiding the need to 

generate and process high frequency carriers at the antenna site. Hence, by concentrating most of 

the expensive high frequency equipment for electronic signal processing at a centralized location, the 

RS become simpler and more cost effective [1]. The main reasons that lead RoF networks to appear 

as especially attractive technology can be summarized into the following:  

• Transparency for bandwidth or modulation techniques is provided [4]. 

• Remote stations become small, simple and low cost [1]. 

• Centralized operation is possible [1]. 

The underlying idea in implementing a Wireless RoF system is to combine the mobility and 

accessibility of the wireless technologies with the massive bandwidth offered by optical fiber.  

1.2. OFDM Technology in RoF Networks 

Orthogonal Frequency Division Multiplexing (OFDM) is a technology used in many broadband 

wired and wireless systems, mainly due to its robustness against Intersymbol Interferences (ISI) 

caused by a dispersive channel [5]. In addition, OFDM technology is an appealing choice for 

waveform modulation, as it is very bandwidth efficient comparing to other Multi-Carrier Modulation 

(MCM) techniques, and it provides flexibility in data transmission rates [3]. Currently, many studies 

are showing that OFDM is also a promising technology for optical communications [5]. 

However, there are known drawbacks associated to this technology, namely a very high 

sensitivity to time and frequency synchronization, and the large dynamic range of the signal. 
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Frequency shifts, usually resulting from unequal local oscillator frequency at the transmitter and 

receiver, cause the orthogonality between Subcarriers (SC) to be lost, thereby introducing 

Intercarrier Interferences (ICI). Time deviations, such as delay spreads, cause adjacent data symbols 

to overlap and interfere with each other, thus introducing ISI. Large peaks cause saturation in power 

amplifiers, which results in Intermodulation Distortion (IMD) and in out-of-band radiation, thereby 

leading to ICI [3]. 

In addition to these impairments, by combining an optical distribution system with a 

traditional wireless network an additional propagation delay is introduced by the fiber link [6]. 

Merging a wireless system with an optical fiber system also implies considering the limitations 

inherent to each technology. For example, wireless communications experience severely interfering 

multipath propagation characteristics, while optical systems endure effects such as chromatic 

dispersion, or multimode distortion [7]. 

The foremost goal of this dissertation is to study the performance of OFDM technology on a 

RoF network, while taking into account the deterioration sources mentioned above. In order to do 

so, a simulator was implemented with Matlab, which allows for the generation of arbitrary OFDM 

complex and real waveforms. The simulator includes channel propagation effects with essential 

signal detection and recovery mechanisms, and time/frequency offset simulation. The parameters 

chosen to perform the OFDM modulation in this particular study are described in the IEEE 802.11a 

[2] standard amendment for WLANs. To complete this research, a small practical RoF system was 

implemented and evaluated. In this dissertation, the main approach for performance evaluation will 

rely on the estimation of Error Vector Magnitude (EVM) in interfering scenarios, and in 

understanding the consequences associated to synchronization issues. In addition, the Peak-to-

Average Power Ratio (PAPR) will be studied to quantify the large dynamic range of the signal, which 

is a significant negative aspect of this technology. 

1.3. Dissertation Outline 

This first chapter consists in a general introduction to the technologies discussed in this 

dissertation. In particular, an overview is made on RoF networks and on OFDM technology 

application in electrical-based and optical-based technology. 

The second chapter develops a number of topics in which a generic model for a wireless 

OFDM system is described in detail. The fundamental characteristics of this modulation technique 

are explained, and mathematical models that define the modulation, demodulation, synchronization 

and channel effects are introduced.  
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The third chapter discusses the use of OFDM technology in IEEE 802.11a wireless standard, 

as well as its application to optical networks. The expected channel effects are presented, focusing 

on the aspects of wireless channels and optical fiber, as Wireless RoF communication systems are 

affected by both. The main tools chosen for performance evaluation are also defined. 

The fourth chapter is dedicated to the Matlab simulation of an OFDM system based on the 

parameters described in the IEEE 802.11a wireless standard. The previously introduced models are 

simulated to understand the effects of synchronization errors and dispersive multipath channels. 

The fifth chapter exposes the procedures adopted to perform real transmissions using 

instruments. The experimental parameters and the instruments configuration are defined. 

The sixth chapter consists in studying the influence of a wired RoF system on an OFDM signal. 

The system architecture is briefly described, and the OFDM signal acquired for different situations is 

analyzed. 

The seventh chapter presents the general conclusion concerning the subjects approached 

and the results obtained in this thesis, as well as potential future work and development on this 

dissertation subject. 





 

5 

Chapter 2. Fundamentals on OFDM Systems 

2.1. Introduction 

This chapter introduces the theoretical background for wireless OFDM-based transmission 

systems, and different properties of OFDM technology. 

 First, a model for wireless transmission systems is presented. The use of schemes to prevent 

data loss and to correct erroneous bits resulting from transmission impairments is introduced. The 

importance of the Guard Interval (GI), the Cyclic Prefix (CP) and Windowing is also discussed. In 

addition, fundamental theory that defines OFDM technology, namely orthogonality and the use of 

Discrete Fourier Transform (DFT) to perform modulation is explained.  

In order to understand OFDM technology, it is necessary to study the mathematical 

background that characterizes it. A detailed mathematical model is used to design OFDM symbols, 

and to define several steps of major importance in the transmission sequence. Namely, the 

modulation of OFDM symbols, the mathematical definition of a transmission affected by a multipath 

channel with additive white noise, the demodulation and the degradation brought on by 

time/frequency/phase offsets.  

2.2. An Overview on OFDM Technology 

The idea of using parallel-data transmission and multiplexing can be traced back to the 

1950s, and was further explored in the 1960s [3]. The principles of OFDM technology emerged as an 

evolution of the conventional Frequency Division Multiplexing (FDM) systems [8]. In 1966, a first 

suggestion to make use of orthogonal frequencies for transmission was made in a patent by Chang of 

Bell Labs [5]. In 1980, the Cyclic Prefix was introduced, which has turned to be essential in most 

OFDM systems [5]. It was later in 1970 that OFDM technology was patented in the US. In 1971, 

Weinstein and Ebert introduced the DFT as part of the modulation and demodulation process for 

parallel-data systems [9]. It was only in the 1980s that OFDM was considered for high-speed modems 

and digital mobile communications [3]. In 1987, Lassalle and Alard pointed out the importance of 

Forward Error Correction (FEC) [5]. Finally, in the 1990s, OFDM technology was applied to wideband 

data communications over mobile radio FM channels, High-bit-rate Digital Subscriber Lines (HDSL), 

Asymmetric Digital Subscriber Lines (ADSL), Very-high-speed Digital Subscriber Lines (VDSL), Digital 

Audio Broadcasting (DAB), and High Definition Television (HDTV) terrestrial broadcasting [3]. 

Nowadays, OFDM systems are widely employed in diverse data delivery systems such as digital radio 
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and television, phone lines and different wireless networking systems [8]. It is only recently that 

OFDM technology was introduced to optical communication systems. Many theoretical and practical 

studies on its performance are currently in progress for a number of optical systems and fiber types, 

such as Single Mode Optical Fiber (SMF), Multimode Optical Fiber (MMF) and Plastic Optical Fiber 

(POF) [5]. 

In conventional single carrier transmission schemes, data symbols are modulated and placed 

over a carrier wave that occupies the entire available frequency spectrum [10]. Distinctively, OFDM 

scheme belongs to a broad class of Multi-Carrier Modulation (MCM) in which a high-rate data stream 

is split up into a set of low-rate substreams that share the available frequency spectrum space [3] [7]. 

Each SC contains previously modulated data using well-known modulation techniques such as Phase 

Shift Keying (PSK) or Quadrature Amplitude Modulation (QAM) [3] [11]. However, a fundamental 

characteristic distinguishes OFDM systems from other MCM systems: the particular spectral overlap 

resulting from the arrangement of the SCs. This overlap is made possible without any ICI due to the 

mathematical orthogonality existing between them. It allows the saving of a large amount of 

bandwidth compared to other parallel-data systems such as FDM, making this technology very 

bandwidth efficient [3]. 

Another important attribute of OFDM technology is that its SCs can be modulated and 

multiplexed using DFT algorithm [3]. This is possible because the DFT has orthogonality properties 

inherent to its very definition [8]. The use of DFT allows the OFDM modulation and demodulation to 

be entirely digitally implemented, consequently reducing drastically the complexity and cost of 

practical systems [3]. 

OFDM technology in the present days is widely used in telecommunication systems due to its 

natural immunity to interfering environments [12]. Conventional digital systems are not capable of 

operating well in multipath environment, where a receiver has to cope with a signal that is weak and 

contains many echoes and interferences [11]. On the contrary, OFDM is a technology capable of 

operating in adverse conditions that characterize multipath channels, where the signal is subject to 

high frequency attenuation, narrowband interferences and frequency-selective fading [12]. In fact, 

robustness against channel dispersion and simplicity for phase offsets and channel estimation are 

two fundamental advantages of this technology [7].  

OFDM technology experiences two main drawbacks. The first one, usually referred to as 

Peak-to-Average Power Ratio (PAPR), consists in the large dynamic range of the signal. The second is 

its sensitivity to time and frequency synchronization errors [13]. 
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2.3. OFDM Model for a Transmission System 

The model depicted in Figure 2.1 illustrates the entire communication process of a typical 

wireless OFDM transmission system. At the transmitter, the data is coded using Forward Error 

Correction (FEC) code. FEC coding is an important aspect for the robustness of the system because 

the frequency-selective radio channel can severely attenuate the data symbols transmitted over the 

SCs, resulting in bit errors [3]. Typically, convolutional coding is used, and sometimes concatenation 

with Reed-Solomon coding. Frequency and/or time interleaving is also usually applied [12]. 

As the bit coding process is completed, the coded bits are mapped into symbols using Gray 

coding, which are then modulated into complex data constellations using conventional modulation 

schemes like Phase Shift Keying (PSK) and Quadrature Amplitude Modulation (QAM) [3]. Using Gray 

coding ensures that the bit pattern transmitted by adjacent constellation samples changes only by 

one bit. This way, when a constellation sample deviates into the location of an adjacent sample, Gray 

coding combined with FEC coding improves the error correction, making the system more resilient 

[12]. The resulting FD constellation samples are then allocated on the data SCs, on an OFDM symbol-

by-symbol basis. In Figure 2.2, the modulated samples are first distributed from left to right on the 

first OFDM symbol, then again on the second, then on the next one, until all the samples are 

allocated. 

 
Figure 2.1 – Block diagram of a simple OFDM point-to-point transmission model [3]. 

Generally, in an OFDM system several types of SCs are used. The majority of them will 

contain modulated data samples, but some will also be pilot SCs used to perform channel estimation 

at the receiver. Usually a number of SCs remain empty as well, which in terms of FFT will result in 

“increased” sampling resolution, and also, by allowing the number of SCs to be a power of two, in 

higher computational efficiency [14]. However, there is a more practical motivation for this, which is 

the use of Low-Pass Filters (LPF) at the Analog-to-Digital Conversion (ADC) and Digital-to-Analog 
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Conversion (DAC) of the transmitted and received baseband signals. Figure 2.3 illustrates how the 

hardware Transfer Function (TF) of a communication system can affect its design. The SCs close to 

the Nyquist frequency 𝑓𝑠 2⁄  will be attenuated by these filters, and therefore cannot be used for data 

transmission. The Direct Current (DC) SC might also suffer from serious distortions caused by DC 

offsets of the ADCs and DACs, and therefore should be avoided for data transmission [2] [3]. 

 
Figure 2.2 – SCs in parallel by column, OFDM symbols by row. 

To generate Time Domain (TD) OFDM symbols, the Inverse Discrete Fourier Transform (IDFT) 

with predetermined length is applied to each set of data, which are composed by the modulated SCs. 

In other words, the PSK or QAM modulated source samples are the information in the Frequency 

Domain (FD) that is placed on SCs, and then converted and multiplexed into TD samples [8]. The IDFT 

block takes 𝑁 data constellation points at a time, where 𝑁 is the number of SCs in the system. In 

Figure 2.1, 𝑖 is a SC index and 𝑘 is an OFDM symbol index. Each chunk of 𝑁 input symbols has a 

period of 𝑇 seconds, depending on the channel spacing [3] [8]. The 𝑁 output samples generated by 

the IDFT block compose the TD baseband signal that carries the data symbols. By applying the IDFT to 

generate the OFDM symbols, a set of orthogonal frequencies is applied to the SCs, and as the SCs 

spectrum overlap, high spectral efficiency is achieved. Due to the orthogonality property, the SCs do 

not influence each other [3]. 

 
Figure 2.3 – Influence of the transmitter/receiver hardware transfer funtion on the design of an OFDM system [3]. 

In OFDM systems, the transmission data rate per SC is lowered, which means that the symbol 

duration is increased. This implies that the sensitivity of the system to frequency selective fading due 
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to multipath channel is greatly reduced [10]. The bandwidth occupied in OFDM systems is greater 

than the correlation bandwidth of the fading channel. This is an important advantage because this 

way multipath fading will degrade some of the carriers only, and the majority of the carriers will be 

properly received, even before using more data recovering schemes [11]. Additionally, a simple way 

of maintaining orthogonality over a dispersive channel is to introduce a Cyclic Prefix (CP) during the 

Guard Interval (GI) between adjacent OFDM symbols [3]. This fundamental mechanism creates the 

robustness to multipath reflective environments of OFDM technology. 

In order to perform the real RF transmission, the generated OFDM complex baseband signals 

must be processed by an In-Phase/Quadrature (IQ) modulator and up-converted to be transmitted 

through an RF carrier. When designing an OFDM receiver, time and frequency synchronization must 

be the main concern to identify the start of an OFDM symbol and to align the local frequencies of the 

modulator/demodulator. Any failure to maintain synchronization results in partial loss of the SCs 

orthogonality. In other words, ISI and ICI are introduced [3]. 

2.3.1. The Concept of Orthogonality between Subcarriers 

As introduced formerly, OFDM modulation technique can be seen as a special case of 

Frequency Division Multiplexing (FDM) modulation. In typical parallel-data systems similar to FDM, N 

non-overlapping frequency subchannels share the available frequency band, and each subchannel is 

modulated with a distinct symbol. A guard band is defined between each subchannel in order to 

avoid spectral overlap and eliminate ICI. Finally, the total subchannels are frequency multiplexed. 

Because this technology resulted into inefficient use of the available spectrum, the suggestion of 

using overlapping subchannels was explored in the 1960s [3]. This is one of the great improvements 

achieved in OFDM technology, reflected in the saving of nearly 50% of the bandwidth. However, to 

achieve this a fundamental mathematical property called “orthogonality” must exist between the 

frequencies of the SCs in order to avoid cross talk between them [3]. Figure 2.4 illustrates the 

difference between conventional non-overlapping multi-carrier techniques and orthogonal 

overlapping multi-carrier techniques. 

Two function ∅𝑖(𝑡), ∅𝑗(𝑡) are orthogonal over a time period 𝑇 if: 

� ∅𝑖(𝑡)∅𝑗(𝑡)
𝐹

0
𝑑𝑡 = �

𝑘,   (𝑖 = 𝑗)
0,   (𝑖 ≠ 𝑗) ,   (𝑘 ≠ 0) (2.1) 

In OFDM systems, the carriers are chosen to be in phase and to have frequencies that are 

multiple between each other. Therefore, integrating any two such carriers over one period 𝑇 = 1 𝑓0⁄  

equals to zero [15]. 
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� 𝑐𝑐𝑠(2𝜋𝑠𝑓𝑜𝑡)𝑐𝑐𝑠(2𝜋𝑚𝑓𝑜𝑡)
𝐹

0
𝑑𝑡 = 0,   (𝑠 ≠ 𝑚) (2.2) 

Where: 𝑠 and 𝑚 are two unequal integers; 𝑓𝑜 is the fundamental frequency; 𝑇 is the period over 

which the integral is taken. 

 
Figure 2.4 – MCM techniques in FDM. a) conventional; b) orthogonal [3]. 

 
Figure 2.5 – a) Orthogonal SCs in TD [10]; b) their sum over the period. 

In general, integer frequencies multiples are all orthogonal to each other, and are known as 

harmonics. In OFDM systems, the SCs are separated by multiples of 1/𝑇, thus guaranteeing that an 

integer number of cycles per period separates the SCs in one period [10] [15]. An example can be 

seen in Figure 2.5. Knowing that, it is easy to understand why the SCs being mathematically 

orthogonal imply that, when the receiver takes each carrier down to DC and integrates the signal 
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over a symbol period, if the other carriers have a whole number of cycles in the symbol period 𝑇, 

then the integration process results in zero contribution from all these other carriers.  

Signals and systems theory is another way of understanding how orthogonality allows SCs to 

overlap without generating any interference. The sinusoids of a DFT are all orthogonal to each other, 

thus a signal in the vector space of a DFT can be acknowledged as a linear combination of the 

orthogonal sinusoids. For a certain frequency, if the input signal has energy, a peak will be in the 

correlation of the signal and the source sinusoid at that corresponding frequency. This means that by 

correlating the information as the DFT is performed for a particular SC, and because the root 

functions of the DFT are uncorrelated, only the energy for that particular SC can be seen [8]. 

2.3.2. Scrambling, Convolutional Coding and Interleaving 

A scrambler consists in a device that randomizes data before transmission. In a 

telecommunication system, when transmitting information, long sequences of zeros or ones are 

likely to occur because the data does not follow a random distribution. The use of scrambling 

removes such sequences, which eases mechanisms such as synchronization and Automatic Gain 

Control (AGC) at the receiver [2] [16]. In addition, by dispersing the data, the resulting signal power 

spectrum is more likely to comply with maximum PSD requirements, as concentration of power in a 

narrow frequency band is avoided. It also improves the PAPR by reducing the probability of high 

peaks above the average to occur. 

Convolutional coding is a FEC coding technique commonly used in wireless communication 

systems. This technique has become popular due to its good performance and flexibility in achieving 

different coding rates [17]. Convolutional coding involves introducing information redundancy at the 

transmitter, therefore increasing the bit stream at an extent depending on the coding rate. At the 

receiver, the redundant information is then used to detect and correct bit errors [3] [17]. 

Interleaving consists in reordering adjacent symbols before transmission, which prevents 

burst errors by making them appear as random errors [17]. Transmission errors generally have a 

strong time/frequency correlation. By providing diversity, interleaving plays a crucial task in channel 

coding as it breaks that correlation, thus enabling the decoder to eliminate or reduce fading all over 

the band and over the whole interleaving depth [11]. 

Frequency interleaving takes advantage of the frequency diversity in wide-band 

transmissions by averaging local deep fading over the whole bandwidth of the system [17]. In OFDM 

systems, frequency interleaving should be implemented for all the data symbols in a single OFDM 
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symbol, which means that the depth of the frequency interleaver should equal the number of bits 

per OFDM symbol [2] [17]. 

Time interleaving uses the time diversity of the channel to average local time deep fading in 

some OFDM symbols over all OFDM symbols. Its depth should exceed the maximum TD burst error. 

Time interleaving is not used in WLAN transmissions due to the slow fading characteristics of the 

channel [17].  

Data distribution in OFDM systems is made over multiple SCs, and it is unlikely that all the 

SCs will suffer distortions over a transmission, which means that the selective fading will cause some 

information bits to be received with errors, and others correctly. This assumption can be made 

because in OFDM technology a conversion occurs from the wideband frequency-selective channel 

into a series of narrowband and frequency-non-selective fading subchannels. Convolutional coding 

and time/frequency interleaving are crucial mechanisms that take advantage of this property to 

prevent loss of information [11]. In WLAN systems, both convolutional coding and frequency 

interleaving are used. In this way, if some information degrades over one SC, it is recoverable by 

using related information extracted from another SC, thereby exploiting the wideband channel’s 

frequency diversity. OFDM systems implemented with error correction coding schemes are usually 

referred to as Coded OFDM (COFDM) [3] [11].  

2.3.3. OFDM Modulation/Demodulation using IFFT/FFT Algorithm 

In terms of practical implementation, for a large number of channels, the arrays of sinusoidal 

generators and coherent demodulators required grow to be unduly expensive and complex. It was 

shown, however, that a multitone data signal corresponds to the Inverse Fourier Transform of the 

original serial data stream, and that the coherent demodulator is effectively a Fourier Transform 

generator [9]. 

Using special purpose hardware to perform the FFT, entirely digital implementation can now 

be accomplished, replacing the bank of SC oscillators and coherent demodulators [3]. A 

demonstration is available in Appendix A that shows how OFDM modulation and multiplexing are 

performed using the Fourier Transform. 

2.3.4. The Importance of the Guard Interval and the Cyclic Prefix 

Most wireless systems undergo multipath environments and RF signal reflection on several 

kinds of objects, resulting in frequency fading phenomenon, which translates in ISI and ICI. These 

reflecting effects lead the receiver to detect multiple versions of the signal, with different delays and 

attenuation factors [8] [18]. 
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A solution to this problem resides in creating a GI between the transmitted OFDM symbols. If 

the GI has greater length than the time span of the channel, it is enough for the ISI distortion to occur 

only over the first few samples, thus affecting no more than the GI itself preceding the OFDM symbol 

[8] [19]. Therefore, to be effective the GI must have a length that surpass the maximum delay 𝜏𝑚𝑚𝑚 

of the multipath propagation channel. At the receiver, the GI can simply be discarded as it contains 

no useful information [3] [15].  

However, in a practical system a GI composed just by empty samples does not prevent OFDM 

symbols from interfering with themselves [8]. To solve this issue the cyclic prefix/postfix was 

introduced and has become a fundamental principle of OFDM systems. Creating the CP consists in 

taking a copy of a number of samples from the tail of an OFDM symbol, and to insert them at its head 

during the GI between consecutive OFDM symbols. By doing so, the transmitted signal becomes 

periodic, thus turning the time-dispersive effect of the multipath channel equivalent to a cyclic 

convolution. Cyclic convolution properties dictate that the effect of multipath channel is limited to a 

point-wise multiplication of the transmitted data constellations by the TF of the Channel Impulse 

Response (CIR). This means that the SCs remain orthogonal as long as the time deviation introduced 

by the channel is lower that the GI duration [3] [20]. Figure 2.6 illustrates that as long as the starting 

sample is chosen according to the criteria 𝜏𝑚𝑚𝑚 < 𝑇𝑚 < 𝑇𝐺𝐺, the contributions from all the multipath 

components influence all the samples. Hence, all the acquired samples undergo the same channel 

and ICI is prevented [20]. 

 
Figure 2.6 – Generating a Cyclic Prefix [21]. 

To detect the data constellation, the inverse of the estimated channel TF is multiplied 

element-wise to the DFT output. For phase modulation schemes, multiplying by the complex 

conjugate of the channel estimation can perform the equalization. Additionally, differential detection 

can be used, where the symbol constellation of adjacent SCs are compared to recover the data [3]. 

𝑇𝐹𝐹𝐹  𝑇𝐺𝐺  
Multipath elements 

𝑇𝐹𝐹𝐹  
 Sampling start 

𝜏𝑚𝑚𝑚  
 

 
 

 

Cyclic Prefix 

𝑇𝑥  
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The disadvantage that comes with this solution dwells in the slight loss of effective 

transmitted power due to GI transmission, and in an increased use of bandwidth. Typically the GI 

length is about a quarter of the OFDM symbol period to a tenth, leading to a Signal-to-Noise Ratio 

(SNR) loss of 0.5 dB to 1 dB [3] [15]. 

2.3.5. Pulse Shaping and Windowing applied to OFDM Systems 

In any data transmission systems, the main objective is to use a transmitter to send data, and 

a receiver to detect the incoming data. Pulse shaping consists in transmitting this data in a way that, 

at the receiver, the signal can be sampled at an optimal point in the pulses interval, thus allowing 

maximum probability of an accurate decision. In order to achieve this, the fundamental shape of the 

pulses must be designed to guarantee that they do not interfere with one another at the optimal 

sampling point. Two basic conditions define a proper pulse shape that ensures non-interference. The 

first is that the shaped pulses must show a zero crossing at the sampling point, and the second is that 

the amplitude of each pulse must drop rapidly outside the pulse interval. These conditions are 

important because any real system will contain timing jitter, which may cause the optimal sampling 

point to move and miss the zero crossing point [22]. Another important purpose of pulse shaping is 

the limitation of the occupied bandwidth by smoothing the transitions between symbols [23]. 

The rectangular pulse meets the criteria introduced above, but occupies a very large 

bandwidth due to its Fourier Transform being the familiar 𝑠𝑖𝑠𝑐(𝑥) = 𝑠𝑖𝑠(𝜋𝑥) 𝜋𝑥⁄ , which has side 

lobes repeating to infinity. This is why for band-limited data transmission the rectangular pulse shape 

is not the ideal choice [3] [22]. A solution to this problem dwells in the use of windowing. Windowing 

is a well-known technique to reduce the level of these side lobes, thereby reducing the signal power 

transmitted out of band [3]. 

A wide variety of modern data transmission schemes use raised-cosine function as a filter to 

put into practice this windowing. Consider a raised-cosine shape with pulse width 𝜏 seconds. The 

shape of the raised-cosine filter is precisely defined by the parameter 𝛼. This parameter varies 

in 0 < 𝛼 < 1, and rules the occupied bandwidth and the rate at which the pulse decays. When 𝛼 =

0, the narrowest bandwidth is obtained. When 𝛼 = 1, the bandwidth used is 1/𝜏, but the TD shape 

descends rapidly, offering a double-sided bandwidth of 2/𝜏 that matches the main lobe of a 

rectangular pulse shape. In other words, a larger value of 𝛼 will result in using more bandwidth, but 

reduces the susceptibility to jitter. Therefore, the parameter 𝛼 offers the system designer some 

flexibility by allowing a trade-off between increased data rate and TD tail suppression [22]. 

In OFDM systems, pulse shaping is achieved on the entire OFDM symbols, by windowing the 

transitions between symbols. When consecutives OFDM symbols are assembled, the end of one 
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symbol has rarely the same amplitude and phase as the following one, which causes spectral 

regrowth. Spectral regrowth consists of a range of frequencies that expend on each side of a carrier 

and extends into adjacent frequency bands, consequently creating interferences. One way to reduce 

or remove this effect is to introduce windowing and cyclic suffix (also referred to as postfix) into the 

OFDM model. By combining windowing with the cyclic suffix, a smooth transition can be achieved 

between consecutive symbols, thus avoiding spectral regrowth. However, due to the decreased 

redundancy caused by the effective GI length reduction, part of the multipath immunity is lost in this 

process [23] [24]. 

 
Figure 2.7 – Applying a window to an OFDM symbol [3]. 

Raised-cosine function applied to an OFDM systems can be seen as a convolution of the 

extended rectangular pulse of duration 𝑇 with a sine half-wave. It is important to make sure that the 

applied window will not influence the signal during its effective period. Hence, the window is applied 

to part of the existing CP and to a generated cyclic postfix with the length of the cosine shape at the 

rightmost edge of the symbol. The extended parts used for prefix and postfix are shaped as depicted 

in Figure 2.7. On the other hand, to maintain the efficiency in bandwidth occupancy, it is important 

to have minimal non-data samples in each OFDM symbol. That is why the number of samples of the 

OFDM symbols is preserved by summing the windowed samples from the end of each symbol to the 

windowed samples at the beginning of the following symbol [3] [24]. The DFT at the receiver 

implements a rectangular filter that, after estimating correctly the DFT start time 𝑘𝑇, restores the 

orthogonality of the SCs [3]. 

2.4. Mathematical Characterization  

2.4.1. OFDM Modulation 

Mathematically, an OFDM signal can be expressed as a sum of the SCs pulses shifted in time 

and frequency, and multiplied by the data symbols. Ramjee Prasad [3]  presents a continuous-time 

mathematical notation of the 𝑘th OFDM symbol written as the following approach: 

𝑇𝐹𝐹𝐹  𝑇𝐺𝐺  
 

𝑇𝑊𝑊𝑊  
 

𝑇 
 

Effective transmission time Prefix Time 

GI 

Postfix 

𝑘𝑘 [𝑘𝑘 + 𝑇𝐹𝐹𝐹] 
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𝑆𝑅𝑅,𝑘(𝑡 − 𝑘𝑇)

=

⎩
⎨

⎧
𝑅𝑅 �𝑤(𝑡 − 𝑘𝑇) � 𝑥𝑖,𝑘𝑅

𝑗2𝜋�𝑓𝑐+
𝑖

𝐹𝐹𝐹𝑇
�(𝑡−𝑘𝐹)

𝑁/2−1

𝑖=−𝑁/2

� , 𝑘𝑇 − 𝑇𝑊𝐺𝑁 − 𝑇𝐺𝐺 ≤ 𝑡 ≤ 𝑘𝑇 + 𝑇𝑅𝑅𝐹 + 𝑇𝑊𝐺𝑁

0, 𝑐𝑡ℎ𝑅𝑟𝑤𝑖𝑠𝑅

 
(2.3) 

Where each symbol is defined as: 

 𝑇 Symbol time - the total OFDM symbol time 

 𝑇𝑅𝑅𝐹 FFT time - the effective OFDM symbol time 

 𝑇𝐺𝐺 GI time - the CP duration 

𝑇𝑊𝐺𝑁 Window time - the windowed prefix/postfix duration for spectral shaping 

 𝑓𝑐 Center frequency of the occupied frequency spectrum 

 𝑁 FFT length - the number of FFT points 

𝑘 Index of the transmitted OFDM symbol 

𝑖 Index of the SC, where 𝑖 ∈ {−𝑁/2, … ,−1,0,1, … ,𝑁/2 − 1} 

 𝑥𝑖,𝑘 Signal constellation point (data, pilot or null) of the 𝑖th SC of the 𝑘th OFDM symbol 

From the information above, the frequency spacing between each adjacent SC can be 

calculated as ∆𝐹 = 1 𝑇𝑅𝑅𝐹⁄ . The sampling period can also be computed as 𝑇𝑠 = 1 (𝑁 × ∆𝐹)⁄ . In 

addition, a transmitter pulse shape can be defined as: 

𝑤(𝑡) =

⎩
⎪
⎨

⎪
⎧

1
2

[1 − 𝑐𝑐𝑠𝜋(𝑡 + 𝑇𝑊𝐺𝑁 + 𝑇𝐺𝐺)/𝑇𝑊𝐺𝑁], −𝑇𝑊𝐺𝑁 − 𝑇𝐺𝐺 ≤ 𝑡 ≤ −𝑇𝐺𝐺
1, −𝑇𝐺𝐺 ≤ 𝑡 ≤ 𝑇𝑅𝑅𝐹

1 −
1
2

[1 − 𝑐𝑐𝑠𝜋(𝑡 − 𝑇𝑅𝑅𝐹)/𝑇𝑊𝐺𝑁], 𝑇𝑅𝑅𝐹 ≤ 𝑡 ≤ 𝑇𝑅𝑅𝐹 + 𝑇𝑊𝐺𝑁

 (2.4) 

Based on this notation, a continuous sequence of modulated OFDM symbols is expressed as 

the following: 

𝑠𝑅𝑅(𝑡) = � 𝑆𝑅𝑅,𝑘(𝑡 − 𝑘𝑇)
∞

𝑘=−∞

 (2.5) 

Now, based on the equations above the complex envelope of the OFDM signal is given 

directly by writing the low-pass equivalent transmitted signal [3]: 

𝑠(𝑡) = � 𝑆𝑘(𝑡 − 𝑘𝑇)
∞

𝑘=−∞

 (2.6) 
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𝑠𝑘(𝑡 − 𝑘𝑇)

=

⎩
⎪
⎨

⎪
⎧
𝑤(𝑡 − 𝑘𝑇) � 𝑥𝑖,𝑘𝑅

𝑗2𝜋� 𝑖
𝐹𝐹𝐹𝑇

�(𝑡−𝑘𝐹)

𝑁
2−1

𝑖=−𝑁2

, 𝑘𝑇 − 𝑇𝑊𝐺𝑁 − 𝑇𝐺𝐺 ≤ 𝑡 ≤ 𝑘𝑇 + 𝑇𝑅𝑅𝐹 + 𝑇𝑊𝐺𝑁

0, 𝑐𝑡ℎ𝑅𝑟𝑤𝑖𝑠𝑅

 (2.7) 

By comparing the equation above to the equation below of a Fourier Series, similarities can 

be observed [3]: 

𝑣(𝑡) = � 𝑐(𝑠𝑓𝑜)𝑅𝑗2𝜋𝑓𝑜𝑡
∞

𝑛=−∞

 (2.8) 

Where the following relations stand out: the complex Fourier Coefficients 𝑐(𝑠𝑓𝑜) correspond to the 

complex signal constellation points 𝑥𝑖,𝑘 in the FD; the frequencies 𝑠𝑓𝑜 correspond to the SC 

frequencies 𝑖 𝑇𝑅𝑅𝐹⁄ ; 𝑣(𝑡) is the modulated OFDM waveform in TD. In a digital implementation of the 

OFDM modulation, the data constellation samples 𝑐(𝑠𝑓𝑜) = 𝑥𝑖,𝑘 are the input of the IFFT block, and 

the OFDM modulated TD symbols come at the output. 

2.4.2. OFDM Signal over a Time-Dispersive Channel 

At the receiver, the OFDM signal is expected to have suffered the influence of a time-

dispersive channel and Additive White Gaussian Noise (AWGN). The Channel Impulse Response (CIR) 

is designated as ℎ(𝜏, 𝑡) [3]: 

𝑟(𝑡) = ℎ(𝜏, 𝑡) ∗ 𝑠(𝑡) + 𝑠(𝑡) = � ℎ(𝜏, 𝑡)𝑠(𝑡 − 𝜏)

𝜏𝑚𝑎𝑥

0

𝑑𝜏 + 𝑠(𝑡) (2.9) 

Where: 𝑟(𝑡) is the received degraded signal; ℎ(𝜏, 𝑡) is the CIR; 𝑠(𝑡) is the original transmitted signal; 

𝑠(𝑡) is the added random noise; 𝜏 is the excess delay. 

 Outside the boundary [0, 𝜏𝑚𝑚𝑚] the CIR is zero, hence the range of the convolutional 

integration is confined within this limit. The time at which the first waveform arrives at the receiver 

defines the excess delay 𝜏 = 0 of the channel, and 𝜏𝑚𝑚𝑚 is the maximum delay of the channel. To 

simplify the derivation of the received signal, two assumption are made: the channel is considered to 

be nearly static during the transmission of the OFDM symbol 𝑘; the maximum excess delay 

𝜏𝑚𝑚𝑚 < 𝑇𝐺𝐺. Thereby, ℎ(𝜏, 𝑡) simplifies to ℎ𝑘(𝜏), and there is no interference of one OFDM symbol 

onto the effective period of the consecutive one. With the last assumption, ISI is avoided in case of 

sufficiently accurate time synchronization [3]. 
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2.4.3. OFDM Demodulation 

Conceptually, the demodulation of the OFDM signal is performed by a set of filters matched 

to the effective part [𝑘𝑇,𝑘𝑇 + 𝑇𝑅𝑅𝐹] of the OFDM symbol, as shown in Figure 2.7. In other words, 

the OFDM demodulation is performed by extracting back the Fourier Coefficients from the TD OFDM 

signal [3]: 

𝑐(𝑠𝑓𝑜) =
1
𝑇𝑜

� 𝑣(𝑡)𝑅−𝑗2𝜋𝑓𝑜𝑡

𝐹𝑜

𝑑𝑡 (2.10) 

Where: 𝑇𝑜 is the integration period equivalent to 𝑇𝑅𝑅𝐹; 𝑣(𝑡) is the received baseband signal; 𝑐(𝑠𝑓𝑜) 

are the recovered Fourier coefficients. In a digital implementation of the OFDM demodulation, the 

TD symbols are the input of the inverse operation, which is the FFT algorithm, and the recovered FD 

data samples 𝑦𝑖,𝑘 = 𝑐(𝑠𝑓𝑜) come at the output. 

 After determining the exact instant 𝑘𝑇 at which the OFDM symbols starts, the transmitted 

constellation is extracted from the received signal 𝑟(𝑡) as the received constellation 𝑦𝑖,𝑘 by 

integrating [3]: 

𝑦𝑖,𝑘 =
1

𝑇𝑅𝑅𝐹
� 𝑟(𝑡)𝑅−𝑗2𝜋

𝑖
𝐹𝐹𝐹𝑇

(𝑡−𝑘𝐹)
𝑘𝐹+𝐹𝐹𝐹𝑇

𝑡=𝑘𝐹

𝑑𝑡

=
1

𝑇𝑅𝑅𝐹
� � � ℎ𝑘(𝜏)𝑠(𝑡 − 𝜏)

𝜏𝑚𝑎𝑥

𝜏=0

𝑑𝜏 + 𝑠(𝑡)� 𝑅−𝑗2𝜋
𝑖

𝐹𝐹𝐹𝑇
(𝑡−𝑘𝐹)

𝑘𝐹+𝐹𝐹𝐹𝑇

𝑡=𝑘𝐹

𝑑𝑡 

(2.11) 

 Due to the assumption made previously, it is known that there is no influence from 

contiguous OFDM symbols. Hence, 𝑠(𝑡) can be replaced by 𝑠𝑘(𝑡): 

𝑦𝑖,𝑘 =
1

𝑇𝑅𝑅𝐹
� � � ℎ𝑘(𝜏) � 𝑥𝑖′,𝑘𝑅

𝑗2𝜋 𝑖′
𝐹𝐹𝐹𝑇

(𝑡−𝑘𝐹−𝜏)
𝑁 2⁄ −1

𝑖′=−𝑁 2⁄

𝜏𝑚𝑎𝑥

𝜏=0

𝑑𝜏� 𝑅−𝑗2𝜋
𝑖

𝐹𝐹𝐹𝑇
(𝑡−𝑘𝐹)

𝑘𝐹+𝐹𝐹𝐹𝑇

𝑡=𝑘𝐹

𝑑𝑡

+
1

𝑇𝑅𝑅𝐹
� 𝑠(𝑡)𝑅−𝑗2𝜋

𝑖
𝐹𝐹𝐹𝑇

(𝑡−𝑘𝐹)
𝑘𝐹+𝐹𝐹𝐹𝑇

𝑡=𝑘𝐹

 

(2.12) 

 In the equation above, the integration is performed in the range where the window is 

𝑤(𝑡 − 𝑘𝑇) = 1. Hence, the window segment of the equation is ignored. At this point, the expression 

can be simplified for further solving by introducing 𝑢 = 𝑡 − 𝑘𝑇 [3]: 
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𝑦𝑖,𝑘 = � 𝑥𝑖′,𝑘
1

𝑇𝑅𝑅𝐹
� � � ℎ𝑘(𝜏)𝑅−𝑗2𝜋

𝑖′
𝐹𝐹𝐹𝑇

(𝑢−𝜏)
𝜏𝑚𝑎𝑥

𝜏=0

𝑑𝜏� 𝑅−𝑗2𝜋
𝑖

𝐹𝐹𝐹𝑇
𝑢

𝐹𝐹𝐹𝑇

𝑢=0

𝑑𝑢
𝑁 2⁄ −1

𝑖′=−𝑁 2⁄

+ 𝑠𝑖,𝑘

= � 𝑥𝑖′,𝑘
1

𝑇𝑅𝑅𝐹
� � � ℎ𝑘(𝜏)𝑅−𝑗2𝜋

𝑖′
𝐹𝐹𝐹𝑇

𝜏
𝜏𝑚𝑎𝑥

𝜏=0

𝑑𝜏� 𝑅−𝑗2𝜋
𝑖−𝑖′
𝐹𝐹𝐹𝑇

𝑢
𝐹𝐹𝐹𝑇

𝑢=0

𝑑𝑢
𝑁 2⁄ −1

𝑖′=−𝑁 2⁄

+ 𝑠𝑖,𝑘 

(2.13) 

 The inmost integral of the last expression in the equation above describes the Fourier 

Transform of ℎ𝑘(𝜏) at the frequency instant 𝑖′ 𝑇𝑅𝑅𝐹⁄ = 𝑖′∆𝐹, which corresponds to the sampled 

channel TF at instant 𝑘𝑇. Hence, the channel coefficients are as follows [3]: 

ℎ𝑖′,𝑘 = 𝐹𝑇{ℎ𝑘(𝜏)} = � ℎ𝑘(𝜏)𝑅−𝑗2𝜋
𝑖′

𝐹𝐹𝐹𝑇
𝜏

𝜏𝑚𝑎𝑥

𝜏=0

𝑑𝜏 = 𝑀(𝑖′∆𝐹,𝑘𝑇) (2.14) 

 Based on this notation, the output of the receiver filter, which is the FFT in a digital 

implementation, is shortened into the following expression: 

𝑦𝑖,𝑘 = � 𝑥𝑖′,𝑘ℎ𝑖′,𝑘
1

𝑇𝑅𝑅𝐹
� 𝑅−𝑗2𝜋

𝑖−𝑖′
𝐹𝐹𝐹𝑇

𝑢
𝐹𝐹𝐹𝑇

𝑢=0

𝑑𝑢
𝑁 2⁄ −1

𝑖′=−𝑁 2⁄

+ 𝑠𝑖,𝑘 (2.15) 

 By solving the integral in the equation above, if 𝑖 = 𝑖′ the result is one. Otherwise, the 

integral becomes zero. Hence, the final expression is [3]: 

𝑦𝑖,𝑘 = 𝑥𝑖,𝑘ℎ𝑖,𝑘 + 𝑠𝑖,𝑘 (2.16) 

 With this expression, considering the assumptions introduced formerly, the received 

constellation 𝑦𝑖,𝑘 describes the received constellation with the effect of a multipath channel and 

random noise 𝑠𝑖,𝑘. The multipath channel introduces attenuation/amplification and phase rotation 

according to the complex-valued channel coefficients ℎ𝑖,𝑘. 

2.4.4. Relating the OFDM Subcarriers to the Noise 

 To retrieve correctly the data from the constellation, it is necessary to estimate the channel 

and compensate the phase and amplitude deviations. There are several ways to estimate the 

channel. One technique is based on transmitting a preamble made of a specific sequence known by 

the receiver, which is used to estimate the channel TF coefficients. Another technique is the 

differential detection, where the phases and amplitudes of symbols transmitted over neighboring SCs 

or succeeding OFDM symbols are compared [3]. 

Ideally, the SCs of an OFDM systems can be thought of as parallel Gaussian channels. This 

statement remains true under perfect time and carrier synchronization, and assuming that multipath 
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channel effects are subdued by the GI. Hence, each SC has an individual Signal-to-Noise Ratio (SNR) 

due to the attenuation/amplification of the OFDM signal. The SNR per SC is defined as [3]:  

�
𝐸𝑐
𝑁𝑜
�
𝑖,𝑘

=
𝐸 ��𝑥𝑖,𝑘�

2� �ℎ𝑖,𝑘�
2

𝜎𝑁2
 (2.17) 

Where: 𝜎𝑁2 =  𝐸 ��𝑠𝑖,𝑘�
2� is the noise variance; 𝑘 is the index of the transmitted OFDM 

symbol; 𝑖 is the index of the SC, where 𝑖 ∈ {−𝑁/2, … ,−1,0,1, … ,𝑁/2 − 1}. 

The normalized received power is expressed as 𝑃𝑜 =  𝐸 ��ℎ𝑖,𝑘�
2�. Hence, the averaged SNR becomes: 

�
𝐸𝑐
𝑁𝑜
�

�������
=
𝐸 ��𝑥𝑖,𝑘�

2�𝑃𝑜
𝜎𝑁2

 (2.18) 

Usually, the signal energy is normalized to unity, therefore becoming 𝐸 ��𝑥𝑖,𝑘�
2� = 1. 

2.4.5. Time Synchronization Errors 

 Timing offset can be linked to the starting sample of the FFT at the receiver, but also to 

sampling frequency offsets. A small sampling frequency offset leads to a gradually increasing timing 

offset and, consequently, to a growing phase rotation at an increasing slope. Larger inaccuracies 

provoke ICI because the SC spacing at the receiver no longer equals the SC spacing at the transmitter. 

The effect of an FFT timing offset 𝛿𝑡 at the receiver can be observed by shifting the integration 

interval of Equation (2.11), which becomes 𝑡 ∈ [𝑘𝑇 + 𝛿𝑡, 𝑘𝑇 + 𝑇𝑅𝑅𝐹 + 𝛿𝑡] [3]: 

𝑦𝑖,𝑘 =
1

𝑇𝑅𝑅𝐹
� 𝑟(𝑡)𝑅−𝑗2𝜋

𝑖
𝐹𝐹𝐹𝑇

(𝑡−𝑘𝐹−𝛿𝑡)
𝑘𝐹+𝐹𝐹𝐹𝑇+𝛿𝑡

𝑡=𝑘𝐹+𝛿𝑡

𝑑𝑡 (2.19) 

 𝛿𝑡 is assumed to be small enough not to create ISI due to the timing error. That is, the offset 

is small enough for the CIR to remain within the GI. Hence, the receiver window does not overlap 

with the preceding or with the following OFDM symbol. Thereby, no energy from the adjacent 

symbols is introduced, and the demodulated signal can still be expressed from the transmitted 

symbol 𝑠𝑘(𝑡). By making again the change 𝑢 = 𝑡 − 𝑘𝑇 − 𝛿𝑡, the following expression is obtained just 

as in the previous section [3]: 

𝑦𝑖,𝑘 = � 𝑥𝑖′,𝑘
1

𝑇𝑅𝑅𝐹
� � � ℎ𝑘(𝜏)𝑅−𝑗2𝜋

𝑖′
𝐹𝐹𝐹𝑇

𝜏
𝜏𝑚𝑎𝑥

𝜏=0

𝑑𝜏� 𝑅−𝑗2𝜋
�𝑖−𝑖′�𝑢+𝑖′𝛿𝑡

𝐹𝐹𝐹𝑇

𝐹𝐹𝐹𝑇

𝑢=0

𝑑𝑢
𝑁 2⁄ −1

𝑖′=−𝑁 2⁄

+ 𝑠𝑖,𝑘 (2.20) 

 By moving the term 𝑅−𝑗2𝜋
𝑖′𝛿𝑡
𝑇𝐹𝐹𝑇  out of the integration, the expression that define the received 

constellation including a timing error is obtained [3]: 
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𝑦𝑖,𝑘 = 𝑥𝑖,𝑘ℎ𝑖,𝑘𝑅
−𝑗2𝜋 𝑖

′𝛿𝑡
𝐹𝐹𝐹𝑇 + 𝑠𝑖,𝑘 = 𝑥𝑖,𝑘ℎ𝑖,𝑘𝑅

−𝑗2𝜋𝑖𝛿𝑡
′

𝑁 + 𝑠𝑖,𝑘 (2.21) 

Where: 𝛿𝑡′ is the timing offset in samples. It can now be concluded that the timing offset produces a 

phase rotation of the signal constellation, with the phase rotation being null at the center frequency 

and increasing linearly towards the edges of the frequency band. In addition, it can be deduced from 

the equation above that a timing offset in one sample results in a phase shift of ±𝜋 in the farthest 

SCs, with the FFT length making no difference [3]. 

 When coherent detection is used, the phase rotation is detected with channel estimation. 

The equalization is performed at the receiver by a SC-wise multiplication of the received symbols by 

the inverse of the estimated channel coefficients. This way, small timing errors can be corrected, thus 

avoiding performance degradation. Nevertheless, if the timing offset 𝛿𝑡 exceeds the GI duration, ISI 

and ICI are introduced. That is, energy is added from an adjacent OFDM symbol, leading to a partial 

loss of orthogonality [3]. 

 When differential detection is used, the progressive phase rotation detection is performed by 

comparing the phases and amplitudes of symbols transmitted over neighboring SCs or succeeding 

OFDM symbols. However, if the detection follows the frequency direction, the distance between the 

compared constellation points is reduced, which can cause performance degradation [3]. 

2.4.6. Frequency Synchronization Errors 

 Frequency offsets usually consist in a small deviation of the local oscillators at the transmitter 

and at the receiver. Another source of frequency change to consider is the Doppler shift. Doppler 

shifts are insignificant for fixed position stations and can be ignored in indoor environments, but will 

affect the link quality otherwise [3] [25].  

 The frequency error can be considered as errors at the frequency instants at which the signal 

is demodulated with the FFT. The frequency offset can be described mathematically as a frequency 

shift 𝛿𝑓 and a phase offset 𝜃 in the baseband signal [3]: 

𝑟′(𝑡) = 𝑟(𝑡)𝑅𝑗(2𝜋𝛿𝑓𝑡+𝜃) (2.22) 

 By applying this notation as previously in Equation (2.11), this expression for the received 

constellations is obtained: 
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(2.23) 

 Following the same steps that led from Equation (2.11) to Equation (2.15), the equation 

develops into: 

𝑦𝑖,𝑘 = 𝑅𝑗(2𝜋𝛿𝑓𝑘𝐹+𝜃) � 𝑥𝑖′,𝑘ℎ𝑖′,𝑘
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+ 𝑠𝑖,𝑘 (2.24) 

 The integral does not equal zero for 𝑖 = 𝑖′ and neither for 𝑖 ≠ 𝑖′ in the presence of frequency 

error. Hence, orthogonality between SCs is lost to a certain extent. Two conditions come from this 

expression: for 𝑖 = 𝑖′, an equal phase rotation and attenuation of the SCs is expected. For 𝑖 ≠ 𝑖′, ICI 

is introduced [3].  

𝑦𝑖,𝑘 = 𝑅𝑗(2𝜋𝛿𝑓𝑘𝐹+𝜃)𝑥𝑖,𝑘ℎ𝑖,𝑘
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(2.25) 

 As long as the condition 𝛿𝑓 < 0.5 𝑆𝐶 𝑠𝑝𝑎𝑐𝑖𝑠𝑔 is complied with, the previous mathematical 

expressions are valid. Otherwise, for larger frequency offsets the transmitted data symbols 𝑥𝑖,𝑘 are 

shifted by one or more positions in the frequency direction, which means that the 𝑖th SC appears as 

the (𝑖 + 𝛿𝑓𝑖)th to the receiver, where 𝛿𝑓𝑖 = 𝑟𝑐𝑢𝑠𝑑(𝛿𝑓/∆𝐹) is the integer part of the frequency 

error in SCs [3].  

 The ICI component can be considered as a noise for small values in relation to the SC spacing, 

which means that it only translates into SNR degradation. Studies have shown that frequency offset 

𝛿𝑓 of up to 2% of the SC spacing ∆𝐹 are insignificant, and acceptable for up to 10% in some cases. 

The following expression describes the evaluation of the phase rotation and attenuation due to a 

frequency error [3]: 

𝑦𝑖,𝑘 = 𝑥𝑖,𝑘ℎ𝑖,𝑘𝑠𝑖𝑠𝑐(𝛿𝑓𝑇𝑅𝑅𝐹)𝑅𝑗(2𝜋𝛿𝑓(𝑘𝐹+𝐹𝐹𝐹𝑇/2)+𝜃) + 𝑠𝑖,𝑘′  (2.26) 

 With: 
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(2.27) 

Where: 𝑠𝑖,𝑘′  is the noise term that includes the additional noise from ICI. 

2.4.7. Time and Frequency Synchronization Errors 

 Taking into account the time offsets 𝛿𝑡, the frequency offsets 𝛿𝑓 and the phase offsets 𝜃, the 

model for general cases appears as follows [3]: 

𝑦𝑖+𝛿𝑓𝑖,𝑘 = 𝑥𝑖,𝑘ℎ𝑖,𝑘𝑠𝑖𝑠𝑐[(𝛿𝑓 − 𝛿𝑓𝑖∆𝐹)𝑇𝑅𝑅𝐹]𝑅𝑗Ψ𝑖,𝑘 + 𝑠𝑖,𝑘′  (2.28) 

Where: 𝑠𝑖,𝑘′  is the noise including the additional ICI; Ψ𝑖,𝑘 is the phase distortion due to 

synchronization errors given by:  

Ψ𝑖,𝑘 = θ + 2π𝛿𝑓 �𝑘𝑇 +
𝑇𝑅𝑅𝐹

2
+ 𝛿𝑡� + 2𝜋𝛿𝑡

𝑖
𝑇𝑅𝑅𝐹

 (2.29) 

 It is common practice to designate the timing offset in samples, where 𝛿𝑡′ = 𝑡/𝑇𝑠, and  to 

normalize the frequency offset to the SC frequency spacing with 𝛿𝑓′ = 𝛿𝑓/∆𝐹. Thus, in terms of 

samples, Equation (2.29) can be rewritten as: 

Ψ𝑖,𝑘 = θ + 2π𝛿𝑓′ �
1
2

+ 𝑘
𝑁 + 𝑁𝐺𝐺 + 𝑁𝑊𝐺𝑁

𝑁
+
𝛿𝑡′

𝑁 �+ 2𝜋𝛿𝑡′
𝑖
𝑁

 (2.30) 

2.5. Main Advantages of OFDM Technology 

Spectral Efficiency - In OFDM technology, the spectrums of the SCs with orthogonal frequencies 

overlap without influencing each other. For a high number of SCs, the frequency spectrum becomes 

nearly rectangular, thus resulting in a high spectral efficiency [3] [26]. 

Digital Implementation - Simple digital implementation is possible by using the efficient and 

powerful FFT algorithm to perform modulation and demodulation of OFDM symbols, thus reducing 

the complexity and cost of OFDM systems [3] [26].  

Adaptive Data Modulation - Different conventional data modulation schemes can be employed for 

each individual SC, such as MPSK or MQAM. This provides flexibility in the choice of data 

transmission volume per SC by squeezing more or less bits in the same bandwidth, and therefore 

control on the overall data transmission rate per OFDM symbols. In addition, when the channel has 
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slow variation in time, its capacity can be improved by adapting the data rate per SC according to the 

SNR of the SC [3] [22]. 

Resistance to Narrowband Interferences - In a single carrier system, a single interference can lead 

the whole connection to fail. In contrast, in a multi-carrier system only a small percentage of the SCs 

will be affected. For this reason, OFDM systems have strong natural resistance to narrowband 

interferences [3]. 

Resilience to Multipath Surroundings - In OFDM systems, very high data rates are converted into 

very low parallel-data rates, thus ensuring flat fading for all the subchannels because a wideband 

signal becomes a set of narrowband signals. Therefore, it is an efficient way to deal with multipath 

since no equalizer is needed at the receiver, thus reducing the complexity of the communication 

system. This resilience to frequency-selective fading channels by using multi-carrier techniques 

makes it ideal for high-speed data transmission [3]. 

2.6. Important Drawbacks of OFDM Technology 

Spectral Efficiency Loss due to the GI - The GI consists in transmitting redundant samples copied 

from the end of an OFDM symbol to its beginning, in order to emulate periodicity. Although this 

provides the essential additional robustness against delays from multipath fading environments, it 

also results in spectral efficiency loss because the redundant samples use bandwidth and power 

during the transmission, and then they are discarded at the receiver. Therefore, when defining the 

OFDM model parameters, there is a trade-off to be found between Doppler and phase noise effects 

and the loss due to GI [3] [26]. 

Sensitivity to Doppler Spreads - Doppler spreads consist in very fast channel variations, resulting in 

changes in the phases of the arriving waves that lead to time-variant multipath propagation. Hence, 

Doppler spreads causes loss of orthogonality between SCs, therefore introducing ICI [3] [26]. 

Vulnerability to Time/Frequency Errors - Accurate frequency and time synchronization are critical in 

OFDM systems, as they are extremely sensitive to frequency offset and to phase noise. Without time 

synchronization, ISI is introduced, and with no frequency synchronization, ICI is introduced [3]. 

The PAPR Problem - The PAPR, or crest factor, is a measurement calculated from the peak amplitude 

of a waveform that is divided by the Root Mean Square (RMS) value of that waveform. When 𝑁 

signals are summed coherently with the same phase, peak power is produced with 𝑁 times the 

average power [3]. MCM systems using OFDM technology are more sensitive to High Power Amplifier 
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(HPA) non-linearities than single-carrier modulated systems [26]. OFDM systems in particular tend to 

have large values of PAPR, which involve disadvantages such as increased complexity of the ADC and 

DAC converters, and strong reduction of the power efficiency of the RF power amplifier [3]. 

2.7. Summary 

 In this chapter, a description of a generic model for a wireless OFDM system was presented. 

Some of the fundamental aspects of this technology were further developed, and a mathematical 

model was introduced. The main advantages and drawbacks of this technology were uncovered. 

 OFDM modulation is an excellent choice as a communication technology. OFDM systems are 

rather simple and inexpensive to implement, as they can be digitally modulated and demodulated 

using FFT algorithm, which makes them very practical. In addition, the FFT also performs multiplexing 

over a number of SCs with overlapping spectrums while producing orthogonality between them. 

Hence, OFDM is a MCM system with much lower bandwidth occupancy when compared to others for 

the same data rate. By using simple mechanisms, high robustness against multipath, frequency-

selective fading environment is achieved. Because the SCs can be modulated with different data 

modulation schemes, adaptive data transmission rate is made possible. Finally, the receiver for an 

OFDM system is easier to implement, as no complex equalization is necessary to recover the signal. 

 The main drawbacks of this technology are its high sensitivity to time and frequency 

synchronization errors, and Doppler spreads, because they result in loss of orthogonality between 

SCs, therefore introducing ISI and ICI. The large dynamic range of the signal, which translates into 

high PAPR, is another important disadvantage of OFDM systems, especially because high PAPR 

originates saturation in power amplifiers. 
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Chapter 3. OFDM in Wireless and Optical Networks 

3.1. Introduction 

 OFDM technology has been present in wireless systems for several years now, and has 

proven to be an excellent modulation technique, as explained in the previous section. This chapter 

consists in an introduction to the application of OFDM technology to wireless over optical networks. 

In this dissertation, we focus on wireless systems based on IEEE 802.11a standard since nowadays 

Wireless Local Area Network (WLAN) is a well-established technology, widely employed by end-

users. The IEEE 802.11 standard for WLAN, extensively described in [2] [23], presents itself as a good 

choice for analysis, as it is a standard used in a large scale and exposed to a large number of 

interference sources. Besides, this technology is still evolving towards greater speed, improved 

security, and with perspective for new applications and investments. 

 The parameters mandatory to IEEE 802.11a standard for OFDM modulation and timing 

specifications are introduced, and a preview is made on frame generation with a preamble used for 

synchronization and simplified equalization. 

 The combination of OFDM systems with optical technology is also reviewed in this chapter. 

These are technologies with important differences in their basic conception, such as the polarity of 

the signal, the detection techniques or the type of signal in use. 

 In an ideal transmission channel, a signal passes through a field defined as a single direct 

path, and is perfectly recovered at the receiver without having suffered any modification. However, 

in a real channel many destructive effects modify the transmitted signal and must be taken into 

consideration.  

 For the RoF network studied here in particular, the RF signal travels through a medium 

composed by two main segments: electrical wire and optical fiber. Therefore, the specific effect of 

the mediums involved must be taken into account. Obviously, the whole channel model that will 

affect the signal is defined by the combination of all possible interference sources, from all the 

segments of the network (wireless path, optical fiber, connectors, electrical to optical conversion, 

etc…). However, the wireless transmission media is expected to have a much stronger impact on the 

signal quality than the fiber link. 

 Some tools chosen for performance evaluation will also be introduced, which are appropriate 

to observe the channel effects and the PAPR phenomenon inherent to OFDM technology.  
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3.2. OFDM as Part of the IEEE 802.11 Standard for Wireless Networks 

 In the last decade, WLANs has been through remarkable growth with the large-scale 

production of IEEE 802.11 compliant devices. This was due mainly to the evolution in semiconductor 

technology, as well as to WLAN standardization with IEEE 802.11, which led to a dramatic cost 

reduction and therefore to an increased adoption of this technology. In 1999, the Wi-Fi Alliance 

(WFA) was formed to certify the interoperability between IEEE 802.11 devices from different 

manufacturers. WLAN technology is still growing in a sustainable way because it has become very 

affordable, but also due to the many advantages that it provides. With WLANs, the costs, time and 

efforts necessary to implement a wired network, involving deploying cables and tearing up walls can 

be avoided. In addition, with the wide propagation of laptops and mobile technology, WLAN offers 

connectivity virtually anytime and anywhere simply by installing Access Points (AP). In present days, 

most existing WLAN systems are based on the IEEE 802.11a/b/g standard amendments, which 

provide throughput enhancements over the original IEEE 802.11 PHY [23]. In 2009, the IEEE 802.11n 

specification for WLAN was published. 

OSI Reference 
Model  layers Description Examples Layer 

categories 

Application Interacts with software applications that 
implement a communicating component Telnet, FTP, SMTP 

Application Presentation Coding and conversion functions that are applied 
to application layer data 

QuickTime, MPEG, 
GIF, JPEG, TIFF 

Session Establishes, manages, and terminates 
communication sessions 

ZIP, AppleTalk, SCP, 
DECnet Phase IV 

Transport Accepts data from the session layer and segments 
the data for transport across the network TCP, UDP 

Data 
transport 

Network Defines the network address IP, IPv6 

Data link Transit of data across a physical network link 802.2 LLC 

Physical Electrical, mechanical, procedural, and functional 
specifications 802.11 PHY 

Table 3.1 – OSI model reference [23]. 

 The first development of the IEEE 802.11 group was centered on a common Medium Access 

Control (MAC) layer for multiple PHY layers to standardize WLAN. IEEE 802.11 is a member of the 

IEEE 802 family for Local Area Networks (LAN) and Metropolitan Area Network (MAN) standard, and 

therefore shares some of their characteristics. It incorporates 802.1 architecture, management, and 

interworking, and 802.2 Logical Link Control (LLC) [2]. The 802.2 LLC and IEEE 802.11 MAC and PHY 

compose the data link and physical layers of the Open Systems Interconnection (OSI) reference 

model, as described in Table 3.1. 
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 For collision detection, IEEE 802.11 uses a variation of the mechanism applied to shared 

Ethernet LANs, called Carrier Sense Multiple Access with Collision Avoidance (CDMA/CA). Wired LANs 

use Carrier Sense Multiple Access with Collision Detection (CDMA/CD), where the detection is made 

electrically and almost instantly when the transmitter receives back its own transmission. When a 

collision is detected, the stations wait for a random period before transmitting again. For WLANs, 

there is no way to detect a collision in such direct manner. However, the station can detect that the 

medium is busy or inactive if no response or acknowledge is received from the remote station once a 

frame has been transmitted [3] [23]. 

 802.11 802.11a 802.11b 802.11g 802.11n 

PHY technology DSSS OFDM DSSS/CCK OFDM, DSSS/CCK SDM/OFDM 

Data rates 1, 2 Mb/s 6-54 Mb/s 5.5, 11 Mb/s 1-54 Mb/s 6-600 Mb/s 

Frequency band 2.4 GHz 5 GHz 2.4 GHz 2.4 GHz 2.4 GHz and 5 GHz 

Channel spacing 25 MHz 20 MHz 25 MHz 25 MHz 20 MHz and 40 MHz 

Table 3.2 – Overview of IEEE 802.11 PHYs [23]. 

 Originally, the IEEE 802.11 standard published in 1997 included three PHYs: Infrared, 2.4 GHz 

Frequency Hopped Spread Spectrum (FHSS), and 2.4 GHz Direct Sequence Spread Spectrum (DSSS). 

Later, several standard amendments were produced, namely the IEEE 802.11a to create a new PHY in 

5 GHz, and IEEE 802.11b to increase the data rate in 2.4 GHz DSSS PHY [2] [23]. OFDM technology 

was introduced to the IEEE 802.11 standard with the development of the IEEE 802.11a amendment. 

It was the first packet-based system to make use of OFDM technology for its PHY standard. Until 

then, OFDM technology was used only in systems such as DAB and DVB [3]. In 2001, the use of OFDM 

in 2.4 GHz band was authorized. Afterward, as the IEEE 802.11g amendment was developed based 

on IEEE 802.11a PHY, OFDM also became part of this standard in 2003. With the introduction of the 

new IEEE 802.11g standard, backward compatibility and interoperability was maintained with the 

older IEEE 802.11b devices. This ensured for new IEEE 802.11g client cards to work in existing IEEE 

802.11b hotspots, or older IEEE 802.11b client devices to connect with any new IEEE 802.11g AP. The 

IEEE 802.11g standard amendment experienced very large market success due to this ensured 

compatibility and due to new data rates of up to 54 Mb/s [23]. 

3.2.1. IEEE 802.11a Specifications for OFDM Modulation 

 The IEEE 802.11a amendments endow with MAC and PHY specifications for transmission data 

rates. A list of modulation-dependent and timing-related parameters supported by this standard is 
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available in Table 3.3 and Table 3.4. In addition, Figure 3.1 shows the SCs allocation in frequency as it 

is described in the standard. 

Modulation Coding rate 
(R) 

Coded bits 
per SC 
(NBPSC) 

Coded bits 
per OFDM 

symbol 
(NCBPS) 

Data bits per 
OFDM 
symbol 
(NDBPS) 

Data rate 
(Mb/s) 

(20 MHz 
channel 
spacing) 

Data rate 
(Mb/s) 

(10 MHz 
channel 
spacing) 

Data rate 
(Mb/s) 
(5 MHz 
channel 
spacing) 

BPSK 1/2 1 48 24 6 3 1.5 
BPSK 3/4 1 48 36 9 4.5 2.25 
QPSK 1/2 2 96 48 12 6 3 
QPSK 3/4 2 96 72 18 9 4.5 

16-QAM 1/2 4 192 96 24 12 6 
16-QAM 3/4 4 192 144 36 18 9 
64-QAM 2/3 6 288 192 48 24 12 
64-QAM 3/4 6 288 216 54 27 13.5 

Table 3.3 – Standard IEEE 802.11a modulation-dependent parameters [2]. 

Parameters Value (20 MHz 
channel spacing) 

Value (10 MHz 
channel spacing) 

Value (5 MHz 
channel spacing) 

Number of data SCs 
(𝑵𝑺𝑫) 48 48 48 

Number of pilot SCs 
(𝑵𝑺𝑷) 4 4 4 

Total number of SCs 
(𝑵𝑺𝑻 = 𝑵𝑺𝑫  +  𝑵𝑺𝑷) 52 52 52 

SC frequency spacing 
(𝜟𝑭 = 𝑩 𝑵𝑭𝑭𝑻⁄ ) 

20 𝑀𝑀𝑀
64

= 0.3125 𝑀𝑀𝑀 
10 𝑀𝑀𝑀

64
= 0.15625 𝑀𝑀𝑀 

5 𝑀𝑀𝑀
64

= 0.078125 𝑀𝑀𝑀 

IFFT / FFT duration 
(𝑻𝑭𝑭𝑻 = 𝟏 𝜟𝑭⁄ ) 

1
0.3125 𝑀𝑀𝑀

= 3.2 𝜇𝑠 
1

0.15625 𝑀𝑀𝑀
= 6.4 𝜇𝑠 

1
0.078125 𝑀𝑀𝑀

= 12.8 𝜇𝑠 

GI duration 
(𝑻𝑮𝑰 = 𝑻𝑭𝑭𝑻 𝟒⁄ ) 

3.2 𝜇𝑠
4

= 0.8 𝜇𝑠 
6.4𝜇𝑠

4
= 1.6𝜇𝑠 

12.8𝜇𝑠
4

= 3.2 𝜇𝑠 

Symbol duration 
(𝑻𝑺𝒀𝑴 = 𝑻𝑮𝑰 + 𝑻𝑭𝑭𝑻) 0.8 𝜇𝑠 + 3.2 𝜇𝑠 = 4 𝜇𝑠 1.6 𝜇𝑠 + 6.4 𝜇𝑠 = 8 𝜇𝑠 3.2 𝜇𝑠 + 12.8 𝜇𝑠 = 16 𝜇𝑠 

Table 3.4 – Standard IEEE 802.11a timing-related parameters [2]. 

 
Figure 3.1 – SC frequency allocation based on IEEE 802.11a definitions. 

 This wireless standard uses 64 SCs, where 48 SCs carry data and 4 SCs are used as pilots for 

simple estimation of phase offsets caused by FFT timing errors. From the remaining SCs, 11 are 
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empty and behave as guard band. The SC at DC also remains empty to avoid distortions from ADC 

and DAC offsets [2].  

 Variable bit rate is achieved by changing the convolutional coding rate, as well as the data 

modulation order; that is, the information data bits per OFDM symbols is regulated. The channel 

spacing also controls the bit rate by specifying the duration of OFDM symbols transmission. 

The standard also specifies the length of the GI with duration 𝑁𝐺𝐺 = 𝑁𝑅𝑅𝐹 4⁄  of the FFT 

period, which means that an OFDM symbol is formed by 80 samples. As introduced in Section 2.3.4 

and Section 2.3.5, the GI consists in a cyclic extension and in a windowed section to reduce the 

spectral sidelobes of the transmitted waveform. Typically, the transition time 𝑇𝑊𝐺𝑁 duration is about 

100 ns, but the standard allows flexibility in both the transition duration and shape [2]. For a 20 MHz 

channel spacing, this transition time translates into 𝑁𝑊𝐺𝑁 = (100 𝑠𝑠 ∗ 80)/4 𝜇𝑠 = 2 samples. A 

greater transition time improves the spectral efficiency, but reduces the effective length of the GI. 

Hence, a compromise should be reached between both when the system is being designed. 

3.2.2. Preview on the IEEE 802.11a PHY Frame Structure 

 The main purpose of the OFDM PHY is to transmit the MAC Protocol Data Unit (MPDU). Two 

elements define the OFDM PHY: Physical Layer Convergence Procedure (PLCP) and the Physical 

Medium Dependent (PMD) sub-layers [15]. 

 The MAC layer communicates with the PLCP through a PHY service AP. The PLCP prepares the 

MPDUs for transmission under MAC instruction, and also conveys frames incoming from the wireless 

medium to the MAC layer. By mapping MPDUs into a frame format that is appropriate for 

transmission by the PMD, the PLCP sub-layer minimizes the dependence of the MAC layer on the 

PMD sub-layer [2] [16]. 

 The PMD provides transmission and reception of PHY units between two stations through the 

wireless medium under the oversight of the PLCP. To supply this service, the PMD interfaces directly 

with the air medium and provides modulation and demodulation of the frame transmissions. The 

PLCP and PMD communicate using service primitives to manage the transmission and reception 

functions [2] [16]. 

The PLCP Protocol Data Unit (PPDU) frame structure for IEEE 802.11a specification is 

depicted in Figure 3.2 and Figure 3.3. The first part of the frame is the PLCP preamble, which is 

composed by 10 short symbols from 𝑡1 to 𝑡10, and 2 long symbols 𝑇1 and 𝑇2 with a GI having doubled 

length. The next part of the frame is the SIGNAL field, which is followed by a number of additional 

OFDM symbols with the DATA [2]. 
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Figure 3.2 – PPDU frame format [2]. 

 The PLCP Preamble field is used to detect the frames at the receiver through cross-

correlation, and to synchronize the demodulator, which is the FFT for a digital system. The short 

symbols are used to adjust the AGC at the receiver, and for coarse estimation of the carrier 

frequency and time offsets. The long symbols are used to perform fine-tuning of the frequency 

offsets and the channel estimation [2].  

 

Figure 3.3 – OFDM training structure. Timing is for 20 MHz of channel spacing [2]. 

 The Short Training Sequence (STS) consists of 12 SCs, which are modulated by the elements 

of the sequence 𝑆, given by [2]: 

𝑆–26,26 = �13 6⁄ {0, 0, 1 + 𝑗, 0, 0, 0, – 1– 𝑗, 0, 0, 0, 1 + 𝑗, 0, 0, 0, – 1– 𝑗, 0, 0, 0, – 1– 𝑗, 0, 0, 0, 1

+ 𝑗, 0, 0, 0, 0, 0, 0, 0, – 1– 𝑗, 0, 0, 0, – 1– 𝑗, 0, 0, 0, 1 + 𝑗, 0, 0, 0, 1 + 𝑗, 0, 0, 0, 1

+ 𝑗, 0, 0, 0, 1 + 𝑗, 0, 0} 

 The multiplication by a factor of �13 6⁄  normalizes the average power of the resulting OFDM 

symbol, which utilizes 12 out of 52 SCs. Only spectral lines of 𝑆–26,26 with indices that are a multiple 

of 4 have non-zero amplitude, which results in a periodicity of 𝑇𝑅𝑅𝐹 4⁄ = 0.8 𝜇𝑠 when the bandwidth 

is 20 MHz [2]. 
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 A Long Training Sequence (LTS)  consists of 53 SCs, which include a zero value at DC and are 

modulated by the elements of the sequence 𝐿, given by [2]: 

𝐿–26,26 = {1, 1, – 1, – 1, 1, 1, – 1, 1, – 1, 1, 1, 1, 1, 1, 1, – 1, – 1, 1, 1, – 1, 1, – 1, 1, 1,

1, 1, 0, 1, – 1, – 1, 1, 1, – 1, 1, – 1, 1, – 1, – 1, – 1, – 1, – 1, 1, 1, – 1,

– 1, 1, – 1, 1, – 1, 1, 1, 1, 1 }  

 Two periods of the long sequence are transmitted for improved channel estimation accuracy, 

with a GI length of half the size of one sequence. Hence, 𝑇𝐿𝐿𝑁𝐺 = 1.6 + 2 × 3.2 = 8 𝜇𝑠 for a 20 MHz 

channel spacing [2]. 

 

Figure 3.4 – PLCP Preamble composed by the STS and by the LTS, for a 20 MHz channel spacing. 

 The SIGNAL field contains the LENGTH and RATE of the PHY Service Data Units (PSDU), and 

consists in 24 bits. It is transmitted with the lowest rate to guarantee unfailing reception, which is 

BPSK modulation with convolutional coding at rate 𝑅 = 1 2⁄ , and without being scrambled [2]. 

 The RATE is formed by a sequence of 4 bits defined in the specifications depending on the 

modulation parameters [2]. 

 The LENGTH is computed by converting the 12-bit unsigned integer indicating the number of 

octets in the PSDU that the MAC is requesting the PHY to transmit into binary digits, with the Most 

Significant Bit (MSB) to the right. The maximum number of octets allowed per frame is 4095, which 

corresponds to the highest 12-bit binary representation of the converted length (409510 =

1111111111112) [2]. 
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 The PARITY bit is used as a basic form of error detection based on the LENGTH bits. Even 

parity is mandatory, meaning that the number of ones included within LENGTH and PARITY together 

must be even [2]. 

 Finally, the DATA fields are transmitted at the DATA RATE indicated in the SIGNAL field. The 

first 16 bits define the SERVICE field, which is followed by the PSDU, some TAIL bits and padding [2]. 

 The SERVICE field is composed by 16 bits, where the first part are zeros that allow the 

descrambler at the receiver to synchronize, and the remaining 9 bits are reserved and also zeros [2]. 

 The remaining TAIL bits are required to return properly the convolutional encoder to the zero 

state. This improves the error probability at the receiver because de decoder relies on future bits 

when decoding. Since there is no guarantee that there will be padding at the end of the payload, TAIL 

insertion is necessary. Hence, the PLCP TAIL bit field is produced by replacing six scrambled zero bits 

following the message by six non-scrambled zero bits [2]. 

 The number of PAD bits depends on the length of the PSDU, that is, the number of bits in the 

DATA field must be a multiple of 𝑁𝐶𝐵𝑃𝑆, which is the number of coded bits in an OFDM symbol. To do 

so, the original message must be extended in order to become a multiple of 𝑁𝐷𝐵𝑃𝑆, which is the 

number of data bits per OFDM symbol. Therefore, the number of PAD bits are computed from the 

PSDU LENGTH as described in [2]: 

𝑁𝑆𝑌𝑀 = 𝑐𝑅𝑖𝑙((16 + 8 × 𝐿𝐸𝑁𝐺𝑇𝑀 + 6) 𝑁𝐷𝐵𝑃𝑆⁄ ) (3.1) 

𝑁𝐷𝐴𝐹𝐴 = 𝑁𝑆𝑌𝑀 × 𝑁𝐷𝐵𝑃𝑆 (3.2) 

𝑁𝑃𝐴𝐷 = 𝑁𝐷𝐴𝐹𝐴 − (16 + 8 × 𝐿𝐸𝑁𝐺𝑇𝑀 + 6) (3.3) 

Where: 𝑁𝑆𝑌𝑀 is the number of OFDM symbols; 𝑁𝐷𝐴𝐹𝐴 is the number of bits in the DATA field and 

NPAD is the number of padded bits. The appended bits are set to zeros and are scrambled with the 

rest of the bits in the DATA field [2]. 

3.2.3. Frame Detection using the Short Training Sequence 

 In systems using IEEE 802.11a PHY, the receiver knows the structure of the preamble. This is 

valuable information that is used by the receiver to perform frame detection. In fact, in this standard 

the preambles are designed to help the detection of the starting edge of a packet. The standard 

leaves the choice of the algorithm for packet detection to the developer [27]. In this dissertation, the 

approach presented by Schimdl and Cox is used for coarse frame detection. It is known as the Delay 

and Correlate algorithm, and takes advantage of the periodicity of the sort training symbols at the 

start of the preamble.  
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Figure 3.5 – Flow structure of the Delay and Correlate algorithm [27]. 

𝑐𝑛 = �𝑟𝑛+𝑘𝑟𝑛+𝑘+𝐷∗
𝐿−1

𝑘=0

 (3.4) 

𝑝𝑛 = �𝑟𝑛+𝑘+𝐷𝑟𝑛+𝑘+𝐷∗
𝐿−1

𝑘=0

= �|𝑟𝑛+𝑘+𝐷|2
𝐿−1

𝑘=0

 (3.5) 

𝑚𝑛 =
|𝑐𝑛|2

(𝑝𝑛)2 (3.6) 

Two sliding windows 𝐶 and 𝑃 can be seen in Figure 3.5. The C window is a cross-correlation 

between the received signal and a delayed version of the received signal. The delay 𝑍−𝐷 is equal to 

the period of the start of the preamble, which is the period of the short training symbols with length 

𝐷 = 16 in the IEEE 802.11a standard. The 𝑃 window calculates the received signal energy during the 

cross-correlation window. The value of the 𝑃 window is used to normalize the decision statistic 𝑚𝑛, 

in order for it to be independent on absolute received power level [27]. 

3.2.4. Frequency Offset Estimation using the Short Training Sequence 

 The periodicity of the short training sequence is engineered to provide optimal conditions for 

both timing and frequency synchronization, due to its energy distribution and periodicity. The 

estimation of frequency offset is achieved by taking advantage of this periodicity to determine the 

difference between the transmitted frequency and the received one. It is given by the relation 

∆𝑓 = 𝑓𝐹𝑋 − 𝑓𝑅𝑋. Based on the definitions in Chapter 2, the received baseband signal is defined, 

without modeling the noise, as: 

𝑟(𝑡) = 𝑠(𝑡)𝑅𝑗2𝜋∆𝑓𝑡 (3.7) 

Where: 𝑠(𝑡) is the transmitted signal; 𝑟(𝑡) is the received signal; ∆𝑓 is the frequency offset. 

 Since the STS is periodic, by introducing a one period delay 𝛿𝑡 to the equation above it 

becomes [28]: 
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𝑟(𝑡 − 𝛿𝑡) = 𝑠(𝑡)𝑅𝑗2𝜋∆𝑓(𝑡−𝛿𝑡) (3.8) 

Both 𝑟(𝑡) and 𝑟(𝑡 − 𝛿𝑡) are known by the receiver, as well as the original sequence 𝑠(𝑡). Thus, the 

following relation can be calculated: 

𝑟(𝑡 − 𝛿𝑡)𝑟∗(𝑡) = 𝑠(𝑡)𝑅𝑗2𝜋∆𝑓(𝑡−𝛿𝑡)𝑠∗(𝑡)𝑅−𝑗2𝜋∆𝑓𝑡 

   = |𝑠(𝑡)|2𝑅−𝑗2𝜋∆𝑓𝛿𝑡 
(3.9) 

Finally, by finding the angle of each side of the equation above, the expression to discover the 

frequency offset is deduced [28]: 

                          ∢[𝑟(𝑡 − 𝛿𝑡)𝑟∗(𝑡)] = ∢�|𝑠(𝑡)|2𝑅−𝑗2𝜋∆𝑓𝛿𝑡� 

(=)   ∢[𝑟(𝑡 − 𝛿𝑡)𝑟∗(𝑡)] = −2𝜋∆𝑓𝛿𝑡 

(=)   ∆𝑓 =
∢[𝑟(𝑡 − 𝛿𝑡)𝑟∗(𝑡)]

−2𝜋𝛿𝑡
             

(3.10) 

3.3. OFDM Application to Optical Networks 

 At the end of the 20th century, around the 1980s, electrical-based technology was getting to a 

point of saturation in terms of capacity and reach. A typical coaxial link needed regenerators every 1 

km for a data rate of 200 Mb/s, involving very high costs [7]. Consequently, the need for new 

solutions was growing, and a promising technology that was already under development, known as 

optical fiber, became one of the main alternatives chosen for investigation. As coherent source for 

optical transmitters became achievable by using Light Amplification by Stimulated Emission of 

Radiation (LASER), the problem of finding an appropriate transmission medium emerged. In 1966, 

Kao and Hockman proposed optical fiber for lightwave transmission, and stated that the attenuation 

from optical fiber was caused by fiber impurities that could be removed [7]. However, at that time 

optical fiber was unacceptably expensive to become a practical solution. Later, optical fiber networks 

became an attractive technology due to their low loss, but the optical systems were still limited to 

distances generally lower than 100 km due to the need for optical signal regeneration. In the late 

1980s, coherent detection communication systems were introduced to improve the transmission 

distance of electrical-based systems. Nevertheless, as the optical amplifier was invented in the 1990s 

a new generation of communication systems was arising, in which it became possible to transmit 

substantial quantity of signals over a single optical fiber using Wavelength-Division Multiplexing 

(WDM) technology [7]. 
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 OFDM systems have many strong advantages turning them into an appealing technology, 

which is why they are widely used in a number of communication standards, and are especially 

popular in wireless telecommunications [7]. Nonetheless, it is only recently that OFDM technology 

was applied to optical communications, mostly due to the increasing demand for higher data rates 

across dispersive optical links, and also because Digital Signal Processing (DSP) at optical data rates 

has become possible [5]. An important barrier in applying OFDM technology to optical networks 

resides in the elementary differences existing in the conception of these systems [5]. These 

differences are uncovered in Table 3.5. In conventional OFDM systems, the information is carried on 

the electrical field where the signal can have both positive and negative values. At the receiver, a 

local oscillator is used and Coherent-Detection (CD) is performed. On the contrary, in typical optical 

systems the information is transported on the intensity of the optical signal and thus can only be 

positive. At the receiver, Direct-Detection (DD) is used [5]. 

Typical OFDM 
System Bipolar Information carried 

on electrical field 
Local Oscillator at 
receiver 

Coherent 
Reception 

Typical Optical 
System Unipolar Information carried 

on optical intensity 
No Local Oscillator 
(laser) at receiver 

Direct 
Detection 

Table 3.5 – Differences between typical OFDM Systems and typical Optical Systems [5]. 

 The application of OFDM technology to optical networks can be separated in two main 

modulation types: Intensity Modulation (IM) and Linear Field Modulation (LFM) [5]. 

 IM is usually applied to optical wireless systems and other systems where many modes are 

received, and where the OFDM signal must be represented as intensity. This implies that the 

modulating signal must be both real and positive, despite the baseband OFDM signals generally 

being complex and bipolar [5]. One way to achieve this is by constraining the baseband signal to have 

Hermitian symmetry, as described in [7]. The modulated complex data samples and their complex 

conjugate in the FD are placed in such a way that guarantees this symmetric property before 

proceeding to OFDM modulation. At this point, a real baseband signal is obtainable, but it is still 

necessary to turn it into a unipolar signal. In order to achieve this unipolar OFDM signal, two 

solutions exist: DC-Biased Optical OFDM (DCO-OFDM) and Asymmetrically Clipped Optical OFDM 

(ACO-OFDM). In the first solution, a DC bias is added to the signal, but due to the large PAPR of 

OFDM, even with a large bias some negative peaks will be clipped, thus resulting in interferences [5]. 

In the latter solution, the OFDM signal is clipped at the zero level, removing all the negative part of 

the signal. If only the odd frequency OFDM SCs are non-zero at the Inverse Fast Fourier Transform 

(IFFT) input, the interferences resulting from the clipping affects only the even SCs, thus preventing 

impairments on the odd data carrying SCs [5]. 
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 LFM is used to achieve linearity between the transmitter IFFT input and the receiver FFT 

output in SMF. It consists in mapping each discrete OFDM SC frequency in the baseband electrical 

domain to a single discrete frequency in the optical domain. This way a linear relationship is created 

between the optical field of the transmitted signal and the OFDM baseband signal. At the receiver, 

the signal is mixed with a component at the optical carrier frequency. The component at the optical 

frequency can be transmitted with the OFDM signal as in Direct-Detection Optical OFDM (DDO-

OFDM), or coherent detection can be used where the receiver signal is mixed with a carrier produced 

locally as in Coherent Optical OFDM (CO-OFDM) [5]. 

 DDO-OFDM offers the advantages of a simpler receiver, but to avoid interferences from 

unwanted mixing product some of the optical frequencies must remain unused. This is achieved by 

inserting a guard band between the optical carrier and the OFDM SCs, thus resulting in spectral 

efficiency loss and consumption of additional power. CO-OFDM requires a laser at the receiver and is 

sensitive to phase noise [5]. 

3.4. Propagation Characteristics of the Channel 

 Wireless environment is usually characterized as severely interfering scenario, in particular 

because it behaves as a reflective, frequency-selective fading, and multipath channel. Therefore, the 

signal detected by the receiver is usually distorted by random noise and multipath propagation. At a 

given instant, the receiver can only distinguish a combination of several replicas of the original signal 

that are attenuated, reflected, refracted and diffracted. The channel model for wireless 

communications is frequently referred to as time and frequency-selective fading channel [25]. 

 Mathematical Model Nonlinearity Speed 

Wireless 
OFDM 

Time domain multiple 
discrete Rayleigh fading None Can be fast 

for mobile 
Optical 
OFDM 

Continuous frequency 
domain dispersion Significant Medium 

Table 3.6 – Comparison between Wireless and Optical channels [7]. 

Optical fiber environments are much less likely to degrade the signal due to random noise, 

namely because they are immune to Radio Frequency Interferences (RFI) and Electromagnetic 

Interferences (EMI). Nonetheless, they are sensitive to physical vibrations that translate into random 

noise. Moreover, the signal can be impaired by multimode dispersion (when MMF is used) or 

chromatic distortion (when SMF is used) [7]. 
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3.4.1. Additive White Gaussian Noise 

 Usually, any real transmission system is affected by some degree of white noise, which, 

depending on the medium type, is caused by different sources. White noise can be defined as noise 

having a frequency spectrum that is continuous and uniform over a specified frequency band, thus 

having equal power per Hertz over the specified frequency band [29]. 

3.4.2. Shadowing 

 Shadowing consists in Line-of-Sight (LoS) loss, and signal diffraction over an obstacle. This 

generally happens around apartment buildings or hills that obstruct the path from the transmitter to 

the receiver, and causes the signal to be strongly attenuated or even undetectable at the receiver [3]. 

Communication systems using higher frequencies are more susceptible to shadowing. To overcome 

this issue, the transmitters are typically placed at high locations [25]. Smaller cells can be deployed as 

well to resolve this problem, but this implies costs for additional base stations and backbones [3]. 

3.4.3. Multipath Channel Model 

3.4.3.1. Rician Fading and Rayleigh Fading 

 A transmitted RF signal can be reflected from objects such as vehicles, constructions or other 

natural obstacles. As a result, besides the direct LoS radio wave, multiple paths are detected at the 

receiver [3]. The phase relation between the several detected signals can generate constructive or 

destructive interferences, usually over short distances [25].  

 
Figure 3.6 – A multipath fading environment. 

 Two stochastic models describe multipath fading channels. A multipath interfering 

environment is classified as Rician fading when one of the paths, typically the LoS path, is much 

stronger than the additional delayed and attenuated interfering paths. In Rician fading, the 
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amplitude gain is characterized by a Rician distribution. Rayleigh fading can be seen as a special case 

of Rician fading, where there is no direct LoS path. In Rayleigh fading, the amplitude gain is 

characterized by a Rayleigh distribution. A typical wireless channel can be modeled as a 

summarization of the multiple paths, each undergoing a Rayleigh process, given by [7]: 

ℎ(𝑡, 𝜏) = �𝑎𝑙𝑔𝑙(𝑡)𝛿(𝜏 − 𝜏𝑙)
𝐿

𝑙−1

 (3.11) 

Where: 𝑎𝑙  is a complex constant of path gain; 𝑔𝑙(𝑡) is the Rayleigh fading process; 𝜏𝑙  is the delay for 

the 𝑙th path. The difference in path time can be expressed as ∆𝜏 = 𝜏𝑙 − 𝜏0. 

 
Figure 3.7 – Random complex Rayleigh multipath channels: 10 impulses on the left; 20 impulses on the right. 

3.4.3.2. Frequency-Selective Fading 

 By definition, selective fading is a kind of fading that varies for different frequencies over a 

frequency band, hence causing distortions that vary in nature at different instants. In a wireless 

transmission, some frequencies are canceled due to reflections. For narrow bandwidth transmission, 

when this destructive effect occurs at transmission frequency, the entire signal can be lost. In OFDM 

systems, because the original signal is spread over a wide bandwidth, the frequency cancelation is 

unlikely to occur on all the SCs [3] [25]. Additionally, by using FEC coding and interleaving the 
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robustness is furtherly increased, as described in Section 2.3.2. In opposition to frequency-selective 

fading, flat fading occurs when the coherence bandwidth if the channel is larger than the bandwidth 

of the signal. It that situation, all the frequency components of the signal are exposed to the same 

magnitude of fading.  

3.4.3.3. Delay Spread 

 Usually, in multipath environment the receiver detects the direct LoS signal added to 

multiple extra paths. These additional paths are likely to travel along different distances before 

reaching the receiver. Therefore, besides being attenuated, these supplementary paths arrive later at 

the receiver [3] [12]. Due to these delays, the detected signals energy is spread in time. The delay 

spread is the time extension between the arrival of the first and last multipath signal at the receiver 

[25]. Filters at the transmitter and receiver can also cause additional delay spread [23]. The delay 

spread causes adjacent data symbols to overlap and interfere with each other, thus introducing ISI 

[26]. The main mechanism to combat delay spread is the GI with a CP, as introduced in Section 2.3.4. 

 
Figure 3.8 – Multipath delay spread. 

3.4.4. Doppler Shift 

 Doppler shift is defined simply as a change in frequency. The shifting in frequency is caused 

by movements of the transmitter and of the receiver in relation to one another [12]. Doppler shifts 
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are insignificant for fixed position stations. However, for a mobile station the Doppler shift will affect 

the link quality [26]. The relative motion between the transmitter and the receiver defines the 

quantity of frequency variation. The Doppler shift in frequency can be written as [25]: 

∆𝑓 = ±𝑓𝑜(𝑣 𝑐⁄ ) (3.12) 

Where: ∆𝑓 is the frequency change in the signal seen by the receiver; 𝑓𝑜 is the transmitted 

frequency; 𝑣 is the difference between the transmitted and the received frequency; 𝑐 is the speed of 

light. 

3.4.5. Optical Fiber Impairments 

3.4.5.1. Chromatic Dispersion 

 Chromatic dispersion is a well-known optical fiber impairment, and usually manifests in SMF. 

It is caused by different velocities among distinct spectral components within the same mode, and is 

defined by two constituents: material dispersion and waveguide dispersion. Material dispersion 

results from the sensitivity of the speed of light in a medium in relation to its wavelength. Waveguide 

dispersion results from the physical design of the optical fiber, and is caused by the fact that a given 

wavelength travels at different speeds in the core and cladding of an SMF. It occurs when the 

refractive indices of a core-cladding are just nearly equal and the light is not confined in the fiber 

core [7].  

3.4.5.2. Multimode Distortion 

 Multimode distortion consists in signal spread in time. This occurs in MMF because the 

propagation speed is not the same for all the modes, and therefore the difference in mode path 

lengths produces a difference in arrival times ate the receiver [7] [29]. An analogy can be established 

between this effect and the existing multipath propagation in wireless communications [29]. 

 
Figure 3.9 – Representation of multimode distortion [29]. 
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 In MMF the direct signal can be distorted by the arrival of the reflected signal with a small 

delay. This delay takes place because in a step-index optical fiber, rays taking more direct paths 

through the fiber core will undergo fewer reflections at the core-cladding boundary. Similarly to 

wireless multipath propagation, this results in signal distortion and limitations in signal bandwidth. 

One way to reduce significantly this effect is by using a core with graded refractive index [29]. In 

addition, by limiting the number of propagating modes to a fundamental one the multimode 

dispersion can be effectively eliminated. MMF and graded-index fiber suffer highly from modal 

dispersion over short distances, and as a result material dispersion and chromatic dispersion never 

become degradation factors [7]. 

3.5. Tools for Performance Analysis 

3.5.1. Error Vector Magnitude  

 In a real communication system, different kinds of impairments are expected to distort the 

received signal in amplitude and phase. Typically, in the presence of ISI and noise, the measured 

signal will appear to be randomly varying around the ideal signal, translating into an error cloud 

around the ideal constellation point [30].  

 
Figure 3.10 – Representation of Constellation Error [2]. 

 Error Vector Magnitude (EVM) can be defined as an estimation of the quality of a 

communication system. This evaluation is made by measuring the error between the original symbols 

and the received data constellation points after decimating the recovered waveform, hence also 

providing a direct measure of modulation accuracy in the presence of impairments [31] [32]. In an 

OFDM system, EVM has the advantage of providing an assessment of the quality of the transmission 
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system even before data demodulation is performed, and of granting a prediction for the expected 

Bit Error Rate (BER), since BER is proven to be a consequence of EVM [31]. 

 Based on the definitions given in [33], the RMS EVM computed with a reference signal for a 

sequence of constellation samples can be described as the following: 

𝐸𝑉𝑀𝑅𝑀𝑆 = �
1
𝑁∑ ��𝐼(𝑘)− 𝐼0(𝑘)�2 + �𝑄(𝑘) −𝑄0(𝑘)�2�𝑁

𝑘=1

1
𝑁∑ (𝐼0(𝑘)2 + 𝑄0(𝑘)2)𝑁

𝑘=1

× 100 (3.13) 

Where: 𝐼0(𝑘) is the ideal reference value in phase for the 𝑘th symbol in the burst; 𝑄0(𝑘) is the ideal 

reference value in quadrature for the 𝑘th symbol in the burst; 𝐼(𝑘) is the received reference value in 

phase for the 𝑘th symbol in the burst; 𝑄(𝑘)is the received reference value in quadrature for the 𝑘th 

symbol in the burst; 𝑁 is the number of constellation samples processed. 

If the calculations are performed for a normalized constellation power as depicted in Figure 

3.10, then the denominator of the equation above corresponds to the mean power of the ideal 

symbols: 

𝑃0 = �
1
𝑁
�(𝐼0(𝑘)2 + 𝑄0(𝑘)2)
𝑁

𝑘=1

= 1 (3.14) 

 For performance evaluation the Relative Constellation Error (RCE) metric was considered in 

this dissertation. RCE is defined as the RMS averaged magnitude error of all the constellation points 

in a number of frames. In other words, it is an average of the EVM computed for a number of frames. 

The following expression, given in [2], describes the RMS error estimation process for a block of 

OFDM-based frames: 

𝐸𝑟𝑟𝑐𝑟𝑅𝑀𝑆 =
∑ �∑ �∑ ���𝐼(𝑖, 𝑗,𝑘) − 𝐼0(𝑖, 𝑗,𝑘)�2 + �𝑄(𝑖, 𝑗,𝑘)−𝑄0(𝑖, 𝑗,𝑘)�2��𝑁𝑆𝐶

𝑘=1 �𝐿𝑝
𝑗=1

𝑁𝑆𝐶 × 𝐿𝑝 × 𝑃0
𝑁𝑓
𝑖=1

𝑁𝑓
 

(3.15) 

Where: 𝐿𝑝 is the length of the packet (the number of OFDM symbols in the frame); 𝑁𝑓  is the number 

of frames for the measurement; �𝐼0(𝑖, 𝑗,𝑘),𝑄0(𝑖, 𝑗,𝑘)� denotes the ideal symbol point of the 𝑖th 

frame, 𝑗th OFDM symbol of the frame, 𝑘th SC of the OFDM symbol in the complex plane; 

�𝐼(𝑖, 𝑗,𝑘),𝑄(𝑖, 𝑗,𝑘)� denotes the observed symbol point of the 𝑖th frame, 𝑗th OFDM symbol of the 

frame, 𝑘th SC of the OFDM symbol in the complex plane; 𝑃𝑜 is the average power of the ideal 

constellation (𝑃0 = 1). 
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While the EVM is commonly presented in percentage, the RCE is usually given in decibels. It 

can be related to the RMS error through the following expression:  

𝑅𝐶𝐸𝑑𝐵 = 20 × 𝑙𝑐𝑔10(𝐸𝑟𝑟𝑐𝑟𝑅𝑀𝑆) (3.16) 

 The IEEE 802.11 specifications states that the test should be performed over at least 20 

frames (𝑁𝑓), and that the RMS average should be taken. The packets under test must be at least 16 

OFDM symbols long. In addition, random data must be used to generate the OFDM symbols [2]. 

Moreover, the specifications indicate the RCE averaged over SCs, OFDM symbols and entire frames 

should not exceed the data rate dependent values according to Table 3.7 below. 

Relative Constellation 
Error (dB) Modulation Coding 

Rate (R) 
-5 BPSK 1/2 
-8 BPSK 3/4 

-10 QPSK 1/2 
-13 QPSK 3/4 
-16 16-QAM 1/2 
-19 16-QAM 3/4 
-22 64-QAM 2/3 
-25 64-QAM 3/4 

Table 3.7 – Allowed RCE versus Data Rate as specified in IEEE 802.11 standard [2]. 

3.5.2. Signal-to-Noise Ratio 

 To compute correctly the SNR in OFDM technology, where the SNR is given by the 𝐸𝑏/𝑁0 

(the energy per bit to noise power spectral density ratio), the data modulation order and the OFDM 

modulation parameters must be taken into account. The SNR for each modulation scheme must 

consider the number of bits per symbol, thus the signal power corresponds to the energy per bit 

times the number of bits per symbol. A higher 𝐸𝑏/𝑁0 required for transferring data means that more 

energy is required for each bit transfer [34]. 

 Considering all these parameters, the OFDM 𝐸𝑠/𝑁0 (the energy per symbol to noise power 

spectral density ratio) given in decibels can be obtained by performing the following calculation [34]: 

�
𝐸𝑠
𝑁0
�
𝑑𝐵

= �
𝐸𝑏
𝑁0
�
𝑑𝐵

+ 10𝑙𝑐𝑔10 �
𝑁𝑆𝐶
𝑁𝑅𝑅𝐹

� + 10𝑙𝑐𝑔10 �
𝑇𝑅𝑅𝐹

𝑇𝑅𝑅𝐹 + 𝑇𝐺𝐺
� + 10𝑙𝑐𝑔10�𝑙𝑐𝑔2(𝑀)� (3.17) 

Where: [𝐸𝑏 𝑁0⁄ ]𝑑𝐵 is the energy per bit to noise power spectral density ratio in decibels; 𝑁𝑆𝐶  is the 

number of occupied SCs; 𝑁𝑅𝑅𝐹 is the FFT length in samples; 𝑇𝑅𝑅𝐹 is the FFT duration; 𝑇𝐺𝐺 is the GI 

duration; M is the data modulation order. 
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 So far, Equation (3.17) does not account for the additional energy required per bit if FEC 

coding is applied. Here, convolutional code with rate 𝑅 determines this added amount of power. 

Considering this, the equation above can be rewritten as: 

�
𝐸𝑠
𝑁0
�
𝑑𝐵

= �
𝐸𝑏
𝑁0
�
𝑑𝐵

+ 10𝑙𝑐𝑔10 �
𝑁𝑆𝐶
𝑁𝑅𝑅𝐹

� + 10𝑙𝑐𝑔10 �
𝑇𝑅𝑅𝐹

𝑇𝑅𝑅𝐹 + 𝑇𝐺𝐺
� + 10𝑙𝑐𝑔10�𝑙𝑐𝑔2(𝑀)� + 10𝑙𝑐𝑔10(𝑅) (3.18) 

3.5.3. Relating EVM to SNR   

EVM and SNR are common measuring tools used for performance assessment in 

communication systems, and both can be related to BER. Finding the relation between EVM and 

other performance metrics can provide additional insight on the system performance, while avoiding 

the need to develop expensive modules. When data-aided EVM estimation is calculated, it is 

assumed that the EVM is measured using known data sequences or that the SNR is high enough so 

that symbol errors are insignificant [35]. 

It has been demonstrated in [32] [35] and [36] that for a Gaussian noise model the ratio of 

normalized noise power to the normalized power of the ideal constellation can be replaced by their 

non-normalized quantities, and that the relation between data-aided EVM and SNR is given by: 

𝐸𝑉𝑀𝑅𝑀𝑆 ≈ �
𝑁0
𝐸𝑆

= � 1
𝑆𝑁𝑅

 (3.19) 

Where: 𝑁0 is the normalized noise power and 𝐸𝑆 is the normalized power of the ideal constellation. 

3.5.4. Peak-to-Average Power Ratio  

3.5.4.1. PAPR Evaluation 

 PAPR evaluation is an important aspect of the system performance because it provides a 

measurement for a major disadvantage of OFDM technology, which is the large dynamic range of its 

signals. PAPR provides a quantification of amplitude variation in an OFDM signal, therefore giving an 

estimation of the degradation. High PAPR indicates that there are high peaks in relation to the 

average value of the OFDM symbols. For instance, if 𝑁 signals summed together compose the OFDM 

symbols, then it is possible that, at a given instant, the amplitude of one symbol is the maximum 

amplitude of each 𝑁 signals summed [3] [37]. Unfortunately, large peaks cause saturation in power 

amplifiers, which results in intermodulation product among the SCs, and leads to ICI. Such situations 

are expected to occur, and result in peaks with amplitude much higher than the average. In [7] [37] 

PAPR is presented as: 
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𝑃𝐴𝑃𝑅 =
𝑚𝑎𝑥
𝑡∈[0,𝐹]

|𝑥(𝑡)|2

𝜀 ∈ {|𝑥(𝑡)|2} =
𝑚𝑎𝑥[𝑥(𝑡)𝑥(𝑡)∗]
𝜀 ∈ [𝑥(𝑡)𝑥(𝑡)∗]  (3.20) 

Where: 𝑥(𝑡) is the signal; 𝜀 ∈ {. } designates the expectation; ()∗ corresponds to the conjugate 

operator. In decibels, the PAPR is: 

𝑃𝐴𝑃𝑅𝑑𝐵 = 10 × 𝑙𝑐𝑔10(𝑃𝐴𝑃𝑅) (3.21) 

3.5.4.2. PAPR Distribution 

 The complex baseband signal of an OFDM symbol with 𝑁 SCs is described in [3] through the 

following expression: 

𝑥(𝑡) =
1
√𝑁

�𝑎𝑛𝑅𝑗𝜔𝑛𝑡
𝑁

𝑛=1

 (3.22) 

Where: 𝑎𝑛 are the modulating symbols. The amplitude of the OFDM signal has Rayleigh distribution 

with zero mean and variance of 𝑁 times the variance of one complex sinusoid, because the real and 

the imaginary values of 𝑥(𝑡) become Gaussian distributed for large numbers of SCs, each with a 

mean of zero and a variance of 1/2 [3] [37]. Therefore, the amplitude of the OFDM signal has a 

Rayleigh distribution. The power distribution becomes a central chi-square distribution with two 

degrees of freedom and zero mean with a cumulative distribution given by [3]: 

𝐹(𝑀) = 1 − 𝑅−𝑧 (3.23) 

 Assuming the samples to be mutually uncorrelated, which is true when there is no 

oversampling, the Cumulative Distribution Function (CDF) for the PAPR per OFDM symbol is defined 

in [3] [37] as the probability that the PAPR of the OFDM signal exceeds a certain threshold: 

𝑃{𝑃𝐴𝑃𝑅 ≤ 𝑀} = (1 − 𝑅−𝑧)𝑁 → 𝑃{𝑃𝐴𝑃𝑅 > 𝑀} = 1 − (1 − 𝑅−𝑧)𝑁 (3.24) 

Where: 𝑁 is the number of SCs and 𝑀 is the threshold. 

 The peak power distribution is difficult to present as an exact solution. When oversampling is 

applied, the samples can no longer be assumed to be mutually uncorrelated, and the expression 

above is no longer valid. An approximation is proposed in [3], which is made by assuming that the 

distribution for 𝛼𝑁 SCs and oversampling can be approximated by the distribution for 𝛼𝑁 SCs 

without oversampling, with 𝛼 > 1. Hence, the effect of oversampling is approximated by adding a 

certain number of extra independent samples. Considering this, the PAPR distribution accounting for 

oversampling becomes: 
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𝑃{𝑃𝐴𝑃𝑅 ≤ 𝑀} = (1 − 𝑅−𝑧)∝𝑁 (3.25) 

3.5.4.3. PAPR Reduction 

 There are several ways to reduce the Peak-to-Average Power (PAP). The simplest approach 

to reduce PAP is to clip the signal. Clipping is performed on OFDM symbols by defining a threshold 

over the amplitude in time domain, and setting any value greater than the limit equal to the 

boundary. However, this solution can be associated to some inconvenient. In the first place, by 

directly cutting the peaks in amplitude a distortion is introduced in the OFDM signal, which will 

degrade the BER. In second place, the non-linear distortion introduced by clipping results is an 

increased out-of-band radiation [3] [37]. 

 The clipping operation can be seen as the multiplication of the OFDM signal to a rectangular 

window function, where the window amplitude is one where no clipping is needed, and lower than 

one where clipping is needed. Using the same concept, the out-of-band interferences can be 

minimized if a non-rectangular shaped window, ideally as narrow as possible, is multiplied to the 

large signal peaks. On the other hand, the window should not be too long, because it implies that 

more samples will be affected, therefore also increasing BER degradation [3].  

 

Figure 3.11 – Clipping of 2 dB for a complex OFDM symbol of 20 MHz channel spacing, with 4-fold oversampling. 

 The clipping operation can be described mathematically as an approximated signal where a 

certain threshold limits the amplitude while the phase is left unmodified [15]: 

𝑥̅(𝑡) = �
𝑥(𝑡), |𝑥(𝑡)| ≤ 𝐴

𝐴𝑅𝑗𝑚𝑟𝑔�𝑚(𝑡)�, |𝑥(𝑡)| > 𝐴
 (3.26) 
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Where: 𝑥(𝑡) is the original signal; 𝑥̅(𝑡) is the clipped signal; A is the maximum amplitude allowed and 

𝑎𝑟𝑔�𝑥(𝑡)� is the phase of 𝑥(𝑡). 

 The clipping operation must be performed on the analog signal, or on an upsampled version 

of the digital signal, because as the signal is converted from digital to analog, the high peaks can 

occur between discrete samples. A relation between the clipping power and the original signal’s 

power is given in [15] as the clipping power ratio, which the following equation defines in decibels as: 

𝐶𝑅𝑑𝐵 = 20 × 𝑙𝑐𝑔10(𝐴 𝜎⁄ ) (3.27) 

Where: 𝜎2 is the power of 𝑥(𝑡).  

In packet-based systems, the error probability increases as the PAPR gets worse. When a 

transmission fails, the packet is retransmitted. If its PAPR is too high, the situation might happen 

where the packet never passes through. One other way of reducing PAPR in a packet-based 

transmission system is the use of a standard scrambler. By generating a new random seed for each 

transmission, the scrambler can ensure that the transmitted data is uncorrelated with preceding and 

following transmissions. Hence, by scrambling with different seeds at each transmission, 

independent PAPR can be assured between retransmissions, which results in independent error 

probability [3]. 

3.6. Summary 

 In this chapter, an introduction was made to OFDM application in wireless IEEE 802.11a 

packet-based system, because it is the OFDM modulation reference chosen for further development 

in this dissertation. In addition, an overview was made on the use of OFDM technology with optical 

systems. The main channel effects typical to each domain were introduced, and some mathematical 

models were also presented. It was seen that if a RoF network is considered, the dispersion and 

interference sources from both electrical domain and optical domain must be considered in order to 

perform an accurate analysis of the system performance.  

 Analysis methods that allow assessment of the system were described as well. EVM provides 

an effective way of measuring the distance between the expected complex constellation location and 

the received one. EVM analysis is a good evaluation choice, because with simple calculations an 

estimate of the constellation degradation can be obtained even before needing any further 

processing, such as demodulation and decoding. PAPR is a significant drawback on OFDM systems, 

and therefore it is important to monitor its level and effect for different parameters in the model 

used.  
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Chapter 4. OFDM System Simulation using Matlab 

4.1. Introduction 

 The importance of the numerous parameters that define the OFDM model was introduced in 

the previous sections. It was explained that several of them, such as FEC coding and cyclic extension, 

are fundamental to ensure the OFDM transmission’s robustness against different error sources. 

However, they also imply losses in transmission efficiency in terms of bandwidth, power and bit rate. 

Therefore, it is desirable to understand the relation between the benefits they provide and the 

efficiency loss. 

 Other parameters, such as the complexity of the data modulation scheme and windowing, 

can also contribute to the sensitivity of the overall system. This will be studied by exposing the model 

to several common adverse situations, such as random noise and reflective environments that cause 

multiple paths with different delays and attenuations. 

 Carrier and timing synchronism are of vital importance in OFDM systems. Failures in 

synchronism have strong negative impact on the system, because they origin ICI and ISI. In this 

chapter, these effects will be demonstrated. 

 An important weakness inherent to OFDM technology is its tendency to engender high PAPR. 

There are several ways of reducing PAPR. One technique known as peak power clipping will be 

investigated. In addition, by providing entropy to the transmitted data, scrambling can also improve 

the PAPR. Scrambling should also enhance the power distribution over the band. It will be verified as 

well that by windowing the transition between adjacent OFDM symbols, less energy is lost due to 

spectral regrowth. 

 In this chapter, the performance of the OFDM system will be studied using classic references, 

such as SNR and BER. Furthermore, EVM will be used to measure the system’s performance. 

4.2. Matlab Simulation Model 

 Matlab is a software tool developed by The MathWorks for numerical computing and 

programming language. It is designed for engineering analysis and mathematical computing and 

visualization. Matlab is built to perform fast computing and manipulation of large arbitrary matrices. 

Currently, Matlab includes many toolboxes that support a large number of application areas. 

Amongst many others, the toolboxes of most interest for this project are Communications Systems, 

Digital Signal Processing and Data Acquisition [38]. 
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4.2.1. Base Structure of the Simulator 

 The main simulator was implemented by developing a number of functions in a modular way, 

following closely the model introduced in Figure 2.1. It allows the creation of arbitrary OFDM 

waveforms in both baseband and passband, for arbitrary modulation and timing parameters. The 

base simulator structure is presented in Figure 4.1. In the process of building arbitrary OFDM signals 

from an information source, the data states can be categorized into four distinct types, which are: 

binary digits; modulated constellation samples; OFDM modulated samples; RF signal samples.  

 
Figure 4.1 – Flow diagram for the base structure of the Matlab simulator. 

 Based on user input, a set of functions defines the configurations for each of these states, 

and returns the simulation configurations as Matlab structures. They are used for both transmission 

and reception definitions, and they provide control by enabling or disabling simulation parameters, 

such as source coding, modulation schemes, signal shaping, channel effects and channel 

compensation. 

 The user can provide objects for transmission, such as JPEG, BMP and PNG pictures, or TXT 

files. The simulator extracts the information into binary format representation, performs the 

simulation, and attempts to reconstruct the files. Scrambling becomes particularly useful in that 

situation, because this kind of data does not have a random distribution. In addition, large binary 

random sequences can be generated. 

 For the binary state, the configuration structure includes flags to control the activation of 

scrambling, convolutional coding and interleaving. The chosen coding rate is also part of this 
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structure. The estimation of BER is achieved by comparing the original binary stream to the received 

bit streams. 

 When the bit stream has been manipulated as required by the user, the constellation 

modulation takes place. The configuration structure contains the modulation parameters for the data 

SCs, such as the modulation order and type, the number of bits per modulated symbol, and the 

normalization power. As the signal is received, the EVM is estimated using the reference 

constellation samples and the received ones, with and/or without previous channel compensation. 

 The next stage consists in the OFDM modulation, which depends on a fair number of 

parameters. The user controls the base properties of the OFDM signal, such as the FFT length, the 

number of data SCs and pilot SCs, the GI length, the windowed transition length and oversampling. 

From that information, the simulator determines the SCs indexes and the symbol timing-dependent 

parameters in samples. The resulting structure holds all the information necessary to perform the 

OFDM modulation while taking into account the expected baseband signal type. The series-to-

parallel conversion, and vice-versa, also depends on the number of data SCs. As the baseband OFDM 

signal is created, the CDF of the PAPR can be determined, and PAP reduction techniques like clipping 

can be investigated. At the receiver, if the phase offset correction is enabled, the pilot SCs are used 

to correct any rotation of the constellation samples. 

 To observe the effect of carrier frequency offsets, as well as IQ amplitude and phase 

imbalance, IQ modulation can be simulated. When a passband RF signal is generated this way, the 

multipath channel is simulated by creating the signal as seen by the receiver, that is, as the sum of 

several delayed and attenuated versions of the original RF signal. For baseband implementation, the 

carrier and time synchronization errors models and the time-dispersive channel model in use are 

those introduced in Chapter 2. AWGN and Rayleigh multipath channel models can be applied to the 

signal if required by the user. For AWGN channel, the specified SNR is given as 𝐸𝑏 𝑁0⁄  and is 

converted to 𝐸𝑠 𝑁0⁄  considering the OFDM modulation characteristics. For multipath environment, 𝑁 

taps are specified by the user, and 𝑁 random complex impulses are generated. Then, the CIR is 

convoluted with the baseband TD signal to create the received signal.  

4.2.2. Baseband to Passband Conversion 

 In a typical communication system, the signal is up-converted at the transmitter and down-

converted at the receiver. Up-conversion consits in taking the baseband signal and converting it to 

passband. This is also known as mixing, and is achieved by multiplying the signal with a complex 

sinusoidal carrier with a specific center frequency. At the receiver, the signal is down-converted by 

multiplying the real RF carrier with a complex sinusoidal signal having the same center frequency. 
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The signal resulting from down-conversion is complex and has unchanged energy content. The down-

conversion process also includes low-pass filtering to remove the negative frequencies and noise 

outside the desired bandwidth [39]. 

 
Figure 4.2 – Up/Down-Conversion with IQ Modulation/Demodulation [39]. 

 In a practical transmission, it is usually necessary to oversample the signal because the TF of 

the transmitter and receiver hardware reduces the useable bandwidth, if compared to the 

theoretical one given by the sampling theorem [3]. The Nyquist sampling theorem states that the 

frequency content of a signal can be completely reconstructed if the sampling rate exceeds a 

minimum of twice the frequency of the highest frequency component of the signal. For this reason, 

IQ modulators are usually preceded by a data interpolation filter to up-sample before up-converting, 

which is reversed at the demodulator by a decimation filter to down-sample the data back to its 

original sampling rate. The factor √2 is multiplied at both the transmitter and the receiver to account 

for the loss of energy in the signal that occurs by taking only the real part of the complex signal [39]. 

 This baseband to passband conversion was implemented for completeness, in order to 

observe the effect of the filters and of carrier frequency offsets on the signal with more than just the 

baseband models described in Chapter 2. Pulse shaping with oversampling can be applied, such as a 

Square Root Raised Cosine transmission filter with a matching filter at the receiver. Alternatively, 

direct oversampling can be experimented at the signal generation by inserting more empty guard 

SCs, that is, by increasing the IFFT length while maintaining the same number of SCs. The signal is 

recovered with simple low-pass filtering when the receiver down-converts the signal.  

4.2.3. Construction of IEEE 802.11a PHY Frames 

 A less flexible version of the main simulator was also adapted to put into practice the IEEE 

802.11a standard chosen for this dissertation. When applied, the scrambling, convolutional coding, 

interleaving, and pilot SCs are generated based on the specifications available in [2]. This 

implementation of the simulator allows for the generation of frames as described in Section 3.2, that 
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is, the PLCP Preamble and the SIGNAL sequence are created and are inserted before each DATA 

packet. These additional components of the frame are used by the receiver to carry out the 

synchronization, to perform the channel estimation and to apply phase offset corrections. 

 
Figure 4.3 – Diagram of the implemented Matlab simulator, based on IEEE 802.11a PHY. 

 The complex OFDM signal is created based on the DATA RATE, the CHANNEL SPACING and 

the source provided by the user. The PSDU length can also be specified, but it must remain within 1 
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byte to 4095 bytes to comply with the specifications. Based on this information, the simulator 

determines the corresponding modulation-dependent parameters, and if necessary breaks the bit 

stream generated at the source into a number of packets. The OFDM modulation-dependent 

parameters, such as the number of SCs, the FFT length and the GI length, are those specified by the 

standard and must remain unmodified in this version of the simulator. For each packet of binary 

digits, the PPDU frame is generated as described below. 

 Based on the modulation-dependent parameters, which include the convolutional coding 

rate and the modulation order, and on the PSDU length, the SIGNAL bits are defined. Then, the 

SIGNAL is modulated at the lowest supported data rate, which is BPSK with convolutional coding at 

rate 𝑅 = 1 2⁄ . This way the loss probability of this symbol is minimized, which is important because it 

contains the information that the receiver needs to perform the OFDM demodulation. The 

modulated SIGNAL consists in precisely 48 samples, corresponding to the 48 data SCs. 

 The DATA field is also relying on the modulation-dependent parameters. This field is properly 

prepared by appending SERVICE, TAIL and PAD bits to the source bits. The PAD bits depend on the 

coding rate and the number of bits per constellation sample, that is, the number of coded bits per SC. 

As this is completed, the prepared bits are scrambled, convolutionally coded and interleaved. The 

scrambler randomizes the bit stream to avoid any concentration of power in narrow frequency 

bands. Convolutional coding introduces redundancy, hence increasing the system’s capacity to 

recover from errors. Finally, interleaving ensures frequency diversity, thus enhancing the robustness 

of the system. Source coding is entirely implemented based on the specifications available in [2]. 

 At this point, the DATA packet is modulated using conventional schemes, and serial-to-

parallel conversion takes place to pre-allocate each FD sample to its corresponding SC within its 

OFDM symbol. The modulated samples are normalized to an average power 𝑃𝑜 = 1 𝑊, as indicated 

in [2]. Then, the 48 SIGNAL samples and the 𝑁𝑆𝑌𝑀 segments of DATA, each with 48 samples, can be 

concatenated into a single block before proceeding to the OFDM modulation. 

 In this simulator, the generation and insertion of pilot SCs is part of the OFDM modulation 

process, as they depend on the number of symbols that will be generated. First, the samples from 

each chunk of data are distributed among the available frequencies. This is done by starting the 

allocation on the negative frequencies to the left, and going towards the positive frequencies to the 

right. The SC at the center is DC, and remains empty because it is likely to endure higher distortions. 

The BPSK modulated pilot SCs are generated and they are allocated among the data SC. This process 

is illustrated in Figure 3.1 from Chapter 3, and an example is also given for arbitrary modulation in 

Appendix B. Once the SC placement has ended, each chunk of samples is shifted to the correct 

position by taking all samples from the central to the rightmost position, and moving them to the left 
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of the remaining samples. The modulation is then achieved by applying the IFFT to each chunk of 

samples, resulting in TD complex OFDM baseband symbols with 𝑁𝑅𝑅𝐹 = 64 samples (without 

oversampling by IFFT zero padding).  

 By default, a GI is created with a CP by copying samples from the end of each symbol to the 

beginning, with length set to 𝑁𝐺𝐺 = 𝑁𝑅𝑅𝐹 4⁄ = 16 samples, and with a windowed transition that 

shapes 𝑁𝑊𝐺𝑁 = 𝑁𝐺𝐺 8⁄ = 2 samples. Hence, the resulting effective cyclic extension is composed by 

𝑁𝐺𝐺 − 𝑁𝑊𝐺𝑁 = 14 samples, while each OFDM symbol is composed by 80 samples. The CP creates 

periodicity for each OFDM symbol, which greatly improves the resilience to time-dispersive 

multipath channel effects. The windowed section reduces spectral regrowth by smoothing the 

transition between symbols. Once this is concluded, the OFDM symbols are placed in series to 

generate the OFDM baseband signal. 

 To complete the frame construction process, the PLCP preamble is created and placed at the 

beginning of the OFDM signal. The result of this final combination is an IEEE 802.11a PHY baseband 

frame ready for up-conversion, which is composed by 10 Short Training Symbols, 2 Long Training 

Symbols, 1 SIGNAL symbol and 𝑁𝐷𝑆𝑌𝑀 DATA symbols. 

 As it was established previously, the application of channel effects and hardware 

impairments, such as local oscillator frequency offsets or IQ imbalance, depends on whether the 

simulation is performed for a baseband or for a passband signal. To experiment the synchronization 

mechanisms, each transmitted frame can be placed in a random position between sections of 

random noise, having variable amplitude and length.  

 The PLCP preamble is the main synchronization mechanism of this standard. The receiver 

knows the characteristics of the original PLCP preamble. Hence, the knowledge of properties like the 

periodicity and the power distribution of the preamble can be used to enhance synchronization, 

estimate the necessary amplification gain and compensate for carrier frequency offsets. As the signal 

is down-converted, the receiver takes advantage of the good cross-correlation properties of the STS 

to estimate coarsely the frame start. In this study, to improve the detection conditions, null powered 

intervals are introduced between adjacent frames. Then, based on the coarsely detected starting 

sample of the frame, windowed refined estimation can provide a more accurate location of the 

starting sample. Assuming the synchronization to be successful, the STS is then used to determine 

the amplification gain needed to get the correct signal power, and also to correct roughly carrier 

frequency offsets on the frame. 

 At this point, the receiver can proceed to PPDU frame dismantlement and PSDU data 

extraction. The process begins by first separating the PLCP Preamble from the remaining part of the 
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frame. The two long symbols that compose the LTS are extracted from the PLCP preamble, OFDM 

demodulated and averaged. Using this average together with the known long sequence, the TF of the 

CIR is estimated. The rest of the frame is converted from series-to-parallel and OFDM demodulated. 

Channel distortion compensation is achieved by doing a point-wise multiplication of the FD received 

data chunks with the estimated CIR. As long as the time-dispersion introduced by the CIR remains 

within the GI range, the effect of timing errors are restrained and introduce only a phase rotation. By 

interpolating between the pilot SCs along the FFT length, an estimate of the linear phase rotation is 

determined for each individual OFDM symbol. This final rectification is achieved through point-wise 

multiplication of each OFDM symbol in the FD by its phase rotation estimate. 

 After the received SIGNAL samples are detached from the DATA samples, they are 

demodulated and decoded, and the resulting binary digits are used to define the DATA demodulation 

parameters. Based on these definitions, the demodulation, deinterleaving, decoding and scrambling 

of the DATA packet takes place. Finally, the PSDU payload is recovered by discarding the SERVICE, 

TAIL and PAD bits, and can be recombined into the received information. 

4.3. The Effect of Time Synchronization Errors 

 Time synchronization errors can occur in several different ways, namely due to delays 

introduced by filters, delay spread from a multipath channel, sampling frequency offsets or an error 

in frame starting sample detection.  

 
Figure 4.4 – Influence of a timing offset δt = 0.5 µs, corresponding to a 1 sample offset within the GI on the received BPSK 
constellation. “+” represent the ideal constellations state and “o” the rotated received samples. 

 As discussed previously, the CP inserted in the GI is the main mechanism employed to 

combat timing errors in OFDM transmission. However, if the time in samples exceeds the length of 
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the GI, then it can be said that the CIR is generating time synchronization errors, and therefore ISI 

arises. It was seen in Section 2.4.5 that a timing offset translates into a shift in the integration interval 

of the receiver filter, which is the FFT. Hence, to simplify the concept it can be said that a timing 

offset is related to the starting sample of the FFT window. A timing offset existing in one sample 

introduces a FD phase shift of ±𝜋 in the SCs at the edges of the FFT window. Therefore, a progressive 

linear phase rotation is inflicted to the samples composing the signal constellations. 

Figure 4.4 demonstrates this effect. As the SC frequencies grow, the respective phase 

rotation increases progressively. The superposition of all the constellations samples appears as a 

circular effect where samples spread radially to the left and right of the ideal location. This is true as 

long as the time shifted FFT window remains within the OFDM symbol boundary (within the GI 

duration). If not, part of the demodulated samples belongs to the adjacent OFDM symbol, which 

results in severe distortion of the received constellation. 

4.4. The Effect of Frequency Synchronization Errors 

 Carrier synchronization errors usually occur when there is a small frequency mismatch 

between the local oscillators of the transmitter and the receiver, which causes frequency offsets. In 

other words, instead of being centered on DC at 0 𝑀𝑀, the received baseband signal is centered at a 

frequency 𝛿𝑓. 

 
Figure 4.5 – ICI originated by Carrier Synchronization Error. 

 It was discussed in Section 2.4.6 that a frequency offset appears in the received signal as a 

frequency shift alongside a phase offset. The frequency shift causes the sampling points at the 

receiver to take place outside the ideal peak power location in the spectrum, where the energy 
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contribution from the overlapping SCs is not null. Thus, the frequency shift causes orthogonality 

between adjacent SCs to be partially lost and introduces ICI. Such situation is illustrated in Figure 4.5, 

where the magnitude of three overlapping SCs is presented, which are superimposed in the OFDM 

signal spectrum. Due to the existing frequency offset, the received signal is sampled at the wrong 

frequency instants by the FFT demodulation, and ICI arises. 

 
Figure 4.6 – Constellations distorted by ICI caused by frequency offsets δf = ΔF/16 on the left, and δf = ΔF/16×10 on the 
right, where ΔF = 312.5 kHz is the SC spacing for a 20 MHz channel spacing.  

 
Figure 4.7 – Averaged EVM for different frequency offsets. The SC spacing is ΔF = 312.5 kHz for a 20 MHz channel spacing, 
and the frequency offset varies within the interval δf = [-ΔF: ΔF]. 

 As mentioned previously in Section 2.4.6, for small frequency offsets the effect of the 

generated ICI can be modeled as additive random noise that affects the SNR. In addition, the phase 

offset causes a global rotation of the data constellation. Such behavior can be observed in Figure 4.6, 

where the “+” show the correct constellation state, and the “o” denote the received samples 

distorted by ICI. For a frequency offset of 𝛿𝑓 = 19.53 𝑘𝑀𝑀, a global phase rotation of the 
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constellation is clearly noticeable, together with a slight dispersion of the samples. For worst cases, 

the constellation appears as a “cloud” of samples, as it is observed when 𝛿𝑓 = 195.3 𝑘𝑀𝑀. 

 Figure 4.7 presents an average of the RMS EVM computed for a sweep of frequency offsets in 

AWGN channel. Notice that, as expected, while the condition 𝛿𝑓 < ∆𝐹 is observed, the EVM 

degrades towards smaller negative values as 𝛿𝑓 approaches ∆𝐹. That is, the error percentage in 

constellation deviations is increasing. For larger frequency offsets, the transmitted data symbols are 

shifted by one or more positions in the frequency direction, which means that the current SC appears 

as the adjacent one to the receiver. When this occurs, the receiver can no longer distinguish the 

correct SC from those introducing undesired energy contributions, which means that orthogonality 

has been lost. 

 Note that the IEEE 802.11a standard specifies a frequency accuracy of ±25 𝑝𝑝𝑚 around the 

center frequency. For a 5 𝐺𝑀𝑀 carrier frequency, this corresponds to a frequency variation 

considered acceptable, that is, a maximum frequency deviation within the range: 

𝛿𝑓 = (5 𝐺𝑀𝑀 × ±25 𝑝𝑝𝑚) 1000000 = ±125 𝑘𝑀𝑀⁄ . 

For instance, considering a channel spacing of 20𝑀𝑀𝑀 and a FFT length of 64 samples, the SC spacing 

is given by ∆𝐹 = 312.5 𝑘𝑀𝑀. This means that the carrier frequency deviation must be confined 

within values under 𝛿𝑓 = ±156.25 𝑘𝑀𝑀 in order to be correctable. 

4.5. The Effect of AWGN Channel  

 In AWGN channels, the unaltered OFDM modulation is expected to achieve neither 

performance improvement nor loss. As in single carrier systems, it is the data modulation order that 

dictates the sensitivity to random noise, that is, the energy required to attain a determined level of 

BER. In terms of simulation, it is important to scale properly the signal as discussed in Section 3.5.2 to 

compare fairly the different schemes. Figure 4.8 a) illustrates this statement, where the theoretical 

curves generated using Matlab built-in functions are the dashed lines. To achieve this ideal relation, 

the OFDM signal is modulated without creating a GI because, as it was discussed in Section 2.3.4, the 

cyclic extension involves a loss in SNR due to the additional power used for transmission. It can be 

seen that the empirical OFDM BER curves fit perfectly the theoretical curve for conventional non-

multi-carrier systems. Hence, it can be concluded that the uniform noise contributes to the SNR of 

each SC in the OFDM system, and that the overall result is equivalent to the effect on single channel 

systems. 

 The SNR loss caused by the GI is represented in Figure 4.8 b), and is estimated to be nearing 1 

dB for a GI composed by a CP with 1/4 of the 64 samples of the FFT. The SNR loss observed is a small 
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inconvenient compared to the greatly improved robustness of OFDM technology against time 

synchronization errors, which are common in multipath interfering scenarios.  

 
Figure 4.8 – BER versus Eb/N0 in AWGN channel for the modulation schemes used in IEEE 802.11a standard. The dashed 
lines are the theoretical curves for conventional systems, obtained using Matlab built-in berawgn() function. 

 Notice that the curves for BPSK and QPSK modulation schemes are almost equivalent. This 

happens because QPSK can be seen as two orthogonal BPSK systems, one in the real component and 

the other in the imaginary component of the system. Therefore, in terms of energy per bit, BPSK uses 

twice the energy of QPSK because the imaginary part of the signal is unexploited. In other words, if 

the rate and power are the same for BPSK and QPSK, then BPSK systems use twice as much 

bandwidth as QPSK to achieve the same BER. 

 
Figure 4.9 – BER versus Eb/N0 in AWGN channel for the modulation schemes used in IEEE 802.11a standard with 
convolutional coding. The dashed lines are the theoretical curves for conventional systems. 
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 Channel coding techniques, such as convolutional coding, involve information redundancy. 

Thus, in terms of energy used to execute a transmission, it means that additional power is required, 

because more bits are transmitted to achieve the same communication. In general, for coded but 

non-punctured transmissions the results in Figure 4.9 show significant improvements. However, 

when observing the BER as a function of the 𝐸𝑏 𝑁0⁄  necessary to achieve a correct reception with 

punctured transmissions, an improvement is noticeable only at a certain point, which varies from a 

situation to another. For instance, the BER of the 64-QAM modulation scheme with a coding rate of 

2/3 degrades when 𝐸𝑏 𝑁0⁄ < 10 𝑑𝐵, but then improves for higher values. These results suggest that 

a random distribution of the errors along the received signal, which is more likely to occur as the 

𝐸𝑏 𝑁0⁄  increases, is more prone to be corrected by the decoder. Hence, for severe 𝐸𝑏 𝑁0⁄  conditions, 

if too many errors occur with higher modulation orders and with punctured coding, the incapacity of 

the convolutional decoder to recover translates into a loss of performance.  

4.6. The Effect of Rayleigh Multipath Channel 

 One of the important characteristics of OFDM systems is the strong resilience to multipath 

time and frequency-selective fading environments. This is due mainly to the cyclic extension of the 

symbols, and is improved even more by using channel FEC coding techniques and creating diversity 

with interleaving. 

 The Rayleigh multipath channel model in use is frequency-selective. However, it was seen in 

previous sections that the channel is expected to appear as a flat fading channel for each SC, that is, 

each SC is expected to experience independent Rayleigh fading. Therefore, the OFDM signal passing 

through multipath Rayleigh fading channel should have a BER versus 𝐸𝑏/𝑁0 relation very similar to 

one from a single sub-channel experiencing Rayleigh flat fading. 

 For simulation purpose, the concept of multipath surrounding can be seen as a single impulse 

at the transmitter that is received as a train of impulses, where each impulse has different delay and 

attenuation. The complex component of each tap can be defined as a Gaussian random variable with 

zero mean and variance 1/2. 

 It was demonstrated in Section 2.4 that, as long as the number of taps in the channel is lower 

than the GI duration, ISI and ICI are prevented. The GI created with a CP generates a periodicity in 

each OFDM symbol, and it is known that the sum of a sinusoidal with a delayed version of itself 

modifies the phase and amplitude, but not the frequency components of the sinusoidal. Hence, 

orthogonality is maintained even in a multipath environment as long as no delay forces the FFT 

window at the receiver to take samples from an adjacent OFDM symbol. Figure 4.10 a) presents such 

situation, where the OFDM signal with a GI of 16 samples passes through a 10 taps multipath 
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channel. In these examples, the channel is assumed to be perfectly estimated at the receiver, thus 

providing optimal results. As expected under these conditions, the experimental data follows the 

theoretical curve when the maximum delay is restricted within the GI duration.  

 
Figure 4.10 – BER versus Eb/N0 in AWGN and Rayleigh channels with 10 taps and 20 taps, without convolutional coding 
nor interleaving. The dashed lines are the theoretical curves for conventional systems, obtained using Matlab built-in 
berfading() function. 

 In contrast, when the maximum delay caused by the channel overcomes the GI duration, 

severe distortion is introduced by ISI, even when the channel TF is known. As demonstrated in Figure 

4.10 b), the BER no longer follows the theoretical Rayleigh curve and reveals more degradation, 

despite the increasing SNR. 

 When OFDM symbol windowing is applied, a portion of the symbols edges are modified by 

the window function that smoothly brings the samples down to zero amplitude. Then, these 

smoothed transition samples are summed between symbols so that the proper symbol length is not 

exceeded. Hence, these transition samples cannot be considered as part of the added periodicity, 

which means that they reduce slightly the effectiveness of the GI.  

4.7. Windowing and Spectral Regrowth 

In OFDM systems, each symbol is modulated individually. Then, the OFDM symbols in parallel 

are converted to series. However, it was explained in Section 2.3.5 that when assembling the OFDM 

symbols in series, two adjacent symbols rarely have the same phase and amplitude, which results in 

spectral regrowth. In this case, spectral regrowth is seen as power on a range of frequencies 

extending on each side of the OFDM power spectrum. This effect reduces the power efficiency of the 

spectrum, and creates interferences. Windowing is one way to reduce spectral regrowth. In OFDM 

systems, this is usually achieved by windowing each OFDM symbol, and summing the windowed 



OFDM SYSTEM SIMULATION USING MATLAB 

65 

transitions from one symbol to another. In this dissertation, OFDM symbol windowing is 

implemented in time domain. The result is a smooth transition between adjacent OFDM symbols, 

and an effective decline in the amount of power distributed out of the band. 

 
Figure 4.11 – OFDM power spectrum for several windowed transition lengths. 

It can be observed in Figure 4.11 that windowing improves the power spectrum very 

effectively. As the number of windowed samples increases, the amount of power located outside the 

band diminishes greatly. However, it is important to recall that the windowed section of the symbols 

modifies the CP that is placed in the GI. Hence, although the GI duration remains the same, the 

effective CP that creates the periodicity for each OFDM symbol becomes smaller as the windowed 

transition length increases. Therefore, windowing reduces the OFDM system’s robustness to 

multipath fading environments. This means that the system designer must reach a compromise 

between improving the spectral efficiency and increasing the resilience to the time-dispersive effects 

of the channel . 

4.8. Improving the PAPR 

 The theoretical introduction to this subject given in Section 3.5.3 suggests that PAPR 

increases with the number of SCs. This makes sense, since it is known that the OFDM signal consist in 

a sum of SCs with orthogonal frequencies (verified in Appendix A). PAPR rises when many of the SCs 

that are summed have high amplitude, that is, when constructive superposition of the SCs occurs. 

Hence, if there are less SCs, then the probability to generate high peaks in the resulting OFDM signal 

is reduced. Figure 4.12 shows the distribution of PAP increasing as the number of SCs increases. 

 



OFDM SYSTEM SIMULATION USING MATLAB 

66 

 
Figure 4.12 – PAPR Distribution for different numbers of SCs, with 4-fold oversampling. The dashed lines are the 
theoretical approximation (due to oversampling, with α = 3.3). 

 Based on the definitions, it becomes easy to understand that the worst possible case of PAPR 

expected to occur in IEEE 802.11a standard should never reach values beyond approximately 

10 × 𝑙𝑐𝑔10(48 + 4) = 17.17 𝑑𝐵. That is, the highest potential peak in relation to the average has its 

amplitude limited by the number of used SCs. However, when a scrambler is used, such situation is 

very unlikely to occur. 

 PAPR is the main drawback intrinsic to OFDM modulation. In real transmission systems, high 

peak power can be demanding on power amplifiers backoff and efficiency, and also on ADC/DAC 

complexity to support large dynamic ranges. Non-ideal power amplifiers can saturate and distort 

non-linearly the signal, and non-linear distortions generate intermodulation product that translates 

into ICI. Besides this, high peaks imply lesser efficiency due to greater power consumption. 

4.8.1. Source Scrambling 

 When real data is transmitted, long sequences of zeros or ones are likely to be present in its 

binary representation. Such sequences may result in long chains with the same modulated samples. 

As they are OFDM modulated, these samples represent frequencies that are summed as the SCs are 

multiplexed. In such situation, the resulting OFDM signal’s high PAP occurrence probability increases, 

and the energy distribution along the frequency spectrum becomes less efficient. One way to 

compensate for this is to break these long sequences and redistribute them. The mechanism used 

here to achieve this improved distribution is scrambling. Scrambling consists in randomizing the 

source bits at the transmitter, and in reversing the operation at the receiver. Figure 4.13 

demonstrates the differences between the unscrambled and the scrambled transmission of a picture. 
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The power spectrum of the scrambled transmission denotes a great improvement in power 

allocation, with fewer in-band fluctuations and with a reduced out-of-band radiation range.  

   

 
Figure 4.13 – PSD and PAPR distribution or unscrambled and scrambled transmissions of a picture. 

 For the unscrambled transmission, the PAPR is distributed mostly between 6 dB to 16 dB. 

This corresponds to peaks with at least 4 to an unlikely maximum of 39.8 times more power than the 

average. In contrast, the scrambled transmission PAPR is distributed between 5 dB to 9 dB. This 

indicates that scrambling reduced significantly the amount of power located in high peaks above the 

average. That is, most of the peaks remain somewhere within 3.2 to 7.9 times the average power. 

The results indicate that the maximum factor, which is unlikely to occur, has decreased significantly. 

The distribution curve of the scrambled transmission falls abruptly and its range has shortened. This 

means that the probability of the signal, at a given instant, to be lower than or equal to the current 

maximum peak has increased. In other words, the power is better distributed, and it has become less 

likely to find very high peaks in relation to the average. 
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4.8.2. Peak Clipping 

 One of the simplest crest factor reduction technique used to diminish the PAPR is peak 

clipping. In this dissertation, clipping is performed by setting a clipping level somewhere above the 

average power of the signal. Hence, the level indicates the percentage of amplitude where the 

threshold is defined. Anything above the threshold is clipped. This technique is effective, but it 

introduces non-linear distortions that reflect as in-band and out-of-band radiation in the power 

spectrum of the clipped signal, leading to ICI and spectrum efficiency loss. Filtering can be used after 

clipping to control the out-of-band radiation. Figure 4.14 demonstrates how clipping impacts on the 

spectrum and on the constellation. 

 
Figure 4.14 – The effects of clipping on OFDM signals, with NFFT = 64, NGI = 16, NWIN = 2 and Oversampling = 4. 

 In this example, a severe clipping level was applied and the out-of-band radiation is not 

filtered for demonstration purpose. With a 2 dB clipping ratio to the signal, the CDF illustration shows 

a considerable PAPR improvement, which indicates the reduction of high peaks in relation to the 

average. The averaged spectrum for that clipping level shows a significant out-of-band radiation. Its 

corresponding constellation is marked by “o”, and it can be seen that in this case there is a strong 

intermodulation interference causing ICI. It was seen previously that ICI can be modeled as random 

noise that degrades the SNR by adding in-band noise. Therefore, the scattering observed in the 

constellation is consistent with the expected BER degradation. Hence, for lower clipping levels (lower 
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threshold, meaning more amplitude cut-off), the PAPR can be improved significantly at the expense 

of SNR. 

 In the case of a 6 dB clipping above the mean power, the observed out-of-band radiation is 

significantly lowered compared to the 2 dB case, and the scattering in the constellation is greatly 

reduced, but the PAPR improvement is also much lower. The original signal has a PAPR distributed 

between about 5 dB to 9 dB. The CDF indicates the probability of the power to be lower or equal to a 

specified PAPR value. This means that there is a high probability that the PAPR will not go beyond 9 

dB (about 8 times the average power).  For a clipping ratio of 6 dB, the PAPR is distributed between 5 

dB and 8 dB, which means that there is a small improvement of about 1 dB. For a 2 dB clipping, the 

distribution range and the maximum value of the PAPR are largely reduced, going from about 4 dB to 

6 dB (somewhere between 2.5 and 4 times the average power).  

 Judging by the results obtained, clipping does appear as an effective way to reduce the PAPR 

in OFDM signals. However, it is verified that clipping comes with a cost in terms of efficient use of the 

available spectrum due to the generation of out-of-band radiation. In addition, clipping increases the 

EVM due to in-band interferences, consequently degrading the BER to some extent. By introducing a 

filter after performing the clipping operation, the out-of-band radiation can be compensated to 

diminish the spectrum efficiency loss. However, even with out-of-band filtering, this PAPR reduction 

technique always introduces some degree of distortion. Hence, if the clipping ration is not too 

severe, peak clipping can effectively lessen the PAPR and improve the transmission performance.  

4.9. Summary 

The most important issues inherent to OFDM technology were investigated based on the 

developed simulator for IEEE 802.11a specifications. This chapter was introductory to several 

impairments likely to occur in further practical implementation. 

It was verified that frequency offsets causes adjacent SC energy to be taken by the 

demodulation filter. As this ICI increases, the constellation EVM degrades due to constellation 

scattering and global rotation. A maximum error is reached when the frequency offset attains half 

the SCs spacing. Over that limit, it becomes impossible to model the error perfectly, as it is no longer 

possible to determine which SC is being taken by the FFT. 

In terms of timing offsets, it was confirmed that they influence the constellation samples by 

introducing a phase error, which increases linearly towards ±𝜋 as the SCs distance to DC increases. 

Hence, this linear phase skewing of the samples creates a bidirectional rotational effect, leading the 

samples to rotate away from their intended location. However, this observation is valid only if the 
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time offsets remain within the GI extent. Otherwise, the received signal becomes strongly distorted 

by ISI. 

It is also interesting to see how SNR impact on BER in OFDM systems remains a modulation-

dependent relation. Putting aside the additional energy required for the cyclic extension, the 

simulated BER versus 𝐸𝑏/𝑁0 fits perfectly the theoretical curve for single carrier modulation. Hence, 

OFDM technology brings neither enhancement nor impairment in the presence of white noise with 

Gaussian distribution. 

The results from the simulation of an OFDM signal passing through a Rayleigh frequency-

selective channel are in accordance with the theoretical basis. As expected, the curve for the OFDM 

signal fits well the curve for single carrier modulation. However, if the CIR exceeds the extension of 

the GI, severe degradation occurs. 

The effect of peak clipping as a PAPR improvement method was investigated. It was verified 

that clipping is a very simple means of effectively reducing PAPR. However, this technique creates 

non-linear distortions and out-of-band radiation. Although the filtering can compensate for the out-

of-band energy, this technique remains limited due to the inevitable distortions introduced. On the 

other hand, using a scrambler can efficiently reduce the PAPR and improve the power distribution 

over the band. 
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Chapter 5. Experimental OFDM Implementation and Performance 

Analysis 

5.1. Introduction 

The OFDM modulation technique was studied in detail in the previous chapters, where the 

different aspects of key importance were discussed and their effects demonstrated, such as the 

sensitivity of this technology to synchronization errors and its behavior in time-dispersive channels. 

The IEEE 802.11a standard was also introduced, namely the generation of frames, where the 

preambles are used for synchronization and channel estimation. 

In this chapter, the objective is to understand how to use communication instruments that 

enable the practical application of the previously generated OFDM signals to a communication 

system. To achieve this, a Keithley Model 2910 RF Signal Generator is used as the transmitter that 

performs up-conversion with IQ modulation, and a Tektronix RSA 2203A Real-Time Spectrum 

Analyzer DC-3GHz acts as a receiver that performs down-conversion.  

The OFDM transmission process is described in a back-to-back connection of the 

instruments. 

5.2. Interfacing with the Instruments 

 Finding proper means of interfacing the simulator with the instruments was of great 

importance to this project. Both instruments available support Standard Commands for 

Programmable Instruments (SCPI), General Purpose Interface Bus (GPIB) communication, Ethernet 

networking communication and removable pen drives. However, the idealized system to perform 

experiments on OFDM signal is one that is fast, robust and flexible altogether. Therefore, making use 

of the SCPI with GPIB communication became the obvious choice, as Matlab offers excellent 

programming support for communication with instruments. This way the complete transmission 

process is controllable from the workstation: OFDM modulation, transmission, reception, and finally 

OFDM demodulation. 

 Communication with the transmitter from Matlab brought no particular difficulty. The user 

manual of the instrument provided all the details necessary to create Arbitrary Waveform (ARB) non-

binary files with the correct structure. In addition, more information on how to send and create ARB 

files inside Keithley Model 2910 RF Signal Generator, and playback the file for RF transmission can be 

found in [40]. 
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Figure 5.1 – Computer-to-Instruments communication schematic. 

 Recovering the IQ samples from the receiver revealed a challenging task. First, the captured 

IQ versus Time (IQT) data is stored into a binary file format intended to be instrument-only for saving 

and recalling data.  In second place, the IF filter response introduces phase and amplitude deviations. 

The information necessary to perform corrections is also stored in the IQT files. Whether the IQ data 

is received through GPIB or read from an IQT file, the samples should undergo this correction to 

achieve improved accuracy. Nonetheless, many advanced details on the file structure are available in 

the user manual for this instrument given in [41]. Tektronix support team also provided valuable 

indications on how to achieve this. 

 The receiver used is in fact a Spectrum Analyzer, and therefore provides a wide selection of 

tools to analyze signals. In the FD, data can also be extracted in the form of Trace (TRC) files. Detailed 

information concerning the structure of these non-binary files is available in the user manual 

referenced in [41]. 

 The ability to convert complex OFDM signals directly from Matlab environment into ARB 

waveforms inside the transmitter, combined with the capacity to receive and extract the complex 

baseband signal, proved to be fundamental to complete the remaining sections of this dissertation. A 

small Matlab toolbox was designed to support these key operations with the instruments, as well as 

other useful SCPI command sequences to control instrument parameters such as the center 

frequency, the transmission power or triggering.  

5.3. Configuration of the Transmitter and Receiver 

 Before attempting any advanced experiment, one should know how to make optimal use of 

the tools available. This means that all the transmission parameters must be chosen according to the 

capacity of the instruments. Ideally, perfect timing and frequency synchronization between the two 

instruments should be achieved, because the main objective in this section and the next one is to 

characterize how the device under test is affected by the transmission medium. Hence, all 
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experiments must be performed under the same conditions in terms of instruments configurations, 

which must be known and have minimal influence over the signal. Here, these conditions were 

separated in two groups: the synchronization between instruments, and the relation between their 

respective sampling frequencies.  

5.3.1. Synchronizing the Instruments 

 The first aspect to consider in this communication system is the synchronization between the 

measuring device in use and the source. Both instruments possess input and output ports to provide 

synchronization through reference oscillator frequency and triggering. The diagram depicted in 

Figure 5.2 shows how the synchronization was achieved between the instruments in terms of 

physical connections. The transmitter plays back the ARB waveform, and wraps back to the start of 

the waveform as it reaches the end. This process repeats continuously, and at each wrap point, a 

synchronization pulse is generated by the source. The signal analyzer, which is sharing the same 10 

MHz reference, picks up that signaling pulse and synchronizes the acquisition. 

 
 Figure 5.2 – Instruments synchronization diagram [41] [42]. 

 By synchronizing the instruments this way, carrier frequency offsets and sampling frequency 

errors are minimized. However, even with the instruments synchronized, timing errors can still be 

generated by taking the first sample of a transmission in the wrong place, that is, by introducing a 

timing offset in the transmission. Two mechanisms were implemented to maximize the precision for 

the detection of the starting point of a transmitted frame. The first is the use of guard intervals with 

zero power between frames. A function was developed to detect these null powered intervals. The 

second mechanism is the use of the coarse/fine timing synchronization implemented based on the 

IEEE 802.11a frame preambles, as described in Section 3.2.3. 
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5.3.2. Sampling Frequency and Oversampling 

 The second important aspect common to any transmission systems is the choice for the 

sampling frequency. The sampling theorem states that, in order to recover completely a signal, the 

sampling frequency must be at least twice the maximum frequency of the signal being sampled. In 

other words, if the Nyquist frequency exceeds the highest frequency of the signal being sampled, 

then all the information necessary to reconstruct the signal is present. This means that in theory, if 

the receiver can sample the signal twice as fast as its highest sampled frequency component, aliasing 

should be avoided and the signal entirely recovered. In this context, aliasing occurs if the Nyquist 

condition fails to be satisfied, and consists in adjacent overlapping spectral “copies” of the signal, 

where any frequency above 𝑓𝑠 2⁄  is impossible to differentiate from a lower-frequency component. 

Aliasing can be avoided in two ways: by increasing the sampling rate to above twice the highest 

frequency, or by introducing an anti-aliasing filter in the system.  

 
Figure 5.3 – OFDM Spectrums for different Pulse Shaping Filters, with 4-fold oversampling. In the first illustration, NFFT = 
64 and 4-fold oversampling is applied. In the second figure, NFFT = 128 (64 zeros padded) and 2-fold oversampling is 
applied. 

 In a practical implementation, the sampling rate should be greater than only twice the rate, 

especially due to real instruments limitations. This increased rate is known as the oversampling rate. 

Oversampling increases the bandwidth of the signal, because more samples are transmitted during 

the same symbol period, with lower time interval between samples. Besides improving the effect of 
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anti-aliasing, oversampling also improves the frequency resolution and reduces the presence of 

noise. Anti-aliasing filters complexity can be reduced and become less expensive if oversampling is 

used, because it does not need to be exceedingly sharp nor fast. It also allows the DACs and ADCs to 

be cheaper while supporting high resolution, as long as the noise remains uniformly distributed. 

Finally, the SNR can be improved because, if random noise is uncorrelated from one sample to 

another, then when 𝑁 samples are taken and averaged, the noise variance is reduced by a factor of 

1 𝑁⁄  [43]. 

 In this OFDM system implementation, two distinct methods can be used to oversample the 

signal. The first is the conventional oversampling, which is achieved through pulse shaping filters and 

interpolation of the TD signal. The latter is direct “internal” IFFT oversampling through zero padding, 

which is typically used in OFDM systems.  

This second methodology is an interesting choice, because with zero padding the frequencies 

above 𝑓𝑠 2⁄  are forced to be zero. Hence, zero padding is equivalent to increasing the guard band 

around the frequencies used to transport information. It is known that de DAC causes periodic 

spectral replication, which must be suppressed by a reconstruction filter. Thus, oversampling through 

FFT zero padding can improve greatly the received signal, because by increasing the distance 

between spectral replicas, it allows reasonably sharp and less expensive reconstruction filters to 

restore properly the signal [5] [7]. Different approaches are represented in Figure 5.3. The required 

oversampling factor depends on the system design, but is most likely within a range of 10-30% [5]. 

 The parameters supported by each instrument are available in Appendix C. Details are also 

provided, on a general basis, on how a packet of samples in baseband can be transmitted in the 

correct conditions, received, and acquired back, while taking into account the timing and memory 

related parameters of the instruments in use. 

5.4. Transmission of IEEE 802.11a PHY Frames 

 In this sub-section, an illustration is made of the steps performed to achieve a complete 

back-to-back transmission, while relating correctly the instruments. Additional information on this 

subject is available in Appendix C. This transmission demonstrates how the communication can be 

performed with all means available to improve the robustness of the system, such as 

synchronization, source coding and basic channel estimation.  

 In this case, the back-to-back configuration consists in using a direct cable connection with 

impedance of 50 Ω as the device under test. This is the best possible situation, since the transmitter 

output connector and receiver input connector share this same impedance. Hence, ideally this 
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configuration involves no unforeseen loss. However, even under these conditions a small loss was 

observed when only an empty carrier is transmitted, nearing 0.5 dBm. Hence, for a transmission 

powered with 0.5 dBm, the receiver get a signal with about 0 dBm. 

5.4.1. Defining the Source Length 

 One important notion to have in mind is that a specific binary source length results in 

different transmission length due to the varying number of bits per modulated samples. Therefore, 

the analysis should not be done for the same source length, but rather for the same number of 

OFDM symbols, that is, the packet length. This is important, because a fair comparison of EVM 

implies that the same number of modulated samples should be analyzed, under similar conditions. 

To perform the forthcoming analysis, the number of data OFDM symbols per transmission will be 

𝑁𝐷𝑆𝑌𝑀 = 128, and the number of data SCs 𝑁𝑆𝐷 = 48. This implies the number of generated random 

bits per transmission, that is, the PSDU length in bits, to vary based on the following assumption: 

𝑁PSDU = (𝑁DSYM − 1) × 𝑁SD × 𝑅 × 𝑙𝑐𝑔2(𝑀) (5.1) 

𝑁PSDU = 𝑁PSDU + 𝑟𝑅𝑚(𝑁PSDU, 8) (5.2) 

Where: 𝑁SD is the number of data SCs; 𝑅 is the coding rate; 𝑙𝑐𝑔2(𝑀) is the number of bits per 

modulated symbol. The DATA length 𝑁DSYM is reduced by one OFDM symbol to accounts for the 

SERVICE, TAIL and some PAD bits. The second operation guarantees that the PSDU length in bits can 

be converted to octets without decimal part. The table below presents the estimated PSDU length 

associated to each data rate for a channel spacing of 5 MHz.  

Data rate 
(Mb/s) 

Modulation  Coding 
Rate 

Coded bits 
per SC 

PSDU Length 
(octets) 

1.5 BPSK 1/2 1 381 
2.25 BPSK 3/4 1 572 

3 QPSK 1/2 2 762 
4.5 QPSK 3/4 2 1143 
6 16-QAM 1/2 4 1524 
9 16-QAM 3/4 4 2286 

12 64-QAM 2/3 6 3048 
13.5 64-QAM 3/4 6 3429 

Table 5.1 – PSDU length variation of the DATA field with 128 OFDM symbols and a 5 MHz channel spacing. 

 By doing this, each EVM computation is based on a constant reference given by (𝑁𝐷𝑆𝑌𝑀 +

1) × (𝑁𝑆𝐷 + 𝑁𝑆𝑃) = (128 + 1) × (48 + 4) = 6708 constellation samples. This is valid for all 

modulations and coding rates, and includes both the PSDU symbols and the SIGNAL symbol, for all 

data SCs and all pilot SCs. This way, although the number of padded bits during the frame 

construction process might vary slightly, the number of samples used for analysis is constant. 
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5.4.2. Performing the Transmission 

 The transmission system implemented starts with the generation of the baseband OFDM 

signal. In this case, the generated signal is based on the highest bit rate specified in the IEEE 802.11a 

standard for a 5 MHz channel spacing, which is 13.5 Mb/s. The base parameters used to create the 

frame in this example are described in detail in Table 5.2 and Table 5.3 below, and are established in 

accordance with the definitions introduced in Section 3.2.  

Modulation-dependent Timing-dependent 

Modulation Scheme: 64-QAM Channel Spacing: 𝐵 = 5 𝑀𝑀𝑀 

Data Subcarriers: 𝑁𝑆𝐷 = 48 𝑁𝑅𝑅𝐹 = 64 𝑠𝑎𝑚𝑝𝑙𝑅𝑠 

Pilot Subcarriers: 𝑁𝑆𝑃 = 4 𝑁𝐺𝐺 = 𝑁𝑅𝑅𝐹 4⁄ = 16 𝑠𝑎𝑚𝑝𝑙𝑅𝑠 

Coding Rate: 𝑅 = 3 4⁄  𝑁𝑊𝐺𝑁 = 𝑁𝐺𝐺 8⁄ = 2 𝑠𝑎𝑚𝑝𝑙𝑅𝑠 

𝑁𝐵𝑃𝑆𝐶 = 𝑙𝑐𝑔2(64) = 6 𝑏𝑖𝑡𝑠 ∆𝑅=  𝐵 𝑁𝑅𝑅𝐹⁄ = 78.125 𝑘𝑀𝑀 
𝑁𝐶𝐵𝑃𝑆 = 𝑁𝑆𝐷 × 𝑁𝐵𝑃𝑆𝐶 = 288 𝑏𝑖𝑡𝑠 𝑁𝑆𝑌𝑀 = 𝑁𝑅𝑅𝐹 + 𝑁𝐺𝐺 = 80 𝑠𝑎𝑚𝑝𝑙𝑅𝑠 
𝑁𝐷𝐵𝑃𝑆 = 𝑁𝐶𝐵𝑃𝑆 × 𝑅 = 216 𝑏𝑖𝑡𝑠 𝑇𝑆𝑌𝑀 = 𝑁𝑆𝑌𝑀 𝐵𝑊⁄ = 16 𝜇𝑠 

DATA RATE 𝑹𝒃 = 𝑵𝑫𝑩𝑷𝑺 𝑻𝑺𝒀𝑴⁄ = 𝟏𝟑.𝟓 𝑴𝒃/𝒔 

Table 5.2 – IEEE 802.11a OFDM Modulation-dependent Parameters for a 13.5 Mb/s Transmission. 

PLCP PREAMBLE 

𝑁𝑆𝐹𝑆 = 10 × 16 = 160 𝑠𝑎𝑚𝑝𝑙𝑅𝑠 
𝑁𝐿𝐹𝑆 = 2 × 64 + 32 = 160 𝑠𝑎𝑚𝑝𝑙𝑅𝑠 
𝑁𝑃𝐿𝐶𝑃 = 𝑁𝑆𝐹𝑆 + 𝑁𝐿𝐹𝑆 = 320 𝑠𝑎𝑚𝑝𝑙𝑅𝑠 
𝑇𝑃𝐿𝐶𝑃 = 2 × (2 × 𝑇𝑆𝑌𝑀) = 64 𝜇𝑠 

SIGNAL 
𝑁𝑆𝐺𝐺 = 64 + 16 = 80 𝑠𝑎𝑚𝑝𝑙𝑅𝑠 
𝑇𝑆𝐺𝐺 = 1 × 𝑇𝑆𝑌𝑀 = 16 𝜇𝑠 

DATA 

𝑃𝑆𝐷𝑈 =  8 × 3429 𝑏𝑦𝑡𝑅𝑠 = 27432 𝑏𝑖𝑡𝑠 
𝑆𝐸𝑅𝑉𝐼𝐶𝐸 = 16 𝑏𝑖𝑡𝑠 
𝑇𝐴𝐼𝐿 = 6 𝑏𝑖𝑡𝑠 
𝑁𝐷𝑆𝑌𝑀 = 𝑐𝑅𝑖𝑙((16 + 27432 + 6)/𝑁𝐷𝐵𝑃𝑆) = 128 𝑠𝑦𝑚𝑏𝑐𝑙𝑠 
𝑁𝐷𝐴𝐹𝐴 = 𝑁𝐷𝑆𝑌𝑀 × 𝑁𝐷𝐵𝑃𝑆 = 27648 𝑏𝑖𝑡𝑠 
𝑃𝐴𝐷 = 𝑁𝐷𝐴𝐹𝐴 − (16 + 27432 + 6) = 194 𝑏𝑖𝑡𝑠 
𝑁𝑃𝐾𝐹 = 𝑁𝐷𝑆𝑌𝑀 × 𝑁𝑆𝑌𝑀 = 10240 𝑠𝑎𝑚𝑝𝑙𝑅𝑠 
𝑇𝑃𝐾𝐹 = (𝑁𝐷𝑆𝑌𝑀 𝑁𝑆𝑌𝑀⁄ ) × 𝑇𝑆𝑌𝑀 = 2.048 𝑚𝑠 

PHY FRAME 
𝑁𝑅𝑅𝑀 = 𝑁𝑃𝐿𝐶𝑃 + 𝑁𝑆𝐺𝐺 + 𝑁𝑃𝐾𝐹 = 10640 𝑠𝑎𝑚𝑝𝑙𝑅𝑠 
𝑇𝑅𝑅𝑀 = 𝑇𝑃𝐿𝐶𝑃 + 𝑇𝑆𝐺𝐺 + 𝑇𝑃𝐾𝐹 = 2.128 𝑚𝑠 

Table 5.3 – IEEE 802.11a PHY FRAME Timing-dependent Parameters for a 13.5 Mb/s Transmission. 

 In this dissertation, a packet refers to the PSDU payload wrapped into the DATA field within a 

frame, with the frame being the entire transmitted structure (PREAMBLE, SIGNAL and DATA). For this 

particular transmission, the transmitted frame contains a payload of 128 OFDM symbols for a PSDU 

length of 27432 bits, corresponding to 3429 bytes. 

 Since the receiver can sample at a rate of 51.2 MHz, then the theoretical limit for 

transmission is of 25.6 MHz. However, oversampling is required to enable optimal results. To 
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maintain the designated data rate of 13.5 Mb/s while oversampling the signal, and considering the 

sampling rates supported by both the transmitter and the receiver, a choice should be made 

between two oversampling rates: 2-fold oversampling with a sampling rate of 10 MHz, or 5-fold 

oversampling with a sampling rate of 25 MHz. Although both alternatives provide similar results, an 

oversampling factor of 5 was chosen to proceed with this project. 

 In Table 5.3, the entire frame length in samples and in time was calculated. With no 

oversampling and a channel spacing of 5 MHz, the time required to transmit a single frame without 

any frame guard is 2.128 ms. Hence, by oversampling the signal with a factor of 5, the number of 

samples becomes 𝑁𝑅𝑅𝑀𝑂𝑆 = 5 × 10640 = 53200. However, since the selected sampling rate for 

transmission is also increased to 𝑆𝑅 = 5 × 5 𝑀𝑀𝑀 = 25 𝑀𝑀𝑀, effectively the time required to 

transmit a frame and the bit rate remains the same. The oversampled baseband complex OFDM 

signal and its spectrum are depicted in Figure 5.4.  

 
Figure 5.4 – IEEE 802.11a PHY frame with 5-fold oversampling; its corresponding windowed power spectrum. 

 If a frame guard is inserted before each frame to ease the synchronization, then the extra 

samples must be accounted for if the acquisition is to include them. Here, a frame guard with 

arbitrary length of 𝑁𝑅𝐺 = 5 × 256 = 1280 zeros is introduced. Hence, the total number of 

transmitted samples is 𝑁𝐹𝐿𝐹𝐴𝐿 = 62800 + 1280 = 54480. These are the samples sent from Matlab 

to Keithley Model 2910 by means of a GPIB. The time required to transmit the additional frame guard 

is given by 𝑇𝑅𝐺 = 256 𝑁𝑆𝑌𝑀 × 𝑇𝑆𝑌𝑀 = 51.2 𝜇𝑠⁄ . Consequently, the complete transmission has 

duration 𝑇𝐹𝐿𝐹𝐴𝐿 = 𝑇𝑅𝐺 + 𝑁𝑅𝑅𝑀 = 2.1792 𝑚𝑠.  

 At this point, the frames are being continuously transmitted by Keithley Model 2910, and 

constantly acquired by Tektronix RSA 2203A. Appendix C provides more details on the way to relate 

the instruments. The selected frequency span is 10 MHz. Thus, the acquisition sampling rate is 12.8 
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MHz, and its frame time is 80 µs per chunks of 1024 complex samples. With a trigger starting position 

set to 25%, the number of acquired samples must be adapted in order for the instrument to analyze 

enough samples to recover correctly the full transmission. Consequently, in order to achieve a 

complete analysis, a block with a minimum of 𝑐𝑅𝑖𝑙(𝑐𝑅𝑖𝑙(2.1792 𝑚𝑠 80 𝜇𝑠⁄ ) (1 − 25 100⁄ )⁄ ) = 38 

frames must be acquired, which corresponds to a total of 38 × 1024 = 38912 samples. In 

conclusion, the actual acquisition recovered back in Matlab environment consists in 37912 ×

(1 − 25 100⁄ ) = 29184 complex samples, at a sampling rate of 12.8 MHz. 

At this point, downsampling the signal can be performed for two different OFDM 

demodulation choices. One way is to reduce the sampling rate down to its original 5 MHz, with 80 

samples per OFDM symbol, and then demodulate the signal. The other consists in performing a 

sampling rate conversion back to 25 MHz, with 400 samples per OFDM symbol, and then proceeding 

to an oversampled OFDM demodulation. Since the original signal was oversampled by IFFT zero 

padding, the received block is resampled by a ratio of 12.8 𝑀𝑀𝑀/25 𝑀𝑀𝑀 = 0.512. As a result, the 

25 MHz sampling rate is recovered, and the received re-sampled block has a length of 29184/

0.512 = 57000 samples. 

 
Figure 5.5 – Coarse/Fine Detection of the Frame Starting Sample. 

 Back into the simulator and with the received block sampled at 25 MHz, the frame detection 

and synchronization can now take place. The first step consists in distinguishing the low powered 

frame guard from the rising signal power. This frame guard is helpful in two ways: it determines 

roughly the instant at which windowed coarse synchronization can take place; its low amplitude also 

makes the plateau resulting from coarse estimation stand out more clearly. In this case, since the 

instruments are synchronized, the starting sample of the acquired signal corresponds approximately 
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to the beginning of the frame guard. Without triggering and external oscillating frequency reference, 

the acquired frames circulate constantly within the acquisition window. In such situation, the frame 

guard reveals much more helpful in the process of detecting the starting sample of the frame, hence 

improving the robustness of the implemented system. In this case, by making use of the instruments 

triggering it becomes even easier to detect the frame start, at it is always located somewhere around 

the beginning of the acquisition. 

 The second step consists in applying the Delay and Correlate algorithm described in Section 

3.2.3, with the known STS and over a specified time window, to perform coarse time synchronization. 

Figure 5.5 illustrates this process. A time window is selected to estimate the moving average on 

subsets of samples with the length of one short symbol, that is, a period of 16 samples. The result is 

the formation of a plateau with higher energy around the location of the STS. The starting edge of 

the plateau denotes crudely the location of the starting sample of the acquired signal. In this 

implementation, the user, by setting a threshold over which the signal is estimated to be starting, 

controls the decision. This parameter was deliberately set to a lowered value, at 50% of maximum 

normalized power, in order to provide a greater margin to the refined estimator that follows. 

 The starting sample can be very precisely determined by cross-correlating the start of the 

coarsely estimated frame samples with one period of the STS. This refined estimation was achieved 

using built-in Matlab cross-correlation function, also over a time window correlated with one short 

period, and results in very distinct peaks marking the beginning of each of the 10 short periods. The 

maximum normalized power of the first peak should indicate precisely the location of the starting 

sample. This mechanism is also executed based on a user-controlled threshold, at which the starting 

sample is estimated to be located. In theory, the power of each peak should reach the maximum 

normalized power, which means that the detection for a 100% threshold should indicate exactly the 

starting sample. However, some peaks might be strongly attenuated by channel distortions, leading 

to a synchronization error. To prevent this, the threshold was set to 80%, thus ensuring that the first 

peak is detected. In the absence of oversampling, this threshold level is practically equivalent to 

100% in terms of detected sample, because the closest sample is usually the peak itself. However, 

when the signal is oversampled, since more samples define the peak, the closest sample might not 

be the correct one, leading to a slightly inaccurate synchronization. Still, although a small delay might 

be introduced, due to the GI only a linearly increasing phase error is introduced, which is easy to 

correct. 

 When time synchronization is completed, the STS can be used to estimate the gain factor 

necessary to amplify the signal, by calculating the average power ration of the received sequence 

with the expected known sequence. Still based on the STS, the coarse frequency offset estimation 

can finally take place. In this case, since the instruments share the same reference oscillator 
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frequency, there is virtually no carrier frequency offsets. However, even with the trigger, the starting 

sample detection has great influence on the recovered constellations, which is why additional time 

synchronization is so important.  

 
Figure 5.6 – Constellations recovery of an OFDM signal in Back-to-Back Transmission: a) Received; b) De-rotated. 

 The final step for synchronization and recovery is based on the LTS and the pilot SCs. As it 

was discussed in Chapter 2, one advantage of OFDM technology dwells in its robustness combined 

with straightforward equalization techniques. In IEEE 802.11a standard, the LTS allows for even less 

demanding channel estimation. This known LTS is used to estimate the TF of the channel by 

averaging the two long symbols that compose it. Channel compensation can then be achieved very 

simply by performing a point-wise multiplication of each OFDM symbol in the FD by the TF of the 

estimated CIR. Furthermore, by interpolating between the received pilot SCs and doing the same 

with the original ones, for each of the OFDM symbols additional phase offset compensation is also 

performed with the respective estimated TF. 

 Figure 5.6 demonstrates how the superimposed 48 SC constellations improve as the 

corrections are applied. Notice that in this case, as the link introduces no significant distortion, the 

uncorrected samples are already clustered with reduced dispersion. However, although no 

considerable scattering is observed, the constellation is globally rotated, and a progressive linear 

phase rotation is evident. Since the instruments are synchronized and the cable provides almost ideal 

conditions, considering that this particular synchronization is performed on an oversampled signal, 

this suggests that a minor delay was introduced in the FFT timing synchronization process. A small 

offset might also have been introduced by the instrument DDC filters and by the sampling rate 

conversions. It was described in the previous section that a small sampling frequency offset also 

causes linear phase skewing. In the process of acquiring back the original samples, they are 
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downconverted and resampled by the Spectrum Analyzer, and then resampled again in the simulator 

to recover the original sampling rate. By performing these steps, and because the sampling rate 

conversion ratios are usually not integer values, small sampling frequency errors can occur that have 

an effect on each SC to a different degree. Since this also influences the LTS, when estimating the TF 

of the CIR most of these effects are accounted for and compensated. Any remaining phase offsets 

caused by timing synchronization deviations are then balanced using the pilot SCs, and the SCs 

constellations are fully recovered. 

Besides using the EVM metric, a greater insight on the performance of the transmission 

system can be attained by estimating the BER of each frame, and by computing the Packet Error Rate 

(PER) for a block of frames. In this case, a single frame was transmitted in an ideal configuration, 

resulting in a BER of 0%, which means that no bit errors occured. In the same way, the PER quantifies 

the amount of packets that contain errors in relation to the total number of packets. In this thesis, 

any packet with a BER greater than 0% is accounted as erroneous. 

5.5. Summary 

A brief description of the methodology used to transmit and receive data using instruments in 

an ideal back-to-back link was made. The transmitter and the receiver configurations have been 

defined, and the physical synchronization mechanisms put into practice were presented. This is an 

important step to analyze and compare properly the effect of different devices under test in the 

remaining part of this study. 

It was also explained how the IEEE 802.11a PHY frame is generated with a constant length, in 

order to compute the averaged EVM for the same number of samples in every situation, thus 

ensuring a fair EVM comparison as the situation changes.  

As a transmission is performed, different parameters require some degree of adjustments. 

Namely, to comply with the IEEE 802.11a data rates for a 5 MHz channel spacing while taking into 

consideration both instruments capabilities, the choice of transmission sampling rate and 

oversampling must be adapted. In addition, given the frequency span and the triggering position of 

the receiver, it is important to configure correctly the receiver so that the transmission can be 

entirely acquired. 
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Chapter 6. OFDM Performance on a RoF Network 

6.1. Introduction 

 In this chapter, a RoF network model for an uplink transmission from the RS to the CS is 

presented. The system is designed as a RS where DSP operations, carriers coupling, electrical to 

optical domain conversion of the RF signal and amplified optical source modulation are achieved. 

This is an implementation of the concept of centralized operation. The long distance transmission is 

covered by the optical fiber link. At the CS, the signal is converted back from optical to electrical 

domain, split into the original distinct carriers, and the data is acquired and analyzed. 

 The main purpose of this section consists in studying the performance of OFDM technology 

in such RoF system, with intermodulation. To do so, one of the coupled carriers is an OFDM-

modulated signal, following the IEEE 802.11a specifications. The performance of this technology is 

then evaluated under the influence of the network. While the configuration of the transmitter and 

the receiver remains unchanged, the device under test can vary from a simple cable to some 

couplers, or to a complete RoF architecture. 

6.2. RoF Network Architecture 

 The architecture designed in this project consists in a model for a RS and its link to the CS. It 

is intended to couple several carriers with different frequencies in the electrical domain, to modulate 

the resulting RF signal optically, and to transmit it through a fiber link. The suggestion is to cover the 

long distance transmission between the CS and the RS by means of optical fiber, to perform DSP 

operation and domain conversion directly in the sites, and to distribute the service through 

conventional electrical systems, such as wireless APs. In this dissertation, the main objective is to 

study the effect of the RoF system together with intermodulation on one of the carriers that is an 

OFDM signal. Figure 6.1 illustrates the structural design under investigation. 

 Four carriers are generated independently with different center frequencies, and are coupled 

in the electrical domain. The resulting RF signal is then taken from the output of the couplers, and it 

is supplied to a Reflective Semiconductor Optical Amplifier (RSOA). The RSOA is seeded by a 

Distributed Feedback (DFB) laser. The optical fiber in use is type SMF. The RSOA uses the electrical RF 

signal and the incoming optical source to perform electrical to optical domain conversion and to 

modulate the optical source, to amplify the resulting optical signal and to reflect it back through the 

optical port. Afterward, the optical signal emitted by the RSOA enters the circulator, which redirects 
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the optical signal towards the photo-detector. The photo-detector converts the optical signal back to 

the electrical domain. The resulting RF signal subsequently passes through a cable to reach splitters, 

which separate back the input into four signals. Finally, the Spectrum Analyzer centered on a specific 

carrier frequency receives and acquires back the signal for a specified frequency span. 

 
Figure 6.1 – Suggested RoF Network Architecture. 

6.2.1. The RSOA as an Optical Modulator and Amplifier 

One of the fundamental components available for the realization of this project is the SOA-

RL-OEC-1550, developed by CIP Technologies. It is designed to operate on a wavelength of 1.55 µm, 

and provides high gain for small signal while ensuring low polarization dependent gain, with 1.2 GHz 

of electrical bandwidth. 

Before proceeding to the experimental RoF system, the parameters used at the RSOA were 

chosen by considering three main factors: the spontaneous emission of the RSOA, the optical gain 

and the transfer function. 

The spontaneous emission of the RSOA was characterized for a sequence of bias current 

sources in the absence of any optical input, by measuring the optical output power for a range of 

wavelengths. In Figure 6.2 it can be observed that, as the source current increases the optical output 

power increases as well, with the highest values neighboring a wavelength of 1550 nm. From the 

shape of the curves, it can also be seen that for higher input currents, the peak tends to shift to lower 

wavelengths, and that it is transferred to greater wavelengths as lower bias currents are applied. In 

addition, higher current results in more significant ripple at the peak of the curve, which means that 

the robustness of the system can be affected. Therefore, a compromise must be reach between the 
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optical gain and the wavelength of the optical signal. In this case, an appropriate choice of operation 

with the RSOA can be selected at wavelengths around 1.55 µm, with a bias current of 60 mA. 

 
Figure 6.2 – Spontaneous Emission of the RSOA for a range of bias current sources. 

 
Figure 6.3 – Amplification factor of the RSOA for a range of Input Optical Power. 

Another important aspect of the RSOA is its response to different optical source power, for a 

sequence of polarization currents. Power efficiency is one of the requirements of good 

telecommunication systems, for both commercial and environmental reasons. In addition, practical 

materials usually have limited capacity. In the case of this RSOA, the optical power should not exceed 

2 dBm in order to avoid saturation. Hence, in general it is desirable to work with small signals when it 

is possible. Figure 6.3 illustrates the reaction of the RSOA to different optical power levels. It is very 

clear that the RSOA is able to amplify with greater optical gain as the optical source power decreases. 
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The transfer function of the RSOA for a constant -17 dBm optical source and several input 

currents is depicted in Figure 6.4. It is evident that the optical output power decreases as the 

frequency increases, for all bias currents. The TF is very similar for all currents, with only small power 

oscillations occurring, depending on the frequency location. This is important because it implies that 

by varying the bias current of the RSOA, that is, by changing the amplification gain, the optical output 

signal is consistent from one situation to another.  

 
Figure 6.4 – TF of the RSOA for a range of bias current sources; an amplified view for the frequency range of the carriers 
used in the RoF architecture. 

6.2.2. Overall System Configuration 

 The four generated carriers are each centered on distinct frequencies, which are 𝑓𝑐1 =

300 𝑀𝑀𝑀, 𝑓𝑐2 = 500 𝑀𝑀𝑀, 𝑓𝑐3 = 700 𝑀𝑀𝑀 and 𝑓𝑐4 = 900 𝑀𝑀𝑀, respectively. The carrier centered 

on 𝑓𝑐2 is the one investigated in this report. It consists in the OFDM waveform transmitted by 

Keithley Model 2910, designed using the IEEE 802.11a specifications, as explained in the previous 

chapter. Subsequently, the carriers are all coupled into a single RF signal in the following manner: 𝑓𝑐1 

and 𝑓𝑐2 are coupled into 𝑓𝑐12; 𝑓𝑐3 and 𝑓𝑐4 are coupled into 𝑓𝑐34; and finally 𝑓𝑐12 and 𝑓𝑐34 are coupled 

into 𝑓𝑐1234. Afterward, the resulting RF signal continues to enter the RSOA. The couplers/splitters 

consist in the same devices, which act differently depending on the selected input and output. Each 

coupler introduces an intensity loss on the signals of around 6 dBm. A minor deviation of the 

attenuation can occur as the carrier frequency varies. Hence, the RF signal entering the RSOA suffers 

a gradual attenuation has it passes through the couplers (two per carrier), which sums up to roughly 

12 dBm. Therefore, for a set of carriers transmitted with a power of 0.5 dBm, the electrical RF signal 

entering the RSOA has about -11.5 dBm. 
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 The laser in use provides an optical signal power of 4 dBm, with a wavelength of 1551.8 nm. 

This wavelength was obtained by calibrating the laser so that its beam corresponds to the location 

where the spontaneous emission of the RSOA is at its peak, that is, when the RSOA provides 

maximum optical amplification through reflection. To feed the RSOA, a Bias-T injects a source current 

together with the RF signal into the device. The RSOA source current is set to 60 mA, with its 

thermistor having an impedance of about 12.15 kΩ. The injected current controls the amplification 

factor of the RSOA, and the thermistor its operating temperature. In this case, this corresponds to a 

temperature of 25 °C.  

 Two optical attenuators are placed in the network to regulate both the optical source power 

and the modulated optical carrier power. The attenuator placed between the laser and the circulator 

is used to regulate the optical source power as intended, which is reduced from 4 dBm to about -15.5 

dBm before entering the circulator. Since the circulator induces an attenuation nearing 1.2 dBm, the 

optical signal power entering the RSOA is of approximately -16.7 dBm. With this configuration, the 

RSOA provides an amplification bordering 20 dBm. Another attenuator can be seen foregoing the 

photo-detector. It is used to control the power of the optical carrier emitted by the RSOA, hence 

avoiding saturation of the photo-detector.  For the -16.7 dBm input, the RSOA configuration provides 

an optical output power rounding 3.27 dBm. Thus, after passing through the circulator the optical 

signal has around 2.07 dBm. This signal is deliberately attenuated to approximately -13.3 dBm before 

it enters the photo-detector, to avoid saturation. Finally, the electrical signal returned by the photo-

detector enters the splitters, from which the Tektronix RSA 2203A filters and analyzes the signal. 

As a final point, the data acquired by the spectrum analyzer is transferred back into the 

computer, and Matlab is used for further digital processing. The channel is then estimated, and EVM 

and PER are computed for a number of packets. 

6.3. Performance Evaluation 

 The RoF network introduced in Section 6.2 represents the entire system implemented. To 

study individually the influence of the several important segments of the circuit, different 

experimental configurations were implemented by modifying the network connections, and by 

changing the transmission conditions. The EVM is estimated with normalized constellations, for 

blocks of 20 packets, each with length of 128 OFDM symbols. All the results presented in this section 

can be found in Appendix D. 
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Domain Label Description 

Electrical 

B2B Back-to-Back - The cable is the “ideal” device under test.  

2C2S 2 Couplers, 2 Splitters. 

2C2S-IMD 2 Couplers, 2 Splitters, with Intermodulation. 

Electrical and 

Optical 

2C2S-IMD-RSOA 2 Couplers, 2 Splitters, with Intermodulation, with Optical Fiber. 

2C2S-IMD-RSOA-11k 2 Couplers, 2 Splitters, with Intermodulation, with 11 km of Optical Fiber. 

2C2S-RSOA 2 Couplers, 2 Splitters, with Optical Fiber. 

2C2S-RSOA-11k 2 Couplers, 2 Splitters, with 11 km of Optical Fiber. 

Table 6.1 – Experimental Configurations. 

6.3.1. The Influence of the RSOA Gain 

To observe the impact of this component on the transmission, controlled variations were 

applied on the input current of the RSOA to vary the optical amplification conditions, and 

measurements were taken. To generate Figure 6.5, the effect of the RSOA parameters on a single 

carrier centered on 500 MHz was measured. The transmitted signal is OFDM modulated as described 

in the IEEE 802.11a specifications for a 5 MHz channel spacing, and no intermodulation is introduced 

by additional RF carriers. Nonetheless, the RF signal passes through two couplers, which introduce an 

attenuation of about 12 dBm. Three source power configurations are experimented on the 

generated carrier in the electrical domain: -10.5 dBm, 0.5 dBm, 10.5 dBm. Several important 

observations can be made from this analysis. 

In the first place, the results obtained indicate clearly that the RCE is not modulation-

dependent, since it is approximately constant as the data rate increases. Only tiny variations are 

noticeable in the computed RCE within the same optical amplification and the same electrical signal 

power. This observation is verified for each system configuration. However, the Packet Error Rate 

(PER) fluctuates as the RCE remains the same. This occurs because as the data rate increases, the SCs 

constellation order increases, and the convolutional coding rate varies. Therefore, the data rate 

influences the robustness of the system, and this effect on the PER is expected. As the data rates 

increase, the system becomes more susceptible to distortions of the signal, which results in higher 

PER.  

Nonetheless, it can be seen that both the electrical source power and the optical 

amplification are extremely important to the system performance. Although the RSOA provides high 

gain for small signals, it is observed for instance that for a -10.5 dBm signals with 12 dBm of 

attenuation, which results in an average power of only -22.5 dBm, the RCE remains very high for all 

optical amplifications. As the electrical power is increased to 0.5 dBm and above, the recorded RCE 
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suggests that the RSOA is operating more comfortably. In terms of the optical amplification, it can be 

seen that as the amplification increases the RCE also rises for any electrical source. However, for 

higher optical amplification factors, when the electrical source power is at 10.5 dBm, although the 

amount of constellation errors decreases in relation to smaller electrical signals, the distance 

between results from different optical amplification becomes more evident. Hence, for small 

electrical signals, even lesser optical amplification introduces distortions. As the electrical signal 

power increases, the distortion level decreases and higher levels of optical amplification are 

supported. 

 
Figure 6.5 – The influence of the Optical Amplification of the RSOA on the EVM and the PER. 

When the RoF system is configured, the laser is tuned so that its wavelength corresponds to 

the highest point in the reflective capacity curve of the RSOA. Although more amplification is 

provided this way, it is not its most stable state, and oscillations can be introduced which are more 

important as the amplification factor is increased. Therefore, a compromise should be reached 

between the amount of power required and the vulnerability of the system to distortions while 

setting the RSOA optical amplification.  
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6.3.2. The Intermodulation Interference 

Intermodulation is an important aspect of this study, because the idea intrinsic to a RoF 

network of this nature is the distribution of multiple services through several channels using the 

same communication medium.  

 
Figure 6.6 – The four carriers with frequency location from left to right: fc1, fc2, fc3 and fc4.  

 
Figure 6.7 – The effect of a frequency offset at carrier fc3 on the intermodulation product frequency location, for 10.5 
dBm of electrical power. 
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Intermodulation interferences normally appear from intermodulation product in a band of 

consecutive channels. The intermodulation product is usually associated to an order, depending on 

the non-linearity that instigates the products [44]. In this study, four carriers 𝑓𝑐1 = 300 𝑀𝑀𝑀, 

𝑓𝑐2 = 500 𝑀𝑀𝑀, 𝑓𝑐3 = 700 𝑀𝑀𝑀 and 𝑓𝑐4 = 900 𝑀𝑀𝑀 are created, and 𝑓𝑐2 is the carrier being 

studied. Therefore, it is the frequencies causing intermodulation product falling on frequency 𝑓𝑐2 that 

are particularly relevant. A mathematical notation for 3rd order interferences is given in [44], where 

the second harmonic of a frequency A that intermodulates with a frequency B produces an 

interference at a frequency C. It is given by 2𝐴 − 𝐵 = 𝐶. Knowing this, and the range of frequencies 

in use, it is evident that 2 × 700 𝑀𝑀𝑀 − 900 𝑀𝑀𝑀 = 500 𝑀𝑀𝑀, which means the carriers 𝑓𝑐3 and 𝑓𝑐4 

interfere with carrier 𝑓𝑐2. 

 
Figure 6.8 - Example of acquired OFDM Constellations in the presence of interfering intermodulation product outside DC, 
with 10.5 dBm of electrical power: a) Received 2C2S-IMD-RSOA; b) De-rotated 2C2S-IMD-RSOA; 

The material available allowed for the introduction of intermodulation in the RoF 

architecture to be possible. However, the only carrier frequency really transporting information is the 

OFDM modulated carrier 𝑓𝑐2. The remaining RF carriers are always emitted with the same electrical 

power as the main carrier. In the OFDM carrier, the energy is spread along the wide frequency band. 

On the other hand, the remaining RF carriers are not modulated with data, and therefore have 

stronger energy limited to a narrow band. Hence, the interfering energy is quite strong when higher 

levels of electrical power are in use, which can severely degrade the received constellations. In 

theory, as long as this energy falls precisely on the DC SC, although there is intermodulation product, 

no degradation of the constellations is introduced, because there is no information on DC. 

Another aspect to consider is the fact that a Voltage Controlled Oscillator (VCO) that is 

slightly sensitive to temperature generates carrier 𝑓𝑐3. It was observed that, as the experiments took 

place, small positive or negative variations were introduced in the center frequency, with up to 2 

MHz of deviation. These oscillations were normally much smaller, but still enough to interfere 
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sometimes with the SCs next to DC. In addition, the produced carrier presents a small amount of out-

of-band radiation. For high power levels, this situation occasionally introduces very high distortions, 

because by shifting the center frequency of 𝑓𝑐3 to a nearby frequency, the intermodulation product 

also diverges a little bit. When this occurs, the interfering energy of the intermodulation product no 

longer falls on the DC SC, and instead distortions are introduced to data carrying SCs around DC.  This 

effect is depicted in Figure 6.7. Hence, the CIR cannot be assumed as approximately constant from a 

block of acquisitions to another when intermodulation is present, especially when higher electrical 

power is used. 

6.3.3. The Experimental Configurations 

The methodologies chosen to characterize the system performance are RCE and PER. This 

analysis is settled on the study of the received constellations under varying network configurations, 

for all the transmission rates comprised in IEEE 802.11a specifications for a 5 MHz channel spacing. 

Figure 6.9 and Figure 6.10 consist in the superposition of the constellations of all the SCs existing in 

the transmission of a single packet, for transmissions at a data rate of 6 Mb/s. The illustrations 

present the constellations as they are received and the result of the corrections by point-wise 

multiplication of the channel TF estimate.  

 
Figure 6.9 – Examples of acquired OFDM Constellations, with 0.5 dBm of electrical power: a) Received 2C2S; b) De-
rotated 2C2S; c) Received 2C2S-RSOA; d) De-rotated 2C2S-RSOA; e) Received 2C2S-RSOA-11k; f) De-rotated 2C2S-RSOA -
11k. 
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The instruments share a common oscillating frequency reference, which virtually excludes 

any carrier frequency offsets. However, although a trigger synchronizes the instruments, two effects 

studied in Chapter 4 are observed in all acquisitions: a global phase rotation of the constellations; a 

progressive phase rotation of the constellations.  

The global phase rotation is possibly caused by a small global timing offset, which can be the 

result of a small delay introduced by the DDC filters of the spectrum analyzer. If all the frequency 

components of the signal are affected in a similar way by the filters, then the consequence is a 

constant phase error that affects the whole transmission, which is why the rotation occurs at the 

same distance and in the same circular direction for all constellation samples. Despite the existence 

of a common reference oscillating frequency, it also viable that a small phase error is introduced 

between instruments. 

 
Figure 6.10 – Examples of acquired OFDM Constellations, with 0.5 dBm of electrical power: a) Received 2C2S-IMD; b) De-
rotated 2C2S-IMD; c) Received 2C2S-IMD-RSOA; d) De-rotated 2C2S-IMD-RSOA; e) Received 2C2S-IMD-RSOA-11k; f) De-
rotated 2C2S-IMD-RSOA -11k. 

As it was discussed previously, the progressive phase rotation can be caused by several 

situations, but in this case, there are mainly two possible conditions: a small sampling rate error; a 

timing offset in the FFT filter at the receiver, smaller than the duration of the GI. In this case, both 

causes are probably originating this phase skewing. The first one might be introduced during the 

sampling rate conversions, when the acquired samples are taken from 12.8 MHz back to 25 MHz (or 

down to 5 MHz, depending on the FFT length chosen at the receiver). Because the rate conversion 

ratio is not an integer value, for long transmissions a small progressive sampling frequency error can 
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be introduced. The second cause is linked to the detection of the starting sample of the acquisition. 

In the final detection step, the mechanism implemented depends on a user-defined threshold to 

select a sample, within the normalized power peaks of the cross-correlated STS. This threshold was 

deliberately set to relatively low value (80%), because as the transmission conditions worsen (ex: low 

electrical power with intermodulation and 11 km of optical fiber), sometimes the first peaks are 

more attenuated and suffer more distortions, and they fail to reach a normalized power of 1. The 

threshold used remains the same for all experimental conditions. In addition, by detecting an 

oversampled signal, more samples define the peaks, which increase the chance of locating the 

starting sample with an offset of one or two samples in time within the GI. Since the effective CP has 

a duration of 14 samples (without oversampling), and due to the introduced periodicity property, the 

information in frequency is guaranteed not to be lost. However, in practical terms, this situation is 

equivalent to introducing a timing offset in the FFT window of the receiver, which causes a linearly 

increasing phase rotation towards ±𝜋 on the SCs as their distance from DC increases. 

Fortunately, this effect is easily corrected with the TF estimate of the CIR. In this experiment, 

the electrical part of the network is composed by different components that are connected by 

coaxial cables. This means that, unlike in wireless transmissions, the system does not endure severe 

multipath interferences. Moreover, the optical fiber in use is of type SMF. Hence, although a degree 

of chromatic dispersion is expected to occur, no multimode dispersion (common in MMF, with 

interferences comparable to a wireless multipath environment) should take place. For these reasons, 

within an experimental setting there is not a strong variation of the channel as the signal travels, 

which means that all the OFDM symbols endure approximately the same conditions. This is why the 

final OFDM symbol-by-symbol phase offset estimation using the pilot SCs does not bring a significant 

additional improvement to the previously corrected constellations. 

In terms of blocks of acquisitions, it was explained in the section above that in the presence 

of intermodulation product with higher electrical power, the CIR cannot be assumed as unchanging. 

In addition, several other points of the RoF network are adjusted manually, such as the optical power 

feeding the RSOA and the photo-detector. However, in terms of the OFDM symbols of a packet, that 

is, within the duration of a single transmission, since any delay that might be introduced in the 

process is always lower than the effective GI, it is acceptable to assume that the channel is 

approximately constant. 

The final aspect of this study is a comparison of the RCE estimated for every implemented 

configuration, for all data rates and for each level of electrical carrier power. As before, it can be seen 

in the curves from Figure 6.11 that the constellation error remains approximately constant as the 
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data rate increases. It is the PER that varies within an experimental setting, as the modulation order 

and the convolutional coding rate change when the data rate changes. 

 
Figure 6.11 – The effect of the different experimental configurations on the EVM and the PER. 

For a low electrical power of -10.5 dBm, the computed RCE are definitely separated into two 

groups: the electrical domain results; the RoF network results.  As expected, the results from the 

electrical domain have very low constellation error. In back-to-back, the RCE remains constant at 

about -44 dB. In the presence of the coupler/splitters, the RCE rises slightly to around -38 dB and – 37 

dB, with and without IMD, respectively. Conversely, for any transition to the optical domain, 

constellation error is quite poor, remaining within -11 dB. 

While in the electrical domain there is no PER at all, in all RoF configurations the constellation 

scattering is so important that only the lowest data rates, up to 3 Mb/s, have good PER. Although the 

modulation order for 3 Mb/s is the same as for 4.5 Mb/s, in the latter the convolutional coding rate is 

punctured from rate 1/2 to rate 3/4. In this case, the constellation dispersion has become too severe 

for the decoder to consistently detect and correct the erroneous bits, and PER rises. For the 

remaining data rates, the PER rapidly grows to 100%. 

In general, with so little electrical power, the intermodulation product has practically no 

effect on the transmissions. In terms of the results in the optical domain, they are consistent with the 

observations from Section 6.3.1. It was seen that the wavelength of the laser used to generate the 
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optical source is placed at the location where the RSOA provides maximum amplification. However, 

the RSOA is not perfectly stable at that location, as some ripple is observed. For this reason, although 

the RSOA can effectively amplify very small signals, they are also more sensitive to this effect. 

As the electrical power grows to 0.5 dBm, the same grouping of RCE values as previously 

appears. Interestingly, the signal attenuated by the couplers/splitters without IMD has a better RCE, 

which is of -46 dB. This suggests that more accuracy is achieved for acquisitions above a certain 

electrical power level. About the results with IMD, a small improvement is also noticeable, since the 

RCE values equal approximately the -44 dB shared by the back-to-back acquisitions. In the optical 

domain, the RCE curves are again grouped, but in this case around -21 dB, which corresponds to 

about -10 dB of improvement in relation to the previous case. Although the difference in RCE 

between RoF configurations is quite insignificant, the error measurements tend to be better when no 

IMD exists, without the long distance fiber. 

As it is predictable, the PER of the electrical domain results is constantly null. However, in the 

RoF configurations the growth in electrical power also introduced PER improvements when no IMD 

exists. Above 6 Mb/s, the PER begins to increase when 11 km of fiber are used, and above 9 Mb/s all 

optical fiber configurations loose packets at maximum rate. 

With this level of electrical power, the intermodulation product generates small distortions, 

perceptible mostly when the optical fiber is used. It is interesting to observe that when there is no 

IMD, the RCE with optical fiber remains somewhat high. This indicates that 0.5 dBm is not enough 

electrical power to completely overcome the effect of the ripple from the RSOA, which appears to 

have much more influence than the IMD. In the constellations from Figure 6.9 and Figure 6.10, it can 

be seen very clearly that, independently of the IMD and without the long fiber link, the samples 

recovered after crossing the optical sections of the networks are heavily spread around the ideal 

constellation location. As the 11 km of fiber are introduced, the constellations suffer additional 

degradation. 

Finally, the experimental configurations were tested with 10.5 dBm of electrical power per 

carrier. The distinction in performance from one structure to another has now become evident in 

terms of RCE. For the back-to-back and the couplers/splitters links, there is no important difference 

in relation to the previous case. Yet, the IMD now visibly affects the constellation error in the 

electrical domain. Although the RCE remains quite good, it has worsened to around -38 dB. For the 

RoF networks, in the absence of IMD the RCE has greatly improved. Without the long fiber link, the 

RCE is fixed near -31 dB. With the 11 km of optical fiber link, the RCE is approximately at -27 dB. 

These results, as any below -25 dB, are in agreement with the IEEE 802.11a specifications for the 
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maximum RCE per data rate, for the highest data rate of  13.5 Mb/s. In the presence of IMD, the 

distance between RCE results for the short and the long fiber link is also noticeable. While the RCE of 

the short optical fiber link configuration is near -24 dB, the 11 km long link remains close to -20 dB. 

In this situation, it is now possible to detect more clearly that when the signal travels through 

the 11 km of optical fiber, a higher degree of distortions is measured on the constellations. This is a 

relatively small distance in terms of optical fiber link. In addition, whatever the RoF setting in use, the 

RSOA optical source, and the optical power at the photo-detector input are both approximately 

constants. When the long fiber link is employed, this is achieved by manually allowing more power to 

enter the link, in a way that its output is always approximately -13.3 dBm. Hence, attenuation in the 

long link does not appear as a good cause of deterioration. Since the optical fiber used is a SMF, one 

explanation to this additional scattering could be a small amount of chromatic dispersion.  

Except for the configurations with IMD, the RCE values from optical configurations are always 

located below -25 dB. Consistently, the PER computed for these transmissions remains always at 0%. 

In the case of the IMD settings in the RoF network, it appears as the distortions caused by 

intermodulation product are amplified to a certain extent, as they seem to have much stronger 

negative influence on the recovered samples. One possible cause to this effect is that different 

frequency components of a signal might be amplified to slightly different factors by the RSOA. This 

could result in greater amplification of the carriers causing the intermodulation product, which in 

turn would have stronger impact on the main carrier. Concerning the PER in these circumstances, 

with the short optical link configuration, almost every packet transmitted at data rates above 6 Mb/s 

are considered lost, and all packets transmitted above 9 Mb/s are lost. 

When the signal crosses the 11 km optical link, there is an unexpected course in the PER 

results. Strangely, at 4.5 Mb/s small BER values result in 50% of the packets to be lost. Then, at 6 

Mb/s the PER decreases to 0%, and it finally rises back to 100%. The recorded BER for all packets lost 

during these experiments is always low. Thus, one theory that explains this is once again the 

punctured coding rate 3/4, which is taken from rate 1/2. Since IMD is present, if one or more of the 

SCs are affected at the same frequencies along every OFDM symbol within a frame, a greater 

dispersion should occur consistently, leading to complete loss of these SCs. Such situation combined 

with the fact that the coding rate has been weakened by puncturing could lead to the inability of the 

convolutional decoder to recover the erroneous bits. At 6 Mb/s, even though the modulation order 

increases in complexity, the coding rate is not punctured, and is therefore much more robust. 
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6.4. Summary 

A RoF network was implemented for a variety of experimental conditions, namely the use of 

short and long fiber links, with and without IMD. The mechanisms used to study the different aspects 

of the system with OFDM signals were presented, and the different configurations were 

experimented for a number of parameters. This prototype of a structure for a communication system 

consists in performing the signal generation, the electrical-to-optical conversion/modulation, the 

optical-to-electrical conversion and the acquisition with real components and instruments. 

Furthermore, between each transmission/acquisition cycle, the OFDM signal is created by simulation, 

and additional DSP is performed on the acquired data. 

Based on the analysis of a previous characterization of the RSOA, values were defined to 

polarize the RSOA, and to determine an appropriate optical source power and wavelength. As this 

was completed, the previously developed Matlab simulator and toolbox to communicate with the 

instruments were used to transmit and acquire cyclically significant amounts of IEEE 802.11a 

standard-based frames, with EVM calculation, and BER and PER estimation. 

 In this chapter, the result of the experimental work was presented. It was demonstrated that 

by introducing optical fiber into a conventional electrical system this way, the transmitted OFDM 

signal is modified in several ways by the components of the circuit, each potentially introducing 

distortions of varying nature. The response of these components to the electrical power, to the 

combination of carriers and to the optical paths was studies by comparing the estimated RCE for 

each situation. 

To conclude this practical implementation, all theoretical concepts of this dissertation such 

as the OFDM modulation, the channel effects and the importance of synchronization were 

fundamental. In addition, the previous simulation of wireless OFDM transmissions was essential to 

recognize the different impairments endured by the OFDM signal, and to understand how these 

channel effects can be compensated for. 
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Chapter 7. Conclusions and Future Work 

7.1. Conclusions 

 This aim of this project is to contribute to the introduction of OFDM technology to a Radio-

over-Fiber network, where several services are distributed through the coupling of multiple optical 

and electrical carriers. The general idea behind this architecture is to simplify and centralize DSP 

operations between a RS and a CS, while reducing the costs for the service provider. Such 

configuration also improves the end-users experience by enabling the simultaneous distribution of 

many services, with higher data transmission rates. Three technologies are fundamental to this 

architecture: the conventional electrical-based systems for user access; the optical fiber to cover for 

long distances between RS and CS; and finally the modulation techniques. 

An important part of this dissertation focused on the characteristics of OFDM modulation, 

and to its applicability to optical fiber with WLAN-based modulation parameters. The theoretical 

foundation to this technology was investigated in Chapter 2, where it was shown that OFDM systems 

present many advantages, but also a few downsides.  

The key aspects of IEEE 802.11a frame creation were introduced in Chapter 3, together with 

some of the notions to consider for OFDM introduction to optical technology. A brief description of 

the channel effects of each technology was also made, and the performance metrics were defined. 

A simulator was developed to understand and confirm all the important aspects of OFDM 

technology, such as modulation-dependent parameters, the timing-dependent parameters and the 

synchronization issues. The effect of the channel models were also accounted for. This empirical 

study was fundamental as a preparation to the remaining part of the project. 

The methodologies used to configure the instruments, the implementation of the practical 

RoF architecture and the performance evaluation can be found in Chapter 5 and Chapter 6. 

Due to the concept of orthogonality, OFDM is one of the most bandwidth efficient MCM 

techniques. Orthogonality allows multiple SCs to overlap in frequency without interfering with each 

other, because the energy of each subchannel is undetectable to the others. In addition, the 

modulation can be performed digitally by using the IFFT/FFT algorithm. This is possible because the 

DFT theory is constructed upon LTI system theory, and perceives any periodic signal as a sum of 

harmonically related sinusoids, which by nature are orthogonal to each other. Therefore, with the 
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IFFT/FFT it is possible to modulate and multiplex the SCs, and to perform the opposite operations 

efficiently and at very low cost. 

This technique is very flexible in terms of data rates and robustness, because variable FEC 

coding rates can be applied on the source bits, and different modulation orders can be used. The FEC 

coding affects the data rate by introducing a known extent of redundancy into the bit stream, which 

is used at the receiver to recover from errors. The more redundancy is introduced, the lower the data 

rate, but the recovery probability increases. The modulation order also influences the transmission 

rate by grouping variable numbers of bits into symbols. The greater the modulation order, the higher 

the data rate, but the error probability increases. This was verified through simulations in Chapter 4. 

From the results, it can be concluded as well that the SNR in OFDM signals is equivalent to the SNR 

distributed into the SCs. Hence, the influence of the 𝐸𝑏 𝑁0⁄  on BER for OFDM systems in AWGN 

channel corresponds to that from conventional systems. In other words, the probability of bit error in 

OFDM signals also depends on the modulation order and on the coding rate, which are sensitive to 

noise power. 

This technology is very resistant to narrowband interferences. In narrowband transmission 

systems, if the channel strongly interferes within the frequency band in use, the signal is highly 

distorted or entirely lost. OFDM systems are wideband, which means that a large number of 

frequency bands are used simultaneously during transmission. Thus, the channel affects only a 

percentage of the SCs. Therefore, by combining this wideband diversity with source coding 

techniques, such as convolutional coding and frequency interleaving, the decoder at the receiver is 

able to recover more of the erroneous bits. 

OFDM modulation has become a valuable technique to wireless transmission systems due to 

its strong resilience to multipath time and frequency-selective fading environments. To cope with 

these effects, a very simple solution was introduced to OFDM-based systems: the GI with a CP. 

Creating the CP for each OFDM symbol has the effect of introducing periodicity. This means that as 

long as the largest time delay introduced by the channel propagation has duration smaller than the 

GI period, no information is lost, and only a linearly increasing phase shift is introduced on the 

received constellations. Hence, the GI duration is a parameter to control the sensitivity of the system 

to delay spreads. However, if was shown that this symbols extension results in a small loss of SNR, 

because it represents additional transmitted energy that is discarded at the receiver. Besides, 

windowing the transition between adjacent OFDM symbols reduces spectral regrowth, but also 

reduces slightly the effectiveness of the GI. Using the simulator, the effect of a Rayleigh multipath 

channel model was evaluated for OFDM signals. It was verified that the OFDM signal passing through 

the Rayleigh multipath channel has a BER versus 𝐸𝑏/𝑁0 relation identical to the theoretical curve for 

narrowband systems. Hence, the SCs are experiencing independent Rayleigh flat fading. 
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Carrier frequency and time synchronization are probably the most vulnerable aspect of this 

technology. It was seen that a small carrier offset causes the receiver FFT filter to take energy 

somewhere around the ideal frequency instant. Hence, part of the orthogonality is lost and ICI is 

introduced, which means that some of the detected energy belongs to adjacent SCs. It was verified 

by simulation that small frequency errors result in constellation scattering modeled as noise, and 

global phase rotation. As the error increases, the constellation becomes a highly distorted cloud of 

samples. Above half the SCs frequency spacing, it is impossible for the receiver to known which 

carrier is being demodulated. In terms of timing offset, it was also verified by simulation that as long 

as it is smaller than the GI duration, a linearly increasing phase error is introduced in the direction of 

±𝜋 as the SCs frequencies go apart from DC. Timing offsets can also be originated by small sampling 

frequency errors.  

Another issue of OFDM systems comes with the level of PAP that rapidly rises. These peaks 

are very demanding for the amplifiers, and can result in saturation. It was demonstrated that both 

scrambling and clipping could reduce PAPR effectively. Clipping is simpler, but it involves distortions 

in the signal that can lead the SNR to degenerate rapidly, because the peaks above a certain 

threshold are simply cut-off. The task of the scrambler is primarily to avoid large sequences of 

repeated bits to occur by randomizing the source bits. This process results in a better distribution of 

the energy of the power spectrum. Consequently, it was verified that the PAPR improves because the 

probability of the modulated SCs to be multiplexed when all have high energy levels is reduced. For 

the practical part of the dissertation, since IEEE 802.11a frames are transmitted, scrambling is the 

technique used. 

This dissertation concludes with the application of OFDM technology to a practical RoF 

architecture. For this part of the work, the objective is to compare the performance of IEEE 802.11a 

packet-based transmissions for a number of experimental configurations. 

From the previous study of OFDM systems, it was acknowledged that it is imperative for the 

instruments to be well synchronized, so that the relation between them remains approximately 

constant. The channel spacing of 5 MHz for the transmissions was chosen from the IEEE 802.11a 

timing-related parameters. It was discussed in Chapter 2 and in Chapter 5 that usually oversampling 

is necessary to compensate for the limitations of the hardware TF. Based on both instruments 

specifications, an oversampling factor of 5 was chosen for discussion. This way, transmissions were 

accomplished within data rates defined in IEEE 802.11a standard, which provides RCE references.  

Before proceeding to experiences with the RoF structure, the response of the RSOA to 

several situations was studied. Based on the spontaneous emission of the RSOA for a range of 

polarization currents, a good location for optical source tuning was defined. It was observed that the 
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polarization current of the RSOA influences significantly the optical amplification factor, and that 

increased values result in a decline in operational wavelength. This allowed the identification of 

wavelengths near 1550 nm where high reflection occurs with tolerable ripple. Then, for several 

optical sources the optical amplification factors were measured, and it was verified that reduced 

power resulted in greater amplification. Finally, the TF of the RSOA for a -17 dBm optical source was 

observed to make sure that different bias current would not introduce undesired effects. 

This part of the experiment was executed for several levels of electrical power, without IMD 

and with a short fiber link. The performance metric consists in RMS EVM computation, BER and PER 

for blocks of 20 frames. For all electrical power levels and all RSOA polarization currents, the EVM 

computed for a set of packets, frequently referred to as RCE, remains approximately constant as the 

data rate increases. This is in agreement with the suggestion that EVM measurements can provide an 

approximation of the SNR metric, which can be related to the BER. On the contrary, the PER worsens 

as the data rate increases. This is the consequence of two modulation-dependent parameters: the 

convolutional coding rate and the modulation order. Clearly, as the coding rate decreases or the 

modulation order increases, the PER degrades. From this study, it can be concluded that a higher 

polarization current, that is, more optical amplification, results in degradation of the RCE. As the RCE 

degrades, the PER also degrades more for higher data rates. In addition, the RCE improves as the 

electrical carrier power increases. 

Another aspect of the experiment to consider is the IMD. Although four frequencies are used 

when IMD is active, only some of them have an influence on the frequency being analyzed. The study 

of the IMD resulted in three main conclusions. The first is that for low electrical carrier power the 

intermodulation product is very small and its influence becomes negligible. The second is that for 

higher levels of electrical carrier power, from a block of acquisition to another, the channel 

conditions are not necessarily the same. However, from the viewpoint of all the OFDM symbols in a 

packet, the channel is approximately constant. This was verified by observing that one of the 

interfering carriers, which is generated by a VCO, is not perfectly pure nor stable. The third is that the 

intermodulation product effect is more evident when the optical fiber is part of the experiment. It is 

important to remember that the OFDM carrier has its energy spread over a wide band of 

frequencies. On the contrary, the three remaining carriers are empty, and therefore have all their 

energy concentrated on a narrow frequency. This means that if the intermodulation product deviates 

from DC, for 10.5 dBm of electrical carrier power the interference is strong enough to interfere 

severely with data carrying SCs. 

The final section of this dissertation is focused on comparing OFDM performance as the 

different experimental configurations are tested. Although this aspect is present in all previous 

acquisitions, it is in this section that the effect of channel estimation for timing errors is discussed. 



CONCLUSIONS AND FUTURE WORK 

 

103 

The constellations used to represent an example of each investigational situation have an evident 

common impairment: global rotation and linearly increasing phase error. As introduced theoretically 

in Chapter 2, and further verified by simulation in Chapter 4, it is unmistakable that the constellation 

samples, independently of the degree of scattering, are affected by this phenomena. Since a 

common reference oscillating frequency connects the instruments, it is unlikely that any carrier 

offset was introduced. This effect is most likely the result of a sampling frequency error caused by 

the rate conversions, combined with an error margin introduced by the low threshold used for 

packet starting sample detection. Sampling frequency conversion is unavoidable, as it is depending 

on the rates supported by each instrument. As for the low detection threshold, which is most likely 

the main cause, it was intentionally lowered to ensure that in the event of high attenuation or 

distortion of the IEEE 802.11a STS, the frame would still be detected at the first peak. Since this 

timing error is very small, ISI is never introduced due to the GI, and therefore the point-wise 

multiplication by the CIR estimate is enough to correct it. 

In terms of RCE and PER, for low electrical carrier power the results remain essentially poor 

for any application in the optical domain, but excellent for all acquisitions performed only in the 

electrical domain. As the carriers power increases to 0.5 dBm, a significant improvement is observed 

in the optical  domain, and the IMD interference remains barely perceptible. The grouping of the RCE 

of all optical domain acquisition, despite the differences in fiber length and IMD, indicates that the 

distortions are still depending mainly on the RSOA. However, with more electrical power, it is evident 

that each experiment separates from the others. In the optical domain, the measured RCE without 

IMD is in agreement with IEEE 802.11a specifications for all data rates. Still, as the IMD is introduced, 

it is obvious that the RCE degrades in both the electrical and the RoF configurations. However, the 

effect is substantially stronger in the presence of optical fiber. In the electrical domain, the 

acquisitions remain excellent. A reason to this might be that different frequency components of a 

signal are amplified to different factors by the RSOA. This could result in greater amplification of the 

two carriers that are generating the intermodulation product, which then influences the main carrier. 

The use of an 11 km long optical fiber also introduces noticeable changes to the RCE, which points to 

the presence of a small amount of chromatic dispersion. Attenuation caused by the long fiber link is 

not considered as a possible cause, because the optical power is adjusted to ensure that the photo-

detector always receives an optical signal with approximately -13.3 dBm. 

These results were obtained with the idea of observing the effect of IEEE 802.11a compliant 

frames in a RoF network, which explains the choices made for oversampling and sampling rate. 

However, with these instruments they can be improved. For instance, one way to do so is by 

increasing the oversampling factor under the same remaining conditions (which would effectively 
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reduce the channel spacing, and therefore the data rates). It was explained in Chapter 5 that 

oversampling could improve the SNR. Since SNR and EVM can be related, this suggests that the RCE 

and the PER should improve. Nonetheless, although both RCE and PER would greatly improve for 

higher oversampling factors (at reduced data rates), the differences in terms of RCE from one 

experiment to another should remain quite similar, as the same degree of improvement is applied to 

all of them. 

7.2. Future Work 

 The proposed RoF network architecture experimented in this project demonstrates high 

potential as a hybrid system. It is fit to answer the needs of both the service providers and the 

consumers. It enables cost reduction for the infrastructures, provides control and centralized DSP 

operation, while allowing for service diversity and improvements. 

 In this project, the IMD is implemented by generating empty RF carriers at specific 

frequencies. Since they carry no information, the energy is all concentrated into a narrowband 

frequency. Under these conditions, the intermodulation product consists in a relatively high peak 

that can strongly interfere, but with only some frequencies of the OFDM signal, because its energy is 

spread along a wideband. By introducing the system to IMD with modulated carriers, the results 

might change dramatically. The intermodulation product could interfere with less energy, but on a 

wider frequency band. 

 Another aspect to consider is the implementation of the same system with wireless carriers 

in the electrical domain. The channel effects of the RoF network as it was implemented include 

mainly distortions introduced by the components, and time delays. Accounting for the severe effects 

of the wireless multipath channel would provide a more realistic approach of this network.  
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Appendix A. The Fourier Transform and its use with Matlab 

A.1. The Discrete Fourier Transform (DFT) 

 The DFT is a mathematical tool developed by Jean Baptiste Joseph, Baron de Fourier (1768-

1830). Fourier realized that by summing up simple sine and cosine waves, complicated waveforms 

could be created. In the same way, by performing the opposite operation, intricate signals can be 

decomposed into a number of summed simple signals [45]. This is known as the Fourier Series, and it 

enables the representation of any periodic signal as a sum of harmonically related sinusoids. In 

addition, almost any signal can be represented as an infinite sum of non-harmonically related 

sinusoids [46]. 

 Based on this theory, Fourier later developed the DFT. The DFT is capable of taking a discrete 

signal in TD and transforming that signal into its FD representation. It is possible to examine an 

unknown signal with the DFT by identifying the various frequencies that compose it, and measure 

their relative “quantity” in the signal [45].  

 Fourier theory is stated upon Linear Time Invariant (LTI) system theory. Therefore, the DFT 

seen as a system with input and output signal (sinusoids) is fully consistent with LTI systems 

requirements, which are scalability, additivity and time invariance. Scalability means that alterations 

in the input signal amplitude result in matching changes in the output signal amplitude. Additivity 

implies that signals added at the input result in signals added at the output. Time invariance means 

that the characteristics of the system are not time dependent, and therefore a shift in the input 

signal will produce an equivalent shift in the output signal. This is why the Fourier analysis is possible: 

a complex signal is decomposed into a number of simple signals, each simple signal is analyzed 

independently, and the complex signal is recomposed into the original signal [47]. 

 In present days, the DFT is a fundamental tool in the area of frequency spectrum analysis, 

which is employed in many technological fields, such as thermal analysis, image processing, quantum 

mechanics, physics and of course digital signal processing. In telecommunications, usually hardware 

generates and receives a signal carrying information, which is transmitted through a medium. Both 

the hardware and the medium usually corrupt the signal. Since the expected signal has a well-

defined spectrum, if the receiver can perform a spectral analysis, it can determine which parts of the 

signal are information or distortions, and extract the information [45]. 

 In particular, OFDM systems take full advantage of the DFT abilities because with IFFT/FFT 

operations, the OFDM signal can be modulated, demodulated, multiplexed and analyzed. A data 

sample given in the FD is modulated by performing an IFFT at the transmitter. OFDM demodulation is 
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achieved simply by performing an FFT to the TD signal at the receiver. Multiplexing is carried out by 

feeding the IFFT with a sequence of adjacent samples in the FD. At the IFFT input, each sample is 

seen as a harmonic frequency. Hence, the output results in a TD waveform that is equivalent to the 

sum of each individual curve. Demultiplexing is done in a similar way with the FFT performing the 

reverse operation. In other words, IFFT performs modulation and multiplexing with orthogonality, 

and FFT performs demultiplexing and demodulation.  

Periodicity: Fourier analysis states that any periodic waveform can be represented by a sum of 

simpler waveforms. The DFT is periodic, and extends from 𝑓 = 0 to 𝑓 = 𝑓𝑠, where 𝑓𝑠 if the sampling 

frequency [14]. 

Symmetry: When the region of a spectrum is examined, symmetry can be observed between 0 and 

𝑓𝑠, around the center point 0.5𝑓𝑠. This center point is the Nyquist frequency. Therefore, the region 

going from 0.5𝑓𝑠 to 𝑓𝑠 is a mirror image of the data going from 0 to 0.5𝑓𝑠. This symmetry adds 

redundant information [14]. 

Orthogonality: By definition, sine and cosine are orthogonal to each other. Fourier theory describes a 

periodic signal as a sum of harmonically related sinusoids. This implies that the harmonics have 

integer number of cycles in a period. Therefore, all the harmonics are orthogonal to each other. In 

terms of spectral analysis, this means that even if they overlap, the frequencies will not interfere 

with one another [45]. 

Fast Fourier Transform (FFT): The FFT is an algorithm that computes fast and efficiently the DFT. It is 

due to the speed and discrete nature of the FFT that discrete-time to discrete-frequency transform 

can be performed with Matlab, or in real-time using microprocessors and DSP based systems, hence 

allowing us to analyze a signal’s spectrum [14]. 

A.2. Mathematical Background 

 In mathematical terms, the Fourier Series that describes any periodic wave can be written 

the following way [45]: 

𝑓(𝑡) = 𝑎0 + �𝑎𝑛𝑠𝑖𝑠(2𝜋𝑠𝑓𝑡)
𝑁

𝑛=1

+ �𝑏𝑛𝑐𝑐𝑠(2𝜋𝑠𝑓𝑡)
𝑁

𝑛=1

 (A.1) 

Where: 𝑎0 is a constant that provides the DC offset from zero; 𝑎0, 𝑎𝑛 and 𝑏𝑛 are called the Fourier 

Series Coefficients; 𝑁 is the number of harmonics used in the summation. 
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 In the equation above, the harmonics do not have to be integer values, and can be real or 

imaginary. However, the harmonics are integer multiples of the starting frequency. Therefore, the 

starting frequency defines how finely the signal is decomposed. It is sometimes referred to as the 

resolution frequency for that reason. The equation below describes the harmonics [45]: 

𝑓𝑛(𝑡) = 𝑠𝑓(𝑡) =
𝑠
𝑇

 (A.2) 

Where: 𝑇 is the period of the first wave; 𝑠 is the harmonic. 

 Using Equation (A.2), we can rewrite Equation (A.1) with respect to the period of the 

fundamental waveform and each harmonic as: 

𝑓(𝑡) = 𝑎0 + �𝑎𝑛𝑠𝑖𝑠 �
2𝜋𝑠𝑡
𝑇

�
∞

𝑛=1

+ �𝑏𝑛𝑐𝑐𝑠 �
2𝜋𝑠𝑡
𝑇

�
∞

𝑛=1

 (A.3) 

 In addition, all sine waves can be converted to cosine waves by adding a half-period phase 

shift. Hence, the equation is rewritten as [45]: 

𝑓(𝑡) = 𝐶0 + �𝐶𝑛𝑐𝑐𝑠 �
2𝜋𝑠𝑡
𝑇

+ 𝜙𝑛�
∞

𝑛=1

 (A.4) 

Where: 𝐶0 is the constant that provides the DC offset from zero; 𝐶0 and 𝐶𝑛 are the Fourier Series 

Coefficients; 𝑇 is the period of the first wave; 𝑠 is the harmonic. 

 Using Euler complex representation, the generalized Fourier equation can be represented as 

follows: 

𝑓(𝑡) = �𝐶𝑛𝑅 �
𝑗𝜋𝑠𝑡
𝑇

+ 𝜙𝑛�
∞

𝑛=1

 (A.5) 

 In signal processing, the Fourier Coefficients define the spectral components of a signal. They 

provide knowledge concerning which frequencies are present in the signal, and on the “amount” of 

those frequencies.  

A.3. Understanding the FFT with Matlab 

A.3.1. The FFT as a tool for Frequency Spectrum Analysis 

Consider a simple sine wave defined as 𝑓(𝑡) = sin (2𝜋𝑓0𝑡). In this example, the fundamental 

frequency is 𝑓0 = 2 𝑀𝑀, corresponding to two cycles per second. To generate harmonics, we must 

multiply the fundamental frequency by integer values. For instance, the frequency of the second 

harmonic is 2𝑓0 = 4 𝑀𝑀, and the third harmonic has frequency  3𝑓0 = 6 𝑀𝑀.  
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Figure A.1 – (a) Sine wave with f0 = 2 Hz; (b) Sine wave with f0 = 4 Hz; (c) Sine wave with f0 = 6 Hz; (d) The summed sines 
(a)+(b)+(c) 

 

Figure A.2 – Frequency spectrums obtained using the FFT for: (a) a sine wave with f0 = 2 Hz; (b) a sine wave with f0 = 4 Hz; 
(c) a sine wave with f0 = 6 Hz; (d) the summed sines (a)+(b)+(c).  

 As mentioned previously, by summing these three periodic sinusoids, a new periodic 

signal is created, which contains all the frequencies of the summed sinusoids. It can be 

observed in Figure A.1 that each simple signal is periodic and that the signal composed by the 

sum of the others appears more complicated and is periodic too. 

 By performing the FFT operation to the TD signal from Figure A.1 with the Matlab built-in 

fft() function, the corresponding frequency spectrums depicted in Figure A.2 were obtained. Notice 

that in all spectrums the symmetric property can be observed around the Nyquist frequency. As 
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expected, the frequency related information of the three summed sinusoids is represented in the last 

frequency spectrum. It has become possible to see how many frequencies exist in that signal. 

However, by looking at the plots as they are, it is not possible to extract information on the 

frequency in the sense that there is no indication that the peaks are in the right place. In addition, 

the amplitudes are very high and the spectrums are not centered around zero. 

 In order to properly present the frequency spectrum, we can use another Matlab built-in 

function called fftshift(). This function swaps the left and right halves of the spectrum. In essence, the 

negative frequencies that appear on the right side of the spectrum are shifted to the left. By doing 

this, the frequency spectrum becomes centered and two-sided. Since it is known that the FFT has a 

periodicity that extends from 𝑓 = 0 to 𝑓 = 𝑓𝑠, the correct frequency axis after the shifting will go 

from −0.5𝑓𝑠 to 0.5𝑓𝑠. In addition, for a proper comparison between frequencies, the amplitude 

should be normalized. Figure A.3 shows the corrected, meaningful spectrums. At this point, we can 

see that the information within the spectrum is entirely symmetric. Therefore, by representing only 

the positive spectrum and discarding the redundant negative section of the spectrum we can still 

define the frequency spectrum. 

 
Figure A.3 – Two-sided and centered frequency spectrums with amplitude normalization for:  (a) a sine wave with f0 = 2 
Hz; (b) a sine wave with f0 = 4 Hz; (c) a sine wave with f0 = 6 Hz; (d) the summed sines (a)+(b)+(c).  

A.3.2. The FFT and the effect of Zero Padding 

 There are two reasons that can justify the use of zero padding. The first reason consists in 

increasing the efficiency of the FFT computation. Optimal computational efficiency is achieved for 

FFT lengths that are equal to 2𝑁 samples. The second aspect that motivates the use of zero padding 

is the need for a greater spectral resolution. In practice, it is generally useful to zero pad a signal up 

to 4 times its original length, providing a 4-fold increase in the frequency resolution. 
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Figure A.4 – Sine wave with f0 = 4 Hz and 8 samples per period; curve padded with zeros to reach 64 samples; curve 
padded again with zeros to reach 128 samples. 

 
Figure A.5 – Frequency spectrum of: the signal computed with no zero padding; the signal computed with 64 samples; 
the signal computed with 128 samples. 

 In this particular example, Figure A.4 shows the original curve, and two curves manually zero 

padded. In practice, the fft() function in Matlab will zero pad the input data automatically if the FFT 

length specified is greater than the number of samples. Figure A.5 illustrates the effect of zero 

padding for each case. It can be observed that, as the number of samples increases, the shape of the 

spectrum appears better defined. This is interesting in the sense that it becomes easier to analyze 

the frequency spectrum. 



THE FOURIER TRANSFORM AND ITS USE WITH MATLAB 

111 

 However, it is very important to understand that in reality only the resolution of the 

spectrum is increased as more samples define it. Effectively the data is interpolated and more 

samples are produced, but no additional information is added to the signal.  

 The next example demonstrates a practical advantage of resolution increase to see more 

components of a frequency spectrum. Consider a periodic signal composed by a sum of sines such as 

𝑓(𝑡) = sin(2𝜋(1.5)𝑡) + sin(2𝜋(2)𝑡) + sin (2𝜋(2.5)𝑡). Three similar frequencies exist in this signal. 

In Figure A.6, we can see the frequency spectrum with and without resolution enhancement. It can 

be observed that, where only one peak was visible, the “improved” spectrum now shows two more 

peaks that previously appeared “hidden”.  

 
Figure A.6 – The sum of three sine waves at 1.5 Hz, 2 Hz and 2.5 Hz; Frequency spectrum with no zero padding; Frequency 
spectrum with an 8-fold resolution increase. 

 Again, it is important to realize that since no new information was added, the information 

was already there. It is the number of samples that was not high enough to define the existing peaks. 

In terms of information, as long as the sampling is performed under the Nyquist rate, all the 

necessary information that defines the continuous-time signal is present. Zero padding in essence 

consists in interpolating the information with more samples, without really adding any additional 

information, which has the effect of increasing the spectral resolution. 

A.3.3. The FFT as a Modulator and Multiplexer for OFDM Systems 

 In this section we will see how OFDM technology is implemented using FFT to perform 

simultaneously both modulation and multiplexing of multiple carriers, while guaranteeing 

orthogonality between SCs. 
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 Consider the BPSK sequence [-1,-1,-1,-1]. This is the existing information in the FD. To 

modulate it, we need to translate this information into a TD waveform. In order to do so, we can use 

the Matlab built-in ifft() function. In terms of frequencies, if we feed the BPSK sequence to the IFFT 

function as it is, each sample will represent a distinct frequency. By the DFT definition, each of these 

frequencies will be a harmonic of the fundamental frequency located at the first sample. Therefore, a 

single signal containing these four frequencies 1𝑓0, 2𝑓0, 3𝑓0 and 4𝑓0 is expected at the IFFT output. 

This can be verified easily with a few Matlab commands: 

Fo = 1;        % fundamental signal frequency in Hz (periods per second) 
Fs = 32;       % sampling rate (samples per second) 
N = Fs/Fo;     % samples per period 
T = 1;         % period in seconds 
Ts = 1/Fs;     % sampling time interval 
A = -1/Fs;     % signal peak amplitude 
NFFT = 8*Fs;   % FFT length (8-fold resolution increase) 
t = 0:Ts:T-Ts; % time vector 
  
NSC = 4;           % number of data subcarriers 
a = -ones(1, NSC); % generate BPSK symbols (the information) 
b = diag(a);       % each row is a subcarrier with one sample shifted right 
  
x0 = zeros(NSC, Fs); 
for k = 1 : NSC 
    x0(k,:) = A*exp(1i*2*pi*(k-1)*Fo*t); % periodic signals (DC, harmonics) 
end 
xx0 = sum(x0, 1);    % sum all the periodic signals (manual) 
x1 = ifft(b, Fs, 2); % equivalent periodic signals 
xx1 = sum(x1, 1);    % sum all the periodic signals (IFFT) 
xx2 = ifft(a, Fs);   % equivalent IFFT operation 
 
[ XX0 F0 ] = fftcenter(xx0, Fs, NFFT); % perform FFT and center spectrum 
[ XX1 F1 ] = fftcenter(xx1, Fs, NFFT); % perform FFT and center spectrum 
[ XX2 F2 ] = fftcenter(xx2, Fs, NFFT); % perform FFT and center spectrum 
 
figure, subplot(3,1,1), plot(t, real(xx0), 'o-', 'MarkerSize', 3); 
title('Manually generated signal'); set(gca, 'XTick', [], 'YTick', []); 
subplot(3,1,2), plot(t, real(xx1), 'o-', 'MarkerSize', 3); 
title('Multiple IFFT generated signal'); set(gca, 'XTick', [], 'YTick', []); 
subplot(3,1,3), plot(t, real(xx2), 'o-', 'MarkerSize', 3); 
title('Single IFFT generated signal'); xlabel('Time (s)'); 
set(gcf, 'Position', [440 436 600 300]); set(gca, 'YTick', []); 
 
figure, subplot(3,1,1), plot(F0, abs(XX0), 'o-', 'MarkerSize', 3); 
title('Manually generated signal'); set(gca, 'XTick', [], 'YTick', []); 
subplot(3,1,2), plot(F1, abs(XX1), 'o-', 'MarkerSize', 3); 
title('Multiple IFFT generated signal'); set(gca, 'XTick', [], 'YTick', []); 
subplot(3,1,3), plot(F2, abs(XX2), 'o-', 'MarkerSize', 3); 
title('Single IFFT generated signal'); xlabel('Frequency (Hz)'); 
set(gcf, 'Position', [440 436 600 300]); set(gca, 'YTick', []); 

 

 The Matlab code above allows us to see that, in fact, the IFFT performed to the data samples 

as a sequence is equivalent to creating a modulated subcarrier for each sample at a harmonic 

frequency, and summing them together. This small generic simulation confirms in two ways that the 

IFFT performs both data modulation and subcarrier multiplexing. First, a number of periodic 

waveforms with harmonically related frequencies are created without using the IFFT, and are 
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summed together. Second, equivalent periodic waveforms are generated, this time using an IFFT for 

each, with a shift in the information sample to create the harmonic frequency, and are summed 

together. Third, a direct IFFT implementation is performed to an equivalent four information samples 

sequence. It can be observed in Figure A.7 and Figure A.8 that the results are alike in both TD and FD, 

therefore providing evidence that the IFFT algorithm can perform modulation and multiplexing while 

ensuring orthogonality. 

 
Figure A.7 – A generic OFDM signal generated in three different ways: (a) Periodic waveforms created separately and 
summed together; (b) Periodic waveforms created separately with IFFT and summed together; (c) A single IFFT operation 
that provides the same output. 

 
Figure A.8 – Frequency spectrum of: (a) Periodic waveforms created separately and summed together; (b) Periodic 
waveforms created separately with IFFT and summed together; (c) A single IFFT operation that provides the same 
output. 
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Appendix B. Modulating Arbitrary OFDM Signals 

B.1. Complex or Real OFDM Modulation 

 OFDM signals can be created directly and digitally using the IFFT/FFT algorithm. The 

modulation/multiplexing is performed by taking the IFFT of the chunks of samples in the FD. Before 

doing so, the samples must be prepared and placed in the correct location, corresponding to the SCs. 

Two possible outputs samples can be generated by taking the IFFT: complex or real. 

 
Figure B.1 – Transmission with (left) and without (right) additional IQ modulation [10]. 

 If the transmission is to be made using an IQ modulator, a complex output is expected from 

the IFFT, which means that the IFFT input must be of 𝑁 complex modulated data symbols [10]. The 

complex output is obtained by using both the positive and the negative frequencies to allocate 

different SCs. 

 Conversely, the real output is obtained by taking advantage of the Hermitian symmetry 

property, where the IFFT input must represent an odd function composed by 2𝑁 samples. That is, 𝑁 

samples are the complex modulated data samples, and the other 𝑁 samples are the complex 

conjugate of the original samples [7] [10]. In other words, half of the frequencies contain the 

information to transmit, and the other half is the complex conjugate of the samples. 

𝑐𝑐𝑐(𝜔𝑐𝑡) 

N (complex samples) 

𝑠𝑠𝑠(𝜔𝑐𝑡) 

Im Re 

IFFT 

OFDM signal 

Rate N/T 

Re 

2N (complex and conjugate samples) 

OFDM signal 

Rate 2N/T 

IFFT 

𝑐𝑐𝑐(𝜔𝑐𝑡) 
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B.2. Generating Arbitrary Baseband OFDM Signals 

 In this section, the process for arbitrary OFDM modulation is illustrated, for the generation of 

complex and real baseband signals carrying the same information. The following parameters 

summarize this simulation: 

• The channel spacing is 10 MHz; 

• The baseband signal is a single packet, with 16 OFDM symbols; 

• The base FFT length is 16 samples; 

• An oversampling factor of 2 is used; 

• The GI is a CP, increasing the symbol length by a quarter of the FFT length; 

• The windowed transition is raised-cosine, altering half the GI length; 

• Each OFDM symbols has 4 data SCs and 2 pilot SCs; 

• The source bits are encoded with convolutional code at rate 3/4; 

• The data modulation is 4-QAM constellation. 

 

 NFFT NGI NWIN NSYM TFFT TGI TWIN TSYM 

Complex 16 4 2 20 1.6 µs 0.4 µs 0.2 µs 2 µs 

Real 32 8 4 40 3.2 µs 0.8 µs 0.4 µs 4 µs 

Table B.1 – Complex and Real OFDM modulation parameters. 

The first step of the OFDM system model presented in Chapter 2 suggests source coding to 

increase the system’s robustness against signal degradation. In this example, only FEC coding is 

performed on the bit stream.  

 
Figure B.2 – a) Original bits stream; b) Convolutionally coded bits stream at rate 3/4. 
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Consider a serial bit stream composed by 96 pseudo-random bits. By submitting the bit 

stream to a convolution code with rate 3/4, first a convolutional code with rate 1/2 is applied, 

meaning that one redundant extra bit is generated for each existing original bit, and then a 

puncturing pattern is applied to obtain a 3/4 rate. Hence, the number of coded bits to be transmitted 

is now given by 96/(3 4⁄ ) = 128. This implies a loss in transmission efficiency because irrelevant 

non-information bits are transmitted, thus using additional power and bandwidth, but it is an 

important characteristic to recover from interferences that can corrupt the data. 

At this point, the bit stream can already be split between the several SCs in order to 

modulate each of them with a different data modulation scheme. However, in this case 4-QAM 

modulation is applied to all the data SCs, which means that a single modulation can be done on the 

whole stream.  

 
Figure B.3 – Modulated complex data samples using 4-QAM modulation scheme. 

With this particular data modulation scheme, the number of bits per data symbol is given 

by 𝑙𝑐𝑔2(4) = 2. This means that the 128 coded bits are now contained in only 128 2⁄ = 64 

modulated complex data symbols. For this specific example, Figure B.3 shows that the 4-QAM 

modulated data is given by the following sequence for the first 12 complex data samples, which 

correspond to the first three OFDM symbols: 

DSC0 DSC1 DSC2 DSC3 DSC0 DSC1 DSC2 DSC3 DSC0 DSC1 DSC2 DSC3 … 

 0,7-0,7j -0,7+0,7j  0,7+0,7j -0,7+0,7j -0,7+0,7j -0,7-0,7j -0,7-0,7j  0,7-0,7j -0,7+0,7j  0,7-0,7j  0,7+0,7j  0,7-0,7j … 

Table B.2 – First 12 samples of 4-QAM modulated data in series. 

Now, the modulated data must be prepared for the third part of the OFDM model: the OFDM 

modulation. Since we are considering 4 data SCs, we know that our 64 modulated samples will be 
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divided between them, and therefore all the modulated samples will later be distributed through 

64 4⁄ = 16 OFDM symbols. In order to perform OFDM modulation, the modulated data must first 

undergo serial-to-parallel conversion [15] as shown in Table B.3, where each column represents one 

of the data SCs, and each segment composed by each row is a data chunk that will be carried into an 

OFDM symbol.  

 DSC0 DSC1 DSC2 DSC3 

CHUNK0  0,7-0,7j -0,7+0,7j  0,7+0,7j -0,7+0,7j 

CHUNK1 -0,7+0,7j -0,7-0,7j -0,7-0,7j  0,7-0,7j 

CHUNK2 -0,7+0,7j  0,7-0,7j  0,7+0,7j  0,7-0,7j 

... ... ... ... ... 

Table B.3 – First 3 chunks of 4-QAM modulated samples in parallel. 

It was explained that the OFDM modulation can be performed by applying the IFFT algorithm 

to each data chunk in the FD, thus resulting in TD OFDM symbols. However, the 𝑁 modulated data 

samples must first be prepared depending on the output needed from the IFFT. For the OFDM 

modulation presented in this example, the IFFT output for both complex and real baseband 

waveforms are implemented. The frequency allocation of the SCs is defined as depicted below for 

each OFDM symbol. 

 
Figure B.4 – SCs frequency allocation before IFFT operation for: a complex output on top; a real output at bottom. 

First, a number of empty guard SCs are placed from left to right, leaving enough space for the 

data SCs and pilot SCs. Then, the complex data SCs can be positioned from left to right at 

predetermined locations, and the pilot SCs among them. For the complex IFFT output, the 𝑁 

frequencies are placed from -8 to 7, that is, half of the SCs are allocated in the negative frequencies, 

and the other half on the positive frequencies after DC. For the real IFFT output, 𝑁 frequencies are 
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allocated from indexes -15 to -1, as depicted in Figure B.4. At this point, the DC frequency can be 

reserved at index 0, and the conjugate of the previously allocated SCs going from indexes -6 to -1 can 

now be placed, flipped from right to left, at indexes going from 1 to 6. The remaining frequencies 

after the last complex conjugate data SC are empty guard SCs. As a result, all the SCs are allocated 

amongst 2𝑁 total frequencies. 

N complex samples 

GSC GSC GSC DSC0 PSC0 DSC1 DC DSC2 PSC1 DSC3 GSC GSC 

... 0 0  0,7-0,7j 1 -0,7+0,7j 0  0,7+0,7j 1 -0,7+0,7j 0 ... 

... 0 0 -0,7+0,7j 1 -0,7-0,7j 0 -0,7-0,7j 1  0,7-0,7j 0 ... 

... 0 0 -0,7+0,7j 1  0,7-0,7j 0  0,7+0,7j 1  0,7-0,7j 0 ... 

... ... ... ... ... ... ... ... ... ... ... ... 

Table B.4 – Modulated data prepared for IFFT with a complex output of N samples. 

N complex samples DC+N-1 complex conjugate samples 

GSC GSC GSC DSC0 PSC0 DSC1 DSC2 PSC1 DSC3 DC DSC3 PSC1 DSC2 DSC1 PSC0 DSC0 GSC GSC 

... 0 0  0,7-0,7j 1 -0,7+0,7j  0,7+0,7j 1 -0,7+0,7j 0 -0,7-0,7j 1 0,7-0,7j -0,7-0,7j 1 0,7+0,7j 0 ... 

... 0 0 -0,7+0,7j 1 -0,7-0,7j -0,7-0,7j 1  0,7-0,7j 0 0,7+0,7j 1 -0,7+0,7j -0,7+0,7j 1 -0,7-0,7j 0 ... 

... 0 0 -0,7+0,7j 1  0,7-0,7j  0,7+0,7j 1  0,7-0,7j 0 0,7+0,7j 1 0,7-0,7j 0,7+0,7j 1 -0,7-0,7j 0 ... 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

Table B.5 – Modulated data prepared for IFFT with a real output of 2N samples (Hermitian symmetry). 

 
 Figure B.5 – The first FD OFDM chunk prepared for the IFFT operation, with 2-fold oversampling by zero padding: 
complex output on top; real output at bottom. 

Again, each column contains one SC and each row is an OFDM symbol in the FD. The pilot SCs 

are modulated with BPSK scheme and are positioned between sets of data SCs to estimate phase and 
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frequency shift errors at the receiver. In this case, 2 pilot SCs were used for demonstration purpose. 

The empty guard SCs also provide a slight resolution improvement, but reduce the bandwidth 

efficiency.  

In this example, 𝑁 = 16  samples were chosen as the base IFFT size. However, for the real 

IFFT output the number of samples is doubled due to the additional complex conjugate component. 

In addition, 2-fold oversampling by zero padding is used in this example. Therefore, the IFFT output 

has 𝑁𝑅𝑅𝐹 = 2 × 𝑁 = 32 TD samples for the complex output, and 𝑁𝑅𝑅𝐹 = 2 × 2𝑁 = 64 samples for 

the real output. In other words, each sample corresponding to each one of the frequencies is 

multiplexed with the others into one single OFDM symbol. Figure B.4, Table B.4, Table B.5 and Figure 

B.5 illustrate in detail how the FD construction of OFDM symbols is achieved. Note that in Figure B.5, 

the SCs require a final shifting before the IFFT operation. After shifting the samples, DC is located at 

the starting leftmost position. The configuration presented in Figure B.5 includes the zeros padded to 

achieve 2-fold oversampling.  

 
Figure B.6 – Raised-cosine window shape applied to each OFDM Symbol, with 2-fold oversampling: applied to the 
complex samples on top; applied to the real samples at bottom. 

At this point, the IFFT is performed on each chunk to create the TD OFDM symbols. Then, the 

GI can be generated by extending each symbol with a CP, as introduced in Section 2.3.4. In this 

example, the CP was defined as a quarter of the length of the FFT. Using the last samples of the 

effective transmission samples to create this GI has the effect of making the OFDM symbol appear 

continuous in time. The length of each OFDM symbol in samples with the GI and without 

oversampling can be found in Table B.1. At present, the GI and the CP are the same extended 

samples. By applying a window to part of the extended samples, the length of unchanged cyclic 

extension is reduced, that is, the effective GI duration decreases. On the other hand, the window will 
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smooth the transition between adjacent OFDM symbols, therefore enhancing the spectral regrowth 

caused by amplitudes differences. Raised-cosine is a popular window type because it is quite simple, 

reasonably easy to implement and flexible. For this simulation, a window length with half the length 

of the cyclic extension is specified, as shown in the raised-cosine window shape from Figure B.6. The 

window is applied to each OFDM symbol, and the shaped samples from adjacent OFDM symbols are 

summed as described in Section 2.3.5. 

 
Figure B.7 – The first TD OFDM symbols, with 2-fold oversampling by zero padding: real part of complex output on top; 
real output at bottom. 

 
Figure B.8 – Two-sided frequency spectrum of the OFDM signal. 

Consider the predefined spectral bandwidth occupancy of 𝐵 = 10 𝑀𝑀𝑀 per OFDM symbol. 

Since oversampling is used, to maintain the frequency components at the correct rate, the sampling 
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rate must be increased to 2𝐵 = 20 𝑀𝑀𝑀. Therefore, the timing-related parameters from Table B.1 

remain the same. The effective component of the OFDM symbol has duration that is resulting from 

the elementary frequency component, which is the first harmonic. The first harmonic, sometimes 

referred to as resolution frequency, defines the SC frequency spacing. In this case, it is given by 

∆𝐹𝐶 = 20 𝑀𝑀𝑀 32⁄ = 625 𝑘𝑀𝑀 for the complex signal, and ∆𝐹𝑅 = 20 𝑀𝑀𝑀 64⁄ = 312.5 𝑘𝑀𝑀 for the 

real signal. However, in reality the GI extends the OFDM symbols, so the OFDM symbol periods 

become  𝑇𝑆𝑌𝑀𝐶 = 1/(20 𝑀𝑀𝑀 40⁄ ) = 2 𝜇𝑠 and 𝑇𝑆𝑌𝑀𝑅 = 1/(20 𝑀𝑀𝑀 80⁄ ) = 4 𝜇𝑠.  

 
Figure B.9  – Superimposed constellations of the transmitted and recovered SCs. 

Knowing the number of SCs per OFDM symbol, the modulation order and the coding rate, the 

number of information bits per OFDM symbol, that is, the data rate is determined as: 

𝑁𝐵𝑃𝑆𝐶 = 𝑁𝑆𝐷 × 𝑙𝑐𝑔2(𝑀) × 𝑅 = 4 × 𝑙𝑐𝑔2(4) × (3 4⁄ ) = 6 

𝐷𝑅𝐶 =
𝑁𝐵𝑃𝑆𝐶
𝑇𝑆𝑌𝑀𝐶

=
6

2 𝜇𝑠
= 3 𝑀𝑏𝑖𝑡𝑠/𝑠 

𝐷𝑅𝑅 =
𝑁𝐵𝑃𝑆𝐶
𝑇𝑆𝑌𝑀𝑅

=
6

4 𝜇𝑠
= 1.5 𝑀𝑏𝑖𝑡𝑠/𝑠 

In this case, the simulation is performed with baseband channel effects. The SNR relation is 

20 dB in a 2 tap multipath complex random channel, which in this case is still within the GI duration.  

From the results it is observed that preparing the IFFT for a real output implies a reduction to 

half the transmission rate. 
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Appendix C. Instruments Specifications 

C.1. Keithley Model 2910 RF Signal Generator 

 In ARB waveform mode, the Keithley Model 2910 expects ARB files with the interleaved IQ 

samples, the average power factor of the samples and the sampling rate in order to “playback” the 

transmission. The ARB files can then be loaded into memory and transmitted at the specified 

sampling rate, with specified center frequency and power. Then, the instrument up-converts the 

signal by performing IQ modulation with the baseband complex samples from the ARB file to 

modulate an RF carrier.  

Sampling Rate (Hz) 

50000 125000 1250000 10000000 
78125 156250 1562500 12500000 

 250000 2500000 25000000 
 312500 5000000 50000000 
 500000 6250000  
 625000   

Table C.1 – Keithley Model 2910 supported sampling rates for ARB waveforms playback [42]. 

Although the Amplitude is specified in dBm as a parameter external to the ARB file, the 

Output Power of this instrument takes into account the average power factor of the complex 

waveform placed in the header of the ARB file to transmit. Therefore, when specifying the Amplitude 

of the transmission, in order for the Output Power of the instrument to correspond to the power 

required by the user, the following should be considered: 

𝑅𝑀𝑆 𝑃𝑐𝑤𝑅𝑟 =
�∑(𝐼2) + ∑(𝑄2)

𝑊𝑎𝑣𝑅𝑓𝑐𝑟𝑚 𝑅𝑅𝑐𝑐𝑟𝑑 𝑆𝑖𝑀𝑅
 (C.1) 

𝑃𝑐𝑤𝑅𝑟 𝐹𝑎𝑐𝑡𝑐𝑟 = 10 × 𝑙𝑐𝑔10(𝑅𝑀𝑆 𝑃𝑐𝑤𝑅𝑟) (C.2) 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑃𝑐𝑤𝑅𝑟 = 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑅 + 𝑃𝑐𝑤𝑅𝑟 𝐹𝑎𝑐𝑡𝑐𝑟 (C.3) 

The equations above are described in [42]. The I and Q values must be normalized to a 

maximum range of -1.0 to 1.0. Lower distortion should be achieved by limiting the I and Q values to a 

range of -0.5 to 0.5. By changing the value of the RMS Power, the user can balance the maximum 

amplitude, distortion and noise performance [42].  
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C.2. Tektronix RSA 2203A Real-Time Spectrum Analyzer DC-3GHz 

 The Tektronix RSA 2203A receives the RF signal, and converts it into a 20 MHz IF signal. At 

this stage, the signal is also adjusted for the upcoming ADC conversion with low-noise amplification, 

fine-tuning attenuation and anti-alias filtering. After being down-converted, the signal enter the ADC 

with a resolution of 14 bits and a sampling rate of 51.2 MHz. The next signal processing step 

performed by the receiver is to send the signal to the Digital Down Converter (DDC). At this stage, 

the 20 MHz real signal is converted into complex components of ±10 MHz. The frequency span is 

limited to up to 10 MHz, and center frequency fine-tuning is performed. The span is changed by 

effectively reducing the sampling rate with a decimating filter. A 503-tap FIR filter and a four-stage 

comb filter allow highly accurate filtering with minimal spurious emissions [41]. 

 When acquiring data with Tektronix RSA 2203A, the Acquisition Length and Analysis Length 

are important parameters to consider, as well as their relation with the instrument capacity. This 

exposition is particularly relevant when the acquisitions are achieved using a GPIB, because all 

dimensions are defined in blocks and in samples, instead of time values. 

The Acquisition Length is defined by the number of samples per block of frames, and each 

frame is defined by a fixed number of samples. The Acquisition Length depends on both the frame 

length and the number of frames. A block of frames is designated as Block Size. Hence, the following 

relation gives the Acquisition Length in samples [41]: 

𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑐𝑠 𝐿𝑅𝑠𝑔𝑡ℎ = 𝐵𝑙𝑐𝑐𝑘 𝑆𝑖𝑀𝑅 × 𝐹𝑟𝑎𝑚𝑅 𝐿𝑅𝑠𝑔𝑡ℎ (C.4) 

In other words, the Acquisition Length defines the period of time during which the Spectrum 

Analyzer captures the received information, which is related to its memory capacity. Table C.2 shows 

that one block can have a maximum of 500 frames, and that each frame contains at most 1024 

samples. Based on these specifications, it is determined that the maximum Acquisition Length 

supported by this receiver is 512000 samples. However, for this number of samples the block 

duration and definition changes, based on the relations available in Table C.3. 

Characteristics  Description 

Acquisition mode Single and Continuous 
Acquisition memory size 2 MB 
Number of data samples in one frame 1024 (Vector mode) 
Block size 1 to 500 frames 
A/D converter  14 bits, 51.2 Ms/s 
Vector span  10 MHz 
Real-time capture bandwidth RF: 10 MHz; Baseband: 20 MHz (Option 05 only) 

Table C.2 – Tektronix RSA 2203A acquisition parameters for IQT data [41]. 
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When the instrument performs several acquisitions of smaller dimension, they are known as 

the Acquisition History, and they can be accessed by setting the block number. The latest acquisition 

is number 0, and the remaining are larger negative numbers [41]. 

The Analysis Length is a range of samples within the specified  Acquisition History block. The 

starting sample is defined by the Analysis Offset, which accounts for the Trigger Position, and is given 

by a frame number within the acquisition. The Analysis Offset is introduced in sample between 0 and 

1024. Therefore, the Analysis Length is limited by the Acquisition Length, the Trigger Position and the 

Analysis Offset.  

If the trigger of the instrument is active, which is normally the case when the receiver is 

synchronized with a the signal generator, the Spectrum Analyzer requires a Trigger Position to be 

specified in percentage. Under this condition, the Analysis Length is limited by the Trigger Position 

within the Acquisition Length: 

𝐴𝑠𝑎𝑙𝑦𝑠𝑖𝑠 𝐿𝑅𝑠𝑔𝑡ℎ = 𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑐𝑠 𝐿𝑅𝑠𝑔𝑡ℎ × (1 − 𝑇𝑟𝑖𝑔𝑔𝑅𝑟 𝑃𝑐𝑠𝑖𝑡𝑖𝑐𝑠 100⁄ ) − 𝐴𝑠𝑎𝑙𝑦𝑠𝑖𝑠 𝑂𝑓𝑓𝑠𝑅𝑡 (C.5) 

Henceforward, the equation above conditions the length of the analysis, and the Analysis 

Length is the information that can be fetched or read using the GPIB. Considering for example a 

Trigger Position of 25% for a maximum Acquisition Length of 512000 samples and an Analysis Offset 

of 0 samples, the Analysis Length would have 384000 samples. 

Span (Hz) Sampling Rate 
(Hz) 

Frame 
Time (s) 

Resolution 
Bandwidth (Hz) 

100 160 6.4 1 

200 320 3.2 1 

500 800 1.28 1 

1000 1600 0.64 1 

2000 3200 0.32 2 

5000 8000 0.128 5 

10000 16000 0.064 10 

20000 32000 0.032 20 

50000 80000 0.0128 50 

100000 160000 0.0064 100 

200000 320000 0.0032 200 

500000 800000 0.00128 500 

1000000 1600000 0.00064 1000 

2000000 3200000 0.00032 1000 

5000000 6400000 0.00016 1000 

10000000 12800000 0.00008 1000 

Table C.3 – Tektronix RSA 2203A span-dependent parameters for IQT acquisition [41]. 
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 Another important aspect of the data acquisition resides in the accuracy of the instrument, 

and the phase/amplitude correction in frequency that should be applied. Tektronix support team 

provided a document describing the steps to achieve this flatness correction. In the process of 

correction, the first and last 256 samples are discarded to remove the finite length effect in the signal 

processing. Therefore, if those samples are discarded, the corrected data is shortened by 512 

samples. If these samples are discarded, this must be accounted for. 

C.3. Relating the Baseband Transmission to the Acquisition 

 This section describes a generic transmission example between the instruments involved, 

which are the Keithley 2910 RF Signal Generator and the Tektronix RSA 2203A Real-Time Spectrum 

Analyzer. 

Consider an arbitrary transmission composed by 𝑁𝑆 complex samples. To transmit the 

samples at improved conditions, consider also an oversampling factor of 𝑁𝐿𝑆. At this point, the 

transmission length in samples is defined as: 

𝑇𝑥𝐿𝑅𝑠𝑆 = 𝑁𝐿𝑆 × 𝑁𝑆 

 These samples in baseband are transmitted as an ARB file into Keithley Model 2910. We now 

need to specify a sampling rate to the Signal Generator.  It is known that the ADC at the Spectrum 

Analyzer samples at 51.2 MHz. Therefore, since the sampling theorem stipulates that the sampling 

rate should be at least twice the highest frequency of the sampled signal, then ideally the sampling 

rate for transmission must be underneath: 

𝐾𝑅𝑖𝑆𝑅 = 51.2 𝑀𝑀𝑀 2⁄ = 25.6 𝑀𝑀𝑀 

 This is the theoretical limit stipulated by the Nyquist criterion for an ideal situation, requiring 

extremely accurate instrumentation. In a real system, the limitations of the instruments should be 

taken into account (for instance, in this dissertation the RoF network has the transmitter, the RSOA, 

the receiver, etc…), and the sampling rate increased. This is why oversampling should be introduced 

previously. As it was explained in Section 5.3.2, oversampling provides a greater margin of operation 

to the anti-aliasing filter, hence improving the reconstruction of the signal. It also improves the SNR. 

In this description, the closest rate supported by Keithley Model 2910 that is under the Nyquist rate is 

25 MHz. In this case, transmitting the oversampled signal at 25 MHz corresponds, in terms of rate for 

the original samples, to transmitting the non-oversampled at 25 𝑀𝑀𝑀 𝑁𝐿𝑆⁄ , that is, the bandwidth 

has increased with oversampling.  

 Knowing the sampling rate, we can already determine the duration of the transmission. The 

sampling time is given by: 
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𝐾𝑅𝑖𝑆𝑇 = 1 𝐾𝑅𝑖𝑆𝑅⁄ = 1 25 𝑀𝑀𝑀⁄ = 0.04 𝜇𝑠 

 Thus, the transmission length in time for this sampling time is given by: 

𝑇𝑥𝐿𝑅𝑠𝐹 = 𝐾𝑅𝑖𝑆𝑇 × 𝑇𝑥𝐿𝑅𝑠𝑆 = 0.04 𝜇𝑠 × 𝑇𝑥𝐿𝑅𝑠𝑆 

 At this point, the transmission duration is known. To find out the Acquisition Length required 

in samples, this duration must be related to the timing parameters supported by Tektronix RSA 

2203A, which depend on the selected frequency span. Consider a frequency span of 10 MHz. From 

Table C.3 we can get the frame duration associated to this span, which is 0.08 ms. Hence, the 

number of frames required to acquire the entire transmission, that is, the Block Size is given in 

frames by the ratio: 

𝐵𝑙𝑐𝑐𝑘 𝑆𝑖𝑀𝑅 = 𝑐𝑅𝑖𝑙(𝑇𝑥𝐿𝑅𝑠𝐹 0.08 𝑚𝑠⁄ ) 

 It is known from Table C.2 that each frame contains 1024 samples. Therefore, to acquire 

completely the transmission the Spectrum Analyzer has to acquire a minimum of 𝐵𝑙𝑐𝑐𝑘 𝑆𝑖𝑀𝑅 × 1024 

samples. However, if triggering is used, the Trigger Position in Tektronix RSA 2203A will influence the 

analysis length. For instance, a Trigger Position of 25% will limit the Analysis Length to a fraction of 

the Acquisition Length. This should be taken into account when data is being fetched from the 

instrument. Therefore, if a 25% Trigger Position is set, then for this generic example the minimum 

number of frames to acquire so that a complete acquisition of the transmitted signal is achieved is: 

𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑐𝑠 𝐿𝑅𝑠𝑔𝑡ℎ = 𝑐𝑅𝑖𝑙(𝐵𝑙𝑐𝑐𝑘 𝑆𝑖𝑀𝑅/(1 − 25/100)) × 1024 

 Currently, assuming perfect synchronization with triggering, we can transfer the acquired 

baseband complex samples back into Matlab environment. In this example, it is assumed that no 

Analysis Offset is present. However, these samples are now sampled at a different rate than the 

original samples, which is again depending on the frequency span used in the acquisition. By 

consulting Table C.3 we can see that the sampling rate is 𝑇𝑅𝑘𝑆𝑅 = 12.8 𝑀𝑀𝑀, because the 

acquisition was performed for a frequency span of 10 MHz. Consequently, in order to recover the 

original samples, we need to find the instrument ration rate while taking into account the 

oversampling rate introduced before transmitting. This is achieved by doing the following calculation: 

𝑅𝑎𝑡𝑖𝑐𝑠 𝑅𝑎𝑡𝑅 = 𝑁𝐿𝑆 ×
𝑇𝑅𝑘𝑆𝑅
𝐾𝑅𝑖𝑆𝑅

 

 The ration between these two instruments rate is generally not an integer value. 

Nonetheless, with rational approximation an estimate can be made on an equivalent fraction of 

integers. Matlab function rat() performs this operation for a given tolerance. In this example, we 

consider that 𝑟𝑎𝑡(𝑅𝑎𝑡𝑖𝑐𝑠 𝑅𝑎𝑡𝑅) = 𝑁𝑈𝑀 𝐷𝐸𝑁⁄ . The original sampling rate prior to oversampling and 
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transmission can now be recovered by interpolating the samples by a factor of 𝐷𝐸𝑁, and decimating 

back the samples by a factor of 𝑁𝑈𝑀, resulting in the following amount of acquired samples: 

𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑐𝑠 = 𝐵𝑙𝑐𝑐𝑘 𝑆𝑖𝑀𝑅 × 1024 × DEN/NUM 

 Because the ceil() function was applied to define the Acquisition Length, there is probably a 

small excess in the received samples. In this case, since perfect synchronization is assumed, the 

received information of interest is found within samples going from 1 to 𝑁𝑆, and the remaining can 

be discarded. In this dissertation, other mechanisms were implemented to recover the samples in 

the right position, namely, introducing empty guard intervals between packets, and also using cross-

correlation with known sequences to detect the packet starting sample. 
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Appendix D. Experimental Results for RCE, BER and PER Metrics 

The results of the performance analysis achieved for this project are presented here in their 

numerical form. They are divided in three main groups: the electrical domain acquisitions; the RSOA 

polarization analysis; the RoF experimental configurations. Although the results discussed in the 

thesis concern 5-fold oversampling, acquisitions revealing very similar pattern were also made for 2-

fold oversampling. In all cases, the oversampling is performed by IFFT/FFT zero padding. Each value is 

the result of an average computed for 20 packets, with 129 OFDM symbols (SIGNAL+DATA). 

D.1. Channel Spacing of 5 MHz, 2-fold Oversampling 
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Table D.1 – Results for the electrical configurations, with 2-fold oversampling. 
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Table D.2 – Results for the RSOA polarizations, with 2-fold oversampling. 
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Table D.3 – Results for the RoF configurations, with 2-fold oversampling. 
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Table D.4 – Results for the electrical configurations, with 5-fold oversampling. 
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Table D.5 – Results for the RSOA polarizations, with 5-fold oversampling. 
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Table D.6 – Results for the RoF configurations, with 5-fold oversampling. 
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