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ABSTRACT 
 

White Spot Disease (WSD) is an aggressive and devastating viral disease caused by 

the White Spot Syndrome Virus (WSSV). This highly pathogenic and widespread 

disease, present throughout Asia and the Americas, can cause up to 100% mortality 

within 3-7 days after infection. It is annually responsible for huge ecological and 

economical losses in the main producing countries and forms as such one of the greatest 

threats for the further sustainable development of shrimp aquaculture. 

Previous research showed that manipulation of physical factors gave promising 

results: manipulation of the environmental factors such as temperature produced the 

most interesting and promising results. For this thesis three experiments were 

performed, all in which pacific white shrimp (Litopenaeus vannamei) were 

intramuscularly inoculated with a well-defined viral dose (30 and/or 10000 SID50) and 

exposed to high water temperature via standardised protocols. The first experiment 

looked at the efficacy of elevated temperature for protecting shrimp against WSSV. 

Practically, four temperature treatments in which an elevated  temperature (33 °C) was 

either applied before virus inoculation, after the inoculation, both before and after 

inoculation, and in the fourth treatment a low temperature (27ºC) was used throughout 

the test. In the second series of experiments the protective value of high temperature 

after an initial period of viral replication was evaluated. Water temperature was raised 

from 27ºC to 33ºC at 0, 12 or 24 hours post WSSV inoculation. Maintaining and 

controlling such high water temperatures for longer periods of time is of course very 

unpractical in field conditions and probably economically unfeasible, so the third 

experiment evaluated the effectiveness of shorter cyclic exposure periods to high water 

temperature. Hence, the shrimp were exposed to daily temperature cycles (33ºC/27ºC) 

with 6, 12 and 18 hours of high water temperature, during five consecutive days. 

Experiment 1 demonstrated a total blocking of disease progression when 

hyperthermia was applied immediately post inoculation. The protection was very 

effective even with a high viral dose (10000 SID50). The second experiment, at a low 

viral dose (30 SID50), showed that high temperature to some extent also worked 

therapeutic in that previously 24 hours of virus replication could be allowed. At a high 

infection dose (10000 SID50) the level of protection was however not so effective. In 

Experiment 3, only a minimum of  18 hours at 33°C resulted in a significant lower 
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mortality with the infected shrimp. The results from all the experiments clearly show the 

potential of high water temperature for preventing mortality in WSSV infected shrimp. 
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ABSTRACT 
 

White Spot Disease (WSD) is een uiterst agressieve en letale virale aandoening die 

veroorzaakt wordt door het White Spot Syndrome Virus (WSSV). Deze zeer 

infectueuze en wijdverspreide ziekte (Azië en Amerika), kan binnen 3 tot 7 dagen na 

infectie tot 100% mortaliteit leiden. Het is jaarlijks verantwoordelijk voor reusachtige 

ecologische en economische verliezen in de producerende landen en vormt dus één van 

de grootste bedreigingen voor de verdere duurzame ontwikkeling van garnalenkweek. 

Vorige onderzoeken toonden reeds aan dat de manipulatie van fysische variabelen 

tot veelbelovende resultaten kon leiden: zo bleek temperatuur één van de meest 

veelbelovende te zijn. Voor deze thesis werden drie experimenten uitgevoerd, allen met 

Litopenaeus vannamei, die intramusculair geïnoculeerd werden met een welbepaalde 

virale dosis (30 en/of 10000 SID50) en vervolgens blootgesteld werden aan een 

verhoogde watertemperatuur volgens gestandardiseerde protocols. Het eerste 

experiment bekeek het beschermend effect van de temperatuursverhoging tegen WSSV. 

De hoge temperatuur (33 °C) werd hierbij toegepast ofwel vóór de inenting met het 

virus, ofwel na de inenting, zowel vóór en na de inenting en in de vierde behandeling 

werd een lage temperatuur (27ºC) gebruikt gedurende geheel de test. In de tweede 

experimentenreeks kon het virus zich eerst gedurende een bepaalde periode 

vermenigvuldigen (0, 12 of 24 uur na inoculatie), vooraleer de temperatuursverhoging 

(van 27°C naar 33 °C) uitgevoerd werd. In de praktijk is het handhaven en controleren 

van dergelijke hoge watertemperaturen gedurende langere tijdspannes onpraktisch en 

waarschijnlijk economisch onhaalbaar, zodat het derde experiment opgezet werd om de 

doeltreffendheid van kortere cyclische periodes van blootstelling aan een verhoogde 

watertemperatuur uit te testen. Hiertoe werden de garnalen onderworpen aan dagelijkse 

temperatuurscycli (33ºC/27ºC) van 6, 12 en 18 uur blootstelling aan de verhoogde 

watertemperatuur, en dit gedurende vijf opeenvolgende dagen. 

Experiment 1 toonde aan dat een continue verhoogde temperatuur onmiddellijk na 

de virale inoculatie voor een heel efficiënte bescherming zorgt, zelfs bij inentingen met 

een hoge virale dosis (10000 SID50). Het tweede experiment toont aan dat de verhoogde 

temperatuur bij een lage virale dosis (30 SID50) zelfs een zekere curatieve werking 

heeft, in die zin dat het virus zich initieel tot 24 uur mag vermenigvuldigen. Bij een 

hoge dosis (10000 SID50) is de mate van bescherming echter niet zo efficiënt. In 
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Experiment 3, is er slechts één behandeling die resulteert in een significant lagere 

mortaliteit, namelijk de blootstelling aan 33°C gedurende 18 uur per dag. De resultaten 

van alle experimenten tonen duidelijk het potentieel van een verhoogde 

watertemperatuur ter bestrijding van WSSV besmetting. 
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INTRODUCTION 

 

CHAPTER 1 – INTRODUCTION 

 
White spot syndrome virus (WSSV) causes an aggressive and devastating disease 

(white spot disease, WSD) in shrimp farms throughout Asia, North and South America. 

Mortalities of 100% can occur within 3-10 days after the onset of disease in grow-out 

operations. White spot disease constitutes a huge ecological and economical threat for 

the development of shrimp fisheries and aquaculture. First recorded in Taiwan in 1992 

(Chou et al., 1995), it has spread to several shrimp-farming countries in Asia and Latin 

America (Wang et al., 2000). The disease is characterised by the presence of white 

spots on the inner surface of the exoskeleton from which the disease name is derived 

(Lo et al., 1996). Other clinical signs include anorexia, lethargy and reddish 

discoloration of the body (Otta et al., 1999). WSSV is an enveloped, non-occluded 

bacilli-form-shaped virus containing a double-stranded DNA. 
Since the outbreak of white spot disease, shrimp production has decreased 

significantly in many countries and farmers are facing serious difficulties in continuing 

production. The resulting economic losses and their impacts are now significantly 

affecting national economies and the livelihoods of shrimp farmers. Provision of 

assistance for combating this situation is considered highly appropriate and timely. Such 

assistance will help secure shrimp aquaculture development, national income through 

trade (both local and international), and livelihoods of farmers and other service 

providers (FAO, 2003). 

In order to face this serious problem, the scientific community promptly answered 

to gather knowledge on this specific viral disease. Also a considerable number of 

measures to control WSSV were tested; however with little conclusive results and 

limited applicability. Of those, temperature manipulation for controlling this specific 

pathogen appears to be one of the most promissory and potentially applicable in the 

field. 

Temperature is one of the most important environmental factors because it can 

affect an aquatic animals metabolism, oxygen consumption, growth rate, moult cycle, 

and survival rate directly. Temperature can also affect aquatic animals indirectly when 

combined with other environmental factors such as salinity and dissolved oxygen. 

Moreover temperature can have an impact on the development of pathogens and thus 

1 



INTRODUCTION 

disease in aquatic animals. Studies on the interaction between temperature and 

crustacean pathogens are however limited. So far there are only three reports on the 

effect of temperature on WSSV infection in crustaceans (Vidal et al., 2001 and Guan et 

al., 2003 in penaeid shrimp and Jiravanichpaisal et al., 2004 in freshwater crayfish). 

The aim of this study was to evaluate the effect of high water temperature (33ºC) 

on survival of WSSV-infected shrimp (Litopenaeus vannamei), using a highly 

standardised challenge procedure, with a known infectious dose of white spot syndrome 

virus. 

Three experiments were performed. The first experiment aimed to confirm the 

effectiveness of high water temperature for protecting shrimp against WSSV. For that, 

four temperature treatments were compared, in which high temperature was applied 

both before and after the virus inoculation, only before inoculation or only after the 

inoculation. In a last treatment low temperature (27ºC) was maintained all the time. In 

the second experiment the objective was to evaluate the protective value of high water 

temperature, after an initial period of viral replication. The water temperature was raised 

from 27ºC to 33ºC at different time points, at 12 and 24h after virus inoculation. 

Knowing that in field conditions, keeping high water temperature for long periods of 

time will probably be economically unfeasible, the third experiment evaluated the 

effectiveness of shorter periods of high water temperature exposure. The shrimp were 

submitted to daily temperature cycles (33ºC/27ºC) with 6, 12 and 18 hours of high water 

temperature exposure, during five consecutive days.     
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CHAPTER 2 – LITERATURE REVIEW 

 

2.1 – Global aquaculture production 

 
According to FAO statistics from 2004, the contribution of aquaculture to global aquatic 

production continues to grow, increasing from 3.9 percent of total aquatic production by 

weight in 1970 to 29.9 percent in 2002. Aquaculture continues to grow more rapidly 

than all other animal food-producing sectors. Worldwide, the sector has grown at an 

average rate of 8.9 percent per year since 1970, compared with only 1.2 percent for 

capture fisheries and 2.8 percent for terrestrial farmed meat-production systems over the 

same period. In 2002, total world aquaculture production (including aquatic plants) was 

reported to be 51.4 million tonnes (Fig. 1) by quantity and US$ 60.0 billion by value. 

This represents an annual increase of 6.1 and 2.9 percent in quantity and value 

respectively, over reported figures for 2000.  

 

 

Aquaculture
Capture 

Fig. 1 - Global capture fisheries and aquaculture production data show the increasing importance of 
aquaculture in the annual global aquatic production (FAO, 2004). 
 
 

According to data published by FAO (2002), increases in world aquaculture 

production will be driven by increases in Chinese production, with South Asia, Latin 

America and the Caribbean and Europe providing smaller increases. Freshwater species 

and molluscs will dominate aquaculture production. In order to meet growing projected 

consumption needs in Europe, total production increases in volume are estimated to 

result primarily from increases in aquaculture production. Indeed, the model estimates 
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that farmed production will likely double by 2030, exceeding 2.5 million tonnes in 2015 

and reaching 4 million tonnes in 2030. 

 

 
2.1.1 – Global shrimp production  

 
Although cultured crustaceans represented only 5.4 percent of total aquaculture 

production by weight, they comprised 20.1 percent of total global aquaculture by value 

in 2002. One of the fastest growing aquaculture production sectors is that of penaeid 

shrimp. Within this family, the main cultivated species are the giant tiger prawn 

(Penaeus monodon), the fleshy prawn (Fenneropenaeus chinensis) and the whiteleg 

shrimp (Litopenaeus vannamei), these three species accounting for over 86% of total 

shrimp aquaculture production in 2000. Despite being affected by serious disease 

outbreaks in both Latin America and Asia, the annual rate of growth of the cultured 

shrimp sector was 6.8 percent (by weight) between 1999 and 2000. Although this had 

dropped to 0.9 percent during 2002, these growth rates are still relative high compared to 

other food producing sectors.  

In recent years, Litopenaeus vannamei has become the leading farm-raised species, 

representing more than half of the total world production (Fig. 2) (FAO Fishstat 

database3, 2003). Since a few years China has shifted production towards L. vannamei, 

producing more than 270 000 metric tonnes in 2002 and an estimated 300 000 metric 

tonnes (71 percent of the country's total shrimp production) in 2003, which is higher 

than the current production of the whole of the Americas. Other Asian countries with 

developing industries for this species include Thailand (120 000 metric tonnes estimated 

production for 2003), Viet Nam and Indonesia (30 000 metric tonnes estimated for 2003 

each). Total production of L. vannamei in Asia was approximately 316 000 metric 

tonnes in 2002, and it has been estimated that this has increased to nearly 500 000 metric 

tonnes in 2003, which is worth approximately US$ 4 billion in terms of export income 

(FAO, 2004). 
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Fig. 2 – Global aquaculture production of Litopenaeus vannamei (FAO Fishstat database3, 2003). 

 

 

2.2 – Penaeid shrimp biology 

 

2.2.1 – Habitat and geographical distribution 
 

Penaeid shrimp can be found in tropical and subtropical waters around the world, 

from about 40°N to 40°S latitude. Adult shrimp are rarely found below 180 m and 

typically inhabit off-shore waters, while juveniles generally occur in protected coastal 

habitats (Bailey-Brock & Moss, 1992). 

Litopenaeus vannamei, is native from the pacific coast of America, from Mexico to 

Peru (Fig. 3), in areas where water temperatures are normally over 20ºC throughout the 

year (Rosenberry, 2004). This marine shrimp likes muddy bottoms at depths from the 

shoreline down to about 72 meters (Dore and Frimodt, 1987). It is not currently known 

whether there is one population or if isolated populations exist, although there appear to 

be differences between stocks from various areas under culture conditions.  
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South America 

North America

Atlantic Ocean 

Pacific Ocean 

 
 

Fig. 3 – Geographical distribution of Litopenaeus vannamei 

 

2.2.2 –Taxonomy 

 
Penaeid shrimp belong to the largest phylum in the animal kingdom, the Arthropoda. 

This group of animals is characterised by the presence of paired appendages and a 

protective cuticle or exoskeleton that covers the whole animal. The subphylum 

Crustacea is made up of 42.000, predominantly aquatic species that belong to 10 classes. 

Within the class Malacostraca, shrimp, together with crayfish, lobsters and crabs, belong 

to the order Decapoda. Within the suborder Dendrobranchiata, the penaeid shrimp, 

together with gamba prawns, gamba shrimps, benthesicymid shrimps, rock shrimps and 

solenocerid shrimps are included in the Superfamily Penaeoidae. The family of the 

Penaeidae (penaeid shrimp) contains apart from Litopenaeus vannamei many important 

farmed species such as Penaeus monodon, Litopenaeus stylirostris, Marsupenaeus 

japonicus, Fenneropenaeus indicus and Fenneropenaeus chinensis. 
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                                     Species = vannamei

                                  Genus = Litopenaeus 

                               Family = Penaeidae 

                            Super family = Penaeoidea 

                         Suborder = Dendrobranchiata 

                      Order = Decapoda 

Superorder = Eucarida 

               Subclass = Eumalacostraca 

            Class = Malacostraca 

         Subphylum = Crustacea 

      Phylum = Anthropoda 

  Kingdom = Animalia 

Domain = Eucarya 

 

 

 

 

 

 

 

 

 
Fig. 4 – Taxonomic classification of Litopenaeus vannamei 

 
Fig. 5 – Drawing of Litopenaeus vannamei 

 

Recently, Pérez Farfante and Kensley (1997) revised the taxonomic classification 

into genera within the family Penaeidae. The changes for the most important farmed 

species are shown in the table below. 

Previous  Actual 
Penaeus stylirostris Litopenaeus stylirostris 
Penaeus vannamei Litopenaeus vannamei 
Penaeus japonicus Marsupenaeus japonicus 
Penaeus indicus Fenneropenaeus indicus 
Penaeus penicillatus Fenneropenaeus penicillatus 
Penaeus chinensis Fenneropenaeus chinensis 
Penaeus monodon Penaeus monodon 

 

 

Fig. 6 – Taxonomic changes in important cultured shrimp species (Pérez Farfante & Kensley, 1997) 
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2.2.3 – Morphology 

 

2.2.3.1 – External morphology 

 
Like the other decapod crustaceans, shrimp are bilateral symmetric. The body is 

protected by an exoskeleton and divided into two regions: the cephalothorax (one unique 

piece) and the abdomen (several articulated pieces). They are covered by a chitin 

skeleton more or less calcified (calcium carbonate). This organ is flexible in the 

abdomen articulation for allowing movement (Morales, 1991). In the head region, 

antennules and antennae perform sensory functions. The mandibles and the two pairs of 

maxillae form the jaw-like structures that are involved in food uptake (Solis, 1988). 

Appendages of the cephalothorax vary in appearance and function. The maxillipeds are 

the first three pairs of appendages, modified for food handling and the remaining five 

pairs are the walking legs (pereopods). Five pairs of swimming legs (pleopods) are 

found on the abdomen (Bell and Lightener, 1988; Baily-Brock and Moss, 1992). 

 
 
 
 
 
 
 
 

Pereon Pleon

Telson 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 - External morphology of shrimp. The body organization of decapod crustaceans is divided into 
tagmata or specialized regions. These are the pereon, (head and main internal organs), pleon (highly 
muscularized and specialized for swimming) and telson, or reminiscent tail-like structure. Each tagma 
possesses specialized appendages, either for feeding and crawling (pereopods) or for swimming and 
ventilation (pleopods). The uropods of the tail fan are used for escape propulsion. 

I II III IV
V

VI

Uropods

Pleopods
Pereopods

Pleon segments
Carapace

Antenna 

Maxillipeds 

Antennule 

Rostrum 

Compound eye 

(Abdómen) (Cephalo- toxax) 
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2.2.3.2 – Internal morphology   

 
The internal morphology of the penaeid shrimp is outlined in Figure 7. Penaeids and 

other arthropods have an open circulatory system and, therefore, the blood and the 

bloodcells are called haemolymph and haemocytes, respectively. The open spaces in the 

body are the haemocoel and contain haemolymph. Crustaceans have a muscular heart 

that is dorsally located in the posterior cephalothorax. It is short and wide, and tapering 

anteriorly and posteriorly. The blood is pumped by the heart through a complex array of 

arteries to the haemocoel. The valved haemolymph vessels leave the heart and branch 

several times before the haemolymph arrives at the sinuses that are scattered throughout 

the body, where exchange of substances takes place. After passing the gills, the 

haemolymph returns in the heart by means of three wide non-valved openings. The 

haemocytes are produced in the haematopoietic tissue. This organ is dispersed in the 

cephalothorax, but mainly present around the stomach and in the onset of the 

maxillipeds (Bauchau, 1981; Fox, 2001). 

The digestive system is divided into a complex, cuticle-lined foregut region; a 

compact digestive (or midgut) gland at the beginning of the midgut region, followed by a 

long tubular, simple part; and a cuticle-lined hindgut region, consisting principally of the 

rectum (Dall, 1967). The stomach and oesophagus are part of the foregut. The stomach 

is, by divisions, composed of a cardiac and a  pyloric region. In the cardiac stomach the 

cuticle is elaborated to form a complex and intricate gastric mill to grind food. Posterior 

to the cardiac stomach is located a smaller stomach region, the pyloric stomach which 

contains a sieve, or filter press, made of cuticular setae (Fox, 2001). In the midgut the 

hepatopancreas is located. This digestive gland consists of diverticula of the intestine. 

The spaces between these hepatopancreatic tubules are occupied by haemolymph 

sinuses. The main functions of the hepatopancreas are the absorption of nutrients, 

storage of lipids and production of digestive enzymes (Johnson, 1980). 

The reproductive system in crustaceans is the following. The male has two pairs of 

modified abdominal appendages on the first and second abdominal segments (the 

petasma) that deliver sperm to the female's external receptacle (the thelycum) located 

between the bases of the fifth walking legs..  The gonads (ovaries and testes) are paired 

tubular structures in the cephalothorax that connect to the exterior by the external sexual 
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appendages (thelycum and petasma) via paired gonoducts (oviducts and vasa deferentia). 

(Bailey-Brock & Moss, 1992).  

The decapod excretory organs are a pair of antennal glands located at the base of the 

head leading by a duct to the nephridiopores on the second antenna. The antennal gland 

is a small white pad of tissue just anterior to and lateral to the oesophagus (Fox, 2001) 
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 Fig. 8 - Diagram of the internal morphology of penaeid shrimp. 

 
 

2.2.4 – Penaeid shrimp life cycle  

 
Sexes are separated in most cultivated decapods, although occasionally individuals in 

an intersex hermaphroditic condition are found. In mature decapods mating generally 

occurs when the female is in a soft-shelled condition (i.e. newly moulted) and results in a 

deposition of one or more spermatophores in, or close to the genital openings of the 

female.  The spawning occurs directly into the sea in the case of penaeid shrimp, or to 

the brood chamber beneath the abdomen in other groups. Penaeids eggs hatch a few 

hours after spawning and each larvae is left to fend for itself as it develops through the 

nauplius, protozoea and mysis stages before metamorphosing into a post larvae (Fig. 7) 

(Wickins and Lee, 2002). Their diet ranges from the hereditary yolk sack, during the 

early naupliar stage, to phytoplankton (microscopic plant organisms) and then to 
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zooplankton (microscopic animals). Finally, at mysis stage and beyond, the shrimp is 

able to eat a wide variety of organisms. During this period, the larvae drift with the 

currents. A small percent of them are swept into the bays and estuaries by the currents. 

Here, the postlarvae remain, through their juvenile stages, until they mature and seek the 

offshore spawning grounds. It has been estimated that only 1 percent of those spawned 

in nature actually reach the adult stage (Treece and Yates, 1988). 

 

 
     Fig. 9 – Penaeid shrimp life cycle (Baily-Brock and Moss, 1992). 

 

   

2.2.5 – Physiology 

 

2.2.5.1 – Immune system 

 
The immune system is commonly divided into two major branches: innate and 

adaptative immunity. Since vertebrates lack an adaptive immune system in which 

memory is the hallmark, their defence mechanisms only rely on innate immune 

responses. Hence, crustaceans cannot readily be vaccinated against particular pathogens. 

Instead, their defence systems, while effective, tend to be more general and based on 

haemocytes that can mount phagocytic, cytotoxic and inflammatory responses to 

invading microbes (Wickins and Lee, 2002). Recently, however, cumulative 

experimental data from invertebrates provide some specificity and memory might exist 

in invertebrates (Kurtz, 2005).   
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Aquatic crustaceans are in intimate contact with their environment, particularly in 

intensive culture systems, which are enriched with bacteria and viruses. Some of these 

are pathogenic and many are saprophytic. However, under normal conditions animals 

maintain a healthy state by defending themselves against potential pathogens 

(Jiravanichpaisal, 2005).  

The first line of defence against microbial invasion is the cuticle. It is a physical hard 

barrier with antimicrobial proprieties, for example it contains inhibitors against 

enzymatic attack. If it is penetrated, there is an immediate recognition of the non-self 

material by haemocytes and plasma proteins (Wickins and Lee, 2002).  

The digestive tract, which is the main route of invasion, is partially lined with 

chitinous membranes and its hostile environment of acids and enzymes is able to 

inactivate and digest many virures and bacteria. In most cases the cuticular defences are 

sufficient to protect against even quite virulent pathogens, which often only produce 

disease when the integument has been physically damaged. Once pathogens gain entry 

into the hemocoel of the host, they encounter a complex system of innate defence 

mechanisms involving cellular and humoral responses (Jiravanichpaisal, 2005).  

The cellular reactions involve three subpopulations of haemocytes which are 

responsible for a whole number of reactions: containment of the PO system, 

phagocytosis, degranulation and release of reactive oxygen intermediates (Song and 

Hsieh, 1994), and coagulation (Söderhäll and Smith, 1986).  

The humoral components include the activity of soluble enzymes, either activated in 

circulating hemolymph, or released by cells that serve to detoxify toxic molecules or 

inhibit the physiology of invading pathogens (Cardenas and Dankert, 2000). 

Antimicrobial peptides, proteases and protease inhibitors, as well as lectin-like 

molecules exist in the white shrimp species Litopenaeus vannamei and L. stylirostris 

(Gross et al., 2001; Cerenius and Söderhäll, 2004). 

 

 

2.2.5.1.1- Haemocytes 
 

In crustaceans, the circulating haemocytes play a crucial role in defence against 

infection, including recognition, phagocytosis, melanization, cytotoxicity and cell–cell 

communication (Johanson et al., 2000). In decapod crustaceans, these cells can be 
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divided, according their morphology (presence of cytoplasmic granules) into three types: 

hyaline, semigranular and granular cells (Bauchau, 1981). 

The hyaline cells play a major role in phagocytosis (Söderhäll et al., 1986). The 

semigranular cells take part in encapsulation reactions and have a limited function in 

phagocytosis. Both granular cells and semigranular cells store the components of 

prophenoloxidase activating system and are capable of cytotoxic reaction (Smith and 

Söderhäll, 1983). The semigranular cells are the most sensitive and they are the first to 

respond to the lipopolysaccharides and β-1,3-glucans by degranulation and then, the 

components of the proPO system are released (Johansson and Söderhäll, 1985).  

 

 

2.2.5.1.2 – The prophenoloxidase activating system (proPO) 

 
The primary mediator of the cellular response to injury and disease in invertebrates is 

the pro-enzyme prophenoloxidase (proPO) activating system (Söderhäll et al., 1994). 

This system consists of several proteins involved in the immune defence in invertebrates 

leading to melanin production, cell adhesion, encapsulation, and phagocytosis 

(Sritunyalucksana, and Söderhäll, 2000), where proPO is released from haemocytes by 

an active degranulation process that can be stimulated by inflammatory agents such as 

lipopolysaccharide (LPS) or peptidoglycan (molecules of bacterial cell walls) and ß-1,3-  

glucan (molecules of fungal and yeast cell walls). Once released, ProPO is 

proteolytically converted, through cleavage of the enzyme at a specific site, to its active 

form PO, which is the central component of an enzyme cascade that has been identified 

in crustaceans (Cardenas et al., 2000). The active form of the enzyme then functions to 

produce antimicrobial effects, wound repair, encapsulation, and phagocytosis. 

 
 

2.2.5.1.3 – The coagulation system 
 

One of the principal differences between vertebrates and arthropods is the fact that 

the body fluids in vertebrates are mostly confined to blood and lymphatic vessels, while 

arthropods have an open circulatory system. Therefore, after wounding, arthropods must 

produce a matrix that quickly stops the loss of haemolymph, but also aids in trapping 
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foreign organisms to prevent spreading throughout the haemocoel. Haemolymph clotting 

is thus an important part of innate immunity and is regulated in many cases by microbial 

elicitors (Jiravanichpaisal, 2005).    

 In crustaceans, the coagulation system involves plasma clotting protein and a 

haemocyte-derived transglutaminase. This clotting protein is synthesised in the 

hepatopancreas and released to the haemolymph. The transglutaminase is synthesised 

and stored in the haemocytes, and released to the plasma upon the activation of 

haemocytes. This enzyme covalently crosslinks the clotting protein molecules in the 

presence of calcium ions to form a soft gel at the wound sites (Bangyeekhun, 2002). 

 

 

2.2.5.1.4 – Antimicrobial peptides 

 
Antimicrobial peptides are a major component of the innate immune defense system 

in marine invertebrates. They are defined as molecules less than 10 kDa in mass which 

show antimicrobial properties (Boman, 1995) and provide an immediate and rapid 

response to invading microorganisms (Bartlett, 2002). The major classes of 

antimicrobial peptides include (i) α-helices, (ii) β-sheet and small proteins, (iii) peptides 

with thio-ether rings, (iv) peptides with an overrepresentation of one or two amino acids, 

(v) lipopeptides, and (vi) macrocyclic cystine knot peptides (Epand and Vogel, 1999).  

There is evidence that antimicrobial peptides are widespread in invertebrates (15), 

especially in tissues such as the gut and respiratory organs in marine invertebrates, 

where exposure to pathogenic microorganisms is likely (Chisholm and Smith, 1992). 

These peptides generally act by forming pores in microbial membranes or otherwise 

disrupting membrane integrity (Tam et al., 2000). The value of antimicrobial peptides in 

innate immunity lies in their ability to function without either high specificity or 

memory, and their small size makes them easy to synthesize (Relf et al., 1999). In 

addition, many antibacterial peptides show remarkable specificity for prokaryotes with 

low toxicity for eukaryotic cells (Zasloff, 1992). 

Prominent among crustacean antimicrobial peptides are the penaeidins, which 

display antifungal and antibacterial properties and were isolated from the haemolymph 

of the shrimp Litopenaeus vannamei (Destoumieux el al. 1997). 
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2.2.5.1.5 – Non-self recognition system 
 

The innate immune system is based on recognition of molecules named pattern 

recognition receptors that are present on pathogenic microbes. These molecules are 

structural molecules of pathogens, but not of the host, which are shared by a large group 

of microbes and are essential for their survival (Medzhitov and Janeway, 2000; Janeway 

2001). Example of such molecules are ß-1,3-glucans from fungi, lipopolysaccharide, 

peptidoglycan and lipoteichoic acid from bacteria, and double-stranded RNA from virus. 

Therefore, presence of microbial molecules is an indication of an infection, which allows 

the host to choose a sufficient mechanism to fight against a certain class of pathogens 

(Medzhitov and Janeway, 2000). The biological function of recognition molecules in 

innate immune reactions are (i) triggering of proteinase cascades and/or signalling 

pathways of the defence mechanisms, and (ii) clearance of microbial invaders from the 

blood system (Bangyeekhun, 2002). 

 

 

2.2.5.1.6 – Proteinase inhibitors  

 

Proteinase cascades, such as clotting cascades and the proPO system, need to be 

carefully regulated to prevent excessive activation of endogenous cascades and damage 

to host tissue (Jiravanichpaisal, 2005). Proteinase inhibitors are present in multiple forms 

in animals, plants and microorganisms. A number of proteinase inhibitors have been 

reported from invertebrates. Most of them have a common structural feature as one of 

well characterised families, such as Kazal, Kunitz, α-macroglobulin, serpin, 

metalloproteinase inhibitor and cysteine proteinase inhibitor (Bangyeekhun, 2002). 

In the mechanism of inhibition, that is common among most proteinase inhibitors, 

the inhibitor molecule combines with the proteinase at the reactive site to block 

proteolytic activity. Invertebrate proteinase inhibitors can be found in plasma, 

haemocytes or cuticle. The gross biological function of proteinase inhibitor is to prevent 

unwanted proteolysis. Two central roles of proteinase inhibitors in invertebrate 

immunity are defence against microbial proteinases and regulation of endogenous 

proteinases (Kanost, 1999). 
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These substances play a key role to control and regulate the proPO system, avoiding 

the deleterious effects of its active components, particularly PO, which can produce 

highly toxic intermediates (Jiravanichpaisal, 2005). 
 

 

 
 
Fig. 10 – Schematic overview of crayfish defence reactions. In the presence of microbial organisms, the 
recognition molecules in the plasma participate in binding to the microbial cell wall components. Then the 
complexes bind to membrane receptors of the haemocytes and consequently activate the defence 
mechanisms. Haemocytes directly play a role in cellular defence mechanism or release humoral defence 
molecules, which lead to activation of the prophenoloxidase activating system and coagulation system 
(Bangyeekhun, 2002). 
 
 

2.3 – Shrimp Farming 
 

Shrimp farming started more than a century ago in Southeast Asia where farmers 

raised incidentally wild shrimp crops in tidal fish ponds (Rosenberry, 2004). Modern 

shrimp farming started in the early 1970s, and today, over fifty countries have shrimp 

farms. In the Eastern Hemisphere, Thailand, Vietnam, Indonesia, India and China are the 

leaders, but also Malaysia, Taiwan, Bangladesh, Sri Lanka, The Philippines, Australia 
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and Myanmar (Burma) have large industries.  In the Western Hemisphere, Mexico, 

Belize, Ecuador and Brazil are the leading producers, and there are shrimp farms in 

Honduras, Panama, Colombia, Guatemala, Venezuela, Nicaragua and Peru.  The shrimp 

importing nations (United States, Western Europe and Japan) specialize in high-tech 

"intensive" shrimp farming, but, thus far, their production has been insignificant.  In the 

Middle East, Saudi Arabia and Iran produce the most farmed shrimp (Shrimp News 

International, 2004).  

The shrimp farming process can be divided into three main phases, the hatchery, 

nursery and growout phase.   

 

2.3.1 – Hatchery 

 
 The production cycle begins at the hatchery, where the shrimp seed is obtained from 

the broodstock. In many hatcheries, females with ripe, egg-laden ovaries (gravid 

females) are brought from the sea for spawning in captivity. As alternative, and due to 

reasons of price and availability, techniques were developed for inducing maturation of 

females in captivity. This procedure also allowed the establishment of breeding 

programs for fast growing, specific pathogen-free and/or resistant stocks.  

Whether gravid shrimp are captured in the wild or matured in the hatchery, they 

invariably spawn at night, but with photoperiod manipulation, they can be induced to 

spawn at any time.  Depending on a number of variables (temperature, species, size, 

wild/captive and number of times previously spawned), they produce between 50,000 

and 1,000,000 eggs.  After one day, the eggs hatch into nauplii, the first larval stage.  

Nauplii feed on their egg-yolk reserves for a couple of days. Next they pass through the 

next two main larval stages, the zoeae (which feed on microalgae and a variety of 

formulated feeds for three to five days) and mysis (feed on algae, formulated feeds and 

zooplankton for three or four days). Next they metamorphose into postlarvae.  Postlarvae 

look like adult shrimp and feed on zooplankton, detritus and commercial feeds. Farmers 

refer to postlarvae as “PLs”, and as each day passes, the stages are numbered PL-1, PL-

2, and so on.  When their gills become branched (PL-13 to PL-17), they can be moved to 

the nursery or growout farm.  From hatching, it takes about 25 days to produce a PL-15. 
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2.3.2 – Nursery 

 
In modern semi-intensive farms, a nursery phase (between the hatchery and growout 

phases) is usually incorporated in the farm design. Nursery ponds may represent between 

6 to 15% of all culture area. They are usually made with earthen embankments, and have 

at sizes that range from 0.04-1 ha. Stocking densities are typically 100-200 juveniles m-2. 

In South-east Asia, nursery facilities also take the form of concrete tanks, concrete 

walled ponds with sand bottoms, staked net pens and floating cages (Wickins and Lee, 

2002).  The PLs are fed with a crumbled diet several times a day, where the protein 

levels range from 30 to 45%.  The nursery phase should not exceed 25 days (Shrimp 

News International, 2004). 

 

 

2.3.3 – Growout 

 
The growout operation is stocked with postlarval shrimp and it takes from three to 

six months to produce a crop of market-sized shrimp.  Northern China, the United States 

and Northern Mexico produce one crop per year, semi-tropical countries produce two 

crops per year, while farms closer to the equator have produced three crops a year, but 

rarely (Shrimp News International, 2004). 

The two most practised production strategies are the extensive and intensive culture, 

however there are a numerous transitions between them. In extensive shrimp culture, 

shrimp are stocked at low densities (<25 PLs·m-2) in large ponds or tidal enclosures in 

which little or no management is exercised or possible. Farmers depend almost entirely 

on natural conditions in extensive culture. Intensive shrimp culture is carried out in high 

densities (sometimes >200 PLs·m-2) in intensively managed pens, ponds, tanks and 

raceways where a high level of investment is required (Rosenberry, 2001). Semi-

intensive culture falls between these two extremes. 

 

 

2.4 – Penaeid shrimp common diseases in farming conditions 
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The diseases of cultured penaeid shrimp include syndromes with infectious and non-

infectious etiologies. Included among the infectious diseases of economic importance to 

cultured shrimp are those with viral, rickettsial, bacterial, fungal, protistan and metazoan 

etiologies. A number of non-infectious diseases are also of importance to the industry, 

and included among these are diseases due to environmental extremes, nutritional 

imbalances, toxicants, and genetic factors (Lightner and Redman, 1998).  

 

  

2.4.1 – Viral diseases  

 
Viruses are a group of organisms which must enter a host cell to replicate, since they 

lack the necessary biochemical machinery to manufacture proteins and metabolize 

sugars. Some virus also lack the enzymes required for nucleic acid replication, and are 

dependent on the host cell for these functions (Jiravanichpaisal, 2005).  

Viral diseases are probably still underestimated in crustaceans, but nevertheless, they 

emerge as being responsible for serious enzootics or massive pandemics, on a regional 

scale in shrimp-farming countries. In 1989, 6 viruses were known to affect penaeid 

shrimp, but by 1997 more than 20 viruses were identified as having affected wild stocks 

and commercial production. The Office International des Epizooties (OIE) now lists 

seven viral diseases of shrimp which are considered to be transmissible and of 

significant socio-economic and/or public health importance (FAO, 2004). These viral 

diseases are:  

 

 

• White Spot Disease (WSSV),  

• Yellow Head disease (YHV), 

• Taura Syndrome Virus (TSV),  

• Spawnerisolated Mortality Virus Disease (SMV),  

• Tetrahedral Baculovirosis (Baculovirus penaei - BP),  

• Spherical Baculovirosis (Penaeus monodon-type baculovirus) 

• Infectious Hypodermal and Haematopoietic Necrosis (IHHNV)  
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2.4.2 – Bacterial and fungal diseases 

 
Bacteria, both gram-positive and gram-negative, are also etiological agents 

responsible for severe diseases in crustaceans (Söderhäll et al., 1993). These 

microorganisms act frequently as opportunistic follow-on to viral infection or 

environmental stress. Similar to bacteria, fungi often infect aquatic organisms as 

opportunistic invaders, but once established, they are also often fatal and difficult to 

treat. The most important bacterial and fungal diseases that have socio-economic impact 

in shrimp farming are: 

 

• Vibriosis – Vibrio spp.; 

• Necrotizing hepatopancreatitis (NHP) - Alfa proteobacteria (new genus); 

• Rickettsial infection - Rickettsia or rickettsia-like microorganisms; 

• Mycobacteriosis – Mycobacterium marinum, Mycobacterium fortuitum, 

Mycobacterium spp.; 

• Larval mycosis – Lagenidium spp., Sirolpidium spp.; 

• Fusarium disease - Fusarium solani, F. moniliforme; 

• Crayfish plague - Aphanomyces astaci. 

 

 

2.4.3 – Protozoan diseases 

 
Among organisms causing diseases to shrimp, parasites, especially protozoan 

parasites form an important group. Although several diseases caused by parasites have 

been noticed in shrimp, often, chronic conditions caused by protozoan play a crucial role 

in shrimp production. The protozoa affecting shrimp can be grouped as parasites and 

commensals (Jithendran and Vijayan, 2001). Following are listed the major disease 

problems caused by the protozoa: 

 

• Protozoan fouling - Peritrichous ciliates such as Zoothamnium, Epistylis, 

Vorticella and Acinata; 

• Cotton shrimp disease - Microsporeans such as Agmasoma, Ameson and 

Pleistophora; 
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• Enterozoic cephaline gregarine infection - Cephaline gregarines such as 

Nematopsis and Cephalolobus; 

• Invasive protozoan infection - Ciliate protozoa, Paranophrys and 

Paraoronema, leptomonad-like organisms. 

 

 

2.4.4 – Non-infectious and toxic diseases  

 
Non-infectious diseases are common in growout farms, as influences of nutritional 

factors, environmental factors such as temperature extremes and oxygen depletion, 

toxicity from biotic and abiotic origins, become critical during the lengthy culture period 

(Jithendran and Vijayan, 2001). The most common non-infectious pathologies are:   

 

• Gas Bubble disease - caused by supersaturation of atmospheric gases, usually 

nitrogen, but occasionally oxygen; 

• Haemocytic enteritis (HE) – caused by toxins released by certain blues-green 

algae blooms; 
• Black gill disease – is associated to the presence of excessive levels of toxic 

substances such as nitrite, ammonia, heavy metals, crude oils in the culture 

water; 

• Soft shell syndrome - caused by sudden fluctuation in water salinity, high soil 

pH, highly reducing conditions in soil, low organic matter in soil, low 

phosphate content and pesticide pollution in water, nutritional deficiency and 

insufficient water exchange; 

• Muscle necrosis - is associated with poor environmental conditions such as 

low oxygen levels, and salinity or temperature shock. 

 

 

2.5 - White Spot Syndrome Virus 
 

White Spot Disease (WSD) is a pandemic disease of shrimp caused by a virus 

commonly known as White Spot Syndrome Virus (WSSV). First recorded in Taiwan in 

21 



  LITERATURE REVIEW 

1992 (Chou et al., 1995), the first major outbreaks were first detected in Marsupenaeus 

japonicus and Fenneropenaeus chinensis in Japan and China in 1993 (Nakano et al., 

1994; Zhan et al., 1998) and in the following 18 months the outbreak spread to the 

majority of the shrimp farming countries in Asia.  

WSSV has a wide host range among decapod crustaceans (Lo et al., 1996), and is 

potentially lethal to most of the commercially cultivated penaeid shrimp species (OIE, 

2003). Of all shrimp virus, WSSV has the largest impact on shrimp culture and remains 

a major problem up to the present day (Rosenberry, 2004). 

 

 

2.5.1 – Taxonomy 

 

Based on extensive phylogenetic analyses, and also on primary genomic structure 

and composition as well as the distinct morphology of the virion, the International  

Committee on Taxonomy for Virus (ICTV) approved a proposal in 2002 to 

accommodate WSSV in a new virus family called Nimaviridae, referring to the thread-

like polar extension on the virus particle (Nima: Latin for thread). This virus family 

consists of a single genus (Whispovirus) and contains White spot syndrome virus I as its 

sole species so far (Mayo, 2002). Probably all WSSV isolates identified thus far are 

variants of the same species.        

 
 
     2.5.2 – Morphology 
 
 

Electron microscopical studies on thin sections and viral suspensions obtained from 

infected shrimp revealed that the virion of WSSV is a large, ovoidal particle of about 

275 nm in length and 120 nm in width, with a tail-like appendage at one end (Duran et 

al., 1997). It is formed by a road-shaped nucleocapsid with a tight-fitting capsid layer, 

surrounded by a loose-fitting trilaminar envelop, which consists mainly of the WSSV 

encoded proteins VP28 and VP19 (van Hulten et al., 2000). VP28 is most likely located 

on the surface of the virus particle and plays a key role in the virus infection (van Hulten 

et al., 2001b). Isolated nucleocapsids have a cross-hatched appearance and size of about 

300 x 70 nm. The nucleocapsid is formed by stacks of rings (about 14 in total), which 
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are in turn formed by regular spaced globular subunits of about 8 nm in diameter, 

arranged in two parallel rows (Durand et al., 1997).  

 

 
 

Fig. 11 – Image of a WSSV virion obtained by electron microscopy (source: Wageningen University, 

Laboratory of Virology)  

 

 

2.5.3 – Genome    
 
 
The virions of WSSV contain a circular, supercoiled, double-stranded DNA genome, 

originally estimated to be 300 kilobase pairs (kb) (Wang et al., 2000). The genome 

contains 292,967 nucleotides encompassing 184 major open reading frames (ORFs). Of 

these, only 6% of the ORFs have putative homologues in databases, mainly representing 

genes encoding enzymes for nucleotide metabolism, DNA replication, and protein 

modification. The remaining ORFs are mostly unassigned, except for five, which encode 

structural virion proteins. Unique features of WSSV are the presence of a very long ORF 

of 18,234 nucleotides, with unknown function, a collagen-like ORF, and nine regions, 

dispersed along the genome, each containing a variable number of 250-bp tandem 

repeats (van Hulten, et al., 2001a). 

Between different geographic isolates of WSSV, a few restriction fragment length 

polymorphisms (RFLPs) were reported, indicating the presence of some genomic 

variation (Wang et al., 2000). 
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2.5.4 – Epidemiology  
 
 
This virus can be transmitted to benthic crustaceans and other fauna through different 

feeding pathways such as filter feeding, detritus feeding, and predation (Mortensen, 

1993; Vijayan, et al., 2005). The transmission can occur horizontally either per os by 

predation on diseased individuals, but also by virus particles present in the water. 

Infection by the latter is thought to occur primarily through the gills, but may occur via 

other body surfaces as well (Chou et al., 1998). No penaeid shrimp species are known to 

be resistant to WSSV infection (Lightner, 1996). 

When viruses pass into the digestive tracts of other invertebrates (bivalves, 

polychaete worms), they can persist in the alimentary canal, potentially making the 

animal a passive carrier or vector of the virus. When these passive carriers are consumed 

by the shrimp, they can potentially infect the shrimp with WSSV (Vijayan et al., 2005).  

Also, a large number of other wild animals have been reported to be potential carrier of 

WSSV. These were not only shrimp, prawn and crab species but also planktonic 

organisms and insect larvae (Flegel and Alday-Sanz 1998). 

Hence, the passage of the viral pathogen to shrimp broodstock in the hatchery 

through feeding of infected prey items is a realistic possibility (Vijayan et al., 2005). 

Once the broodstock is infected, the virus may also be transmitted from mother to 

offspring, although it is not a clear whether the WSSV virions are present inside the 

shrimp eggs (Peng et al., 2001).  

Frequent disease outbreaks in the shrimp farms of India and Asia lead to the 

offloading of dead and decayed shrimps carrying a heavy load of this virus into the 

coastal ecosystem. Horizontal transmission of WSSV from the affected shrimp farms to 

the neighbouring ecosystem has created a realistic scenario in which the receiving 

ecosystem carries the WSSV load in the form of live or dead tissues, dead and 

decomposed tissues and free virions (Mortensen, 1993). In addition, contrary to the 

common belief that free virus cannot survive in natural waters more than 24 hours, 

WSSV virions can remain infective in decaying tissues or in detritus for up to 4 days, 

(Bondad-Reantaso et al., 2001). 
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2.5.5 – Cytopathology and histopathology 
 

Histopathology of the WSSV infection is characterized by the presence of cells with 

hypertrophied nuclei showing eosinophilic intranuclear inclusions and marginated 

chromatin, as WSSV DNA replication and virion morphogenesis take place (Durand et 

al., 1997; Wang et al., 2000). Inclusion bodies inside the nuclei are markedly distinct 

and bigger than the cowdry A-type inclusions characteristic of IHHNV 

(Wongteerasupaya et al., 1995). Nuclei of infected cells progressively become 

basophilic and hypertrophied because of the accumulation of intranuclear virions (Chang 

et al., 1996; Lo et al., 1996; Durand et al., 1996; 1997; Wang et al., 1998; Otta et al., 

1999; Takahashi et al., 2000). In the late stage of infection, cells become degenerated, 

displaying cariorhexis and cellular disintegration which lead to the formation of necrotic 

areas characterized by vacuolization (Karunasagar et al., 1997; Kasornchandra et al., 

1998). 

WSSV targets tissues of ectodermal and mesodermal origin, such as epithelial and 

connective tissues of epidermis, stomach, gills, antennal gland, lymphoid organ and 

haemocytes, muscle, haematopoietic and nervous tissue, eye-stalk, heart, gonads, etc. 

(Chang et al., 1996; Durand et al., 1996; 1997; Mohan et al., 1998; Rajendran et al., 

1999). No haemocytic infiltration can be seen in areas of necrotic tissues (Park et al., 

1998; Flegel, 2001). 

 

 

2.5.6 – Replication cycle 

 
Although during the last decade, intensive efforts were undertaken for detection and 

characterization of in vivo WSSV infection in shrimp (Maeda, 2004) little is known 

about the molecular mechanisms underlying the WSSV life cycle and mode of infection.  

Based on data from Ecobedo-Bonilla et al., (2005), when Litopenaeus vannamei 

were infected with WSSV, the first infected positive cells were found at 12 hours post 

inoculation. This data indicates that the virus replication time may not be longer than 12 

hours. 
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2.5.7 – General clinical signs 
 

Infected animals show lethargic behaviour, such as lack of appetite and slow 

movement, and reddish to pink body discoloration. Characteristics for the WSSV 

infected shrimp are white spots on the exoskeleton. These spots are the result of calcified 

deposits that range in size from a few mm to 1 cm or more in diameter (Chou et al., 

1995). However, in case of acute (experimental) infections the only signs of WSSV 

infection observed are lethargy and lack of appetite. White spots are also not evident in 

species like L. vannamei, even in normal farming conditions. 

 

 

2.5.8 –Diagnostic methods 

 
The earliest diagnostic methods developed for virus included the traditional methods 

of morphological pathology (direct light microscopy, histopathology, and electron 

microscopy), as well as enhancement and bioassay methods. While tissue culture is 

considered to be a standard tool in medical and veterinary diagnostic labs, it has never 

been developed as a useable, routine diagnostic tool for shrimp pathogens. As well, there 

are few antibody-based diagnostic tests available for the penaeid viral diseases (Lightner 

and Redman, 1998). PCR or RT-PCR methods are available for several of these viruses 

and some are in routine use by certain sectors of the industry. For others, specific DNA 

probes tagged with non-radioactive labels provide highly specific detection methods for 

application in dot blot formats with haemolymph or tissue extracts, and with routine 

histological sections using in situ hybridization (Lightner, 1996; Lightner and Redman, 

1998). 
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2.5.8.1 – PCR (Polymerase Chain Reaction) 

 
The polymerase chain reaction (PCR) is a method for amplification of a specific 

DNA sequence of interest. PCR will allow a short stretch of DNA (usually fewer than 

3000 bp) to be amplified to about a million fold. The particular stretch of DNA to be 

amplified, called the target sequence, is identified by a specific pair of DNA primers, 

oligonucleotides usually about 20 nucleotides in length. The PCR product is amplified 

from the DNA template using a heat-stable DNA polymerase and using an automated 

thermal cycler. This device promotes the reaction through 30 or more cycles of 

denaturing, annealing of primers, and polymerization. After amplification by PCR, the 

products are separated by polyacrylamide gel electrophoresis and are directly visualized 

after staining with ethidium bromide.  

In recent years, PCR has been used to detect WSSV in a very specific and sensitive 

manner (Lo et al., 1996; Nunan and Lightner, 1997; Kim et al., 1998). Nested or two-

step PCR has the advantage of increasing the level of sensitivity over singlestep PCR. 

Nested PCR consists in the reamplification of the PCR product obtained in a single-step 

PCR reaction by using an aliquot of this first reaction as a template in a second round of 

amplification (Peinado-Guevara and Lopéz-Meyer, 2005). Frequently, when shrimps 

show clinical signs of the disease such as lethargy, reduction of food consumption, 

reddish coloration and white spots on the exoskeleton, WSSV is easily detected by 

single-step PCR (Lo et al., 1998). However, at low viral loads, WSSV is latent without 

causing disease symptoms in the shrimps, and can only be detected by nested PCR (Lo 

et al., 1996, 1998; Kim et al., 1998). 

 

 

2.5.8.2 – IIF (Indirect immunofluorescence) 

 
A number of antibody-based diagnostic methods have been developed and are 

described in the literature (Loh et al., 1998; Poulos et al., 2001; Shih et al., 2001) as a 

confirmation tool for virus infection in shrimp species.  

One of the antibody-based assays that is being used for detecting WSSV in shrimp is 

indirect immunofluorescence (Poulos et al., 2001; Wang et al., 2002; Ecobedo-Bonilla et 

al., 2005; Rahman et al., 2005). This technique detects specific antigens in tissues. The 
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specific secondary antibodies are labelled with a compound (fluorescein isothiocyanate) 

that makes them glow an apple-green colour when observed microscopically under 

ultraviolet or blue light.  

In the specific case of the detection of WSSV in Litopenaeus vannamei tissues, 

tissues from the pereon are embedded in methylcellulose and frozen at –20°C. 

Cryosections (5 to 6 µm) are made and fixed in absolute methanol at –20°C, washed 

with white phosphate buffered solution at 1% (WPBS), incubated for 1 h at 37°C with 2 

mg ml–1 of the monoclonal antibody 8B7 specific for VP28 (Poulos et al., 2001), washed 

and incubated for 1 h at 37°C with 0.02 mg ml–1 of fluorescein isothiocyanate (FITC)-

labeled goat anti-mouse antibody (F-2761, Molecular Probes) in PBS, washed with PBS, 

rinsed in deionised water, dried and mounted. Slides are analyzed by fluorescence 

microscopy (Escobedo-Bonilla et al., 2005)  

 

 
 

Fig. 12 – General principle of Indirect Immunofluorescence technique.   Samples are added on a substrate 

slide for primary reaction of antibodies (primary antibodies) and antigens. After washing, conjugated 

antibodies (secondary antibodies) are added to make complexes of antigens - antibodies - conjugated 

antibodies. After washing, the fluorescence from FITC is observed by fluorescent microscope (MBL, 

2005). 
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2.5.8.3 – Other methods 

 

Several other diagnostic methods have been described for WSSV detection: 

 

• Light and electron microscopy (Chou et al., 1995; Wongteerasupaya et al., 

1995; Lightner, 1996; Durand et al., 1997) 

• In-situ DNA hybridisation ((Chang et al., 1996; Durand et al., 1996) 

• Dark-Field Microscopic Observation ( Momoyama et al., 1995) 

• Miniarray (Quere et al., 2002), 

• Observation of tissues subjected to fixation or negative staining (Inouye et 

al.,1994),  

• Reverse passive latex agglutination (Okumura et al., 2005) 

• Bioassay (Nunan et al., 1998) 

• Rapid staining Hematoxylin and Phloxine/Eosin (H&E) (Sheehan and 

Hrapchak, 1980). 

 

2.5.9 – Tested strategies for WSSV control 
 

Different approaches knew already some success to control WSSV, including (i) 

higher or lower than normal water temperatures (Vidal et al., 2001; Guan et al., 2003; 

Jiravanichpaisal et al., 2004), (ii) treatment with the immunostimulants peptidoglycan, 

lipopolysaccharide and β-1,3 glucan (Itami et al., 1998; Takahashi et al., 2000; Chang et 

al., 2003), (iii) vaccination with formalin inactivated bacteria over expressing WSSV 

proteins, siRNA and WSSV envelope proteins VP19 and VP28 (Namikoshi et al., 2004; 

Witteveldt et al., 2004; Musthaq et al., 2005; Westenberg et al., 2005)  (iv) treatment 

with egg yolk antibodies (IgY) against WSSV (Kim et al., 2004) (v) feeding antiviral 

fucoidan, a sulfated polysaccharide extracted from Sargassum polycystum supplemented 

diet (Chotigeat et al., 2004) and (vi) treatment with cidofovir (antiviral) and a diet 

supplemented with Spirulina platensis (Rahman et al., 2005). 
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2.5.9.1 – WSSV control with temperature treatment 

 
Few reports are available about the influence of temperature on viral diseases in 

aquatic animals (Amend, 1970; Dorson and Torchy, 1981; Castric and Kinkelin, 1984; 

Oseko et al., 1988; Sano et al., 1993; Kobayashi et al., 1999) and so far, only three 

reports on the WSSV infectivity in crustaceans are available. Vidal et al. (2001) have 

reported that hyperthermia was able to protect Litopenaeus vannamei from WSSV 

disease after challenge with WSSV. In Marsupenaeus japonicus that protection also 

occurs at low temperature (Guan et al., 2003). Jiravanichpaisal et al. (2004) reported that 

protection of WSSV infected freshwater crayfish occur at low temperatures. 

In the study of Vidal et al. (2005) juveniles of the pacific white shrimp were infected 

with WSSV by oral and intramuscular route. Both the shrimp inoculated by oral and 

intramuscular route were divided in two groups, one maintained at ambient temperature 

(25.8ºC) and the other kept at higher temperature (32.3ºC). The results demonstrated a 

high degree of protection of the groups kept at high water temperature, as survival was 

always above 80% against 100% mortality obtained in those maintained at lower 

temperature. 

Guan et al. (2003), tested the influence of four temperature levels (15, 23, 28 and 

33ºC) on survival of WSSV infected Marsupenaeus japonicus. After virus injection, the 

four shrimp groups were maintained for 19 days at those temperature levels. The results 

demonstrate that WSSV infection can by controlled either by low and high temperature 

levels. 

Jiravanichpaisal et al. (2004), used two species of freshwater crayfish, Pacifastacus 

leniusculus and Astacus astacus, for testing the effect of low water temperature on the 

development of WSSV infection. Crayfish were exposed to different temperatures (4, 

12, 22ºC) after WSSV injection or oral exposure and the mortalities were recorded 

during 45 days. The results showed that the infection could be blocked at lower 

temperatures (4 and 12ºC), while at high temperature 100% mortality was reached. It 

was also observed that mortality could be delayed transferring moribund individuals to 

lower temperature.     
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2.5.10 – Socio-economic impact of WSSV 
 

 

WSSV disease is responsible for direct losses of billions US$ per year in Asia and 

Latin America. For example, in Ecuador US$ 280 millions were lost in the first six 

months of its first appearance in 1999. In the export sector, shrimp exports fell from 115 

000 metric tonnes (mt) in 1998 to 38 000 mt in 2000, and have only recovered slightly to 

47 000 mt in 2002. This equates to a total direct loss of some 267 000 metric tonnes of 

shrimp worth nearly US$ 1.8 thousand million between 1999 and mid-2003. Although 

similar problems have occurred throughout Central and South America, Brazil and 

Venezuela remained several years free of WSSV due to a rapid and effective closure of 

their borders to all crustacean imports in 1999. However, recently, on 20 January 2005 

the first occurrence of WSSV in Brazil was reported in Litopenaeus vannamei. After 

initial loses, United States also managed to eradicate WSSV from its shrimp culture 

industry in 1997 through the implementation of biosecurity measures, including the use 

of all SPF broodstock, although there are reports of its recent re-emergence in Hawaii in 

2004 (Briggs et al., 2004). Estimates for Asia include losses of over US$ 250 million for 

1993 (continuing every year) in Mainland China, loosing 120 000 metric tonnes of 

production of F. chinensis, M. japonicus and P. monodon to WSSV (Jiang, 2000). 

In addition to direct effects on production, the impacts of diseases are particularly 

felt by small-scale farmers who, especially in Asia, represent the backbone of many 

coastal communities. Their very livelihoods are threatened through reduced food 

availability, loss of income and employment, social disturbance and increased 

vulnerability. Crop losses to disease for this sector of society may determine whether or 

not those families are below the UN poverty threshold (Fegan et al., 2001). In Mainland 

China, for example, the WSSV epidemic in 1993 affected the lives of 1 million people, 

and has continued to have effects to this day (Jiang, 2000). Similar effects have been 

noted from Latin American countries. In Ecuador for example, within the first year of 

the WSSV epidemic in 1999, the disease also lead to the loss of 26 000 jobs (13 percent 

of the labour force), the closure of 74 %t of the hatcheries, a 68 percent reduction in 

sales and production for feed mills and packing plants, 64 percent layoffs at feed mills 

and a total of 150 000 jobs lost in the shrimp farming industry (Alday de Graindorge and 

Griffith, 2000).  
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It is, however, difficult to accurately quantify the economic and social effect of this 

disease. WSD and the response of those depending on shrimp farming for their incomes 

are in a constant state of co-evolution. In such a relationship it is difficult to separate the 

effect of the disease from people’s response to the disease. It also has been demonstrated 

that loss of a crop through WSD can result in extremely vulnerable farmers dropping to 

the lowest poverty levels, where their families are no longer food secure (Morgan, 

2001). 

 

 

2.6 – State of the art and future trends in WSSV research  
 

Since the first record in Taiwan in 1992 (Chou et al. 1995), the White Spot 

Syndrome Virus (WSSV) epizootic quickly spread through many producing countries, 

costing billions of dollars in regional export earnings of which most of the economies 

have yet to recover. However, in all countries, university scientists, farm owners and 

technicians, NGOs  and international development agencies are working on solutions to 

survive with WSSV (McClennen, 2004). 

With the objective of finding solutions for this shrimp aquaculture threat, the 

reaction of the scientific community involved many different research areas.  

Firstly, the development of specific techniques for WSSV detection, not only 

allowed the diagnosis of this pathological agent, but also provides powerful tools for 

other research areas. Amongst other less frequently used techniques,  PCR (Nunan and 

Lightner, 1997; Kasornchandra et al., 1998; Lo et al., 2001), antibody-based assays 

(Poulos et al., 2001; Shih et al., 2001) and in-situ DNA hybridisation (Duran et al., 

1996; Numan et al., 1997), are now used in routine.  

Fields like molecular biology and molecular epidemiology have made some 

advances to understand the route and mechanisms of this viral infection, but nevertheless 

a lot of work still remains to be done. In contrast, extensive research on WSSV genetics 

and morphology has been done (Marks et al., 2004; van Hulten, 2001; Wang et al., 

2000).   

 With respect to the development of control measures,   several studies recently 

attempted “vaccination” or immunization of shrimp against WSSV infection. Although 

the results show some potential, they are still not always conclusive (Kim et al., 2004; 
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Namikoshi et al., 2004; Witteveldt et al., 2004; Musthaq et al., 2005; Westenberg et al., 

2005). On the other hand, some of the most interesting results were obtained by using 

both high (33ºC) and low (12ºC) temperature to control WSSV infection. Several studies 

clearly demonstrated that high temperature can “block” infection, or in other words, 

prevent mortality in infected animals (Vidal et al., 2001; Guan et al., 2003; 

Jiravanichpaisal et al., 2004). It however remains unclear how exactly temperature 

interacts with WSSV infection and also application of these findings in the field are 

limited. Therefore, further documentation  of the use of environmental parameters 

(temperature, salinity, etc.) to control WSSV and its application in the field is considered 

timely.  

In the future, it will also be necessary to direct research towards disease prevention 

and to propose new methodologies and concepts (standard operation protocols), in order 

to guarantee a better and responsible management by the farmers, and in this way 

minimise the impact of WSSV. As part of these strategies it is necessary to develop new 

“pond-side” detection techniques, to identify in an early stage this etiological agent and 

in this way avoid further spread of the disease.  Also breeding efforts to generate 

resistant stocks are necessary, but there is a lack of basic information on challenge test 

strategies focused on genetic selection.  
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CHAPTER 3 - MATERIAL AND METHODS 
 

The experiments were conducted at the facilities of the Laboratory of Aquaculture 

and Artemia Reference Center (ARC) and the Laboratory of Virology of the Ghent 

University.  

 

Three different experiments were done: 

 

Experiment 1 

“Effect of high water temperature (33ºC) before and after inoculation, on White 

Spot Syndrome Virus (WSSV) infection in pacific with shrimp (Litopenaeus 

vannamei).” 

 

This experiment aimed to determine the degree of protection that can be obtained, 

when WSSV infected SPF shrimps are submitted to high water temperature. It was also 

evaluated if the immune factor is enhanced by exposure at high water temperature 

before virus inoculation.  Therefore the necessity of keeping the shrimp at high 

temperature before virus inoculation was also determined. 

 

Experiment 2 

“Effect of high water temperature (33ºC), on White Spot Syndrome Virus (WSSV) 

infection in pacific white shrimp (Litopenaeus vannamei), when applied at different 

times (12 and 24h) after virus inoculation.”  

 

In the first experiment the potential protection capacity of high water temperature on 

WSSV infected shrimps was evaluated. The temperature was however always done 

immediately after at the inoculation. In this second experiment the aim was to determine 

the effect of high water temperature when after inoculation, a certain period of viral 

replication (12 or 24 hours) was allowed. 
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Experiment 3 

“Effect of cyclic variation of high water temperature (27ºC/33ºC), on White Spot 

Syndrome Virus (WSSV) infection in pacific white shrimp (Litopenaeus vannamei).“ 

 

In first 2 experiments once applied, high water temperature was continuously 

maintained until the end of the experiment.     

This third experiment aimed to determine if the application of daily cyclic 

temperature regime with a limited number of hours at 33ºC is enough to prevent 

mortality in WSSV infected shrimps. 

 

3.1 - Experimental animals 

 
Specific pathogen-free (SPF) Litopenaeus vannamei Kona strain were used (mean 

body weight [MBW] = 20 g). These shrimps were imported as post-larvae (PL 8-12 

with a mean body weight of 0.0013 g) from Molokai Seafarms in Hawaii. The Kona 

line originated from a small group of broodstock, which was originally derived from the 

West-coast of Mexico in 1989, cultured in the “Oceanic Institute” in Hawaii under the 

USDA Marine Shrimp Farming Programme. SPF shrimp are maintained under strict 

biosafety conditions to avoid possible contamination. As they originated from a small 

group of broodstock, the genetic variability among shrimps is limited and in that way 

the variation among individuals is reduced. The SPF status of the imported PL was 

checked before they were shipped from Hawaii on a sample of 10 individuals at the 

laboratory facilities of Moana Technologies (Hawaii). They were checked for almost all 

the main viruses such as WSSV, IHHNV, MBV, HPV, TSV, YHV and GAV and for 

some other pathogens (parasites and fungus) with PCR and with histopathology. All 

diagnostic techniques have confirmed that the PL’s were not contaminated with known 

pathogenic organisms. After the arrival at ARC, a second sample of shrimp was send to 

confirm their health status (SPF status). 
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3.2 – Recirculation system to raise the shrimp 

 
An isolated room at the ARC, equipped with a 3000-l raceway tank and 15 

rectangular tanks of 250l, were used to raise the stock of SPF shrimps (Fig. 13). The 

tanks were filled with filtered natural seawater (Northsea water). Before use, high-

pressure sand filter filtration was done to get rid of the suspended particles and coal 

filtration was used to avoid dissolved toxic materials. Finally the water was subjected to 

ultra violet filtration to eliminate microorganisms.  

The shrimp were grown under standardised culture conditions. Constant temperature 

of 27 ± 1ºC was provided with heaters and a salinity of 35-37 gl-1 was maintained. 

Fluorescent light was used to illuminate the culture room and the bulbs were covered 

with brown paper to reduce the light intensity. The photoperiod was adjusted to have 12 

hours of light. 

The culture tanks were connected to a recirculation system consisting of a protein 

skimmer and a biological filter. The biological filter was inoculated with bacteria of the 

species Nitrosomonas and Nitrobacter that convert the excreted toxic nitric compounds 

that results from the shrimp metabolism. The levels of ammonium (NH4+) and nitrite 

(NO2) were checked daily using test kits. According to the daily water quality 

parameters measurement, a variable percentage of the water was exchanged. This way 

ammonium and nitrite levels were maintained below 0.5 mgl-1 and 0.05-0.15 mgl-1, 

respectively. Compressed air was provided with air stones to maintain the water oxygen 

levels at optimum levels (7-10 mg/l). Biosecurity procedures (foot bath, daily 

disinfection of the area and material, limited number of people having access to the area 

and hand disinfection) were taken to guaranty the SPF status of the shrimp.   
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A 

C 

B 

Fig. 13 – Recirculation system for raising shrimp at the the facilities of the Laboratory of 

Aquaculture and Artemia Reference Center. A – 250L tanks; B – Biological filter; C – 3000L raceway-

tank  

 

3.3 – Pre-challenge phase 

 
As the actual WSSV challenge experiments were performed at a salinity of 15 gl-1, 

before being transported to the facilities of the Laboratory of Virology in Merelbeke, the 

shrimp to be used in an experiment were first slowly acclimated to this lower salinity 

over a period of 5 days. 

The required number of shrimp for an experiment were randomly selected and 

transferred  into 250-l fibreglass tanks. Salinity was then lowered over a period of 4 

days  by daily replacing part of the water with water of a lower salinity. The acclimation 

tanks were equipped with small independent aquarium filters (Eheim filter with a 

capacity of 400 l/hour). Temperature in the tanks was maintained by aquaria heaters 

(300W capacity). 
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3.4 – Shrimp transport 

 
The acclimatized shrimp were then transported by car from the ARC to the facilities 

of the Laboratory of Virology, where the challenge experiments were performed. For 

transportation, 20-l plastic buckets were used. Approximately 20 individuals were kept 

in one bucket. Buckets were filled with clean and well oxygenated 15 mg.l-1 water at the 

required temperature.  

 

 

3.5 – Challenge facilities 

 
All challenge experiments were, as mentioned earlier, performed at the Laboratory 

of Virology of the Ghent University. A separated room, which is destined only to this 

type of experiment and this specific WSSV virus strain, was used. 

 

 

3.6 – Virus stock preparation and titration  

 
The same Thai WSSV strain was used in all experiments. This virus was obtained 

from Prof. Kenneth Söderhäll, from the Department of Comparative Physiology, 

Evolutionary Biology Centre, Uppsala University, Sweden. 

ThisWSSV strain was isolated from naturally-infected Penaeus monodon. The virus 

isolate was passaged once in crayfish Pacifastacus leniusculus (Jiravanichpaisal et al., 

2001). A gill suspension from crayfish (10–2 in L-15 medium) was kindly donated by P. 

Jiravanichpaisal and K. Söderhäll (Uppsala University, Sweden). It was diluted 10–1 in 

phosphate-buffered saline (PBS) pH 7.4, and 50 µl were injected intramuscularly into 

SPF Litopenaeus vannamei to amplify the virus. The inoculated shrimp were collected 

at 48 h post inoculation (hpi) and were frozen at –70°C. Tissues from these shrimps 

were analyzed by indirect immunofluorescence (IIF) to confirm WSSV infection. 

Thawed carcasses without hepatopancreas, gut and exoskeleton were minced. A 10–1 

suspension was made in PBS and centrifuged (3000 × g at 4°C for 20 min). The 

supernatant was centrifuged (13 000 × g at 4°C for 20 min), filtered (0.45 µm) and 

aliquoted for storage at –70°C. The total volume was 250 ml. Samples from tissues used 
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to produce the viral stock were sent to Dr. James Brock (Moana Technologies LLC, 

Hawaii) for detection of the major viral pathogens of shrimp by polymerase chain 

reaction (PCR). PCR analysis confirmed the sole presence of WSSV DNA in the tissues 

(Escobedo-Bonilla et al., 2005). 

The virus was titrated in vivo in SPF Litopenaeus vannamei by intramuscular and 

oral route. The median virus titer of infection by intramuscular route was 106.0  shrimp 

infection doses 50% endpoint  (SID50 ml-1 ), according to the experimental protocol 

described by Escobedo-Bonilla et al. (2005), was calculated according to the Reed and 

Muench method (1938). From the titer, a dose of 30 SID50 in a volume of 50μl was 

determined to induce infection in all the inoculated shrimp in a reproducible manner and 

was therefore chosen as the standard dose for experimental WSSV challenge. 

 

  

3.7 – Preparation of the virus inoculum 
 

An aliquot of the virus stock was taken from the freezer and defrosted. It was then 

diluted to get 30 and/or 10000 SID50 per 50 μl of inoculum, according to the experiment 

in question. This was calculated considering the virus infectivity titer of  106.0 SID50. 

The virus stock dilution was done with Phosphate Buffered Saline (PBS) (pH 7.4). 

Before preparing the inoculum, PBS was filtered through a membrane filter (0.45μm) to 

remove any possible particles in suspension and obtain a sterile medium for dilution. 

Aliquots containing virus and aliquots containing PBS were placed in a container 

with ice cubes in order to keep the virus alive. This whole procedure was carried out 

under a laminar flow to avoid contamination.     

 

3.8 – Shrimp inoculation 

 
Twenty four hours after the shrimp were accommodated in the experimental 

challenge facilities, they were intramuscularly inoculated with a  dose of 30 or 10000 

SID50 in a volume of 50 μl, according to the experiment in question. For the inoculation, 

shrimp were caught with a smooth scoop net and placed on a sterile board with the left 

side of the body upwards. For inoculation a glass syringe with a 100μl capacity, with a 

minimum scale of 1μl and precision of 0.5 μl was used. The region of inoculation was 
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between the third and fourth abdominal segments and was always disinfected with 

cotton embedded in ethanol at 70% before injecting. The inoculation process was 

executed by two researchers. To avoid contamination between replications, treatments 

or controls, each person only took care of one specific shrimp treatment group. 

Immediately afterwards, the shrimp were placed into the respective treatment unit. All 

the manipulation procedures were realized with extreme caution in order to minimize 

handling stress to the animals. After the inoculation, the shrimp were fed to prevent 

cannibalism. 

 

 

3.9 – Daily procedures during the challenge experiments 

 
During the challenge experiments, the animals were fed twice a day with a 

commercial shrimp diet. The minimum amount of food (two pellets per shrimp) was 

given to maintain the water quality at optimum levels. The daily monitoring included 

the scoring of parameters such as temperature and ammonia, shrimp feeding, response 

of shrimp to mechanical stimuli, moulted shrimp. This scoring also was done two times 

per day. Based on the readings, water was partially exchanged. Dead individuals were 

collected twice a day for further analysis. 

 

 

3.10 – Sample collection 

 
During the experiment all the dead shrimp were collected for further confirmation of 

WSSV infection. At the end of the experiment, the survivors were euthanized and 

sampled for evaluation of WSSV infection status. An incision was made with a sterile 

scalpel blade in the medial line of the ventral region, from the posterior end to the 

anterior end. Then half of the cephalothorax but without the hard part (rostrum and 

legs), was separated and embedded in methylcellulose to cryopreserve. The embedding 

was made inside plastic laboratory flasks. To quickly freeze the samples, the flasks were 

partially introduced in a solution of ethanol and dry-ice. The rest of the body parts were 

packed in polythene bags for further use as required. Samples were stored in the freezer 

(-20ºC) till preparation of cryosections. 
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3.11 – Cryosections preparation      

 
Cryosections were made from methylcellulose embedded tissues using the cryotome 

with a thickness of 5 μm and including most of the head tissues. After preparing the 

cryosections, they were fixated in absolute methanol at – 20ºC for twenty minutes. After 

that, sections were stored at -20ºC. 

 

 

3.12 – WSSV infection detection 

 
The presence of WSSV was detected by using the Indirect Immunofluorescence 

(IIF) technique. After sampling and processing, tissues from the pereon are embedded in 

methylcellulose and frozen at –20°C. Cryosections (5 to 6 µm) are made and fixed in 

absolute methanol at –20°C, washed with white phosphate buffered solution at 1% 

(WPBS), incubated for 1 h at 37°C with 2 mg ml–1 of the monoclonal antibody 8B7 

specific for VP28 (Poulos et al., 2001), washed and incubated for 1 h at 37°C with 0.02 

mg ml–1 of fluorescein isothiocyanate (FITC)-labeled goat anti-mouse antibody (F-

2761, Molecular Probes) in PBS, washed with PBS, rinsed in deionised water, dried and 

mounted. Slides are analyzed by fluorescence microscopy (Escobedo-Bonilla et al., 

2005)  

 

 

3.13 – Statistical analysis 

 
The cumulative mortality and standard deviation of the 3 experiments were 

calculated for each treatment. The mean cumulative mortality was analysed by probit, 

which is a generalized linear model with a probit link function (Agresti 1996). After 

checking that no significant interactions existed between dose and time, the probit 

model had the form: 

 

Probit (x) = α + β (time) + γ (treatment)       (1) 
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where α is the intercept, β is the rate of probability change of time (for a constant 

treatment), and  γ is the rate of probability difference for each treatment (for a constant 

time). 

The statistical software S-PLUS (S-PLUS v. 7.0) was used to calculate the 

parameters of the regression and to determine the median lethal time (LT50) or the time 

at which 50% of the tested organisms died (Yi et al., 2003) for each treatment. 

Differences in the LT50 of treatments were evaluated by significance treatment in 

Equation 1 (significance level = 0.05) using the same statistical software. 

 

3.14 – Experiment 1  

 

“Effect of high water temperature (33ºC) before and after inoculation, on White 

Spot Syndrome Virus (WSSV) infection in pacific with shrimp (Litopenaeus 

vannamei)”.  

 

 

3.14.1 – Experimental design 
 

Three temperature treatments and one control group were setup in this experiment 

based on water temperature before and after inoculation with WSSV:  Water 

temperature of 33ºC before and after inoculation (Group A); 33ºC before inoculation 

and 27ºC after inoculation (Group B); 27ºC before inoculation and 33ºC after 

inoculation (Group C) 27ºC before and after inoculation (Control) (see also Fig. 14). 

For each temperature regime, there were two groups of shrimp. One group was injected 

with a low viral dose (30 SID50) and the other with a high viral dose (10000 SID50).  

Two more groups were maintained at 27ºC before and after inoculation (infection 

controls). Of these, one was injected with the low dose and the other one with the high 

dose. These individuals were euthanized at two different timepoints: at 12 hours post 

inoculation (five shrimp from each group) and at 24 hours post inoculation (the 

remaining five shrimp from each group). These shrimp were analysed to prove they 

were indeed infected with  WSSV.  
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  MATERIAL AND METHODS 

For this experiment in total ten aquaria were used. Each experimental unit 

(aquarium) was stocked with ten shrimp, giving a total of 100 shrimp. This experiment 

was repeated three times in time. (table 1). 

Clinical signs of disease and mortality were recorded twice a day for 144 hours after 

virus inoculation. Clinical signs recorded included lethargy, reduction on the food 

consumption and the absence of response when shrimp were mechanically stimulated.  

 

 

 

 
Fig. 14 – Schematic presentation of the different temperature treatments used in experiment 1 

 

 

 

 

 

 

Table 1- Resume of the experimental design of experiment 1 

 

Number of shrimp Temperature (ºC) 
Treatment   

(Group) 
Low dose 

inoculation      
(30 SID50) 

High dose 
inoculation 

(10000 SID50) 

Before 
inoculation 

After 
inoculation 

A 10 10 33 33 
B 10 10 33 27 
C 10 10 27 33 

Control 10 10 27 27 
Infection 
control 10 10 27 27 

Total 100     
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  MATERIAL AND METHODS 

3.14.2 – Experimental set-up and procedure 

 
Before WSSV inoculation, at the ARC, a total of 110 shrimp were divided into two 

groups and acclimated to a salinity of 15 gl-1 over a period of four days following the 

procedure described above (section 3.3). During this 4 day acclimation period, one 

group was maintained at 27 °C, the other at 33 °C. 

After acclimation, shrimp were transported to the Lab of Virology and divided over 

the experimental challenge units. Each experimental unit was composed of a 50-l glass 

aquarium, a mechanical filter, a heater, an aeration stone and a thermometer (Fig.15).  

All the aquaria were filled with brakish water of 15 gl-1 salinity. This water was 

prepared using distilled water and artificial salt (Instant Ocean, Marine Systems).  

All the materials used in this experiment were previously disinfected with a 

powerful disinfectant (AV5, Atlan’Tol Laboratory, Gent, Belgium) and dried during 

three days to ensure total virus elimination. Also strict biosecurity procedures were 

followed.  
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Fig. 15– Diagram of the experimental challenge units.  
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3.15 – Experiment 2 
 

“Effect of high water temperature (33ºC), on White Spot Syndrome Virus (WSSV) 

infection in pacific white shrimp (Litopenaeus vannamei), when applied at different 

times (12 and 24h) after virus inoculation.”  

 

 

3.15.1 – Experimental design 
 

Three temperature regimes were used in this experiment:  in all regimes, 

temperature before WSSV inoculation was maintained at 27 °C, but then  increased to 

33ºC 0 hours after inoculation (Group A), 12 hours after inoculation (Group B) and 24 

after inoculation   (Group C) (see also Fig. 16) . For all temperature regimes, one group 

was injected with a low viral dose (30 SID50) and the other with a high viral dose 

(10000 SID50).  

One control treatment was used, where the water temperature was maintained 

always at 27 °C (before and after inoculation) (Fig. 16).  

Two more groups were maintained at 27ºC before and after inoculation (infection 

controls). Of these, one was injected with a low dose and the other one with a high dose. 

These individuals were euthanized at two different time points: at 12 hours post 

inoculation (five shrimp from each group) and at 24 hours post inoculation (the 

remaining five shrimp from each group). These shrimp were checked with IIF to prove 

the success of WSSV infection.  

In this experiment in total eight aquaria were used. Each experimental unit 

(aquarium) was stocked with ten shrimp, making a total of 80 shrimp. This experiment 

was repeated three times. 
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  MATERIAL AND METHODS 

 

 
Fig. 16 – Schematic presentation of the temperature regime used in experiment 2 

 

 
Table 2 – Resume of the experimental design of experiment 2 

Number of shrimp     
Treatment   

(Group) 
Low dose 

inoculation    
(30 SID50) 

High dose 
inoculation 

(10000 SID50) 

Temperatue 
before 

inoculation (ºC) 

Switch to 33ºC 
(hours after 
inoculation) 

A 10 10 27 0 
B 10 10 27 12 
C 10 10 27 24 

Control 10 10 27 – 
Infection control 10 10 27 – 

Total 100     
 

 

3.15.2 – Experimental procedure and set-up 
 

The experimental setup was similar as described for experiment 1 in section 3.13.2. 

 

 

3.16 – Experiment 3 

 
“Effect of cyclic variation of high water temperature (33ºC), on White Spot 

Syndrome Virus (WSSV) infection in pacific white shrimp (Litopenaeus vannamei).” 

. 
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  MATERIAL AND METHODS 

3.16.1- Experimental design 
 

Three different cyclic temperature regimes were used in this experiment. In all 

treatments, temperature before inoculation and the first 12 hours after inoculation was 

kept at 27 °C. In the first regime (Treatment 1) , after these initial 12 hours, temperature 

was increased to 33 °C for 6 hours and again reduced to 27 °C for the following 18 

hours; in the second regime (Treatment 2), after the initial 12 hours at 27 °C,  first a 12 

hour period at 33 °C and then 12 hours at 27 °C were applied; in the third regime 

(Treatment 3), shrimp were kept for 18 hours at 33 ºC and for only 6 hours at 27 °C. 

The objective of the initial 12-hour period at 27 °C was to allow for the virus to 

replicate before shifting to high temperature. Each temperature cycle was then repeated 

during five days (five cycles - 120 hours). The experiment total time was 132 hours 

(Fig. 17).  

Five controls were used in this experiment. Three controls corresponding to each 

temperature regime (control 1, 2 and 3), one positive control (Control 4-water always at 

27° C) and one negative control (Control 5-water always at 33° C) (see also Fig.17).  

One more group was maintained at 27 ºC all the time. In this group, shrimp were 

euthanized at 12 hours after inoculation. The objective of this group was the same as 

above described for experiment 1, to confirm WSSV infection.  

All the challenged shrimp were inoculated with a viral dose of 10000 SID50, except 

for the temperature controls, which were inoculated with a saline solution (white PBS). 

One repetition was made for each of the three temperature regimes. The total number of 

experimental units was twelve. As each experimental unit consisted of ten shrimp, the 

total number of challenged individuals was 120 (Table 3). 
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  MATERIAL AND METHODS 

 

 
Fig. 17 – Schematic presentation of the temperature regimes used in experiment 3. 

 
Table 3 – Resume of the experiment design of experiment 3 

 

Exposure time per 
24 hours (hours) Treatment Number of 

shrimp 
33ºC 27°C 

WSSV 
inculation at 
10000 SID50 

1 20 (2x10) 6 18 yes 
2 20 (2x10) 12 12 yes 
3 20 (2x10) 18 65 yes 

Control 1 10 6 18 no 
Control 2 10 12 12 no 
Control 3 10 18 6 no 
Control 4 10 0 24 yes 
Control 5 10 24 0 yes 

Infection control 10 0 24 yes 
Total 120       

 

 

3.16.2 – Experimental procedure and setup 
 

 Before inoculation, a total of 120 shrimp were acclimatized at 27 °C to a salinity of 

15 gl-1over four days at the facilities of ARC, following the procedure described above 

(section 3.3). 

Each experimental unit consisted of a 50l glass aquarium, a mechanical filter, two 

heaters, one aeration stone and one thermometer (Fig.18).  After setup, all the aquaria 

were filled with brakish water of 15 gl-1 salinity, prepared as described above (section 

3.13.2). 
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For performing the temperature cycles, both a water warming and a water cooling 

system was used. 

 The warming system consisted of two heaters, one calibrated previously at 33ºC, 

the other was regulated according to the temperature required in the cycle. For warming 

up the water to 33ºC, both heaters were plugged in, with the second one set for 33ºC. To 

average time needed to reach 33 °C this way was one hour. Afterwards, the temperature 

of 33ºC was maintained only with the previously calibrated heater, and the second 

heater was switched of. 

The cooling system was composed of an aquarium pump (Eheim, Germany), a coil 

made from plastic aquarium tube and a beer cooling machine (Fig. 12). The pump  

pumped the warm aquarium water in  the tube coil through the cooler and returned it to 

the aquarium. The beer cooling machine was set at 4ºC. For reducing the temperature 

the pump was turned on, and disconnected when the temperature reached 27ºC. On 

average, this process took 50 minutes. To maintain the water temperature at 27 °C, the 

variable temperature heater was then set at 27ºC and the 33ºC calibrated heater 

disconnected.       

All the materials used in this experiment were previously disinfected with a 

powerful disinfectant (AV5, Atlan’Tol Laboratory, Gent, Belgium) and dried during 

three days to ensure total virus elimination. Strict biosecurity procedures were followed.  
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Fig. 18 – Schematic outline of the set-up used in experiment 3, with details of warming and cooling 

devices.  
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CHAPTER 4 – RESULTS 

 

4.1 – Experiment 1 
 

“Effect of high water temperature (33ºC), on White Spot Syndrome Virus (WSSV) 

infection in pacific with shrimp (Litopenaeus vannamei).” 

 

 

4.1.1 - Clinical signs  

 
Shrimp showed the first clinical signs of disease (lethargy and reduction of food 

consumption) in Group B (33/27ºC) and the Control (27/27ºC) at 24-36 hours after 

inoculation. Those injected with a high dose (10000 SID50) showed in first place the clinical 

signs earlier (24h), and then those inject with low dose (30 SID50) (36h). Lack of   response 

to mechanical stimulus was usually the last clinical signs observed, and preceded death 

only 6 hours in general.  

 

 

4.1.2 – Mortality 
 

The first dead shrimp were found in Group B (33ºC/27ºC), Group C (27ºC/33ºC) and 

Control (27ºC/27ºC) injected with both low viral dose (30 SID50) and high viral dose 

(10000 SID50), at 36 hours post inoculation. In Group A (33ºC/33ºC), the first dead were 

only found at 60 hours when injected with a low dose, and at 80 hours when injected with a 

high dose (Fig. 19 and 20).  

When injected with a low dose, Group B (33ºC/27ºC) and Control (27ºC/27ºC) reached 

100% mortality at 96 and 144 hours post inoculation respectively. With the same dose, 

Group A (33ºC/33ºC) and C (27ºC/33ºC) reached a final cumulative mortality of 3% and 

10% at 60 and 108 hours respectively (Fig. 19 and Table 4).  

When injected with a high dose, Group B (33ºC/27ºC) and Control (27ºC/27ºC) both 

reached a final cumulative mortality of 100% at 60 hours post inoculation. With the same 
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dose, Group A (33ºC/33ºC) and C (27ºC/33ºC) reached the final mortality of 6% and 10% 

at 84 and 108 hours respectively (Fig. 20 and Table 4).  
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Fig. 19 – Cumulative mortality of shrimp challenged with a low dose (30 SID50), subjected to different 

temperature regimes (Experiment 1)  
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Fig. 20 - Cumulative mortality of shrimp challenged with a high dose (10000 SID50), subjected to 

different temperature regimes (Experiment 1)  
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Table 4 – Cumulative mortality (%) found at hpi of shrimp inoculated with a low and high dose (30 and 

10000 SID50), of WSSV subjected to different temperature regimes (experiment 1) 

 

  Group  Cumulative mortality (%) 
(average from 3 repetitions) 

A (33ºC/33ºC) 3 
B (33ºC/27ºC) 100 
C (27ºC/33ºC) 10 

Low dose      
(30 SID50) 

Control (27ºC/27ºC) 100 
A (33ºC/33ºC) 6 
B (33ºC/27ºC) 100 
C (27ºC/33ºC) 10 

High dose 
10000 SID50 

Control (27ºC/27ºC) 100 
 

 

 

 

4.1.3 – WSSV detection by Indirect Immunofluorescence (IIF) 

 
By detection with Indirect Immunofluorescence (Fig. 21), all dead shrimp found in the 

groups maintained at 27ºC after inoculation (Group B and Control) were WSSV positive, 

for both high and low WSSV dose. All survivors and dead shrimp found in groups 

maintained at 33ºC after inoculation (Group A and C) were WSSV negative, for both high 

and low dose. In all the infection controls euthanized at 12 and 24 hours, all the individuals 

were WSSV positive 
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A 

DC 

B 

Fig. 21 – Indirect immunofluorescence microphotography showing infected and non-infected tissue from 

different body parts. A – uninfected tissue; B- Infected tissue form lymphoid organ; C - Infected tissue from  

stomach; D - Infected tissue from gill. 

 

 

4.2 - Experiment 2 
 

“Effect of high water temperature (33ºC) on White Spot Syndrome Virus (WSSV) 

infection in pacific white shrimp (Litopenaeus vannamei), when applied at different times 

(0, 12 and 24h) after virus inoculation.”  

 

 

4.2.1 - Clinical signs  

 
Shrimp showed the first clinical signs of disease (lethargy and reduction of food 

consumption) in Group C (27ºC/33ºC-24hpi) and Control (27-27ºC) at 24-36 hours after 

inoculation. Those injected with high a dose (10000 SID50) showed generally the clinical 

signs earlier (24h), than those injected with a low dose (30 SID50) (36h). Lack of response 

to mechanical stimulus was shown only 6 hours before the recorded death.  
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4.2.2 – Mortality 

 
The first dead shrimp were found at 36 hours in all the groups, both when injected with 

low (30 SID50) and high dose (10000 SID50).  

In the groups injected with low dose, a final cumulative mortality of 10% was reached 

by the groups A (27ºC/33ºC-0hpi) and B (27ºC/33ºC-12hpi), at 108 hour post inoculation. 

Group C (27ºC/33ºC-24hpi) reached a final cumulative mortality of 24% at 84 hours post 

inoculation. At 144 hours post inoculation, the Control (27ºC/27ºC) reached 100% 

mortality (Fig. 22). 

When injected with high dose, Group A reached a final cumulative mortality of 10% at 

108 hours post inoculation, Group B reached 7% at 60 hours, Group C reached 90% at 84 

hours and the Control reached 100% at 72 hours (Fig. 23). 
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Fig. 22 – Cumulative mortality of shrimp challenged with a low dose (30 SID50), subjected to different 

temperature regimes (Experiment 2)  
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High dose (30 SID50)
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Fig. 23 – Cumulative mortality of shrimp challenged with a high dose (10000 SID50), subjected to 

different temperature regimes (Experiment 2) 

 

 
Table 4 – Percentage of cumulative mortality found for different temperature treatments in experiment 2 

 

  Group  cumulative mortality (%) 
(average from 3 repetitions) 

A (27ºC/33º-0hpi) 10 
B (27ºC/33ºC-12hpi) 10 
C (27ºC/33ºC-24hpi) 24 

Low dose     
(30 SID50) 

Control (27ºC/27ºC) 100 
A (27ºC/33ºC-0hpi) 10 
B (27ºC/33ºC-12hpi) 7 
C (27ºC/33ºC-24hpi) 90 

High dose 
10000 SID50 

Control (27ºC/27ºC) 100 
 

 

4.2.3 – WSSV detection by Indirect Immunofluorescence (IIF) 

 
By detection with Indirect Immunofluorescence, all analysed shrimp (dead and 

survivors) from the Group A (27ºC/33ºC- 0hpi) and Group B (27ºC/33ºC- 12hpi), either 

 56



RESULTS 

injected with low and high dose, were WSSV negative.  In the Group C (27ºC/33ºC- 24hpi) 

and Control (27ºC/27ºC) injected with low and high dose,  all dead shrimp were WSSV 

positive and the survivors were WSSV negative. The analysed shrimps from the infection 

controls were WSSV positive. 

 

4.3 - Experiment 3 

 
“Effect of cyclic variation of water temperature (27ºC/33ºC), on White Spot Syndrome 

Virus (WSSV) infection in pacific white shrimp (Litopenaeus vannamei).“ 

 

4.3.1 - Clinical signs  

 
Shrimp showed the first clinical signs of disease (lethargy and reduction of food 

consumption) at 24 h in Treatment 1 (6h at 33ºC) and Control 4 (24h at 27ºC), and at 36 

hours in Treatment 2 (12h at 33ºC).  

 

4.3.2 – Mortality 

 
The first dead shrimp were found at 36 hours post inoculation in Treatment 1 (6h at 

33ºC) and Control 4 (24h at 27ºC).  In Treatment 2 (12h at 33ºC) the first dead shrimp were 

found at 48 hour post inoculation (Fig. 24).  

Both Treatment 1 (6h at 33ºC) and Control 4 (24h at 33ºC) reached 100% of mortality 

at 60 and 96 hours post inoculation respectively. Treatment 2 (12h at 33ºC) attained 90% 

mortality at 96 hours. At 36 hours, dead shrimp was found in Control 3 (18h at 33ºC) 

(Table 5 and Fig. 24). In the rest of the groups no mortality was recorded.  
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Fig. 24 – Cumulative mortality of shrimp challenged with to different cyclic temperature regimes 

(Experiment 3) 

 

 
Table 5 - Percentage of cumulative mortality found for different temperature treatments cycles in 

experiment 3 

Treatment Time/temperature exposure  cumulative mortality 
(%) 

1 6h at 33ºC 100 
2 12h at 33ºC  90 
3 18h at 33ºC 0 

Control 1 6h at 33ºC-Temperature control 1 0 
Control 2 12h at 33ºC- Temperature control 2 0 
Control 3  18h at 33ºC - Temperature control 3 10 
Control 4 24h at 27ºC-Positive control 100 
Control 5 24h at 33ºC-Negative control 0 
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4.3.3 – WSSV detection by Indirect Immunofluorescence (IIF) 

 
By immunofluorescence analysis all shrimp found in the Treatment 1 (6h at 33ºC) and 

Control 4 (24h at 27ºC) were WSSV positive. In Treatment 3 (18º at 33ºC) and temperature 

Control 1 (6h at 33ºC), 2 (12h at 33ºC), 3 (18h at 33ºC) and Control 5 (24h at 33ºC), all 

shrimp were WSSV negative, even the dead shrimp found in Control 3. In Treatment 2 (12h 

at 33ºC), the survivors were WSSV negative and the dead ones WSSV positive.

 59



DISCUSSION 

CHAPTER 5 – DISCUSSION 
 

5.1 - Challenge model 

 
Although the oral and waterborne route are considered the natural way of infection for 

WSSV in cultured shrimps (Chang et al, 1996), there still doesn’t exist a well standardized 

method for using these virus inoculation methods accurately under experimental conditions. 

However, the method of intramuscular inoculation was described as being a good 

alternative (Vidal et al., 2001; Guan et al., 2003; Jiravanichpaisal et al., 2004; Escobedo-

Bonilla et al., 2005). This method especially allows to obtain reproducible results between 

experiments.  

Although the viral load in shrimp production conditions is still unknown, two extreme 

doses were used. A viral dose of 30 SID50 was estimated the minimum concentration 

needed to reach 100% mortality in the inoculated individuals (Escobedo-Bonilla et al., 

2005). It was calculated that 10000 SID50 is the viral content of one gram of tissues from 

shrimp that died because of WSSV infection. So roughly, this dose might correspond to the 

viral dose taken by a shrimp when practising cannibalism in culture conditions.  

A temperature of 27ºC was used as control, since this is the ideal temperature for 

culturing Litopenaeus vannamei. 33 ºC, although above the optimum temperature for L. 

vannamei, was determined by previous authors (Vidal et al., 2001; Guan et al., 2003) as 

being suitable to protect shrimp from WSSV infection. 

 

5.2 – Experiment 1 

 
In experiment 1, median lethal time (LT50 obtained by Probit analysis) in Group A 

(33ºC/33ºC), Group B (33ºC/27ºC) and Group C (27ºC/33ºC) injected with low dose, was 

significantly different (P < 0.05) from the Control (27ºC/27ºC). The LT50 in Treatment A 

and Treatment C were significantly higher than that of the Control, wheras in Group B it 

was significantly lower than in the Control. This means that, tanking into account both the 

percentage cumulative mortality and the mortality rate, Group A and C were able to 

significantly reduce the mortality progression when compared with the control, and 

oppositely in Group C mortality progression was increased. 
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 When considereing the final cumulative mortality in Group B (33ºC/27ºC), it is 

obvious that previous (before inoculation) exposure to 33ºC, can not protect the shrimp 

from WSSV. It was even noted that shrimp in Group B had a higher mortality rate 

compared with the Control, which maybe can be attributed to additional susceptibility to 

WSSV due to temperature changing. 

From a practical point of view, when considering the final cumulative mortalities, only 

the treatments A an C would be suitable for field application, or in other words, can 

effectively prevent mortality in WSSV infected shrimps. Group A and C were not 

significantly different from one another (P > 0.05), which again demonstrates that is not 

necessary to maintain high water temperature before inoculation, in order to obtain high 

survival.   

Statistical analysis obtained from the groups injected with a high dose gave similar 

results to the low dose injected groups. Comparing the final cumulative mortality between 

all groups, it was noticed that the protection provided by high water temperature was not 

dependent on the viral dose. This assumption is valid at least for hyperthermia application 

immediately afterwards virus inoculation. Oppositely, a higher mortality rate was observed 

in Group B (33ºC/27ºC) and the Control (27ºC/27ºC) injected with a high dose compared 

with the same groups injected with a low dose. This fact suggests that mortality rate is 

dependent on the administrated viral dose.   

By indirect immunofluorescence analysis, the capacity of hyperthermia to protect 

WSSV infected shrimp was confirmed, since both surviving and dead animals found in 

Treatment A (33ºC/33ºC) and C (27ºC/33ºC) were found to be WSSV negative. This means 

that the mortality obtained in these treatments originated from other reasons than WSSV 

infection. From this, it can also be concluded that high water temperature can totally block 

WSSV infection, when applied at least at the time of infection. 

  

 

5.3 – Experiment 2 
 

In Experiment 2, when challenged with a low viral dose, Group A (27ºC/33ºC-0hpi), 

Group B (27ºC/33ºC-12hpi) and Group C (27ºC/33ºC-24hpi), displayed a significantly 

different mortality pattern (P < 0.05) from the Control (27ºC/27ºC). No significant 

differences (P> 0.05) were found between Group A, B and C themselves. This means that 
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all treatments were equally able to significantly reduce mortality compared with the control. 

This also suggests that, when applying a low viral dose, even after allowing a period of 

viral replication of 12 or 24 hours, high water temperature can reduce mortality of 

previously WSSV infected shrimp.  

The statistical analysis output obtained for the high dose injected groups was similar to 

those injected with a low dose in that all groups were significantly different (P < 0.05) from 

the Control. The mortality pattern in Treatment C was however also different from the one 

in Treatment A and B. 

When comparing the final cumulative mortality obtained for Group A (27ºC/33ºC-0hpi) 

and B (27ºC/33ºC-12hpi), injected with high and low dose, it is clear that the protective 

affect of high temperature was not dose dependent in this case. Oppositely, mortality in 

Group C (27ºC/33ºC-24hpi) was clearly dose dependent. A practical interpretation of the 

previous results, suggests that hyperthermic treatment is not effective to prevent mortality 

after a longer period of viral replication (24 hours) when inoculated with a high viral dose 

(10000 SID50). A higher mortality rate was also observed in the high dose Control 

(27ºC/27ºC), when compared with the low dose Control. From this, it can be concluded that 

the mortality outcome in WSSV infected shrimps under normal temperature conditions, is 

dependent on the inoculation dose.     

The high mortality obtained in Group C (27ºC/33ºC-24hpi) when injected with a high 

dose, can maybe be explained from the cellular damage caused during this first 24 hour 

“incubation period”. When susceptible shrimp are submitted to a large period of viral 

replication (24 hours), even if afterwards hyperthermic treatment is applied, the cellular 

damage can already be too high for the shrimp to recover.  

 By indirect immunofluorescence analysis, the capacity of hyperthermia for protecting 

WSSV infected shrimp was confirmed as both in Group A (27ºC/33ºC-0hpi) and B 

(27ºC/33ºC-12hpi), both dead and surviving were WSSV negative. The results from the 

analysis of Group C (27ºC/33ºC-24hpi), demonstrate that the survivors were effectively 

protected from WSSV, as they were WSSV negative both for high and low dose. On the 

other hand all the dead shrimp in this treatment were WSSV positive, which confirms that 

under the conditions of this specific treatment, hyperthermia could not fully protect the 

animals.  
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5.4 – Experiment 3 

  
 For Experiment 3, no statistical analysis could be made, since it was only performed 

once, and consequently there are not enough data available for a correct statistical analysis.  

Nevertheless, from the results it is clear there is a big difference between final 

cumulative mortality in Treatment 3 (18 hours at 33ºC), where no mortality was observed, 

and the Control 4 (27ºC/27ºC) were 100% mortality was reached. In Treatment 1 (6 hours 

at 33ºC) and Treatment 2 (12 hours at 33ºC) mortalities also amounted to 100% and 90% 

respectively, but mortality seemed to be delayed somewhat. These results seem to indicate 

that Treatment 3 is the only effective treatment for preventing mortality in WSSV infected 

shrimps, and thus a minimum of 18 hours per day at 33 °C is necessary. However, in the 

previous experiments, sometimes significant differences were found between the same 

temperature treatment (e.g. treatment 27ºC/33ºC 24hpi), when inoculated with a low or 

high viral dose. Because of this, and considering that only a high viral dose was used in 

experiment 3, it could be that Treatment 1 and/or Treatment 2 would be effective, if a low 

viral dose is used.  

In this experiment, it was also proven the cyclic temperature variation and the 

inoculation procedure as such didn’t result in significant mortality, since in Control 1, 2 and 

3 only one dead animal was found.        

By indirect immunofluorescence analysis, it was confirmed that by maintaining the 

shrimp in daily cycles of 18 hours at 33ºC, WSSV infection can be prevented, as all the 

analysed shrimp were WSSV negative. In Treatment 2, all the dead shrimp were positive 

and oppositely, survivors were negative. This finding reconfirms the idea that the repetition 

of this temperature cycle with a low viral dose might result in higher survival rate, as even 

with a high dose this treatment proved capable to protect some infected shrimp. It was also 

confirmed that the dead individual found in Control 3 was not infected, which rejects the 

hypothesis of viral contamination of the control. Finally, all shrimp analysed in the 

infection control were WSSV positive, which proves the success of the inoculation 

procedure.  
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5.5 – General discussion 

 
The logical sequence of experiments executed in the present study, clearly demonstrates 

the effectiveness of high water temperature (33ºC) to control WSSV infection in the pacific 

white shrimp (Litopenaeus vannamei), which confirms the results of previous studies on 

this subject (Vidal et al., 2001; Guan et al., 2003).  

Data on the influence of temperature on WSSV infection are limited to only a few 

studies. To our knowledge, no information on the influence of factors such as virus dose, 

duration of virus replication before applying hyperthermia or the use of daily temperature 

variation existed. In the current study very conclusive results on these factors were 

obtained.  

It could be proven that high water temperature can prevent mortality of WSSV infected 

shrimp, when the treatment is applied until 24 hours after virus inoculation, but only if the 

virus input is low (30 SID50). With a higher virus input (10000 SID50), temperature 

treatment was effective only when applied until 12 hours after inoculation. This could have 

been expected from the work of Escobedo-Bonilla (2005), which suggests the virus 

replication cycle takes approximately 12 hours. This also demonstrates that there is an 

influence of the viral dose on the progression of White Spot Disease. Also it has been 

clearly demonstrated that is not necessary to maintain high water temperature before virus 

inoculation. These facts reveal the potential of temperature manipulation, not only as a 

preventive measure, but to a certain extent, also as therapeutic measure. 

Although the WSSV replication mechanism is still largely unknown, the influence of 

high temperature on viral replication has been reported (Yang, 1990). This can give some 

clues about how high water temperature affects WSSV infection. Most probably, high 

temperature (33ºC) inhibits virus replication by affecting some biological component (from 

the virus or from the shrimp) necessary in viral replication. The results of the present study, 

although not conclusive in this matter, suggests that the effect on mortality originates from 

inhibition of viral replication and not from a shrimp immunity response when induced to 

exposure to high water temperature. Present knowledge that the crustacean immune system, 

although very strong and efficient, does not possesses the capacity or specificity for 

responding to viral infections, supports this. 

According to Vidal et al. (2001), when the virus inoculum itself was exposed to 33ºC 

during one hour, and then inoculated by intramuscular route in Litopenaeus vannamei, 
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100% mortality was obtained. The same author also reported that after keeping WSSV 

inoculated shrimp 40 days at high temperature (33ºC), when the temperature was reduced to 

26ºC, 100% mortality was reached. This can to some extent explain the mortality obtained 

in Experiment 3, as similarly in our experiment shrimp were exposed to periods of high 

water temperature following by periods of low temperature. Where during high water 

temperature exposure, the virus is inhibited, but not inactivated (killed), when temperature 

is reduced to a lower level (27ºC) the virus becomes active again, being able to induce 

cellular damage. 

Some studies however pointed out other ways in which high water temperature may 

influence the mortality of WSSV infected shrimp. It was reported that high temperature 

induces a higher rate of apoptosis in shrimp cells, which could be responsible for WSSV 

control in infected shrimp (Granja et al., 2003). Also it was suggested by Vidal et al. 

(2001), that several biologically active proteins, such as heat shock proteins, might modify 

the shrimp immune response to virus infection. Knowing that this kind of proteins have a 

considerable live time in the organism once produced, our study rather invalidates this 

hypothesis. After all, if heat sock proteins had some influence in WSSV infection control, 

then Group B (33ºC/27ºC) in experiment 1 probably should have had a better survival rate, 

as the shrimp were previously exposed to 33ºC water. 
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CHAPTER 6 – CONCLUSIONS 
  

The main objective of this study was to further document the influence of high water 

temperature (33ºC) on survival of WSSV infected shrimp. 

In Experiment 1, the effectiveness of high water temperature to control the mortality of 

shrimp infected with WSSV was clearly demonstrated. When temperature treatment is 

applied immediately after virus inoculation, the protection is effective even when 

submitting the shrimp to a very high viral dose.    

In Experiment 2, it was shown that hyperthermic treatment has not only potential as a 

preventive intervention, but also to some extent as a therapeutic measurement. In this 

respect it was shown that hyperthermia, when applied 24 hours after inoculation with a low 

virus dose, was still effective. This experiment however also pointed out an important 

influence of the viral dose on outcome of the infection. For example, at a high virus dose, 

hyperthermia should be applied within the first 12 hours after inoculation.   

Experiment 3, although results should be considered preliminary, suggest that high 

water temperature treatment could possibly be applied in a regime of daily cycles, and 

consequently opens new perspectives for further scientific work on this subject. When 

shrimp were subjected to a high virus dose, a minimum of 18 hours per day at 33 °C were 

necessary to offset mortality due to infection. Possible shorter periods at 33 °C would be 

required if shrimp were inoculated with a lower dose however. 

The above clearly proves the effectiveness of high water temperature for preventing 

mortality in WSSV infected shrimp, and consequently the potential to apply management 

practices that increase water temperature in ponds to manage this devastating disease. 

However, under shrimp farming conditions, maintaining high water temperature for long 

periods of time, might not be economically feasible. Applying cyclic high temperature 

periods in the culture ponds, using solar energy during the daytime, may be a more realistic 

alternative. As in tropical or subtropical areas, water temperature can reach 33°C or higher 

for several hours during the day, but drops below 30°C during the night, this strategy might 

be feasible in the field, at a lower cost. In order to validate this assumption, the effect of 

cyclic temperature variations should be further documented (e.g. with different virus dose). 

Also climate conditions in shrimp producing countries should be studied. In order to obtain 

better conclusions about this matter, it would also be interesting to define the real load of 

virus that shrimp are exposed to in the field. These data would improve the design of 
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further challenge models, and in that way obtain more realistic results with better 

application in the field. Also it will be of major interest to direct research into the 

characterization of viral replication mechanisms, and more specifically on the influence of 

temperature on WSSV viral replication at the molecular level. This kind of knowledge can 

be decisive for the development of strategies for controlling WSSV outbreaks with 

temperature manipulation. 

The technical aspects of temperature manipulation in growout ponds should also be 

looked at. As one of the major natural resource in shrimp producing countries is the solar 

power, the question will be how to apply it to increase the temperature in culture ponds. 

Naturally, this will be an engineering question. 
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