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Abstract 

 

In this thesis, we present six studies that investigated the role of color information 

during visual object recognition. The interactions between surface color and color 

knowledge information were investigated in two studies (chapters 2 and 3). In 

chapters 4 and 5, we present data that identify the visual processing stage at which 

color information improves color and non-color diagnostic object recognition. In 

chapter 6, the neural pathways supporting color object recognition were 

investigated. Additionally, in an attempt to bring some consistency to the 

literature, we performed a systematic meta-analysis on the effects of color on 

object recognition in chapter 7. 

Chapter 2 and 3 provided data suggesting that surface color information is 

more influential than color knowledge information during object recognition. 

Chapter 4 and 5 showed that color information improves the recognition of color 

and non-color diagnostic objects at different stages of visual processing. Although 

color information is an important cue for both of these types of objects in the early 

visual processes, it is also important in later stages of visual processing for color 

diagnostic object recognition. In chapter 6, we observed that colored objects, when 

compared with black and white objects, activated a more extensive brain network 

related to visuo-semantic activation and retrieval. Finally, the meta-analysis in 

chapter 7 conclusively showed a significant effect of color information during 

object recognition. 

In summary, the general picture that emerges from this body of work is that 

color information takes part in object recognition processes at multiple levels of 

representation. 

 

Keywords: surface color information, color knowledge information, color diagnostic 

objects, non-color diagnostic objects, object recognition and identification. 
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1.1 Overview 

The cognitive processes involved in object recognition remain a mystery to the 

cognitive sciences. The visual system recognizes objects via multiple features. The 

effortless way in which features are constructed to recognize objects seems to be 

almost magic. Color is one of the features of the environment that our visual 

system can extract and use. Humans possess trichromatic color vision that most 

likely developed for specialized uses. For example, color vision could be used to 

detect ripe fruit amongst foliage (Gegenfurtner, 2003; Surridge, Osorio, & Mundy, 

2003). This thesis attempts to clarify the functional role of color information during 

object recognition processing. 

The first models of object recognition emerged in the field of cognitive 

psychology 35 years ago. Although there is evidence to support the hypothesis that 

color information participates in object recognition, there is still no consensus 

regarding the type of objects and the viewing conditions that are affected by this 

visual attribute. This thesis outlines six studies that were designed to further 

elucidate the way in which color and shape information are combined to recognize 

familiar objects. In chapters 2 and 3, we clarify the interactions between surface 

color and color knowledge information during object recognition. In chapter 4 and 

5, we investigate the visual processing level at which color participates in the 

recognition of color and non-color diagnostic objects. Chapter 6 presents the 

neural correlates associated with the recognition of colored objects. Finally, in 

chapter 7, we perform a meta-analysis on the effects of color on object recognition. 

Before turning to the results of these studies, the themes that are relevant to 

the topics that are discussed in this thesis will be shortly introduced. First, we will 

briefly introduce the major models of object recognition and its neural basis. Next, 

we will present the current state of the art concerning the role of color information 

in object recognition. 



Chapter 1 

14 

1.2 Visual Object Recognition 

Object recognition is an amazing human ability. We can effortlessly recognize and 

identify the objects around us within a fraction of a second. If we assume that the 

only information available to recognize the objects is a static two-dimensional 

image on the retina, a problem immediately arises in the explanation of visual 

recognition. Depending on the angle, lighting conditions and distance, there are an 

infinite number of possible retinal images that can correspond to a particular 

object, yet object recognition is enormously flexible and largely unaffected by 

these dramatic changes in object appearance. 

In a pioneering study, Thorpe and collaborators (Thorpe, Fize, & Marlot, 1996) 

allowed observers only 20 milliseconds to determine whether an animal was 

present in a natural scene. Event-related potentials (ERPs) measured during the 

performance of this task revealed that, approximately 150 milliseconds after 

stimulus onset, there was a significant difference between the neural responses for 

trials in which there was an animal and trials in which there was not. Such data 

indicate that the visual system processes complex natural scenes quite rapidly and 

with only the briefest of inputs. Not surprisingly, how the human brain enables this 

to happen is currently an open problem for cognitive neuroscience. 

 

Object Recognition Models 

Most of the significant work in theorizing about object recognition came from Marr 

and Nishihara (1978), which was further developed a few years later by Biederman 

(1987). Marr and Nishihara (1978) developed a computational theory to explain 

how the human visual system recognizes an object. The authors introduced the 

idea of structural representations based on three-dimensional volumes and their 

spatial relations. In particular, they proposed that objects can be described as a set 

of generalized cones. A generalized cone is the surface created by moving a cross-

section of constant shape but with variable size along an axis. Shapes that are 

elongated or that have a natural axis are more easily described in terms of 
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generalized cones, and Marr and Nishihara (1978) limited their investigation to 

these types of objects. Generalized cones include forms such as spheres or cubes 

but can also include arms and legs. These powerful representational units have the 

potential to discriminate between objects that have only subtle shape differences. 

Objects with more complex shapes are often described by more than one 

generalized cone. Objects can be described as hierarchical organized structural 

models, meaning that their parts are related to each other by spatial relations at 

multiple scales. That is, a given representation can be refined to the shape and the 

details of configuration necessary to distinguish it from other objects of similar 

shape. For example, two different faces might have subtly different relations 

between the angles of their noses and eyes and subtly different generalized cones 

representing the shapes of the noses. 

One of the most challenging issues in object recognition is the fact that, when 

rotated in depth, three-dimensional objects change their two-dimensional retinal 

projection. This problem, called viewpoint invariance, must be addressed by 

theories of object recognition. Marr and Nishihara (1978) proposed that object 

parts, encoded as generalized cones, are represented in an object-centered 

manner, i.e., in a coordinate system that decouples the orientation of the object 

from the position of the viewer. The significance of this assumption is that the 

same generalized cone can be recovered from the image regardless the orientation 

of the object generating that image. Consequently, object recognition performance 

should be independent of both observer position and object orientation. However, 

this proposal is based on the era of the computer vision models, and Marr and 

Nishihara (1978) offered no empirical support for their theory. 

By far, the most well-known model of object recognition is the recognition-by-

components (RBC) proposed by Biederman (1987). In this model, objects are 

described as spatial arrangements of a restricted set of roughly 30 basic 

component shapes, such has wedges and cylinders, called geons. This idea suggests 

an analogy with words, which are constructed from a restricted set of phonemes. 
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Biederman (1987) suggested that the first stage of object recognition involves the 

segmentation of the contour in regions of sharp concavity. This segmentation 

divides the contour into a number of parts that then are matched against the set of 

geons. Like Marr and Nishihara (1978), Biederman (1987) used view-invariant 

representations. According with the RBC model, geons are defined by properties 

that are invariant over different views. Object representations are simply 

assemblies of geons constructed by inferring the qualitative spatial relations 

between them. Because geons and the relationships between them are viewpoint-

invariant, the recognition process is likewise viewpoint-invariant. Experimental 

support, both for the importance of the geons in object recognition (Biederman, 

1987; Biederman & Cooper, 1991; Biederman & Gerhardstein, 1993; Hummel & 

Biederman, 1992; Vogels, Biederman, Bar, & Lorincz, 2001) and the idea that object 

recognition is viewpoint-invariant (Biederman & Cooper, 1992), has been 

published. 

A final issue raised by Biederman (1987) in the RBC model is that object 

recognition typically occurs at a basic level (Rosch, Mervis, Gray, Johnson, & Boyes-

Braem, 1976). More specifically, the first and fastest label that is applied to most 

objects is their category label (e.g., dog). The exception to this rule is visually 

idiosyncratic category exemplars (e.g., penguin). RBC only explains how observers 

recognize objects at the category level, making no attempt to account for how we 

arrive at either superordinate (e.g., animal) or subordinate (e.g., poodle) labels. 

Thus, there is no particular theory that can explain how such a wide variety of 

visual recognition tasks are accomplished. 

 

The Contribution of Cognitive Neuropsychology 

Individuals with cerebral damage have been the basis of some of the strongest and 

earliest research of the processing stages that are involved in object recognition. 

Much of this work comes from case studies of patients who, after suffering cerebral 

lesions, showed impairments in their ability to recognize stimuli presented in the 
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visual modality (i.e., visual agnosia). The study of such patients led Humphreys and 

colleagues (Humphreys, Price, & Riddoch, 1999; Humphreys, Riddoch, & Quinlan, 

1988; Riddoch & Humphreys, 1987b) to propose a hierarchical model of object 

recognition. According to this model, object recognition involves a set of separate 

processes arranged in a hierarchical fashion. This quasi-modular decomposition of 

object recognition is presented in Figure 1.1. 

 

Figure 1.1. A schematic framework illustrating the stages of processing involved in 
object naming. Adapted from Humphreys, Price and Riddoch (Humphreys, Price, & 
Riddoch, 1999). 
 

When we see an object, early visual processes encode the shape information 

and, possibly, other surface details present in the object image. To recognize an 

object, the encoded perceptual information must be matched against different 

forms of stored information: knowledge about the form of the object (i.e., its 

structural description), knowledge about functional and associative properties of 

the object (i.e., its semantic description), and finally knowledge about the object 

name (i.e., its phonological description). Access to these various types of 

knowledge constitutes distinct stages in the recognition process. The first stage is 

the access to object’s structural description. The encoded perceptual information 

must be matched against a known form stored in the long-term memory. Evidence 
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for the existence of this separate stage comes from patients who show good early 

visual processing but have difficulty performing object decision tasks. The 

performance in these tasks can be assessed with familiarity discrimination tasks 

between pictures of real objects and non-objects generated by combining parts of 

different real objects. The same patients are good at retrieving functional and 

associative properties of the objects via other modalities, indicating that their 

problem is restricted to visual knowledge about the form of the object (Gainotti & 

Silveri, 1996; Sartori & Job, 1988). The second stage in object recognition requires 

access to functional and associative knowledge of the objects. Patients with deficits 

in retrieving stored semantic representations from the visual modality demonstrate 

access to stored visual knowledge, as indicated by their ability to perform object 

decision tasks. However, the same patients may show impairments in matching 

tasks that require access to semantic knowledge from vision (e.g., match a hammer 

to a nail or a screw) and object naming (Hillis & Caramazza, 1995; Riddoch & 

Humphreys, 1987a; Sheridan & Humphreys, 1993). Despite this deficit, these 

patients demonstrate good performance on tests that require access to semantic 

knowledge from other modalities (Riddoch & Humphreys, 1987a). Thus, poor 

object naming cannot be attributed to general deficits in semantic knowledge but, 

rather, to impaired visual access to semantic knowledge following intact access to 

stored visual knowledge. These evidences clearly indicate the existence of a 

separate system that supports long-term visual knowledge about objects, isolated 

from the functional and associative semantic knowledge system. Finally, the last 

stage in object recognition is the access to the object’s name representation. 

Evidence for this separate stage comes from patients who are able to make 

accurate judgments about the visual and semantic properties of objects but cannot 

readily retrieve phonological information (Kay & Ellis, 1987). 

The contribution of cognitive neuropsychology to the study of object 

recognition was important for the identification of several independent cognitive 

processes involved in object recognition tasks. 
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The Neural Basis of Object Recognition 

Neuroimaging techniques, specifically functional magnetic resonance imaging 

(FMRI), offer an opportunity to investigate the neural and cognitive mechanisms 

underlying object recognition. Objects are represented in a large portion of the 

visual ventral stream, the processing pathway that extends from the occipital to 

the inferior temporal lobe. Indeed, FMRI studies have revealed a constellation of 

object selective brain regions in the lateral and ventral occipito-temporal cortices, 

referred together as the lateral occipital complex (LOC; Grill-Spector, 2003; Malach 

et al., 1995; Peissig & Tarr, 2007). The LOC responds more strongly to pictures of 

objects than to their scrambled counterparts (Grill-Spector et al., 1999; Kourtzi & 

Kanwisher, 2001; Malach et al., 1995) and shows a number of response properties 

that characterize an effective object recognition system that subserves perceptual 

object constancy. First, the LOC responds similarly to objects defined by luminance, 

texture, motion and other cues, thus representing objects independently of the 

precise physical cues that define an object (Grill-Spector, Kushnir, Edelman, Itzchak, 

& Malach, 1998; Kourtzi & Kanwisher, 2000). Second, the LOC represents objects 

invariant of changing external viewing conditions, such as viewpoint or 

transformations of object size (Grill-Spector et al., 1999; James, Humphrey, Gati, 

Menon, & Goodale, 2002; Sawamura, Georgieva, Vogels, Vanduffel, & Orban, 2005; 

Vuilleumier, Henson, Driver, & Dolan, 2002). These neuroimaging studies are in 

agreement with early monkey neurophysiological studies in which visual object 

recognition was mapped to the responses of single neurons in the inferior temporal 

cortex. For example, Gross and colleagues (Gross, Bender, & Rocha-Miranda, 1969; 

Gross & Rocha-Miranda, 1972) reported that neurons in the inferior temporal 

cortex of macaques responded strongly to complex visual stimuli, such as hands 

and faces. Interestingly, these higher-level areas of the inferior temporal cortex 

showed very little response to simple stimuli, suggesting that this and related areas 

are critical to complex visual processing, such as object recognition. 
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Ungerleider and Mishkin (1982), based on the pattern of behavior following 

lesions to dorsal and ventral regions of the monkey cortex, suggested that the 

visual cortex can be broken down into two pathways. The ventral pathway, 

including areas of the inferior temporal cortex, is involved in the identification of 

visual objects. The dorsal pathway, including areas of the posterior parietal cortex, 

is related to spatial properties of vision. An alternative description of the two 

pathways exists in terms of vision for perception (ventral stream) and vision for 

action (dorsal stream; Goodale & Milner, 1992). Although neural representations of 

object information have been extensively studied in the ventral pathway, little is 

known about the role of the dorsal pathway in object processing. The functional 

role of the dorsal pathway in object recognition has been frequently attributed to 

modulation of attention and action guidance (Grill-Spector et al., 1999; Kourtzi & 

Kanwisher, 2000). However, in a recent neuroimaging study, Konen and Kastner 

(2008) challenged this idea. The authors found representations for a variety of 

different object stimuli in the human parietal posterior cortex when action 

planning was not involved and when attention was drawn away from the stimuli. 

These results indicate that basic object information related to shape, size and 

viewpoint may be represented similarly in two parallel and hierarchically organized 

neural systems in the ventral and in the dorsal pathways. 

 

1.3 Color Processing in the Human Brain 

Given that the brain has developed specialized mechanisms to handle color 

perception information in the visual environment, it is a fair question to ask what 

functional role color might play in everyday vision, namely during object 

recognition. Although other mammals possess dichromatic or monochromatic color 

vision, only primates have trichromatic color vision. What is the ecological 

advantage of having trichromatic color vision? Primates evolved trichromacy from 

their dichromatic ancestors approximately 40 million years ago following the 

duplication of a gene coding for the L-cone (Jacobs, 1993; Jacobs & Rowe, 2004; 
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Yokoyama, 2000). The dominant view is that trichromatic color vision emerged as a 

specific adaptation for finding fruits and young leaves against a background of 

mature leaves. Because fruits and leaves play an important role in the primate diet, 

trichromacy could have evolved as a specific adaptation for finding food (e.g., 

Osorio & Vorobyev, 1996; Regan et al., 2001). Alternatively, color vision in primates 

could have evolved for discriminating the spectral modulations on the skin of 

conspecifics, probably for the purpose of discriminating emotional states, socio-

sexual signals and threat displays (Changizi, Zhang, & Shimojo, 2006). Therefore, 

social and sexual selection could also have played a role in evolution of primate 

trichromacy. Given that color plays a prominent role in our subjective experience of 

the visual world, it makes sense to investigate how color information contributes to 

object recognition. 

 

Cortical Stages of Color Processing in the Human Visual Brain 

Several physiological and anatomical studies have established the human color 

center in the V4 area located in the posterior part of the fusiform gyrus. However, 

the color center is just part of a more broadly distributed cortical network 

responsible for color processing that includes V1, V2, V4, and regions beyond the 

inferior temporal cortex (e.g., Bartels & Zeki, 2000; Lueck et al., 1989; McKeefry & 

Zeki, 1997; Zeki & Bartels, 1999; Zeki et al., 1991). Nevertheless, it is unclear what 

role these areas play within the color processing system. Evidence suggests that the 

first stage of color processing, located in the V1 and V2, primarily registers the 

presence and intensity of different wavelengths. A second stage, located in the V4, 

is involved in automatic color constancy operations (Zeki & Marini, 1998). Color 

constancy is a property of the human visual system that ensures that the perceived 

color on a surface remains relatively constant under varying illumination 

conditions. A very interesting case study reported by Zeki and colleagues (Zeki, 

Aglioti, McKeefry, & Berlucchi, 1999) shows the specific roles of V1, V2 and V4 

within the color processing system. After an electric shock that led to vascular 
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insufficiency, the patient PB became virtually blind, although he retained the 

capacity to see colors consciously. The psychophysical results suggested that color 

constancy mechanisms were severely deficient in the patient and that his color 

vision was merely wavelength-based. The imaging studies showed that, when he 

viewed and recognized colors, significant increases in activity were restricted to V1 

and V2, while no activation of V4 was observed. 

Corroborating these initial processing states of color perception is the finding 

that achromatopsia, a condition in which patients report no experience of color, 

results from lesions in V4. Achromatopsic patients can discriminate between 

different wavelengths, but they cannot attribute colors to them (e.g., Beauchamp, 

Haxby, Rosen, & DeYoe, 2000; Kennard, Lawden, Morland, & Ruddock, 1995; 

Tranel, 2001; Zeki, 1990). Bouvier and Engel (2006) performed a meta-analysis of 

92 case reports of achromatopsia in the literature. Lesion overlap analyses revealed 

a relatively small region of high overlap in the ventral occipital cortex, close to 

areas that are important for color perception. However, the behavioral deficits in 

the achromatopsic patients were often incomplete and were not restricted to color 

vision. Notably, most of the cases reported have concomitant deficits in spatial 

vision. This observation led the authors to suggest that some visual areas, outside 

those commonly damaged in achromatopsia, also participate in the color 

processing stream. This meta-analysis indicates that color perception arises from a 

stream of processing that flows through multiple visual areas and that 

achromatopsia likely results from damage to one critical step in the many stages 

supporting color perception. 

Finally, a third and final stage in color processing involves object colors and is 

supported by the inferior temporal and probably also by the frontal cortex (Zeki & 

Marini, 1998). Little is known about the neural mechanisms underlying higher-level 

aspects of color processing. According to the review of the literature, the cortical 

brain regions believed to be important for color perception are shown in Figure 

1.2. 
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Figure 1.2. Schematic view of the human brain. The regions that are important for 
various aspects of color perception are shown. These regions include the lingual 
gyrus and the posterior portion of fusiform gyrus, located below the calcarine 
fissure. 
 

1.4 Does Color Information Improve Object Recognition? 

The role that color plays in object recognition has been a point of contention in the 

literature. Initially, object recognition theories state that objects are recognized 

based only on shape information, largely ignoring the influence of color 

information (Biederman, 1987; Marr & Nishihara, 1978). More recently, a large 

body of behavioral, neuroimaging and neurophysiological studies indicate that 

color might contribute to object recognition. Tanaka and colleagues (Tanaka, 

Weiskopf, & Williams, 2001) proposed the Shape + Surface model of object 

recognition that takes into consideration the recent evidence for the role of color 

information in object recognition (Figure 1.3). The model recognizes that object 

recognition is primarily a shape-driven system (e.g., blue strawberries are still 

recognized as strawberries); however, color and possibly other surface properties, 

such as texture, are perceptual inputs for the object representation system. The 

Shape + Surface model draws a distinction between surface color at the input level 

and stored color knowledge and considers object recognition to be jointly 

determined by the bottom-up influence of surface color and the top-down 
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influence of color knowledge. According to this model, visual color knowledge can 

be triggered either by the perceptual object during object recognition or by its 

lexical label during mental imagery. Finally, the model maintains a separation 

between linguistic and visual representations of object color. For example, it is 

possible to know that strawberries are red without having to consult a visual 

representation. 

 

Figure 1.3. The Shape + Surface model of object recognition. Adapted from Tanaka, 
Weiskopf and Williams (2001). 
 

By examining whether there is an advantage to recognizing the typical colored 

version of an object (e.g., a red strawberry) over its black and white or atypical 

color version (e.g., a purple strawberry), it is possible to verify whether color 

information contributes to object recognition. However, this relatively 

straightforward test has yielded mixed results. Some studies have shown that 

recognition times are essentially unaffected by color information (Biederman & Ju, 

1988; Davidoff & Ostergaard, 1988; Ostergaard & Davidoff, 1985). However, other 

studies have found that objects presented in their typical color version are 

recognized faster than when individuals are presented with their black and white or 

atypical color versions (e.g., Humphreys, Goodale, Jakobson, & Servos, 1994; Price 

& Humphreys, 1989; Therriault, Yaxley, & Zwaan, 2009; Wurm, Legge, Isenberg, & 

Luebker, 1993). Different explanations have been proposed for these apparently 

contradictory results. For instance, color information may facilitate the recognition 
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of objects within structurally similar categories (e.g., animals, fruits) but not 

structurally dissimilar categories (e.g., body parts, musical instruments, tools). 

Objects belonging to structurally similar categories activate a larger set of 

structural representations, leading to a higher competition within the visual 

system, and thus color can help resolve this competition (Price & Humphreys, 

1989). Other studies have proposed that color can provide useful information when 

objects are strongly associated with a color (i.e., color diagnostic objects; Nagai & 

Yokosawa, 2003; Tanaka & Presnell, 1999). Although the color red might be useful 

to recognize strawberries or fire engines, the red color might not be useful to 

recognize combs or shoes. Additionally, it has been suggested that color might 

provide important information for people with low visual acuity (Boucart, Despretz, 

Hladiuk, & Desmettre, 2008; Wurm, Legge, Isenberg, & Luebker, 1993) and patients 

suffering from visual object agnosia (Humphreys, Goodale, Jakobson, & Servos, 

1994; Mapelli & Behrmann, 1997). 

 

Surface Color and Color Knowledge Information 

Perceiving that a strawberry is red as opposed to knowing and recalling that a 

strawberry is red are distinct cognitive operations. The surface color of an object 

can be defined as the percept generated by the color present in the object image 

(e.g., the color red in a picture of a red strawberry), while the color knowledge is 

represented in the semantic information about the prototypical color of an object 

(e.g., the knowledge that strawberries are typically red). 

To study how surface color and color knowledge might interact during object 

recognition, Joseph and collaborators (Joseph, 1997; Joseph & Proffitt, 1996) 

manipulated perceptual color input independently of color knowledge in a series of 

verification tasks. The authors found that color knowledge significantly influenced 

object recognition. For example, a purple apple was more likely to be mistaken for 

a cherry than for a blueberry. This interference effect occurs because both apples 

and cherries are typically red, not because the apple was colored in purple, the 
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typical color of a blueberry. The same pattern of results was obtained when 

uncolored pictures were used. These findings suggest that the conceptual 

processing of color does not depend on the presence of a surface color and that 

automatic color knowledge is more powerful than the perceptual surface color 

processing during object recognition. However, they allowed participants to verify 

a target object against three types of different distractors: a distractor similar in 

shape but not color, a distractor similar in shape and color, and a distractor 

dissimilar in shape and color. Given that object recognition is a shape-driven 

system (Tanaka, Weiskopf, & Williams, 2001), a fourth distractor, similar in color 

and dissimilar in shape, should have been included to exclude the possible 

interference of shape. Moreover, the effects of color and shape might not be 

additive; shape and color similarity might yield super additive effects. 

At the neuroanatomical level, several studies have tried to clarify whether 

there are distinct neural regions that process surface color perception and color 

knowledge retrieval. For example, Martin and colleagues (Martin, Haxby, Lalonde, 

Wiggs, & Ungerleider, 1995) used a property production task to activate color and 

action knowledge associated with objects. Subjects were presented with black and 

white pictures or the written names of objects and were required to generate 

words describing an action or a color associated with the presented objects. The 

type of information that was retrieved modulated activity in the posterior temporal 

cortex. Relative to action words, color words generation activated the fusiform 

gyrus anterior to regions associated with color perception and object perception. 

Activation of the ventral temporal cortex when retrieving color information has 

been replicated several times using property production (Chao & Martin, 1999; 

Wiggs, Weisberg, & Martin, 1999) and verification tasks (Goldberg, Perfetti, & 

Schneider, 2006; Oliver & Thompson-Schill, 2003; Simmons et al., 2007). These 

results indicate that the ventral temporal cortex is important for color knowledge 

retrieval. However, it is unclear whether it is also the system that supports color 

perception. Chao & Martin (1999) addressed this question by evaluating both 
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processes in the same experiment. Color word generation activated the posterior 

ventral temporal cortex, as previously reported, while passive viewing of colored 

stimuli activated the lingual gyrus in the occipital cortex. This finding is consistent 

with studies of color imagery in normal subjects (Howard et al., 1998) and in color-

word synesthetes who experience vivid color imagery when hearing words (Paulesu 

et al., 1995). In both studies, color imagery was associated with activity in the same 

ventral temporal sites identified in the studies discussed above but not in occipital 

sites that are active during color perception (e.g., Zeki & Bartels, 1999; Zeki et al., 

1991). In addition, neuropsychological studies have reported dissociations between 

surface color and color knowledge in the ventral occipitotemporal cortex. Although 

lesions in the posterior fusiform gyrus result in achromatopsia without sacrifice of 

color knowledge (Bouvier & Engel, 2006), lesions in the ventral temporal cortex 

result in color agnosia without sacrifice of color perception (Miceli et al., 2001). 

Coupled with neuropsychological reports of a double dissociation between color 

perception and color imagery (De Vreese, 1991; Shuren, Brott, Scheft, & Houston, 

1996), these data suggest that distinct neural regions appear to be differentially 

engaged during the processes of color perception and the retrieval of object color 

knowledge. Information about object color is stored in the ventral temporal cortex. 

This region is close to, but does not include, the sites in the occipital cortex that 

selectively respond to the presence of color. 

However, the dissociation between perception and knowledge retrieval 

mechanisms does not necessarily implicate that these two abilities are completely 

independent. Some neuroimaging studies have claimed that color knowledge 

modulates regions that are involved in color perception (Goldberg, Perfetti, & 

Schneider, 2006; Howard et al., 1998; Kellenbach, Brett, & Patterson, 2001; 

Simmons et al., 2007; Ueno et al., 2007). Some neuroimaging studies have provided 

additional direct evidence for this claim. Beauchamp and colleagues (Beauchamp, 

Haxby, Jennings, & DeYoe, 1999) showed that neural activity is limited to the 

occipital lobes when color perception was tested by passive viewing; however, 
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when the task was made more demanding by requiring subjects to judge subtle 

differences in hue, activity associated with color perception extended from the 

occipital cortex into the fusiform gyrus in the ventral temporal cortex. Additionally, 

Simmons and colleagues (2007), using a task demanding high levels of attention to 

evaluate color perception and a verbal property verification task to assess color 

knowledge, found that retrieving information about object color activated the 

same region of the fusiform gyrus that is activated during color perception 

(Simmons et al., 2007). Thus, these data support the idea that information about a 

particular object property, such as its typical color, is stored in the same neural 

system that is activated when that property is perceived. Therefore, passive color 

perception may be mediated by occipital cortical regions located early in the visual 

processing stream, whereas active color perception seems to require more 

extensive neural activity extending anteriorly into the fusiform gyrus. In a recent 

review, Martin (2007) suggested that the fusiform gyrus is to provides a neural 

substrate for acquiring new object-color associations and representing those 

associations during conceptual processing. 

 

The Color Diagnosticity Hypothesis 

The level of color diagnosticity refers to the degree to which a particular object is 

associated with a specific color. For example, a color diagnostic object, such as a 

strawberry, is strongly associated with the color red. A comb, however, which is a 

non-color diagnostic object, is not strongly associated with any particular color. 

According to the color diagnosticity hypothesis, color diagnostic objects are the 

most likely candidates to show an advantage due to color information in object 

recognition tasks (Nagai & Yokosawa, 2003; Tanaka & Presnell, 1999). According to 

this hypothesis, Tanaka and Presnell (1999) showed that the presence of color 

information has a significant impact on the recognition of high color diagnostic 

objects and no effect on the recognition of objects with low color diagnosticity. In a 

control condition, when high and low color diagnostic objects were matched for 
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structural complexity, reliable color effects were still found, indicating that color 

made a unique contribution to recognition in a manner that is independent of 

shape. Similar results were found in the recognition of everyday scenes (Oliva & 

Schyns, 2000). Scenes that are rich in color diagnostic content (e.g., coast, forest) 

are best recognized in their typical color versions when compared to black and 

white or atypical color versions. On the other hand, non-color diagnostic scenes 

(e.g., city, shopping area) showed no difference in recognition performance across 

the typical, black-and-white and atypical color versions (Oliva & Schyns, 2000). 

Thus, the concept of color diagnosticity generalizes to the recognition of both 

objects and scenes. 

However, recent studies have failed to replicate this finding and have 

documented that color information, independent of the color diagnosticity status 

of the object, improves its recognition (Rossion & Pourtois, 2004; Uttl, Graf, & 

Santacruz, 2006). For example, Rossion and Pourtois (2004) colored the 260 line-

drawings from the Snodgrass and Vanderwart (1980) set with texture and shadow 

details. Norms for the color diagnosticity level of the objects were collected and 

correlated with the advantage provided by color alone in the naming responses. 

The authors did not report a significant correlation between these two measures (r 

= 0.05), showing that color information improves object recognition independently 

of its color diagnosticity level. 

The effects of color diagnosticity and its interactions with the observed 

advantage due to color information in object recognition are not well understood, 

and the reasons for the apparently contradictory results reported in the literature 

are not obvious. One possibility is that color information helps the recognition of 

color and non-color diagnostic objects at different levels of visual processing. To 

recognize an object, different processing stages must be resolved (Humphreys, 

Price, & Riddoch, 1999). First, the perceptual input must be encoded and matched 

against a template form stored in the long-term memory. Next, the semantic object 

representations are accessed, and, finally, the object name is activated. Color 



Chapter 1 

30 

information might be useful for recognition of both color and non-color diagnostic 

objects in the early stages of the visual processing. Specifically, this information 

could be used to match the perceptual input with a known shape representation 

or, at an even earlier visual processing stage, segregate and organize of the visual 

input. However, in the later stages of the recognition process, color information 

might play different roles depending upon the color diagnosticity status of the 

specific objects. Although color information might be important for semantic 

representation of a color diagnostic object, color information is probably not as 

important for semantic representation of a non-color diagnostic object. When we 

think about the properties of a strawberry, the property red is one of the first that 

comes to mind; however, if we think about the features of a comb, its color is 

certainly not one of the first properties one might think of. 

 

1.5 Specific Aims of the Thesis 

The general picture that emerges from the literature is that the role of color 

information is not well understood. Theories of object recognition have 

traditionally ignored the role of color information in higher-level vision (Biederman, 

1987; Biederman & Ju, 1988). More recently, data from behavioral studies, 

neuroimaging, and neuropsychological studies have suggested that surface color 

features and color knowledge information might also contribute to object 

recognition. However, the conditions under which color information improves 

object recognition are not well understood. This thesis contributes to this 

discussion by clarifying some open questions found in the literature. One of the 

main questions addressed here is the interaction between surface color and color 

knowledge information during object recognition. It was previously suggested that 

that object recognition is jointly determined by the bottom-up influence of surface 

color and the top-down influence of color knowledge information (Tanaka, 

Weiskopf, & Williams, 2001). However, the way that these two sources of color 
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information interact and which plays the most important role during object 

recognition is unclear. 

Moreover, the color effects on object recognition might depend on the color 

diagnosticity status of the specific objects. The color diagnosticity status of the 

objects is probably the most investigated object property in studies that examine 

the role of color information in object recognition. Color diagnostic objects have a 

strong association with a particular color; on the other hand, non-color diagnostic 

objects do not have any specific color association (Tanaka & Presnell, 1999). Thus, 

we proposed that color information might participate in the recognition of color 

and non-color diagnostic objects at different levels of visual processing. More 

specifically, we hypothesize that color information participates in the recognition of 

both types of objects in the early visual perceptual stages, helping both 

segmentation and organization of the perceptual input. Studies have indicated that 

color information is an important cue in the early visual processing stages 

(Gegenfurtner & Rieger, 2000; Wurm, Legge, Isenberg, & Luebker, 1993); however, 

these studies did not control for or manipulate the color diagnosticity level of the 

presented objects. Color information is expected to play an additional role during 

the recognition of color diagnostic objects at the semantic levels of visual 

processing. Color is an intrinsic property of these objects. For example, Naor-Raz 

and Tarr (2003), using a variation of the stroop paradigm, asked participants to 

name the displayed color of objects and words. They found that color is an intrinsic 

property of color diagnostic objects at multiple levels. Thus, the presence of color 

information in an image of a color diagnostic object might be important for the 

activation of semantic object representation and recognition of the object. 

The discussion about which type of objects might benefit from color 

information does not end with the object’s color diagnosticity status. Another 

object property which effects have been investigated is the object’s semantic 

category. If color vision developed in humans species to find ripe fruit amongst 

foliage (Gegenfurtner, 2003; Surridge, Osorio, & Mundy, 2003), it would make 
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sense that recognition of biological objects would benefit more from color 

information than artifacts. In fact, some studies support this hypothesis 

(Humphreys, Goodale, Jakobson, & Servos, 1994; Price & Humphreys, 1989). 

However, more recent data suggest that color information affects object 

recognition independently of the semantic category (Rossion & Pourtois, 2004; 

Uttl, Graf, & Santacruz, 2006). 

In this thesis, we present six studies that attempt to clarify these open 

questions in the literature. In chapters 2 and 3, we try to clarify which type of color 

information is the most important during object recognition. This question was 

previously investigated by Joseph and collaborators (Joseph, 1997; Joseph & 

Proffitt, 1996). In a series of verification tasks, the authors found that color 

knowledge is more influential than surface color during object recognition (Joseph, 

1997; Joseph & Proffitt, 1996). However, during verification tasks, the role of color 

information was not controlled independently of the role of shape information. 

Thus, in chapter 2, we try to replicate these findings while independently 

controlling color and shape information. Participants performed a computerized 

name-object verification task where the relationship between the color and shape 

information provided by the object name and by the object picture was 

manipulated in four conditions: different shape/different color, different 

shape/same color, same shape/different color, and same shape/same color. If the 

contribution of color knowledge during recognition is independent of the presence 

of the appropriate surface color, interference during the non-matching trails should 

be higher whenever the color knowledge activated by the name and by object 

picture is the same, not only when pictures are presented in the typical color 

version, but also in black-and-white and atypical color versions. In chapter 3, we 

use event-related potentials (ERPs) to further explore this question. Participants 

performed two color-object verification tasks: a surface color verification task, 

where they were asked to verify the color of the objects depicted in the image; and 

a color knowledge verification task, where they were asked to verify the color of 
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the objects in the real world. The surface color of the objects was manipulated to 

cause interference of the color knowledge information during the surface color 

task and to cause surface color interference during the color knowledge task. By 

comparing the ERPs elicited by typical and atypical color presentations in both 

tasks, we were able to identify at which point during the recognition process 

subjects recruit surface color and color knowledge information to recognize the 

presented objects. 

In chapter 4 and 5, we examine the interaction between the color 

diagnosticity status of objects and the manner in which color affects recognition. In 

chapter 4, participants performed three object recognition tasks with different 

cognitive demands at the perceptual, semantic and phonological levels. Color and 

black-and-white versions of color and non-color diagnostic objects were used. By 

comparing the performance in the three recognition tasks, we identified the visual 

processing stage at which color information is recruited to recognize color and non-

color diagnostic objects. In chapter 5, we used ERPs to further explore this 

question. In contrast to behavioral measures, the ERPs permits the analysis of 

cognitive processes with a temporal resolution in a range of milliseconds and 

represents an optimal approach to study the level at which visual processing of 

color information improves object recognition. In a recognition task, subjects were 

presented with color and black-and-white versions of color and non-color 

diagnostic objects. Color effects were investigated in an early visual ERP 

component, N1, and in two visual ERP components modulated by higher visual 

processes, N350 and N400. The study of color information in object and scene 

recognition has been previously examined using the ERP technique; however, these 

studies used only high color diagnostic objects or scenes (Goffaux et al., 2005; Lu et 

al., 2010). For example, Goffaux and colleagues (2005) reported that a color effect 

can be visualized after 150 milliseconds of the stimuli onset, showing an early role 

of color information in visual scene recognition (Goffaux et al., 2005). 
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In chapter 6, we explore whether color information plays different roles when 

we recognize biological and artifacts objects. More specifically, we investigated 

whether the neural correlates of color information are the same for biological, 

artifacts and nonsense objects. Functional magnetic resonance imaging (FMRI) 

responses were collected during a covert naming task where natural, artifacts and 

nonsense objects were presented in color and in black and white. The literature 

suggests that color information is more important for the recognition of objects 

belonging to natural categories than for the recognition of artifacts (e.g., Price & 

Humphreys, 1989). Accordingly, different brain regions are expected to be 

activated during the recognition of colored natural objects and artifacts. 

Finally, in chapter 7, we present a review and a meta-analysis that aim to 

comprehensively integrate and discuss the behavioral literature on the effect of 

color information during object recognition. We drew some conclusions regarding 

the moderator role of several variables (e.g., color diagnosticity status and the 

semantic category of the objects) that are typically manipulated in studies that 

examine the influence of color information on object recognition. 
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Chapter 2 

 

The influence of surface color information and 

color knowledge information in object recognition 
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color information and color knowledge information in object recognition. American 
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Abstract 

In order to clarify whether the influence of color knowledge information in object 

recognition depends on the presence of the appropriate surface color, we designed 

a name-object verification task. The relationship between color and shape 

information provided by the name and by the object photo was manipulated in 

order to assess color interference independently of shape interference. We tested 

three different versions for each object: typically colored, black and white, and 

atypically colored. The response times on the non-matching trials were used to 

measure the interference between the name and the photo. We predicted that the 

more similar the name and the photo are, the longer it would take to respond. 

Overall, the color similarity effect disappeared in the black-and-white and atypical 

color conditions, suggesting that the influence of color knowledge on object 

recognition depends on the presence of the appropriate surface color information. 
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2.1 Introduction 

The role of surface color in object recognition (i.e., the color present in the image 

of an object) is an unresolved issue in cognitive science. For example, theories 

differ on the role shape plays in object recognition (Biederman, 1987; Marr & 

Nishihara, 1978) and whether other object features, such as surface details, 

texture, and color, contribute to object recognition (Tanaka, Weiskopf, & Williams, 

2001; Tarr, Williams, Hayward, & Gauthier, 1998). Different studies have suggested 

different roles for color in object recognition. For example, color serves as a 

perceptual input to early stages of visual processing (Davidoff, Walsh, & 

Wagemans, 1997; Wurm, Legge, Isenberg, & Luebker, 1993) and is part of the 

structural representation system of the objects (Price & Humphreys, 1989) or of 

the semantic system (Davidoff, Walsh, & Wagemans, 1997; Tanaka, Weiskopf, & 

Williams, 2001). Moreover, color serves as an important cue in object retrieval 

processes (Lloyd-Jones, 2005; Lloyd-Jones & Nakabayashi, 2009; Vernon & Lloyd-

Jones, 2003). 

Although it is not yet clear at which level surface color facilitates object 

recognition, there is a consensus that colored objects and visual scenes are 

recognized faster than corresponding black and white versions (e.g., Oliva & 

Schyns, 2000; Rossion & Pourtois, 2004). In order for surface color to be a useful 

cue for recognition, the participants must decide whether a color is appropriate for 

a particular object, and it seems plausible that semantic object information 

(including stored color knowledge) has to be accessed for this to occur. This 

suggests that prior color knowledge plays a role in object recognition in addition to 

surface color input, because the color input must in some sense be checked against 

the activated prototypical color of the object. 

In order to study how surface color input and prior color knowledge interact, 

Joseph and Proffitt (Joseph, 1997; Joseph & Proffitt, 1996) manipulated color 

knowledge and surface color input independently in a series of verification tasks. 

The authors found that prior color knowledge was more influential than perceptual 
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input color; for example, a purple apple was more likely to be mistaken for a cherry 

(typically red) than for a blueberry (typically purple). It was argued that the 

interference effect is explained by the fact that apples and cherries are 

prototypically red and not because the apple was colored in purple, the typical 

color of blueberries. The same pattern of results was obtained when uncolored 

pictures were used, suggesting that the semantic processing of color is 

independent of the presence of a perceptual input color. 

However, the authors did not fully control whether the interference was 

caused by prior shape knowledge. In their verification tasks the participants were 

asked to verify a target object against three different types of distractors: a 

distractor similar in shape but not similar in color, a distractor similar in shape and 

color, and a distractor that was dissimilar in both shape and color. To rule out a 

possible shape interference effect, it is important to include a fourth distractor type 

that is similar in color and dissimilar in shape. Because shape information is needed 

for object identity, strong similarity in shape will influence the verification decision. 

Thus it is important to investigate the previous findings (Joseph, 1997; Joseph & 

Proffitt, 1996) by controlling color knowledge interference fully independent of 

shape knowledge interference. 

In this study we investigated whether prior color knowledge information takes 

place in object recognition independently of the presence of the appropriate 

surface color, controlling the shape information. We designed a verification task in 

which an object name was presented before an object picture. Two types of trials 

were included: matching (the name matches the picture) and non-matching (the 

name does not match the picture). On non-matching trials, the name might 

activate shape and color knowledge that interferes with shape and color 

information provided by the picture. To test whether the role of color knowledge 

information in object recognition is dependent on the presence of the appropriate 

surface color, three different versions of each object were tested: typically colored, 

black and white, and atypically colored. If color knowledge information contributes 
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to the recognition process, independently of the presence of the appropriate 

surface color, it should be more difficult to say “no” whenever the color knowledge 

activated by the name and by object picture is the same, not only when pictures 

are presented in their typical color version but also when black-and-white and 

atypical color versions are presented. In order to assess color interference 

independently of shape interference, the relationship between color and shape 

information provided by the name and by the picture was manipulated to assess 

four possible mismatches: dissimilar shape and dissimilar color, dissimilar shape 

and similar color, similar shape and dissimilar color, and similar shape and similar 

color. The interference in the response was measured by the longer response times 

(Joseph, 1997; Joseph & Proffitt, 1996). 

A second aim of this study was to explore the role of color diagnosticity in 

object recognition. Color diagnosticity is the degree to which a particular object is 

associated with a specific color. For example, a strawberry – a color diagnostic 

object – is clearly associated with the red color, whereas a comb – a non-color 

diagnostic object – is not strongly associated with any specific color. According to 

the color diagnosticity hypothesis (Tanaka & Presnell, 1999) surface color 

information improves the recognition of color but not non-color diagnostic objects 

(see also Nagai & Yokosawa, 2003). However, Rossion and Pourtois (2004) 

documented that colored objects, independent of the diagnosticity status, were 

named faster than their noncolored versions (see also Biederman & Ju, 1988; Uttl, 

Graf, & Santacruz, 2006; Wurm, Legge, Isenberg, & Luebker, 1993). Although color 

diagnosticity is an important aspect to control when the influence of color 

information is being studied in object recognition, its role is not well understood. In 

an attempt to clarify this question, we used in our verification task both color and 

non-color diagnostic objects. If surface color information is engaged during 

recognition of both color and non-color diagnostic objects, then the name-picture 

matching should be faster with typical colored than with black-and-white and 

atypical color pictures, for both color and non-color diagnostic objects. 
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2.2 Methods 

Participants 

Twenty-eight Portuguese graduate students with normal or corrected-to-normal 

vision volunteered to participate in the experiment (mean age [± SD] = 22 ± 4 years, 

range 18-34 years; mean school years [± SD] = 14.5 ± 1 years, range 13-16 years). 

 

Stimuli 

The initial pool of pictures consisted of 62 photos of common objects selected from 

the Reis, Faísca, Ingvar, and Petersson (2006) set. An independent group of 30 

participants named and rated the initial set according to prototypicality, familiarity, 

visual ambiguity, visual complexity, and color diagnosticity. Each photo was 

presented for 1 min, and participants were asked to write down the name of the 

object. If they did not know the name, they were asked to mark one of the 

following categories: do not know name, do not know object, or tip-of-the-tongue. 

Participants were also asked to evaluate the prototypicality of each photo 

“according to the degree that the presented picture represents a typical exemplar 

of the concept” and rated the degree of agreement between the presented photo 

and their mental image of the concept using a 5-point scale, where 1 indicated low 

agreement and 5 indicated high agreement. The familiarity of each photo was 

judged “according to how usual or unusual the object is in your realm of 

experience”, and the participants were asked to rate the concept itself, rather than 

the photo, using a 5-point rating scale (1 = very unfamiliar, 5 = very familiar). The 

visual ambiguity of each photo was evaluated “according to how large is the group 

of different objects that are visually similar with the presented object” (5-point 

rating scale: 1 = completely nonambiguous object, 5 = completely ambiguous 

object). Visual complexity was defined as “the amount of detail or intricacy of line 

in the photo”, and the participants were told to rate the photo itself rather than 

the real-life object (5-point scale: 1 = very low visual complexity, 5 = very complex 

picture). Color diagnosticity was defined as “the degree to which the object is 
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associated with a specific color” and was also rated on a 5-point scale (1 = low 

diagnostic color, 5 = high diagnostic color). These instructions are similar to the 

ones typically used in rating studies (Rossion & Pourtois, 2004; Snodgrass & 

Vanderwart, 1980; Ventura, 2003). 

Following the analysis of the rating scores, we selected only the photos that 

showed at least 80% name agreement between participants. From these, we 

selected 16 photos to be used in the experiment: 8 representatives of color 

diagnostic objects (apple, tomato, carrot, orange, pineapple, pear, onion, and 

lemon) and 8 representative of non-color diagnostic objects (book, glasses, bowl, 

pencil, water, can, ruler, and comb). The only significant mean difference between 

the two groups of objects was color diagnosticity. The mean comparisons between 

diagnostic and nondiagnostic items on the other rating variables were 

nonsignificant (p > 0.5; Table 2.1). 

Each colored photograph was used to create a black and white version (using 

Adobe Photoshop 7.0 “grayscale mode” command, which preserves luminance 

while discarding color) and an atypically colored version
1
 (using Adobe Photoshop 

7.0 “variations” command, until a complete transformation of object color was 

obtained, which preserves luminance). Stimuli luminance was measured using 

Adobe Photoshop 7.0. We did not find any statistical difference between the 

diagnostic and nondiagnostic items for the three color versions concerning the 

luminance values (overall, Mann-Whitney U test: |Z| = 0.7, p > 0.30). 

 

                                                           
1
 For the non-color diagnostic objects we did not construct an atypical color version but just 

another color version of the same object, because these objects do not have an atypical 
color associated with them. When we refer to an atypical color version of the non-color 
diagnostic objects we just mean a second color version of the same object. 
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Table 2.1. Mean (SD) ratings of color diagnosticity, prototypicality, familiarity, 
visual ambiguity, and visual complexity for color diagnostic and non-color 
diagnostic objects 

 Color Diagnostic 

Objects 

Non-Color 

Diagnostic Objects 

Mann-Whitney U 

Test 

Color Diagnosticity 4.4 (0.4) 2.3 (0.6) Z = 3.4, p < 0.001 

Prototypicality 4.6 (0.2) 4.5 (0.2) Z = 0.6, p = 0.5 

Familiarity 4.7 (0.1) 4.6 (0.3) Z = 0.3, p = 0.8 

Visual ambiguity 1.9 (0.2) 1.8 (0.3) Z = 0.4, p = 0.7 

Visual complexity 2.3 (0.5) 2.4 (0.6) Z = -0.4, p = 0.7 

 

Procedures 

A computerized verification task was designed in which an object picture was 

preceded by an object name. Participants had to decide whether the name and the 

picture matched. The verification task consisted of 768 trials; half of the trials were 

matching (384 trials in which the name and the picture matched) and half were 

non-matching (384 trials in which the name and the picture did not match). On 

matching trials, the same object was presented eight times in each version (16 

objects × 3 versions × 8 times each). On the non-matching trials, 192 trials involved 

only color diagnostic objects in order to test the interference of shape and color (8 

color diagnostic objects × 3 versions × 8 times each); in the remaining 192 trials, 

diagnostic and non-color diagnostic objects were used as fillers (16 objects × 3 

versions × 4 times each). The 192 non-matching trials with diagnostic objects were 

designed to assess the four possible mismatches between color and shape 

knowledge activated by the name and the picture (shape/color: 

dissimilar/dissimilar, similar/dissimilar, dissimilar/similar, and similar/similar; see 

Figure 2.1). 

In order to confirm that the four possible mismatches actually activated the 

same/different color and shape information, 30 independent participants rated the 

four pairs according to shape and color similarity. The names of the four pairs of 

stimuli were presented together with four filler pairs, and participants were asked 
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to rate the shape and color similarity between the two concepts. Shape similarity 

was judged “according to how similar are the two objects in terms of their global 

shape” (5-point scale: 1 = the two objects have two completely different shapes, 5 = 

the two objects share the same global shape). Color similarity was evaluated 

“according to how similar are the colors of the two objects” (5-point scale: 1 = the 

color of the two objects is completely different, 5 = the two objects share the same 

color). We confirmed that the pairs “tomato-apple” and “onion-lemon” are more 

similar in term of their global shape (4.1 ± 0.6), compared with the pairs “carrot-

orange” and “pineapple-pear” (1.2 ± 0.5; F(1, 29) = 818.6, p < 0.001). We also 

confirmed that the pairs “tomato-apple” and “carrot-orange”, (4.2 ± 1.0) are more 

similar in terms of their color than the pairs “onion-lemon” and “pineapple-pear” 

(1.6 ± 0.6; F(1, 29) = 447.8, p < 0.001). 

 

 

Figure 2.1. Stimuli used in the four possible mismatches between the name and the 
photo for non-matching trials. 
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The Presentation 0.7 software (http://nbs.neuro-bs.com/presentation) was 

used to display the stimuli on a computer screen (size, 17″; spatial resolution, 1024 

× 768; color resolution, 24 bits) and to register response times. Each trial started 

with a fixation cross presented at the center of the screen for 1000 ms. After the 

fixation cross, the object name (font Arial, font size 70) was presented for 1000 ms, 

followed by a 500-ms blank screen and then the presentation of the object picture 

(760 × 550 pixels) for 120 ms. The trial ended with the participant’s response. After 

1000 ms a new trial started. Participants were instructed to decide as accurately 

and as quickly as possibly whether the name and the picture matched by pressing 

one of the two response keys of the keyboard (half of the participants used the 

right/left hand for “yes”/”no” and the other half for “no”/”yes”). The 768 trials 

were split into four blocks of 192 trials each. Both blocks and trials within blocks 

were randomized, and participants were allowed to pause between blocks. Before 

the experiment, each participant completed a training session with 20 trials. 

 

2.3 Results 

The results of the non-matching and matching trials were analyzed by subject (F1) 

and by stimulus (F2). A minimum F (minF) was calculated from the F1 and F2 

analyses. We report F1, F2, and minF values; however, our conclusions are based 

solely on the conservative minF analysis. This approach was taken to ensure the 

generalizability of results over both subject and stimulus domains (Clark, 1973; 

Raaijmakers, 2003; see also Raaijmakers, Schrijnemakers, & Gremmen, 1999). None 

of the main effects or interactions that fail to reach significance in the minF 

procedure are reported. 

 

Non-matching Trials 

The non-matching trials included two different types of trials: 192 trials with 

diagnostic objects that were created to test the interference of shape and color on 

object verification and 192 trials that served as fillers. Because the experimental 
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question was related exclusively to the diagnostic objects trials, only these 

verification times were analyzed further. Overall, the participants were able to 

correctly verify almost all stimuli, and we focused our analysis on the verification 

times from the correct trials with latencies within 2.5 standard deviations of the 

mean for each participant and condition. We excluded verification times of 

incorrect responses as well as long and short verification times (in total 7.5%: 0.9% 

long, 0.05% short, 6.5% incorrect) from the analysis. The mean of correct response 

times and the percentage of correct responses for each condition are given in Table 

2.2. 

Verification times were analyzed with a repeated-measures ANOVA including 

presentation version (typical, black and white, atypical color) as a within-subject or 

stimulus factor, and shape similarity (similar shape, dissimilar shape) and color 

similarity (similar color, dissimilar color) were considered within-subject factors in 

the subject analysis and between-stimuli factors in the item analysis. The results 

showed a significant presentation version effect (F1(2, 54) = 9.7, p < 0.001; F2(2, 8) 

= 6.6, p = 0.02; minF(2, 21) = 3.4, p = 0.035). A post hoc comparison (Tukey’s HSD) 

for the subject analysis showed that the interference was greater on verification 

times with typical presentations compared with black and white presentations (p < 

0.001) and with atypical presentations (p = 0.02); a main effect of shape similarity 

was observed (F1(1, 27) = 44.3, p < 0.001; F2(1, 4) = 85.7, p < 0.001; minF(1, 22) = 

29.2, p < 0.001). When shape information between the object name and the object 

depicted in the photo was similar, there was greater interference compared with 

the dissimilar case; a main effect of color similarity was also observed (F1(1, 27) = 

28.6, p < 0.001; F2(1, 4) = 21.4, p < 0.001; minF(1, 11) = 12.2, p = 0.005). When the 

color information between the object name and the object picture was similar, 

there was greater interference than in the dissimilar case. The two-way interaction 

between presentation version and color similarity was significant, (F1(2, 54) = 10.1, 

p < 0.001; F2(2, 8) = 10.6, p = 0.006; minF(2, 29) = 5.2, p = 0.012, see Figure 2.2). A 

Tukey HSD post hoc comparison for the subject analysis showed that when the 



Chapter 2 

46 

color activated by the name and by the object picture was dissimilar, the 

verification time was equivalent for the three presentation versions (p > 0.90). In 

contrast, when the name and the picture activated the same color, the interference 

was larger with typical than with black-and-white and atypical color presentations, 

(p < 0.001). 

 

Table 2.2 Mean response time (SD) and percentage of correct responses (SD) for 
each non-matching condition 

  Presentation Mode 

  Typical color  Black and White  Atypical color 

  RT (SD) % (SD)  RT (SD) % (SD)  RT (SD) % (SD) 

Color Shape         

SC SS 641 (119) 89 (10)  602 (114) 89 (13)  625 (125) 91 (8) 

SC DS 621 (133) 93 (8)  578 (132) 97 (4)  562 (124) 97 (4) 

DC SS 595 (144) 95 (6)  606 (119) 96 (7)  613 (107) 92 (10) 

DC DS 576 (111) 95 (7)  559 (114) 97 (5)  573 (129) 90 (8) 

Note. DC = dissimilar color between word and image, DS = dissimilar shape between word 
and image, SC = similar color information between word and image, SS = similar shape 
between word and image.  
 

 
Figure 2.2. Two-way interaction between presentation version and color similarity 
on non-matching verification times. Bars represent standard error. 
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Matching trials 

As in the case of the non-matching trials, the participants made very few errors on 

the matching trials (less than 5%). The participants were able to correctly verify 

almost all stimuli, and we focused our analysis on the verification times from the 

correct trials with latencies within 2.5 standard deviations of the mean for each 

participant and condition. We excluded response times from incorrect trials as well 

as any long or short verification times (in total 5.8%: 0.8% long, 0.2% short, 4.8% 

incorrect) from the analysis. The mean of correct response times and the 

percentage of correct responses for each condition are given in Table 2.3. 

The verification times were analyzed with a repeated-measures ANOVA 

considering the presentation type (typical, black and white, atypical color) as a 

within-subject or stimulus factor and diagnosticity (diagnostic, non-color diagnostic 

objects) as a within-subject factor to the subject analysis and between-stimuli 

factor to the item analysis, with the correct verification times for matching trials as 

the dependent variable. The results showed a significant presentation version 

effect (F1(2, 54) = 21.2, p < 0.001; F2(2, 28) = 9.6, p < 0.001; minF(2, 53) = 6.6, p = 

0.003). A post hoc comparison (Tukey HSD) for subject analysis showed that 

participants were faster verifying objects presented in typical compared with black-

and-white and atypical color (p < 0.001); there was also a significant effect of 

diagnosticity (F1(1, 27) = 165.6, p < 0.001; F2(1, 14) = 74.5, p < 0.001; minF(1, 27) = 

51.4, p < 0.001). Participants were faster verifying nondiagnostic compared with 

color diagnostic objects. Note that the interaction between presentation version 

and diagnosticity was not observed (Figure 2.3). 
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Table 2.3. Mean response time (SD) and percentage of correct responses (SD) for 
each matching condition 

  Presentation Mode 

  Typical color  Black and White  Atypical color 

  RT (SD) % (SD)  RT (SD) % (SD)  RT (SD) % (SD) 

Color diagnostic 

objects 522 (91) 94 (5)  542 (88) 93 (7)  556 (105) 91 (7) 

Non-color 

diagnostic objects 455 (88) 98 (3)  471 (92) 97 (3)  468 (93) 97 (2) 

 

 

 

Figure 2.3. Two-way interaction between presentation version and color 
diagnosticity on matching verification times. Bars represent standard error. 
 

2.4 Discussion 

The main aim of this study was to investigate the role of prior color knowledge in 

object recognition and to test whether and how it interacts with surface color input 

in object recognition. Participants were presented with an object name, and they 

had to decide whether the name matched a subsequently presented object picture. 

The verification times on the non-matching trials were used to measure the 

interference between the name and the picture. The interference in the response 
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was measured by the longer response times (Joseph, 1997; Joseph & Proffitt, 

1996). We predicted that the greater similarity, in terms of shape and color, 

between the object named and the object pictured, the longer the participants 

would take to decide whether the name and the picture designated the same or a 

different object. This was indeed the case. The non-matching verification times 

were longer when color knowledge activated by the object name was the same as 

the visual information received from the object picture compared with the 

conditions in which these two sources provided different color information. This 

suggests, as expected, that prior color knowledge is recruited during object 

recognition. In addition, we found a strong interference effect of shape information 

on the non-matching trials, suggesting that prior shape knowledge is activated in 

parallel with color knowledge.  

The important finding in our study was that the color similarity effect 

disappeared in the black-and-white and atypical colored conditions, while the 

interference of shape remained. It thus appears that the activation of color 

knowledge depends on the presence of the appropriate surface color information: 

The absence of surface color or wrong surface color neutralizes the observed 

interference effect. Color knowledge information per se does not seem to play an 

important role in object recognition. The information activated by the word orange 

interfered with the information activated by the picture carrot only when the 

carrot was presented in its typical color version and not when the carrot was 

presented in black and white or in its atypical color version. This finding suggests 

that it is the appropriate surface color input that promotes the activation of the 

color knowledge information in the cognitive system. Looking into our data, we 

could also speculate that color knowledge information is equally important in all 

conditions as the basis for a rapid heuristic decision, and, consequently, whenever 

there is not a match between the color information activated by the word and by 

the image, another criterion must be used to reject the non-matching combination, 

and this leads to longer response times. If this were the case, the black and white 
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object presentations would also have activated the same color knowledge 

information as the object word, and then another criterion would be used in order 

to reject the combination, and consequently the response times should have been 

also longer. Nevertheless, this was not the case. The explanation that better fits our 

data is that the appropriated surface color input promotes the color knowledge 

activation. 

Tanaka and collaborators (Tanaka, Weiskopf, & Williams, 2001) proposed the 

Shape + Surface object recognition model, which suggests that object recognition is 

jointly determined by the bottom-up influence of the surface color and the top-

down influence of the color knowledge. Our results show that the top-down 

influence of color knowledge is in some way dependent on the bottom-up 

influence of surface color, suggesting that the color present on the image is 

responsible for the activation of the stored color information. 

Additionally, the results for matching trials showed a robust surface color 

effect; participants were faster verifying objects presented in their typical color 

compared with black and white or atypical color. We also found a strong color 

diagnosticity effect; the verification times were longer for color diagnostic objects 

compared with non-color diagnostic objects. This finding might be related to the 

fact that the diagnostic objects in our study were all from natural categories, 

whereas the non-color diagnostic objects were all from artifact categories. 

Consistent with this suggestion are the results from studies that investigated 

category-specific effects in healthy participants. The general pattern of results that 

emerges from these studies is a recognition advantage for objects from artifact 

compared with natural categories when the viewing conditions are optimal. 

Recently Gerlach and collaborators (Gerlach, 2009; Gerlach, Law, & Paulson, 2006; 

for a different perspective, see Laws & Hunter, 2006) proposed that category-

specific effects are driven by the specific processing demands imposed by a given 

task. Because the shapes of natural objects are more easily configured than the 

shapes of artifacts, any manipulation that limits how much information may be 
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extracted from the visual impression will make shape configuration harder and 

would make artifact recognition harder than natural object recognition (e.g., Laws 

& Neve, 1999; Lloyd-Jones & Luckhurst, 2002). However, if the demand on 

structural differentiation is high and task conditions are optimal, the shape 

configuration disadvantage for artifacts may be compensated by more competition 

for natural objects at the level where visual long-term memory representations 

compete for selection (e.g., Coppens & Frisinger, 2005; Humphreys, Riddoch, & 

Quinlan, 1988; Lloyd-Jones & Humphreys, 1997). This is in agreement with our 

results, where the task viewing conditions were optimal. 

Moreover, we found that surface color information helps the recognition of 

both diagnostic and non-color diagnostic objects. Our results are in concordance 

with Rossion and Pourtois (2004). The authors did not find a correlation between 

color diagnosticity and naming latencies, and they argued that color information is 

an important cue for both diagnostic and nondiagnostic object recognition (see 

also Biederman & Ju, 1988; Uttl, Graf, & Santacruz, 2006; Wurm, Legge, Isenberg, & 

Luebker, 1993). 

In conclusion, the present study demonstrated that prior color knowledge is 

engaged during object recognition. However, its role depends on the presence of 

the surface color input. We suggest that the top-down influence of color 

knowledge, described in the Shape + Surface (Tanaka, Weiskopf, & Williams, 2001) 

object recognition model, is driven by the bottom-up influence of appropriate 

surface color information. Additionally, our results provide evidence that surface 

color is an important cue to recognize both diagnostic and non-color diagnostic 

objects. 
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Abstract 

In this study, we used event-related potentials (ERPs) to evaluate the relative 

contribution of surface color and color knowledge information in object 

identification. We constructed two color-object verification tasks – a surface and a 

knowledge verification task – using high color diagnostic objects; both typical and 

atypical color versions of the same object were presented. Continuous 

electroencephalogram was recorded from 26 subjects. A cluster randomization 

procedure was used to explore the differences between typical and atypical color 

objects in each task. In the color knowledge task, we found two significant clusters 

that were consistent with the N350 and late positive complex (LPC) effects. Atypical 

color objects elicited more negative ERPs compared to typical color objects. The 

color effect found in the N350 time window suggests that surface color is an 

important cue that facilitates the selection of a stored object representation from 

long-term memory. Moreover, the observed LPC effect suggests that surface color 

activates associated semantic knowledge about the object, including color 

knowledge representations. We did not find any significant differences between 

typical and atypical color objects in surface color verification, which indicates that 

there is no or little contribution of color knowledge in surface color verification. 

Our results show that surface color is an important visual cue that triggers color 

knowledge, and thereby facilitate object identification. 
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3.1 Introduction 

Perceiving that a strawberry is red versus knowing and recalling that a strawberry is 

red are distinct cognitive operations. The surface color of an object can be defined 

as the percept generated by the color present in the object image (e.g., the color 

red in a picture of a red strawberry), whereas the color knowledge is represented in 

the semantic information about the prototypical color of an object (e.g., the 

knowledge that strawberries are typically red). Tanaka and collaborators (2001) 

proposed the Shape + Surface model of object recognition that includes a 

distinction between surface color and color knowledge. According to this model, 

object recognition is jointly determined by bottom-up influences (surface color) 

and top-down influences (color knowledge). In this context, one can ask how these 

two representations interact during object recognition. It is well documented that 

surface color contributes to the recognition of diagnostic color objects (for a 

review, see Tanaka, Weiskopf, & Williams, 2001). For surface color to be a relevant 

cue in object recognition, cognitive processing must identify whether the color 

present in the object is or is not appropriate for a given object. For this to occur, 

semantic color knowledge must be accessed. Following this reasoning, one might 

hypothesize that when semantic color knowledge is activated together with other 

visual and functional object properties, recognition is faster and more accurate. 

To study how surface color and color knowledge might interact during object 

recognition, Joseph and collaborators (Joseph, 1997; Joseph & Proffitt, 1996) 

manipulated the input color independently of color knowledge in a series of 

verification tasks. The authors found that color knowledge significantly influenced 

object recognition; for example, an image of a purple apple was more likely to be 

mistaken for a cherry than for a blueberry. This interference effect occurs because 

both apples and cherries are typically red and not because the apple was colored 

purple, the typical color of blueberries. The same pattern of results was obtained 

when uncolored pictures were used, suggesting that the conceptual processing of 

color did not depend on the presence of surface color. In their verification tasks 
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participants were asked to verify an object target against three types of distracters: 

similar in color and shape; dissimilar in color and similar in shape; and a distracter 

dissimilar in color and shape. In a recent study, we used a similar object verification 

task where the effect of color information was assessed independently of the 

effects of shape information, by adding a fourth distracter similar in color and 

dissimilar in shape in a 2 x 2 factorial design (Bramão, Faísca, Petersson, & Reis, 

2010). Since the object recognition system is a shape-driven system (Tanaka, 

Weiskopf, & Williams, 2001), it is important to experimentally manipulate the 

effects of color independently of the effects of shape. We observed an interference 

of color knowledge in object verification when the color knowledge, activated by a 

previously presented object name (e.g., orange), overlapped with surface color 

information provided by an object photo (e.g., carrot). This interference effect was 

strongly dependent on surface color. When the objects were presented in black 

and white or in an atypical color, the interference effect disappeared. This finding 

suggests that the appropriate surface color input promotes the activation of stored 

color knowledge in the cognitive system (Bramão, Faísca, Petersson, & Reis, 2010). 

One approach to investigate these processes in the time domain is to 

characterize the underlying neural processing with event-related potentials (ERPs). 

Previous ERP studies have identified two different time windows associated with 

object identification. The first observed difference between successful and non-

successful recognition occurs around 250 ms after stimulus onset and is 

characterized by frontal negativity peaking around 350 ms (N350). The N350 is 

more negative when the objects are more difficult to recognize or not recognized 

at all. It has been hypothesized that the N350 reflects the selection of a long-term 

memory representation – a stored structural description – that best matches the 

input image (Pietrowsky et al., 1996; Schendan & Kutas, 2002, 2003, 2007). The 

second observed difference occurs around 550 ms after stimulus onset and is 

characterized by a broadly distributed late positive complex (LPC). The LPC is also 

more negative for non-recognized as compared to recognized objects. LPC 
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modulation has been linked to object identification and is hypothesized to reflect 

the activation of associated semantic knowledge about the object as well as the 

object name (Mazerolle, D'Arcy, Marchand, & Bolster, 2007; Pietrowsky et al., 

1996; Schendan & Kutas, 2002, 2003, 2007; Stuss, Picton, Cerri, Leech, & Stethem, 

1992). An additional effect that reflects semantic knowledge integration and/or 

retrieval is the N400 effect, which was initially related to words that are 

semantically unrelated or unusual in a given semantic sentence context (Kutas & 

Hillyard, 1980a, 1980b). The N400 effect is characterized by negativity peaking 

around 400 ms after stimulus onset (Barrett & Rugg, 1990; Ganis, Kutas, & Sereno, 

1996; Hamm, Johnson, & Kirk, 2002; Holcomb & McPherson, 1994; McPherson & 

Holcomb, 1999; Nigam, Hoffman, & Simons, 1992; Pietrowsky et al., 1996; 

Pratarelli, 1994; Stuss, Picton, Cerri, Leech, & Stethem, 1992) and was first 

described for pictures by Barrett and Rugg (1990). The authors reported that 

pictures that were semantically unrelated to a previous priming stimulus elicit a 

more negative ERP around 400 ms after stimulus onset, as compared to pictures 

that were semantically related to a previous primer. 

In this study, we recorded ERPs to investigate how surface color and color 

knowledge interact during object identification. We have previously observed that 

color knowledge is not automatically activated in the absence of surface color input 

(Bramão, Faísca, Petersson, & Reis, 2010). Given the fact that stored color 

knowledge is not necessary to solve the surface color verification task, we 

predicted that this information would only be activated to a modest degree, if at 

all. To evaluate this hypothesis, we constructed a color knowledge verification task 

with high color diagnostic objects, that is, objects that are strongly associated with 

a prototypical color (Tanaka & Presnell, 1999). Participants were instructed to 

verify whether the prototypical color of the presented object matched a previously 

presented color name. The actual object color was manipulated in order to 

evaluate the contribution of surface color to verification, by presenting objects in 

both typical and atypical color (see Figure 3.1). We predicted ERP differences 
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between typically and atypically colored objects in the ERP components previously 

identified as being involved in object identification. We assess the role of surface 

color in the activation of stored color knowledge by comparing atypical versus 

typical color objects. If the surface color modulates the retrieval of color 

knowledge, atypical color objects should elicit more negative ERPs in association 

with the N350 and LPC components. Furthermore, we also explored the differences 

between matching and non-matching trials. The non-matching condition creates 

incongruence between the color name and the color knowledge activated by an 

object. Thus, we expected that non-matching trials were associated with more 

negative ERPs related to the N400 component, considering the previous findings 

associating this component with incongruent semantic contexts. 

We also evaluate the contribution of color knowledge in the surface color 

verification task. We have previously observed that color knowledge is not 

automatically activated in the absence of surface color input (Bramão, Faísca, 

Petersson, & Reis, 2010). Given the fact that stored color knowledge is not 

necessary to solve the surface color verification task, we predicted that this 

information would only be activated to a modest degree, if at all. To investigate this 

hypothesis, a surface color verification task was designed in which high color 

diagnostic objects were used. The actual color of the objects was manipulated in 

order to evaluate the contribution of color knowledge to surface color verification. 

To that end, we presented both typical and atypical color versions of the same 

object (see Figure 3.1). Participants were instructed to verify whether the surface 

color of the object matched a previously presented color name. If color knowledge 

is automatically activated during the surface color verification task, differences in 

the behavioral and in the electrophysiological results would emerge when 

comparing atypical and typical color conditions, and when comparing non-

matching and matching trails in the ERPs components previously related with 

object success identification. 
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3.2 Methods 

Participants 

Twenty-six right-handed Portuguese native speakers (mean age [± SD] = 23 ± 4 

years, range 18-32 years; mean years of education [± SD] = 14 ± 2 years, range 12-

18 years; 9 males and 17 females) with normal or corrected-to-normal vision 

participated in the study. All subjects completed health questionnaires, and none 

indicated a history of head injury or other neurological or psychiatric problems. All 

subjects read and signed an informed consent form describing the procedures, 

which adhered to the guidelines set out by the Declaration of Helsinki. The study 

was approved by the local ethics committee. 

 

Stimulus Material 

We used eight colors in the experiment (red, gray, orange, green, yellow, brown, 

pink and white). Each of the colors was easily distinguishable from the others. We 

selected 56 black and white line-drawings from the picture database at the Max 

Planck Institute. The drawings in this database are based on the Snodgrass and 

Vanderwart (1980) set. We selected objects strongly associated with one of 

selected colors based on the color-diagnosticity scores of Rossion and Pourtois 

(2004; where, on the original scale, 1 means “the color of the object depicted is not 

diagnostic at all, i.e., this object could be in any other color equally well” and 5 

means “the color depicted is highly diagnostic of the object, i.e., the object appears 

only with that color in real life”; diagnostic color mean of the selected objects [± 

SD] = 4.4 ± 0.4, range 3.3-5.0). In order to keep color frequency constant, we 

selected the same number of objects for each color (seven objects strongly 

associated with each color, in total 8x7 = 56 color-object combinations; Appendix 

A). Adobe Photoshop 7.0 was used to apply the proper color to the internal surface 

of the objects. To test only color effects, other surface features such as texture and 

details were removed or minimized. 
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An atypical color version of each object was created. To construct the atypical 

color version we rotated the typical colors across objects, whilst ensuring that 

typical and atypical colored objects were matched for color frequency and 

luminance. For example, the red color was used to construct the atypical color 

version of the typical gray objects and the gray color was used to construct the 

atypical color version of the typical red objects. The three other color pairs used 

were orange-green, yellow-brown and white-pink. 

 

Experimental Procedures 

Two computerized verification tasks were designed: a knowledge verification task 

and a surface color verification task. In the knowledge verification task, participants 

were asked to decide whether or not the presented objects were colored with the 

color of the previously presented color name, in the real world (see Figure 3.1). In 

the surface color verification task, participants had to decide whether or not the 

presented object was colored with the color of a previously presented color name, 

ignoring the prototypical color of the object (see Figure 3.1). The only difference 

between the two tasks was the instructions given to the subjects. Each verification 

task comprised 24 blocks (three blocks for each color). Each block started with the 

presentation of a color name followed by 28 objects (14 typical color objects – half 

of them matched and the other half did not match with the given color name – and 

14 atypical color objects) and lasted about 2 minutes. In total, each verification task 

comprised 672 trials, equally divided in two types of trials: matching and non-

matching trials. The same object was presented three times in each color version 

and for each trial type (56 objects x 2 color versions x 3 times each x 2 trial types). 

Both blocks and trials within blocks were presented in a randomized order. 

Subjects were encouraged to rest for a few minutes between blocks. 

Presentation 0.7 software (http://nbs.neuro-bs.com/presentation) was used 

to display the stimuli on a computer screen (size: 19’’; spatial resolution: 1024 x 

768; color resolution: 24 bits) and to register the response times. Each trial started 
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with a fixation cross (+) presented at the center of the screen for 500 ms, followed 

by presentation of the object picture (760 x 550 pixels) for 120 ms. Participants 

were instructed to respond as accurately and as quickly as possibly by pressing one 

of the two response keys (selection of the response finger was balanced within 

subjects: half of the participants started with their right/left hand for yes/no 

responses and in the middle of each verification task the response hand changed). 

The trial ended with the response of the participant. The inter-stimulus interval (ISI) 

varied randomly between 750-1250 ms. During this period, indicated by three stars 

(***) on the screen, subjects were allowed to blink their eyes. The subjects were 

instructed to fixate on the center of the screen and to avoid eye and body 

movements during the recording session. The task order was balanced over 

subjects. Before each verification task and change of response hand, subjects were 

allowed 16 practice trials. 

Figure 3.1. Example of the stimuli used in the experiment. The participants had to 
verify the objects color (surface and knowledge) with a previously presented color 
name “red”. A – Color knowledge verification task, B – Surface color verification 
task. 
 

EEG Recordings 

Continuous electroencephalogram (EEG) was recorded from 64 Ag/AgCl active 

electrodes held in place on the scalp by an elastic cap. The electrode montage 

included 10 midline sites and 27 sites over each hemisphere. Two additional 



Chapter 3 
 

62 

electrodes (CMS/DRL nearby Pz) were used as an online reference (for a complete 

description, see biosemi.com; Schutter, Leitner, Kenemans, & van Honk, 2006). 

Three other electrodes were attached over the right and left mastoids and below 

the right eye (to monitor eye movements and blinks). Bioelectrical signals were 

amplified using an ActiveTwo Biosemi amplifier (DC-67 Hz bandpass, 3dB/octave) 

and were continuously sampled (24-bit sampling) throughout the experiment at a 

rate of 512 Hz. 

 

ERP Data Analysis 

The EEG data was analyzed using FieldTrip which is an open source toolbox for EEG 

and MEG analysis developed at the F.C. Donders Centre for Cognitive Neuroimaging 

(Oostenveld, Fries, & Jensen, 2009; documentation and algorithms available at 

ru.nl/fcdonders/fieldtrip). ERP data were computed using a 1000 ms epoch (from 

200 ms before to 800 ms after the stimulus onset) that was time-locked to the 

onset of the stimuli. Before averaging, epochs that contained muscle and/or eye 

movement artifacts were visually rejected, for each subject, and discarded from the 

analysis. Incorrect response trials were also excluded as well as any trial with 

implausibly long/short response times. In total, 35.9% of the trials were excluded 

(7.4% incorrect, 24.2% eye/muscle movement artifacts, and 4.3% excessively 

long/short response time). The remaining trials were filtered offline, using a low-

pass filter of 30 Hz and a high-pass filter of 0.01 Hz and transformed to an average 

reference (eye electrodes were excluded to compute the common reference). The 

200 ms prior to the stimulus onset served as the baseline for the amplitude 

measurement for each channel. Separate ERP grand-averages were calculated for 

each experimental condition. 

To investigate the contribution of surface color to color knowledge 

verification as well as the contribution of color knowledge to surface color 

verification, we explored the differences between the ERPs grand-averages elicited 

by typical and atypical color objects and by matching and non-matching trials 
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(between 100-800 ms after stimulus onset) in each task using cluster 

randomization analyses. The cluster randomization method that Fieldtrip uses is an 

improved version of the method described in Maris (2004; Maris & Oostenveld, 

2007). This test effectively controls the Type-1 error rate in a situation involving 

multiple comparisons (i.e., 64 electrodes X 360 time points). Briefly, the method 

works as follows: In a first step, all pairs (electrode, time point) are identified for 

which the t-statistics for the difference between conditions (e.g., atypical versus 

typical color) exceed some prior threshold. In our study, we selected the pairs 

whose t-statistics exceeded the 5% critical value of the (electrode, time)-specific t-

statistics. The selected (electrode, time) pairs are then grouped into a number of 

clusters in such a way that, within every cluster, the (electrode, time) pairs form a 

set that is connected spatially and/or temporally. In other words, if the (electrode, 

time)-specific t-statistics that exceeded the statistical threshold were neighboring 

either spatially or temporally, these pairs were then grouped together as a cluster. 

Each cluster is assigned a cluster-level test statistic whose value equals the sum of 

the (electrode, time)-specific test statistics. Thus, the cluster-level test statistic 

depends on both the extent of the cluster and the size of the (electrode, time)-

specific t-statistics that belong to this cluster. The Type-I error rate for the 

complete spatiotemporal data matrix is controlled by evaluating the cluster-level 

test statistic under the randomization null distribution of the maximum cluster-

level test statistic. This randomization null distribution is obtained by randomizing 

the order of the data (e.g., atypical and typical color trials) within every participant. 

By creating a reference distribution from 4000 random draws, the p-value maybe 

estimated by the proportion from this randomization null distribution in which the 

maximum cluster-level test statistic exceeds the observed cluster level test statistic 

(this proportion is called a Monte Carlo p-value in the statistics literature). With this 

number of 4000 random draws, our Monte Carlo p-value is an accurate estimate of 

the true p-value. In brief, the cluster randomization p-value denotes the chance 

that such a large summed cluster-level statistic will be observed when there is 
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actually no effect. In this way, significant clusters extending both over time and 

over electrodes can be identified, providing a measure both of the timing and of 

the distribution of the effect. 

 

3.3 Results 

Behavioral Results 

The results of both the non-matching and matching trials were analyzed by subject 

(F1) and by stimulus (F2). A minimum F (minF) was calculated from the F1 and F2 

analyses. This approach ensured that the results were generalized over both 

subject and stimulus domains (Clark, 1973; Raaijmakers, 2003; Raaijmakers, 

Schrijnemakers, & Gremmen, 1999). None of the main effects or interactions that 

failed to reach significance in the minF calculation are reported. 

Overall, the participants were able to correctly verify almost all stimuli and we 

focused our analysis on the verification times of the correct trials with latencies 

within 2.5 standard deviations of the mean for each participant and condition. We 

excluded verification times of incorrect responses as well as implausibly long or 

short verification times from the analysis. In total, 11.7% of the trials were excluded 

(7.4% incorrect and 4.3% excessively long/short response time). Verification times 

were analyzed with a repeated-measures ANOVA including task (surface task, 

knowledge task), color (typical color, atypical color) and matching (matching trials, 

non-matching trials) as within-subject/stimulus factors. The results showed a 

significant task effect (F1(1, 25) = 202.7, p < 0.001; F2(1, 55) = 1463.8, p < 0.001; 

minF(1, 32) = 178.1, p < 0.001) – subjects responded faster in the surface 

verification task compared with the knowledge verification task; a main color effect 

was observed (F1(1, 25) = 128.5, p < 0.001; F2(1, 55) = 123.1, p < 0.001; minF(1, 70) 

= 62.9, p < 0.001) – subjects responded faster to typical color objects as compared 

to atypical color objects; and finally also a main significant effect of matching was 

also observed (F1(1, 25) = 196.3, p < 0.001; F2(1, 55) = 386.2, p < 0.001; minF(1, 51) 

= 130.1, p < 0.001) – subjects responded fast to matching trials then to non-
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matching trials. The two-way interaction between task and color was significant 

(F1(1, 25) = 94.3, p < 0.001; F2(1, 55) = 119.7, p < 0.001; minF(1, 62) = 52.7, p < 

0.001). A Tukey HSD post-hoc comparison for the subject analysis showed that in 

the knowledge verification task subjects were faster in responding to the typical as 

compared to the atypical color presentation (p < 0.001); however, in the surface 

task, subjects respond equally fast to typical and atypical color presentations (p = 

0.95). The two-way interaction between color and matching was also significant 

(F1(1, 25) = 27.8, p < 0.001; F2(1, 55) = 34.4, p < 0.001; minF(1, 63) = 15.4, p < 

0.001). A Tukey HSD post-hoc comparison for the subject analysis showed that 

when the trials were matching the difference between typical color and atypical 

color was bigger (p < 0.001) than when the trials were non-matching (p = 0.005). 

The three-way interaction was also significant (F1(1, 25) = 22.7, p < 0.001; F2(1, 55) 

= 21.0, p < 0.001; minF(1, 71) = 10.9 p = 0.002; see Figure 3.2). A Tukey HSD post-

hoc comparison for the subject analysis showed that in the surface verification task 

subjects performed equally fast the task independently of the color presentation, 

both in the matching and in the non-matching trails (p = 0.9); In the color 

knowledge verification task, subjects were faster performing color verifications in 

the typical color version; however the advantage of color presentation was bigger 

for the matching trials (p < 0.001) compared to the non-matching trials (p = 0.01). 

 

Electrophysiological Results 

Color knowledge verification task 

The color effect was explored through the contrast between atypical and typical 

color objects, in both the matching and non-matching trials. In the matching trials, 

the color effect was associated with a greater average negative potential over 26 

anterior electrodes in a time window of 300-500 ms post-onset of the stimulus, 

consistent with an N350 effect (sum-T = -6309.8; p < 0.001), with a corresponding 

positive effect occurring over 20 posterior channels (sum-T = 3204.6; p = 0.001; 

Figure 3.3-A). 
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In the non-matching trials, the N350-like effect was observed in two different 

clusters, showing that atypical color objects were associated with a frontocentral 

potential of greater negativity (Figure 3.3-B). The first cluster was found in a time 

window of 260-320 ms after stimulus onset over 22 frontal electrodes (sum-T = -

1337.4; p = 0.005), with a corresponding positive effect observed in 18 posterior 

channels (sum-T = 479.3; p = 0.05). Additionally, a second significant cluster was 

found, also consistent with the N350-like effect, over 13 frontal right channels 

(sum-T = -1021.6; p = 0.01) between 380-490 ms after stimulus onset. Finally, 

around 580-720 ms after stimulus onset, we observed that atypical color objects 

once more induced higher negativity in one cluster (sum-T = -1570.2; p = 0.004) 

over 10 right frontal channels, consistent with the LPC effect (Figure 3.3-B). 

To explore the difference between non-matching and matching trials, we 

compared these two trial types with regard to typical and atypical color objects. 

The cluster randomization analysis identified that the non-matching trials were 

associated with greater central negativity compared with the matching trials for 

both the typical and atypical color objects in a time window of 350-600 ms post-

onset of the stimulus, consistent with an N400-like effect. In the typical color 

objects, the non-matching trials were associated with a greater average negative 

potential over 29 central electrodes (sum-T = -7804.5; p < 0.001), with a 

corresponding positive effect occurring over 27 periphery channels (sum-T = 

3204.6; p = 0.003; Figure 3.4-A). For the atypical color objects, the central 

negativity was significant over 19 channels (sum-T = -5893.7; p < 0.001), with one 

corresponding positive effect occurring over 12 peripheral channels (sum-T = 

2016.3; p = 0.006; Figure 3.4-B). 

 

Surface color verification task 

In this task, we did not observe any significant difference between atypical and 

typical color objects in either the matching (Figure 3.5-A) or the non-matching trials 

(Figure 3.5-B). 



Surface color information versus color knowledge information: Electrophysiological 

evidences 

67 

To investigate the matching effect in the surface color verification task, we 

compared the non-matching trials against the matching ones for both typical and 

atypical color objects. For the typical color objects, the non-matching trials were 

associated with greater frontal negativity compared with the matching trials in a 

time window of 215-280 ms post-onset of the stimulus, over 26 channels (sum-T = -

2499.8; p < 0.001). We observed a corresponding positive effect over 15 posterior 

channels (sum-T = 893.7; p = 0.006; Figure 3.6-A). A second significant cluster 

associating the non-matching trials with greater central negativity was found over 

18 central channels (sum-T = -3004.8; p < 0.001), with a corresponding positive 

effect occurring in 13 peripheral channels (sum-T = 603.3; p = 0.016; Figure 3.6-A), 

between 315-480 ms after stimulus onset. Similar results were found for the 

atypical color objects. The cluster analysis also identified two significant clusters 

showing that the non-matching responses were associated with greater frontal-

central negativity, compared with the matching responses. The first cluster was 

found over 27 frontal channels (sum-T = -2243.3; p = 0.008; Figure 3.6-B) between 

210-280 ms post-onset of the stimulus and the second cluster identified 10 central 

electrodes (sum-T = -606.6; p = 0.03; Figure 3.6-B) between 320-370 ms post-onset 

of the stimulus. 

 

Figure 3.2. Three-way interaction between the factors task, color and matching 
factors. Error bars represent the standard error. 
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Figure 3.3. Topographic distribution of the atypical versus typical color objects in 
the knowledge color verification task for the matching (A) and non-matching 
verification (B). Time windows of significant differences are plotted. The ERP traces 
for the typical and atypical color objects at two representative electrode sites (Fpz 
and Poz) for the matching (A) and non-matching verification (B) are shown. 

 
 

 
Figure 3.4. Topographic distribution of the non-matching versus matching trails in 
the color knowledge verification task for the typical (A) and atypical color objects 
(B). Time windows of significant differences are plotted. The ERP traces for the 
matching and non-matching trial at one representative electrode sites (Cz) for the 
typical (A) and atypical color objects (B) are shown. 
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Figure 3.5. Topographic distribution of the atypical versus typical color objects in 
the surface color verification task for the matching (A) and non-matching 
verification (B). Two different time windows are plotted. The ERP traces for the 
typical and atypical color objects at one electrode sites (Cz) for the matching (A) 
and non-matching verification (B) are shown. 
 

 
Figure 3.6. Topographic distribution of the non-matching versus matching trails in 
the surface color verification task for the typical (A) and atypical color objects (B). 
Time windows of significant differences are plotted. The ERP traces for the 
matching and non-matching trial at two representative electrode sites (Fz and CPz) 
for the typical (A) and atypical color objects (B) are shown. 
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3.4 Discussion 

In this study, we used event-related potentials (ERP) to better understand the 

contribution of color perception and stored color knowledge to object 

identification. We designed two color-object verification tasks – a surface color and 

a color knowledge verification task – where both typical and atypical color versions 

of the same high color diagnostic objects were presented. In the color knowledge 

task, the subjects were asked to verify whether or not the prototypical color of the 

presented objects matched with a previously presented color name, independently 

of the actual color of the presented object. The object color was manipulated in 

order to evaluate the contribution and the interference of surface color 

information during object identification. On the other hand, in the surface color 

verification task, subjects were asked to verify whether or not the color of the 

presented object matched with a previously presented color name, independently 

of the prototypical color of the object. The actual object color was manipulated in 

order to evaluate the contribution and the interference of stored color knowledge 

with regard to the surface color task. 

Our results showed that the atypical color objects were associated with 

significant N350 and LPC effects in the knowledge color task, whereas no 

differences were found between the atypical and typical color conditions in the 

surface color task. In color knowledge verification, the differences observed 

between the ERP elicited by atypical and typical color objects were temporally and 

topographically consistent with an N350-like effect. Atypical color objects were 

associated with a more negative ERP over the frontal sites during the time window 

between 300-500 ms after stimulus onset. The N350 marks the first ERP 

component associated with identification success; the N350 is smaller for correctly 

identified compared to unidentified objects, it is sensitive to the recoverability of 

perceptual structure, and it is an index of the matching process between the 

perceptual input with a template stored in the long-term memory (McPherson & 
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Holcomb, 1999; Schendan & Kutas, 2002). The visual knowledge enabling this 

matching ability is of generic semantic type (Schendan & Kutas, 2002, 2003, 2007). 

Additional findings suggest that the N350 is larger for more complex images 

(Ruchkin, Johnson, Canoune, & Ritter, 1991; Schendan & Kutas, 2002; Stuss, 

Sarazin, Leech, & Picton, 1983) as well as for non-typical image views relative to 

easier to recognize, canonical views, consistent with the idea that the N350 effect 

is related to the selection of a stored structural description model to match against 

the perceptual input (Schendan & Kutas, 2003). Our results are consistent with 

previous research on the N350 effect and show that color information is activated 

in the N350 time window. This, together with the fact that subjects were faster in 

verifying typical color objects, suggests that shape and color effects are combined 

to facilitate the selection of structural descriptions from the long-term memory in 

this time window. The fact that we did not observed surface color effects in early 

ERP components corroborates the account that color information is activated 

together with the structural description. In this context, the typical surface color 

might limit the possible structural descriptions that match with the presented 

object in the early part of the identification process. In addition, for the non-

matching trials in the color knowledge verification task, we observed an effect 

post-500 ms (referred to as LPC), with a typical frontal topography (Hanslmayr et 

al., 2008; Liotti, Woldorff, Perez, & Mayberg, 2000). This shows that atypical color 

objects were associated with a more negative ERP over the frontal sites during the 

time window between 580-720 ms after stimulus onset. Previous ERP studies 

suggest that the LPC effect is related to activation of associated semantic 

knowledge (e.g., Mazerolle, D'Arcy, Marchand, & Bolster, 2007). Similarly to the 

N350 effect, the LPC effect varies with recognition success; however, unlike the 

N350, the LPC (including posterior N400 and P600) shows categorization 

modulations for any image, regardless of recoverability, and may index a fronto-

parietal network for categorization-related processes, such as selection of an 

appropriate response, including a name (Schendan & Kutas, 2002, 2003, 2007). 
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Although LPC repetition effects could reflect memory for these later categorization 

processes, most evidence suggest that these effects reflect conscious recollection 

(Duarte, Ranganath, Winward, Hayward, & Knight, 2004; Paller, Kutas, & McIsaac, 

1995). The color effects found in this ERP component suggest that typical color 

facilitates the activation of semantic object knowledge. Taken together, the LPC 

and N350 effects that we observed suggest that object color helps in the 

identification process, by facilitating access to the structural description and 

associated semantic knowledge about the object. The behavioral results are also 

consistent with this idea. We observed that subjects were faster in responding to 

the typical color objects in both matching and non-matching trials. 

Additionally, the matching effect in the color knowledge verification task 

showed that non-matching trials were associated with a more negative potential 

over the central channels in a time window between 350-600 ms after stimulus 

onset, consistent with an N400-like effect. This significant N400-like effect was 

found for both typical and atypical color objects, suggesting that semantic 

knowledge about the object color was activated during the task, even when the 

objects were presented in a non-typical color (e.g., a strawberry painted in gray). 

Whenever the color knowledge activated by the object did not match with the 

previous presented color name (non-matching trial), a greater N400 was observed. 

This result is consistent with previous literature showing N400 effects when a 

picture is semantically anomalous in a given context (e.g., Hamm, Johnson, & Kirk, 

2002). 

In the surface verification task, we did not find any significant effects related 

to color knowledge (neither behavioral nor ERP effects). A possible explanation is 

that the cognitive system does not use color knowledge to perform surface color 

verification. Subjects verified equally fast and use the same cognitive resources to 

determine that a red strawberry (a typical red object) and a red mouse (a typical 

non-red object) are colored red, and that a gray strawberry and a gray mouse are 

not colored in red. Thus, we suggest that when color knowledge is not necessary or 
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needed to perform a task, this information is not automatically recruited. An 

alternative interpretation is that subjects performed the surface verification before 

object color knowledge was activated, or possibly that the task was too easy and 

did not implicate complete object recognition to accurately perform the task. These 

arguments could justify the absence of effects that could be discerned among the 

behavioral results; however, they cannot justify the lack of ERP effects. It is well 

documented that ~200-300 ms after stimuli onset, functional and perceptual 

properties of the objects are automatically activated (Vihla, Laine, & Salmelina, 

2006). Thus, our results suggest that color knowledge may be activated 

conditionally during surface color verification. Nevertheless, we believe that it is 

important to replicate this result in a more complex surface color verification task. 

Furthermore, we observed that non-matching trials in the surface color 

verification task were associated with a more negative potential over the frontal 

sites ~200 ms after stimulus onset and with a more central negative potential ~300 

ms after stimuli onset, compared with the matching trials. This negative frontal 

potential shares some properties with the N2 component, with regard to both 

latency and topographic distribution (Folstein & Petten, 2008). N2 effects have 

been shown in conditions that require inhibition of a prepared response and/or 

contain elements suggesting two conflicting responses, as compared to conditions 

without response inhibition or response conflict (Nieuwenhuis, Yeung, Wildenberg, 

& Ridderinkhof, 2003; Pfefferbaum, Ford, Weller, & Kopell, 1985). Folstein and 

collaborators (Folstein & Petten, 2008; Folstein, Van Petten, & Rose, 2008) 

suggested that enhancements of N2 due to conflicting information occur when 

participants begin to prepare a motor response before evaluation of a stimulus is 

complete. This hypothesis suggests that the N2 effect is sensitive to response 

conflict (Folstein, Van Petten, & Rose, 2008). In accordance with this idea, we 

suggest that the N2 effect found in our study is related with motor-related 

preparation, and whenever an object was colored in a different color from the 
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previously presented color name (non-matching trial), a stronger N2 component 

was elicited. 

Overall, our results suggest that color perception is a process relatively 

independent of the access to stored knowledge about object color and subjects 

seem to perform surface color verifications without the automatic activation of 

object-associated color knowledge. However, we also showed a strong interference 

of surface color in the color knowledge task. It therefore appears that the 

appropriate surface color prompts the activation of color knowledge in the 

cognitive system. Although color knowledge could be activated without the 

presence of color input, the actual color input triggers color knowledge and thus 

contributes to more efficient object recognition. 

At the neuroanatomical level, distinct neural regions appear to be 

differentially engaged during the processes of color perception and the retrieval of 

object color knowledge. Whereas color perception is more closely associated with 

the occipital and posterior occipitotemporal cortex (Bartels & Zeki, 2000; Chao & 

Martin, 1999; Zeki & Marini, 1998), color knowledge is associated with the left 

anterior inferior temporal, left frontal and left superior parietal regions of the brain 

(Chao & Martin, 1999; Wiggs, Weisberg, & Martin, 1999). Also, neuropsychological 

studies have reported dissociation between surface color and color knowledge in 

the ventral occipitotemporal cortex. Whereas lesions in the lingual gyrus result in 

achromatopsia in the presence of spared color knowledge (Bouvier & Engel, 2006), 

lesions in the ventral temporal cortex results in color agnosia with spared color 

perception (Miceli et al., 2001). Together, these studies suggest that the brain 

regions engaged during the retrieval of object-color knowledge are different from 

those areas engaged during color perception. However, the dissociation between 

perception and knowledge retrieval mechanisms does not necessarily imply that 

these two abilities are completely independent. For example, some neuroimaging 

results suggest that color knowledge modulates regions that are involved in color 
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perception (Goldberg, Perfetti, & Schneider, 2006; Howard et al., 1998; Kellenbach, 

Brett, & Patterson, 2001; Simmons et al., 2007; Ueno et al., 2007). 

Previous studies have investigated color perception with the ERP technique 

(Anllo-Vento, Luck, & Hillyard, 1998; Buchner, Weyer, Frackowiak, Romaya, & Zeki, 

1994; Edwards, Xiao, Keysers, Földiák, & Perrett, 2003; Goffaux et al., 2005; Lu et 

al., 2010; Plendl et al., 1993; Proverbio, Burco, Zotto, & Zani, 2004). For instance, 

Goffaux and colleagues (2005) measured early ERPs to examine the effect of color 

cues on scene categorization. The ERPs associated with the black and white images 

and with the atypical colored scenes were delayed compared to the ones 

associated with the typical colored scenes. The color effects were mirrored in the 

early (150 ms following stimulus onset) frontal EEG correlates (Goffaux et al., 

2005). 

The objective of the present study was to provide additional evidence in order 

to understand how top-down color knowledge and bottom-up color perception 

interacts during object recognition. Our study provides electrophysiological 

evidence suggesting an interaction between surface color and color knowledge 

retrieval. 
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Abstract 

In the present study, the authors explore in detail the level of visual object 

recognition at which perceptual color information improves the recognition of 

color diagnostic and non-color diagnostic objects. To address this issue, 3 object 

recognition tasks, with different cognitive demands, were designed: an object 

verification task, a category verification task, and a name verification task. They 

found that perceptual color information improved color diagnostic object 

recognition mainly in tasks for which access to the semantic knowledge about the 

object was necessary to perform the task; that is, in category and name 

verification. In contrast, the authors found that perceptual color information 

facilitates non-color diagnostic object recognition when access to the object’s 

structural description from long-term memory was necessary – that is, object 

verification. In summary, the present study shows that the role of perceptual color 

information in object recognition is dependent on color diagnosticity. 
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4.1 Introduction 

The visual system recognizes objects via multiple features, such as shape, color, 

texture, motion characteristics, and others. All of these features contribute to 

object recognition. The roles of these perceptual cues or properties in object 

recognition have been extensively investigated. For example, several studies have 

investigated the influence of color information on object recognition. However, 

some of the findings that have emerged from these studies appear inconsistent. 

For instance, some early studies failed to identify a role for color information in 

object recognition (Biederman & Ju, 1988; Davidoff & Ostergaard, 1988), whereas 

more recent investigations have reported that color input improves visual 

recognition, both for objects and scenes (e.g., Gegenfurtner & Rieger, 2000; 

Therriault, Yaxley, & Zwaan, 2009). 

Different explanations have been proposed for these results. For instance, it 

has been suggested that color details improve object recognition in the following 

situations: when shape information is degraded (Tanaka & Presnell, 1999), when 

the shape is not diagnostic for the object (Price & Humphreys, 1989), in conditions  

such as low visual acuity (Wurm, Legge, Isenberg, & Luebker, 1993) and visual 

object agnosia (Mapelli & Behrmann, 1997), when the objects are from biological 

categories (Price & Humphreys, 1989), and when objects are strongly associated 

with a color (color diagnostic objects; Nagai & Yokosawa, 2003; Tanaka & Presnell, 

1999). The level of color diagnosticity refers to the degree with which a particular 

object is associated with a specific color. For example, a strawberry, which is a 

color diagnostic object, is strongly associated with the color red, whereas a comb, 

which is a non-color diagnostic object, is not strongly associated with any particular 

color. According to the color diagnosticity hypothesis (Tanaka & Presnell, 1999), 

color information improves the recognition of color diagnostic objects but not non-

color diagnostic objects (see also Nagai & Yokosawa, 2003). However, the field has 

not yet reached a consensus concerning these matters. Recent studies have found 

that perceptual color information improves object recognition independent of the 
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semantic category and color diagnosticity (Rossion & Pourtois, 2004; Uttl, Graf, & 

Santacruz, 2006). Overall, these findings suggest that the role of perceptual color in 

object recognition is not well understood. 

In this study, our goal was to investigate at which stage of visual processing 

perceptual color information modulates the recognition of color diagnostic and 

non-color diagnostic objects. We hypothesized that perceptual information related 

to input color improves the recognition of color diagnostic and non-color diagnostic 

objects at different levels of the visual recognition process. Experimental evidence 

has shown that perceptual color information is an important cue for activating 

semantic object knowledge, including the object’s typical color, and probably other 

perceptual and functional properties, thus facilitating object recognition (Bramão, 

Faísca, Petersson, & Reis, 2010). However, this is likely to be the case only for color 

diagnostic objects, because they are strongly associated with a particular color, in 

contrast to non-color diagnostic objects. Moreover, there is also experimental 

evidence that shows that perceptual color has another role in addition to 

facilitating access to semantic object representations: serving as a perceptual input 

to the early stages of visual processing (Davidoff, Walsh, & Wagemans, 1997; 

Gegenfurtner & Rieger, 2000; Wurm, Legge, Isenberg, & Luebker, 1993). Thus, we 

predict that color information also participates in the early stages of visual 

processing, in addition to facilitating access to the semantic representation for 

color diagnostic objects. However, for non-color diagnostic objects, perceptual 

color is only expected to facilitate the early stages of visual processing. 

To investigate this question, we constructed three different object recognition 

tasks for both color diagnostic and non-color diagnostic objects: an object 

verification task, a category verification task, and a name verification task. 

Humphreys and colleagues argued that performance of these tasks poses different 

challenges for the cognitive system (Humphreys, Price, & Riddoch, 1999; 

Humphreys & Riddoch, 2006; Humphreys, Riddoch, & Quinlan, 1988; Riddoch & 

Humphreys, 1987b). In the name verification task, participants were instructed to 
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verify the name of visually presented objects. A number of processing stages must 

be completed before accessing the name representation. First, the early visual 

processes must encode the object shape and other perceptually available 

information. The encoded information must then be matched with the structural 

descriptions stored in long-term memory. The stored semantic and conceptual 

information about the object must be activated, and subsequently, the name 

representation is accessed. During this process, different forms of stored memory 

must be accessed, including knowledge about the object’s shape (structural 

description), its functional and other meaning-related properties (semantic 

representation), and its name (lexical representation). In the category verification 

task, participants were instructed to verify the object’s semantic category (natural 

or artifact). In contrast to name verification, category verification only depends on 

access to the stored structural description and the semantic representation. In the 

object verification task, participants were instructed to verify whether the 

presented object was a known object, and this only requires access to the 

structural description (Humphreys, Price, & Riddoch, 1999; Humphreys & Riddoch, 

2006). By comparing the performance on these tasks, using both colored and black-

and-white images, we attempted to determine the level of object processing at 

which color information facilitates the recognition of color diagnostic and non-color 

diagnostic objects. If color information improves the recognition of color diagnostic 

objects both at the early visual stages and at the semantic level, then we expect to 

find an effect of the perceptual color for these objects when the task requires 

access to the structural description (i.e., in object verification). Furthermore, a 

larger effect of color information is to be expected for color diagnostic objects 

when the task requires access to both structural descriptions and semantic 

representations (i.e., in category verification). In the name verification task, we 

predicted color effects similar to those in the category verification task, given that 

no specific role of color is expected for accessing the lexical representation (i.e., the 

name) of an object per se. 
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However, if color only modulates non-color diagnostic object recognition at 

the early visual processing stages, then we expect to find a perceptual color effect 

when the task requires access to the structural descriptions (i.e., in object 

verification). Moreover, we predicted that the perceptual color effect would 

remain constant for these objects on the remaining tasks, suggesting that only the 

early visual processing stages are affected by color information for these objects. 

Finally, there is evidence that object recognition is faster for photographs than 

line-drawings (Brodie, Wallace, & Sharrat, 1991; Price & Humphreys, 1989). Uttl 

and colleagues (Uttl, Graf, & Santacruz, 2006) have argued that line-drawings 

typically are viewed as a representation of an object class – a type – whereas 

photographs are viewed as a particular individual object – a token. To a certain 

extent, the recognition of types and tokens may recruit different perceptual and 

semantic processes (Uttl, Graf, & Santacruz, 2006). In this study, we also 

investigated whether the color effects are the same or different for line-drawings 

and photographs of the same objects. 

 

4.2 Methods 

Participants 

One hundred and forty-four Portuguese students with normal or corrected-to-

normal vision volunteered to participate in the experiment (mean age [± SD] = 23 ± 

4.5 years, range 18-40 years; mean years of education [± SD] = 15 ± 2 years, range 

12-20 years; 99 females and 45 males). 

 

Stimuli 

The initial pool of pictures consisted of 220 photos of common objects. Some 

photographs were selected from the Focus Multimedia CD Photo Library, some 

were selected from the set of Reis and colleagues (Reis, Faísca, Ingvar, & Petersson, 

2006), and some were selected via an Internet image search using the Google 

search engine. An independent group of 30 participants named and rated the initial 
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set according to prototypicality, familiarity, visual ambiguity, visual complexity, and 

color diagnosticity. Each photo was presented for 1 min, and the participants were 

asked to write down the name of the object. If they did not know the name, they 

were asked to choose one of the following categories: do not know name, do not 

know object, or tip of the tongue. Participants were also asked to evaluate the 

prototypicality of each photo “according to the degree that the presented picture 

represents a typical exemplar of the concept”; they were also asked to rate the 

degree of agreement between the presented photo and their mental image of the 

concept using a 5-point scale, where 1 indicated low agreement and 5 indicated 

high agreement. The familiarity of each photo was judged “according to how usual 

or unusual the object is in your realm of experience”, and the participants were 

asked to rate the concept itself, rather than the photo, using a 5-point rating scale 

(1 = very unfamiliar; 5 = very familiar). The visual ambiguity of each photo was 

evaluated “according to how large is the group of different objects that are visually 

similar to he presented object” (5-point rating scale: 1 = completely nonambiguous 

object; 5 = completely ambiguous object). The visual complexity was defined as 

“the amount of detail or intricacy of line in the photo”, and the participants were 

asked to rate the photo itself rather than the real-life object (5-point scale: 1 = very 

low visual complexity; 5 = very complex picture). The color diagnosticity was 

defined as “the degree to which the object is associated with a specific color” and 

was also rated on a 5-point scale (1 = low color diagnostic; 5 = a high color 

diagnostic). These instructions are similar to those typically used in object picture 

rating studies (Rossion & Pourtois, 2004; Snodgrass & Vanderwart, 1980; Ventura, 

2003). 

Following the analysis of the rating scores, we selected only those photos that 

showed at least 80% name agreement between participants. Of these, we selected 

72 photos to be used in the experiment. The objects were divided according to 

their color diagnosticity into a group of high-color diagnostic objects (20 from 

natural categories and 16 from artifact categories; Appendix B) and a group of low-
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color diagnostic objects (16 from natural categories and 20 from artifact categories; 

Appendix B). The only significant mean difference between the two groups of 

objects was color diagnosticity. The mean comparisons between color diagnostic 

and non-color diagnostic items on the other rating variables were not significant (p 

> 0.2; Table 4.1). 

Each photograph was matched with a line-drawing that was as similar as 

possible in terms of shape, size and orientation. The line-drawings were selected 

from the picture database at the Max Planck Institute. A total of 60 of the 72 

selected pictures were similar to the original Snodgrass and Vanderwart (1980) set. 

We used Adobe Photoshop CS2 to create four versions of each object: a color line-

drawing, a color photograph, a black and white line-drawing and a black and white 

photograph (Figure 4.1). The color used to create the color line-drawing version of 

the color diagnostic objects was selected by choosing the surface color of the 

correspondent color photograph and pasting the color onto the line-drawing using 

the color replacement tool. To ensure that the color diagnostic objects and non-

color diagnostic objects were matched for color frequency and luminance, we 

applied the color of the color diagnostic objects to the non-color diagnostic ones. 

Thus, the color version of a non-color diagnostic image (both photographs and line-

drawings) was created by selecting the surface color of a color diagnostic object 

and pasting that color onto the non-color diagnostic object using the color 

replacement tool. The luminance of the color-replaced image was adjusted using 

the brightness tool. The colored images (line-drawings and photographs) of both 

color diagnostic and non-color diagnostic objects were converted to grayscale using 

the grayscale mode, which preserves the luminance while discarding the color. We 

did not find any difference in the luminance values between the four versions of 

the diagnostic and nondiagnostic items (overall p > 0.20). Finally, for the object 

verification task, we constructed a non-object version of each image. The non-

objects were constructed by shape deformation using the filter distort feature in 
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Adobe Photoshop CS2. Sine waves were applied to the stimuli in a randomized 

fashion until it was not possible to recognize the original object shape (Figure 4.1). 

 

Table 4.1. Mean (SD) ratings for color diagnosticity, prototypicality, familiarity, 
visual ambiguity and visual complexity for color diagnostic and non-color diagnostic 
objects. 

 Color Diagnostic 

Objects 

Non-Color 

Diagnostic Objects 

Mann-Whitney U 

Test 

Color Diagnosticity 4.4 (0.2) 2.3 (0.7) Z = 7.3, p < 0.001 

Prototypicality 4.3 (0.5) 4.3 (0.3) Z = 1.2, p = 0.2 

Familiarity 4.4 (0.5) 4.3 (0.4) Z = 0.3, p = 0.7 

Visual ambiguity 2.4 (0.8) 2.2 (0.7) Z = 0.5, p = 0.6 

Visual complexity 2.6 (0.6) 2.7 (0.6) Z = -0.5, p = 0.6 

 

 

Figure 4.1. Example of the stimuli used in the experiment in the black and white 
presentation mode. 
 

Procedures 

Three computerized verification tasks were designed, in which a picture of an 

object was preceded by a word: an object verification task, in which before each 

picture, one of two possible words was presented: object or non-object; a category 
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verification task, in which before each picture, either the word biologic or artifact 

was presented; and a name verification task, in which, before each picture, an 

object name was presented. In all verification tasks, participants were asked to 

verify whether or not the presented picture matched the previously presented 

word. Each participant performed the three verification tasks (the presentation 

order was balanced across participants). The 72 objects and 72 non-objects were 

divided into four sets of 18 objects. In each task, four different sets of objects were 

randomly chosen without replacement to be presented in one of the four 

experimental conditions, one set for each condition. In the object verification task, 

four different sets of non-objects were also randomly selected (without 

replacement) to be presented in one of the four experimental conditions. No 

participant saw an object twice in the same condition. 

The category verification and the name verification tasks each comprised a 

total of 72 trials: half of the trials were matching trials (word and picture matched) 

and the other half were non-matching trials (word and picture did not match). The 

non-object verification task included 144 trials, 72 trials with objects (50/50 

matching/non-matching trials), and 72 trails with non-objects (50/50 

matching/non-matching trials). In all the tasks, half of the trials were with color 

diagnostic objects (50/50 colored/black and white) and the other half were with 

non-color diagnostic object presentations (50/50 colored/black and white).A 

specific item appeared for half of the participants associated to a matching trial and 

for the other half to a non-matching trial. The Presentation 0.7 software 

(http://nbs.neuro-bs.com/presentation) was used to display the stimuli on a 

computer screen (on a laptop Toshiba screen Satellite A300; size: 17’’; spatial 

resolution: 1024 X 768; color resolution: 24 bits) and to register the response times. 

Each trial started with a fixation cross displayed in the center of the screen for 1500 

ms. After the fixation cross, the word (Arial; font size 70) was presented for 1000 

ms, followed by the presentation of the object picture (500 × 362 pixels) for 150 

ms. The response window was 2000 ms, after which the next trial was presented. 
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Participants were instructed to decide as accurately and as quickly as possible 

whether the word and the picture matched by pressing one of the two response 

keys (half of the participants used the right-left hand for yes-no and the other half 

for no-yes). Participants were allowed a break between the tasks. Before each task, 

participants participated in a training session with 10 trials. 

 

4.3 Results 

The results were analyzed by subject (F1) and by stimulus (F2). A minimum F (minF) 

was calculated from the F1 and F2 analyses. This approach ensured that the results 

were generalized over both subject and stimulus domains (Clark, 1973; 

Raaijmakers, 2003; Raaijmakers, Schrijnemakers, & Gremmen, 1999). None of the 

main effects or interactions that failed to reach significance in the minF calculation 

are reported. 

Overall, the participants were able to correctly verify almost all stimuli, and 

we focused our analysis on the verification times. We excluded the following from 

the analysis: verification times from incorrect responses (object verification: 3.9%, 

category verification: 7.9%, and name verification: 3.9%); response times 

corresponding to trials where participants responded two or more times (object 

verification: 0.1%, category verification: 0.3%, and name verification: 0.3%); 

response times that were greater than the response window (object verification: 

0.5%, category verification: 1.3%, and name verification: 0.1%); and no-response 

trials (object verification: 0.1%, category verification: 0.4%, and name verification: 

0.3%). The data were checked for outliers by subject and condition, and latencies 

outside 2.5 standard deviations from the mean for each subject and condition were 

also excluded from the analysis (object verification: 4.0%, category verification: 

3.2%, and name verification: 3.9%). We also excluded six objects that did not show 

any color effect (in terms of accuracy and response time) in any of the tasks (three 

color diagnostic objects: binoculars, cigar, and barrel; and three non-color 

diagnostic objects: snake, beret, and leaf) and three participants who showed very 
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low performance (less than 75% of correct answers in at least one of the tasks). In 

total, 10.1% of the response times were excluded from the analysis. A one-way 

analysis of variance (ANOVA) excluded object set effects (F(3, 860) = 0.8; p = 0.5). 

The mean correct response times and the percentage of correct responses for each 

condition are given in Table 4.2. 

Verification times were analyzed with a repeated-measures ANOVA that 

included the within-subject/stimulus factors of task (object verification, category 

verification, name verification), stimulus type (line-drawings, photographs) and 

presentation mode (color, black and white), as well as the object color diagnosticity 

(color diagnostic objects, non-color diagnostic objects) as a within-subject factor in 

the subject analysis and a between-stimuli factor in the item analysis. The results 

showed a significant task effect (F1(2, 280) = 314.6, p < 0.001; F2(2, 128) = 285.0, p 

< 0.001; minF(2, 362) = 149.5, p < 0.001). A post-hoc comparison (Tukey HSD) for 

the subject analysis showed that participants were faster at name verification than 

object and category verification (p < 0.001), and faster at object verification than 

category verification (p < 0.001). A primary effect of the presentation mode was 

also observed (F1(1, 140) = 67.7, p < 0.001; F2(1, 64) = 34.8, p < 0.001; minF(1, 142) 

= 22.3, p < 0.001); participants were faster when the objects were presented in 

color compared to black and white. The two-way interaction between the 

presentation mode and the object color diagnosticity was significant (F1(1, 140) = 

10.4, p < 0.001; F2(1, 64) = 8.1, p = 0.01; minF(1, 159) = 4.5, p = 0.03). A Tukey HSD 

post-hoc comparison for the subject analysis showed that when objects were 

presented in a color version, participants were faster at verifying color diagnostic 

objects than non-color diagnostic objects (p = 0.03); however, when objects were 

presented in black and white, participants verified color diagnostic and the non-

color diagnostic objects equally quickly (p = 0.3). The three-way interaction 

between task, object-color diagnosticity and presentation mode was marginally 

significant (F1(2, 280) = 7.9, p < 0.001; F2(2, 128) = 3.2, p = 0.04; minF(2, 236) = 

2.29, p = 0.10; see Table 4.2 and Figure 4.2). A Tukey HSD post-hoc comparison for 
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the subject analysis showed that color diagnostic objects were verified equally fast 

in color and in black and white for the object verification task (p = 0.2); however, 

participants were faster at verifying color diagnostic objects when they were 

presented in color than when they were presented in black and white, both in the 

category verification task (p < 0.001) and in the name verification task (p = 0.02). 

However, the non-color diagnostic objects were verified faster when they were 

presented in color than in black and white in the object verification task (p = 0.003). 

However, both in the category and in the name verification tasks, participants 

verified non-color diagnostic objects equally fast when they were presented in 

color and in black and white (p > 0.9). 

To avoid misinterpretation of the data and possible confusion between object 

color diagnosticity and semantic category effects (Nagai & Yokosawa, 2003), we 

explored the color effects in both biological and artifact objects independently. The 

mean correct response times and the percentage of correct responses for each 

condition are given in Table 4.3. A repeated-measures ANOVA was performed that 

included the semantic category (biologic, artifacts) as a within-subject factor in the 

subject analysis and a between-stimuli factor in the item analysis, and task (object 

verification, category verification, name verification) and presentation mode (color, 

black and white) were considered a within-subject/stimulus factors. The results 

showed a significant semantic category effect (F1(1, 140)=138.1, p < 0.001; F2(1, 

64) = 102.3, p < 0.001; minF(1, 155) = 58.8, p < 0.001); participants were quicker at 

responding to the biological items than to the artifact items, which was a main 

effect of task (F1(2, 139) = 267.7, p < 0.001; F2(1, 63) = 897.6, p < 0.001; minF(1, 

196) = 206.2, p < 0.001). A post-hoc comparison (Tukey HSD) for the subject 

analysis showed that participants were faster at name verification than object and 

category verification (p < 0.001), and object verification was performed faster than 

category verification (p < 0.001). A primary effect of presentation mode (F1(1, 140) 

= 73.6, p < 0.001; F2(1, 64) = 32.4, p < 0.001; minF(1, 122) = 22.5, p < 0.001) was 

observed; participants were faster at responding to color objects compared to 
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black and white objects. The two-way interaction between semantic category and 

task was also significant (F1(2, 139) = 267.7, p < 0.001; F2(2, 63) = 897.6, p < 0.001; 

minF(1, 170) = 52.2, p < 0.001); a post-hoc comparison (Tukey HSD) for the subject 

analysis showed that participants verified biological and artifact items equally 

quickly in the object and in the name verification tasks (p > 0.9); however, 

participants were faster at verifying biological than artifact objects in the category 

verification task (p = 0.03). Note that none of the interactions between category 

and color reached a significant level. 

Table 4.2. Mean response time (SD) and percentage of correct responses (SD) for color 
diagnostic objects (CDO) and non-color diagnostic objects (NCDO) in each presentation 
mode and for the three verification tasks. 

 Verification Task 

 Object  Category  Name 

 RT (SD) % (SD)  RT (SD) % (SD)  RT (SD) % (SD) 

CDO         

Color 663 (127) 96 (7)  730 (135) 92 (10)  521 (122) 97 (5) 

Black and White 687 (132) 96 (8)  784 (151) 92 (9)  551 (125) 95 (7) 

NCDO         

Color 652 (118) 96 (8)  770 (13) 92 (11)  532 (125) 96 (7) 

Black and White 686 (12) 97 (7)  767 (12) 90 (12)  542 (128) 96 (7) 

 
Table 4.3. Mean response time (SD) and percentage of correct responses (SD) for natural 
object (NO) and artifact objects (AO) in each presentation mode and for the three 
verification tasks. 

 Verification Task 

 Object  Category  Name 

 RT (SD) % (SD)  RT (SD) % (SD)  RT (SD) % (SD) 

NO         

Color 664 (127) 96 (7)  674 (130) 96 (9)  521 (124) 97 (7) 

Black and White 685 (140) 95 (8)  716 (133) 95 (8)  552 (123) 95 (9) 

AO         

Color 655 (127) 96(7)  848 (174) 87 (13)  534 (128) 97 (7) 

Black and White 687(140) 97(8)  856 (178) 88 (14)  541 (132) 96 (8) 
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Figure 4.2. Three-way interaction between the factors task, diagnosticity color 
object and presentation mode on verification times. A – Object verification task, B – 
Category verification task, C – Naming verification task. Bars represent standard 
error. 
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4.4 Discussion 

In this study, we investigated the level of visual processing at which perceptual 

information determined by input color facilitates the recognition process of color 

diagnostic and non-color diagnostic objects. We hypothesized that perceptual color 

information modulates the recognition of color diagnostic and non-color diagnostic 

objects at different processing stages. Specifically, we hypothesized that color 

information improves the recognition of color diagnostic objects both at the early 

visual stages and at the semantic level. In contrast, we proposed that the 

recognition of the non-color diagnostic objects is only modulated at early visual 

processing stages; color information supports the encoding of the object shape, 

which facilitates access to the structural description. Consistent with our 

predictions, the results showed that color facilitates categorization and name 

verification of color diagnostic objects. This result shows that the main role of color 

information in the recognition of color diagnostic objects is to facilitate access to 

semantic object knowledge. The presence of the correct perceptual color is likely to 

trigger the activation of the semantic color knowledge, and this in turn, propagates 

through the semantic network. It was recently shown that color input is an 

important cue that triggers semantic knowledge related to object color, and this 

facilitates object recognition (Bramão, Faísca, Petersson, & Reis, 2010). Further 

research is needed to explore whether additional semantic knowledge (e.g., 

functional properties) are also activated more quickly in the presence of the correct 

perceptual color information. There is some evidence that this is the case. A 

previous FMRI study showed that colored objects activate a neural network related 

to visual semantic information, which is more extensive than that for black and 

white objects (Bramão, Faísca, Petersson, & Reis, 2010). 

The color effects in the color diagnostic object recognition were not restricted 

to category verification; name verification was also faster in the presence of 

perceptual color information. However, the color effect in this task was not greater 

than in category verification, suggesting that color information does not contribute 
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specifically to retrieving the object name. In other words, it appears that color 

input triggers the relevant semantic information, which results in faster lexical 

access. Consistent with this, previous evidence showed that semantic color 

knowledge served as a link between object shape and object name; this resulted in 

faster access to the name representation when activated (Davidoff, Walsh, & 

Wagemans, 1997; Tanaka, Weiskopf, & Williams, 2001). However, contrary to our 

predictions, we did not observe a significant effect of color information for the 

color diagnostic objects on the object verification task. Although, the color 

diagnostic objects were verified 24 milliseconds faster when the objects were 

presented in color (compared to black and white), this result was not significant. 

This nonsignificant result might suggest that the main role of perceptual color 

information in color diagnostic object recognition is not localized at the structural 

description level. Instead, our results show that the main role of color is taking 

effect at the semantic level, facilitating the activation of the semantic object 

network, which then results in faster lexical access. Color information may have a 

minor role in the recognition of color diagnostic objects at the structural 

description level, facilitating the extraction of the shape information and template 

matching in long-term memory. 

In contrast, for non-color diagnostic objects, the perceptual color effect was 

limited to object verification. This suggests that the role of perceptual color in non-

color diagnostic object recognition is restricted to early visual processes, including 

the matching of shape extraction for the structural description with the forms 

stored in long-term memory. We did not observe any effect of perceptual color 

information for the non-color diagnostic objects on the category and name 

verification tasks. We noted that to succeed on these tasks, participants also had to 

extract and encode shape information. Nevertheless, other cognitive demands 

were involved; in particular, access to stored semantic information. Because color 

information has a limited role or no role at all in accessing the semantic 

information of the non-color diagnostic objects, the effect of color on shape 
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extraction might be masked in these tasks. This would explain why, in some 

studies, no color effect was observed in the naming and categorization of non-color 

diagnostic objects (Nagai & Yokosawa, 2003; Tanaka & Presnell, 1999). Studies that 

showed an advantage of perceptual color information on object recognition also 

demonstrated that the improvement is greater for color diagnostic objects 

compared with non-color diagnostic objects (Rossion & Pourtois, 2004; Uttl, Graf, & 

Santacruz, 2006). 

Another interesting finding was that the observed color effect was the same 

for line-drawings and photographs. It might seem intuitive that color would have a 

greater effect if it were combined with the additional surface information present 

in the photographs (e.g., texture and shadow), leading to faster recognition of 

photographs. However, this was not the case. Similar results were reported by 

Price and Humphreys (1989); in a naming and a categorization task, they observed 

that surface color and the effects of photographic detail combined subadditively, 

so that the combined effects were not reliably greater than either effect 

individually. This result suggests that both color and texture and brightness 

information are processed during the same time window and that both contribute 

independently to object recognition. The present results extend these findings. Our 

results show that perceptual color information is an important cue for recognizing 

types, as well as tokens, not only in naming and categorization tasks, but also in 

object decision tasks. In addition, line-drawings and photographs were recognized 

equally fast in our study; however, previous studies have shown that photographs 

tend to be recognized faster than line-drawings (Brodie, Wallace, & Sharrat, 1991; 

Price & Humphreys, 1989). This discrepancy might be explained by the fact that our 

line-drawings contained more surface details than those used in previous studies. 

Previous studies have suggested that perceptual color information facilitates 

the recognition of natural objects but not artifacts (Price & Humphreys, 1989). 

However, Nagai and Yokosawa (2003) found that regardless of the semantic 

category, perceptual color information facilitates recognition. Consistent with the 
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latter results, our findings are not explained by the semantic category of the 

objects. We found that perceptual color improves the recognition of both natural 

objects and artifacts in similar ways. In addition, we found that participants 

responded faster to natural objects than to artifacts in the category verification 

task. The advantage of the natural objects is in agreement with studies on 

category-specific effects in healthy participants. The category-specific literature on 

healthy participants predicts better performance with natural objects when the 

viewing conditions are optimal and demands for structural differentiation are low – 

that is, when participants do not need to select a specific representation from long-

term memory (Gale, Laws, & Foley, 2006; Gerlach, 2009; Riddoch & Humphreys, 

1987a). 

An unexpected result in this study was the effect of task. It was thought that 

of the three tasks, name verification would pose the greatest cognitive challenge. 

Therefore, one might have expected that participants would take a longer time to 

respond in this task than in the other two tasks. However, this was not the case. 

Participants were faster at name verification compared to object verification and 

category verification. One possible explanation for this might be related to the 

labels that appeared before the stimuli in the semantic and object verification 

tasks: biological and artifact in category verification and object and non-object in 

object verification, which are more abstract concepts than object names. 

Moreover, it is well-known that perceptual categorization at the basic level (e.g., 

dog) is faster than categorization at more superordinate (e.g., animal) or 

subordinate levels (e.g., poodle; Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 

1976). A similar effect might play a role here: participants were faster verifying the 

object name (e.g., strawberry) than its superordinate category (natural versus 

artifact). 

Previous studies have suggested that color information is important for early 

visual processing (Davidoff, Walsh, & Wagemans, 1997; Gegenfurtner & Rieger, 

2000; Wurm, Legge, Isenberg, & Luebker, 1993) and/or at a semantic level, where 
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stored semantic knowledge provides an associative link between a representation 

of the object shape and the object name (Davidoff, Walsh, & Wagemans, 1997; 

Tanaka, Weiskopf, & Williams, 2001). There is also evidence showing that stored 

knowledge of an object’s color plays a role in that object’s identification (Joseph, 

1997; Joseph & Proffitt, 1996; Mapelli & Behrmann, 1997). Our results show that 

the role of perceptual color in object recognition of color diagnostic and non-color 

diagnostic objects is different and depends on color diagnosticity. Perceptual color 

information facilitates the recognition of the color diagnostic objects at the 

semantic level of visual processing, while it facilitates the recognition of the non-

color diagnostic objects at the level of structural description, an earlier stage of 

visual processing. 
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of color diagnostic and non-color diagnostic objects. 



 

98 

Abstract 

In this study, we investigated the level of visual processing at which surface color 

information improves the recognition of color diagnostic and non-color diagnostic 

objects. Continuous electroencephalograms were recorded while participants 

performed a visual object recognition task in which colored and black-and-white 

versions of both types of objects were presented. Two groups of event-related 

potentials (ERPs) associated with color and black-and-white presentations were 

compared: (1) the N1 component, an index of early visual processing and (2) the 

N350 and N400 components, which index late visual processing. Over left occipital 

sites, the N1 component was modulated by color for both color and non-color 

diagnostic objects. In addition, for color diagnostic objects, a color effect was 

observed in the N350 and N400 ERP components. Our results suggest that color 

information is important in the recognition of color and non-color diagnostic 

objects at different levels of visual processing. Our interpretation is that the visual 

system uses color information during the recognition of both types of objects at 

early visual stages but only for the color diagnostic objects during late visual 

processing stages. 
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5.1 Introduction 

There is a large body of evidence suggesting that color information plays a role in 

object recognition (for a revision, see Tanaka, Weiskopf, & Williams, 2001). 

However, the processing stage at which this occurs and the types of objects that 

might be better identified by the processing of color information are both still 

matters of debate. Attempts to address these issues have primarily focused on 

color diagnosticity, which refers to the degree to which a particular object is 

associated with a specific color. For example, a strawberry – a color diagnostic 

object – is strongly associated with the color red, whereas a comb – a non-color 

diagnostic object – is not associated with any specific color. While some authors 

report that color information improves object recognition independent of color 

diagnosticity (Rossion & Pourtois, 2004; Uttl, Graf, & Santacruz, 2006), other results 

suggest that color improves the recognition of only color diagnostic objects (Nagai 

& Yokosawa, 2003; Tanaka & Presnell, 1999). 

In a previous behavioral study, we showed that color modulates the 

recognition of color and non-color diagnostic objects at different levels of visual 

processing: for color diagnostic objects, color plays an important role at the 

semantic level; for non-color diagnostic objects, color plays a role at the pre-

semantic recognition level (Bramão, Inácio, Faísca, Reis, & Petersson, 2011). In this 

study, we built upon these behavioral results through the use of 

electroencephalogram (EEG) recording. Unlike behavioral measures, event-related 

potentials (ERPs) allow for the analysis of electrophysiological signatures of 

cognitive processes with a temporal resolution of milliseconds. This represents an 

optimal approach to investigate the level of visual processing at which surface color 

modulates object recognition. For example, in a recent ERP study, Lu and 

collaborators (Lu et al., 2010) investigated the impact of color information in object 

recognition and found that color effects could be detected in the early ERP 

components that index visual perceptual processing (including N1, P2 and N2). In 

addition, they found a color modulation of a late visual component associated with 



Chapter 5 
 

100 

semantic processing (N350). These findings provide evidence that, during object 

recognition, color information is important at both the perceptual and semantic 

level. However, Lu and colleagues only used color diagnostic objects, making it 

difficult to distinguish the potentially different roles for color during the recognition 

of color and non-color diagnostic objects (Lu et al., 2010). 

In this study, we recorded ERPs during a visual recognition task in which 

colored and black-and-white versions of color and non-color diagnostic objects 

were presented. The differences between color and black-and-white presentations 

were investigated with respect to the early visual N1 component and the two late 

visual N350 and N400 components. The N1 component peaks at approximately 150 

ms after stimulus onset is observed primarily over the occipito-temporal region, 

and it is an electrophysiological index of perceptual processing, where increased 

visual processing demands are reflected by more negative values (Johnson & 

Olshausen, 2003; Kiefer, 2001; Rossion et al., 2000; Tanaka, Luu, Weisbrod, & 

Kiefer, 1999; Wang & Kameda, 2005; Wang & Suemitsu, 2007). Based on our 

previous findings, we predicted that the ERPs associated with black and white 

stimulus would elicit a more negative N1 response in occipital sites compared to 

color stimuli for both types of objects. 

The N350 and N400 components are ERPs related to semantic processing. 

N350 is a negative ongoing component that peaks at approximately 300 ms after 

stimulus presentation and has an anterior topographic distribution (Barrett & Rugg, 

1990; McPherson & Holcomb, 1999; Pratarelli, 1994). N350 appears specific for 

visual stimuli and is the first marker of successful object categorization, with 

increased magnitude (i.e., more negative) over frontal regions for unidentified 

objects compared to correctly-categorized stimuli (Hamm, Johnson, & Kirk, 2002; 

McPherson & Holcomb, 1999; Schendan & Kutas, 2002, 2007). N350 is followed by 

the N400 component, which is a negative deflection over central-parietal regions 

peaking at approximately 400 ms after stimulus onset. N400 has been widely used 

as an index of semantic processing, with an increase in magnitude (again, more 
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negative) for semantically unrelated compared to semantically related material 

(Kutas & Hillyard, 1980a, 1980b). Both N350 and N400 ERP components are related 

to late visual processing, with N350 reflecting early object categorization (e.g., a 

member of a meaningful structural group) and N400 being sensitive to information 

extracted after initial categorization (Hamm, Johnson, & Kirk, 2002). Based on our 

previous work, we hypothesized that color effects in these two components would 

be restricted to color diagnostic objects (Bramão, Faísca, Petersson, & Reis, 2010). 

 

5.2 Methods 

Participants 

Twenty-two right-handed native Portuguese speakers (mean age [± SD] = 24 ± 4 

years, range 18-33 years; mean years of education [± SD] = 15 ± 1 years, range 13-

17 years; 5 males and 17 females) with normal or corrected-to-normal vision 

participated in the study. All subjects completed health questionnaires, and none 

indicated a history of head injury or other neurological or psychiatric problems. All 

subjects read and signed an informed consent form describing the procedures in 

accordance with the Declaration of Helsinki guidelines. The study was approved by 

the local ethics committee. 

 

Stimulus Material 

The initial pool of stimuli consisted of 220 photos of common objects. Some were 

selected from the Focus Multimedia CD Photo Library, some from the set of Reis 

and colleagues (Reis, Faísca, Ingvar, & Petersson, 2006), and some via an Internet 

image search using the Google search engine. An independent group of 30 

participants named and rated the initial set of objects according to prototypicality, 

familiarity, visual ambiguity, visual complexity, and color diagnosticity. Each 

stimulus was presented for one minute, and the participants were then asked to 

write down the name of the object. If they did not know the name, they were 

asked to choose one of the following categories: do not know name; do not know 
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object; or tip of the tongue. Participants were next asked to evaluate the 

prototypicality of each object “according to the degree that the presented picture 

represents a typical exemplar of the concept.” They were also asked to rate the 

degree of agreement between the presented object and their mental image of the 

concept using a 5-point scale (1 = low agreement; 5 = high agreement). The 

familiarity of each stimulus was judged “according to how usual or unusual the 

object is in your experience”, and the participants were asked to rate the concept 

itself, rather than the object, using a 5-point rating scale (1 = very unfamiliar; 5 = 

very familiar). The visual ambiguity of each stimulus was evaluated “according to 

how large is the group of different objects that are visually similar to the presented 

object”, (5-point rating scale: 1 = completely non-ambiguous object; 5 = completely 

ambiguous object). The visual complexity was defined as “the amount of detail or 

intricacy of line in the stimulus”, and the participants were asked to rate the 

stimulus itself rather than the real-life object (5-point scale: 1 = very low visual 

complexity; 5 = very complex picture). The color diagnosticity was defined as “the 

degree to which the object is associated with a specific color”, and was rated on a 

5-point scale (1 = low color diagnostic; 5 = a high color diagnostic). These 

instructions are similar to those typically used in object picture rating studies 

(Rossion & Pourtois, 2004; Snodgrass & Vanderwart, 1980; Ventura, 2003). 

Following the analysis of the rating scores, we selected objects that showed at 

least 80% name agreement between participants. From those we selected, a total 

of 108 objects were used in the experiment. Of those, 84 matched with the 

Snodgrass and Vanderwart (1980) set. The objects were divided according to their 

color diagnosticity into a group of high-color diagnostic objects (31 from the natural 

categories and 23 from the artifact categories; Appendix C) and into a group of low 

color diagnostic objects (20 from the natural categories and 34 from the artifact 

categories; Appendix C). Color diagnosticity was the only difference between the 

two groups of objects that reached statistical significance. The mean comparisons 
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between color diagnostic and non-color diagnostic items on the other rating 

variables were not significant (p > .10; Table 5). 

We used Adobe Photoshop CS2 to create two versions of each object: a 

colored version and a black and white version. To ensure that the color and non-

color diagnostic objects were matched for color frequency and luminance, we 

created the color version of non-color diagnostic pictures by using the color 

replacement tool to select and paste the surface color of color diagnostic objects. 

The luminance of the color-replaced (non-color diagnostic) picture was adjusted 

using the brightness tool. To create the black and white versions, the colored 

pictures of both object types were converted into grayscale, which preserves 

luminance while discarding color. We did not find any difference in the luminance 

values between the two item versions (overall p > 0.9). 

 

Table 5. Mean (SD) ratings for color diagnosticicty, prototypicality, familiarity, 
visual ambiguity and visual complexity for color diagnostic and non-color diagnostic 
objects. 

 Color Diagnostic 

Objects 

Non-Color 

Diagnostic Objects 

Mann-Whitney U 

Test 

Color Diagnosticity 4.4 (0.2) 2.2 (0.7) Z = 8.2, p < 0.001 

Prototypicality 4.3 (0.5) 4.3 (0.3) Z = 0.8, p = 0.4 

Familiarity 4.3 (0.5) 4.3 (0.5) Z = -0.1, p = 0.9 

Visual ambiguity 2.4 (0.8) 2.2 (0.7) Z = 0.8, p = 0.4 

Visual complexity 2.6 (0.7) 2.7 (0.6) Z = -0.3, p = 0.8 

 

Experimental Procedures 

In the visual object recognition task, objects were presented in a randomized order 

to each subject. Each object was presented twice, in color and in black-and-white, 

comprising a total of 216 trials. Half of the subjects saw the colored version of a 

particular object first, while the other half saw the black and white version of the 

same object first. Subjects were asked to attentively look at each object and then 

type the object name. If they did not know the name, they were asked to write one 
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of the following: do not know name; do not know object; or tip-of-the-tongue. 

Presentation 0.7 software (http://nbs.neuro-bs.com/presentation) was used to 

display the stimuli on a computer screen (size: 19 in; spatial resolution: 1024 x 768; 

color resolution: 24 bits) and to register the participants’ responses. Each trial 

started with a fixation cross (+) presented at the center of the screen for 1250 ms. 

The fixation cross was followed by presentation of the object picture (500 x 362 

pixels) for 100 ms. Next, a white screen was presented for 1250 – 1750 ms, 

followed by the instruction to type the object name. During this period, subjects 

were allowed to blink their eyes. When subjects were satisfied with their answer, 

they pressed a key to continue the experiment and to initiate the next trial. The 

subjects were instructed to fixate on the center of the screen and to avoid eye 

blinks and body movements during the recording session. Before the task, subjects 

were allowed ten practice trials in order to be adequately familiarized with the 

experimental tasks. 

 

EEG Recordings 

Continuous electroencephalogram (EEG) was recorded from 64 Ag/AgCl active 

electrodes held in place on the scalp by an elastic cap. The electrode montage 

included 10 midline sites and 27 sites over each hemisphere. Two additional 

electrodes (CMS/DRL nearby Pz) were used as an online reference (for a complete 

description, see biosemi.com; Schutter et al., 2006). Three other electrodes were 

attached over the right and left mastoids and below the right eye (to monitor eye 

movements and blinks). Bioelectrical signals were amplified using an ActiveTwo 

Biosemi amplifier (DC-67 Hz bandpass, 3dB/octave) and were continuously sampled 

(24-bit sampling) at a rate of 512 Hz throughout the experiment. 

 

ERP Data Analysis 

The EEG data was analyzed using the open source software FieldTrip (Oostenveld, 

Fries, & Jensen, 2009; documentation and algorithms available at 
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ru.nl/fcdonders/fieldtrip). ERP data were computed using a 1200 ms epoch (from 

200 ms before to 1000 ms after the stimulus onset) that was time-locked to the 

onset of the stimuli. Before averaging, epochs for each subject that contained 

muscle and/or eye movement artifacts were excluded from the analysis, as were 

any trials containing incorrect responses. In total, 12.3% of the trials were excluded 

(2.8% incorrect; 9.5 % eye/muscle movement artifacts). The remaining trials were 

filtered offline, using a low-pass filter of 30 Hz and a high-pass filter of 0.01 Hz, and 

transformed to an average reference (eye electrodes were excluded). The 200 ms 

prior to the stimulus onset served as the baseline for the amplitude measurement 

for each channel. Separate ERP averages were calculated for each experimental 

condition. 

To examine the color effects, we focused our analysis on the comparison of 

the ERPs elicited by black and white object presentations with those elicited by 

color object presentations for each stimuli type in three time windows after the 

onset of the stimuli: from 150 to 180 ms (N1), from 275 to 375 ms (N350), and from 

375 to 500 ms (N400). Four-way (3 x 2 x 2 x 2) repeated-measure ANOVAs, using 

Greenhouse-Geisser adjusted degree-of-freedom, were conducted on the mean 

amplitude of these components from representative electrodes in frontal, central-

parietal and occipital regions where modulations on ERPs by color were most often 

seen. The four factors were laterality (left, right hemisphere), lobe (frontal: F3, F4; 

central-parietal: CP3, CP4; occipital: O1, O2), stimulus type (color diagnostic, non-

color diagnostic objects) and color (color, black and white). 

 

5.3 Results 

Participants were highly attentive while performing the task. When the objects 

were presented in color, subjects gave the correct response 97.6% of the time 

(color diagnostic objects = 96.5 ± 0.05, non-color diagnostic objects = 98.8 ± 0.02). 

When the objects were presented in black-and-white, the percentage of correct 

responses was 96.8% (color diagnostic objects = 94.9 ± 0.05, non-color diagnostic 
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objects = 98.8 ± 0.02). Average waveforms for color diagnostic and non-color 

diagnostic objects for representative electrodes can be seen in Figure 5.1 and 

Figure 5.2, respectively. 

 

N1 

ANOVA revealed a two-way interaction between lobe and diagnosticity (F(1.6, 33.9) 

= 4.5, p = 0.03). Planned comparisons revealed that color diagnostic objects were 

associated with more positive amplitudes in the frontal sites compared to the non-

color diagnostic objects (p = 0.02). A two-way interaction between lobe and color 

was also found (F(1.7, 35.6) = 8.4, p = 0.001). The typical N1 response was stronger 

for objects presented in black and white compared with objects presented in color; 

black and white objects are associated with more positive amplitudes in the frontal 

sites (p = 0.04) and more negative amplitudes in the occipital sites (p = 0.01) 

compared to objects presented in color. A significant two-way interaction between 

laterality and color (F(1, 21) = 4.5, p = 0.04) was also found. Black and white objects 

were associated with more negative amplitudes than color objects in the left 

hemisphere (p = 0.03), while there were no differences between the two 

presentation modes in the right hemisphere. Finally, a significant three-way 

interaction between lobe, laterality and color was found (F(1.6, 33.6) = 3.6, p = 

0.04). Black and white objects were associated with more negative amplitudes 

compared to color objects in the left occipital sites (p = 0.01); in the right 

hemisphere, black and white objects were associated with more positive 

amplitudes compared to color objects in the frontal sites (p = 0.01, Figure 5.3). 

There were no other significant interactions. 

 

N350 

ANOVA showed a significant three-way interaction between lobe, diagnosticity and 

color (F(1.9, 39) = 3.8, p = 0.03). Surprisingly, planned comparisons revealed that 

the typical N350 response for color diagnostic objects was smaller for objects 
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presented in black and white than for objects presented in color; color objects 

were associated with a greater positivity in the frontal sites compared with black 

and white objects (p = 0.02). Non-color diagnostic objects did not show any 

amplitude differences in the N350 time window between color and black-and-

white presentations (Figure 5.3). There were no additional significant interactions. 

 

N400 

ANOVA revealed a significant three-way interaction between lobe, diagnosticity 

and color (F(2, 41.6) = 4.0, p = 0.03). Planned comparisons showed that there were 

no differences in the N400 time window between color and black-and-white 

presentations for the non-color diagnostic objects. However, color diagnostic 

objects presented in black and white were associated with stronger negative 

amplitudes in the central-parietal sites (p = 0.03) and with stronger positive 

amplitudes in the frontal sites (p = 0.02) compared with color presentations.  

Therefore, when objects are strongly associated with a color, the typical N400 

response is more robust for black and white objects when compared to color 

objects (Figure 5.3). No additional interactions were significant. 
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Figure 5.1. Grand average ERP waveforms at nine representative electrodes for 
color diagnostic object with typical color (solid line) and black-and-white (dotted 
line). 
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Figure 5.2. Grand average ERP waveforms at nine representative electrodes for 
non-color diagnostic object with typical color (solid line) and black-and-white 
(dotted line). 
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Figure 5.3. Topographic distribution of the black and white versus color objects in 
the time windows of interest for the diagnostic and non-color diagnostic objects. 
 

5.4 Discussion 

In this study, we examined the visual processing level at which color information 

participates in the recognition of color diagnostic and non-color diagnostic objects. 

ERPs were recorded during an object recognition task, in which subjects were 

asked to identify and name color diagnostic and non-color diagnostic objects 

presented in both color and black-and-white. The differences between color and 
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black-and-white stimuli presentations were investigated with respect to one early 

(N1) and two late (N350 and N400) ERP components. 

For both color diagnostic and non-color diagnostic objects, we observed color 

effects in the early N1 component, which indexes early visual processing (Jameson 

& D'Andrade, 1997; Kiefer, 2001; Rossion et al., 2000; Tanaka, Luu, Weisbrod, & 

Kiefer, 1999; Wang & Kameda, 2005; Wang & Suemitsu, 2007). Our results showed 

that black and white object presentations elicited a more negative response in the 

N1 time window compared to the color presentations, suggesting that when 

objects are presented in color, there is a lower demand on visual perceptual 

processing. Color effects in early ERPs components were previously reported for 

color diagnostic objects (Lu et al., 2010) and natural scenes (Goffaux et al., 2005). 

This study extends the previous findings by showing that the color effects in the N1 

component are independent of the diagnosticity status, suggesting that color 

modulates the early visual perceptual stages for both color diagnostic and non-

color diagnostic objects. 

In addition, we found color effects for color diagnostic objects in the N350 

and N400 components. The effect observed in N350 showed that color 

presentations are associated with stronger negative amplitudes over frontal 

regions compared to black and white presentations. The N350 component marks 

the first ERP divergence related to object categorization, showing a smaller 

amplitude for correctly categorized objects (McPherson & Holcomb, 1999; 

Schendan & Kutas, 2002). N350 also shows effects related to typicality, with a 

smaller amplitude for canonical views compared to uncommon, non-canonical 

views (Schendan & Kutas, 2007). Based on this, we would have expected that black 

and white object presentations would generate a larger N350 component than 

color presentations, suggesting that objects presented in color are more easily 

recognized than those presented in black-and-white. Actually, Lu and collaborators 

(Lu et al., 2010) found that black-and-white and atypically colored objects were 

associated with more negative amplitudes in this time window compared with 
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typical color objects. In a previous color knowledge verification study, we found a 

similar result: atypically colored objects generated a more negative N350 

component than typically colored objects, showing that the typical color object 

presentations are better recognized and categorized than the atypical color ones 

(Bramão et al., Submitted). In the present study, we did not replicate these 

findings, and this apparent discrepancy is most likely task-related. It is important to 

note that the black and white versions of our objects did not create any sort of task 

incongruence or interference. Instead, they served as a neutral control condition 

that might not have been effective enough in eliciting a greater negativity in the 

N350 component. Another possibility is that black and white objects are more 

easily recognized or identified than color objects. However, we used the same 

object set in a previous behavioral study and found that color object presentations 

are named and categorized faster than the black and white versions of the same 

object (Bramão, Inácio, Faísca, Reis, & Petersson, 2011). Currently, we are unable 

to explain the fact that color objects elicited larger N350 responses than black and 

white objects. Nevertheless, the important conclusion here is that the N350 

component indexes generic visual knowledge and categorization and differentiates 

between color and black-and-white presentations for color diagnostic objects, 

suggesting that color information plays a role in the selection of structural 

descriptions that match the perceptual input. 

Finally, we found an additional color effect for color diagnostic objects in the 

N400 component. The N400 component is an index of semantic processing; it is 

more negative for unrelated stimuli than for related stimuli (Hamm, Johnson, & 

Kirk, 2002; McPherson & Holcomb, 1999). Black and white stimuli elicited a more 

negative N400 response over the central-parietal region compared to the color 

stimuli, suggesting that, during recognition, surface color information is processed 

at the semantic level for the color diagnostic objects. Therefore, the presence of 

surface color might activate a more extensive object semantic network, facilitating 

object recognition. It is important to note that because we used the same set of 
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shapes and objects counterbalanced across the color and black-and-white 

conditions, the observed ERP color effects can only be attributed to the nature of 

the color-shape associations and not to any other sensory or physical stimulus 

characteristic. 

In summary, our ERP results confirm that, during object recognition, surface 

color is processed at different levels of the visual processing hierarchy. It appears 

that surface color is processed both at early visual perceptual and at later visual 

semantic stages during color diagnostic object identification, whereas the role of 

surface color is limited to the early visual perceptual stages for non-color diagnostic 

objects. 
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Cortical brain regions associated with color 

processing: An FMRI study 
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Abstract 

To clarify whether the neural pathways concerning color processing are the same 

for natural objects, for artifacts objects and for non-objects we examined brain 

responses measured with functional magnetic resonance imaging (FMRI) during a 

covert naming task including the factors color (color versus black and white) and 

stimulus type (natural versus artifacts versus non-objects). Our results indicate that 

the superior parietal lobule and precuneus (BA 7) bilaterally, the right hippocampus 

and the right fusifom gyrus (V4) make part of a network responsible for color 

processing both for natural objects and artifacts, but not for non-objects. When 

color objects (both natural and artifacts) were contrasted with color non-objects 

we observed activations in the right parahippocampal gyrus (BA 35/36), the 

superior parietal lobule (BA 7) bilaterally, the left inferior middle temporal region 

(BA 20/21) and the inferior and superior frontal regions (BA 10/11/47). These 

activations were not found when black and white objects were contrasted with 

black and white non-objects, suggesting that colored objects recruit brain regions 

that are related to visual semantic information/retrieval and brain regions related 

to visuo-spatial processing. Overall, the results suggest that color information is an 

attribute that participates in the recognition of natural objects and artifact 

activating a specific neural network related to visual semantic information. 
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6.1 Introduction 

Traditionally, theories about object recognition have emphasized the role of shape 

information in higher-level vision (Biederman, 1987; Biederman & Ju, 1988). More 

recently, data from behavioral studies, neuroimaging, and neuropsychological 

studies have suggested that surface features, such as color, also contribute to 

object recognition (for a review, see Tanaka, Weiskopf, & Williams, 2001). 

However, the conditions under which surface color improves object recognition are 

not well understood. One general idea is that surface color improves the 

recognition of objects from natural categories, but not the recognition of artifact 

categories (Humphreys, Goodale, Jakobson, & Servos, 1994; Mapelli & Behrmann, 

1997; Price & Humphreys, 1989). Humphreys and colleagues showed that objects 

from structurally similar categories, such as natural objects, take longer to identify 

than items from structurally dissimilar categories, such as artifacts, because the 

representations of structurally similar objects are more likely to be co-activated, 

therefore resulting in greater levels of competition within the object recognition 

system. Apparently, surface details such as color can help in resolving this 

competition (Humphreys, Price, & Riddoch, 1999; Humphreys, Riddoch, & Quinlan, 

1988; Riddoch & Humphreys, 1987b). Another potential reason that color 

information might help in recognizing natural objects is color diagnosticity. Color 

diagnosticity means the degree to which a particular object is associated with a 

specific color. Several experiments have shown that visual recognition of color 

diagnostic objects benefits from surface color information, whereas recognition of 

non-color diagnostic objects does not (Nagai & Yokosawa, 2003; Oliva & Schyns, 

2000; Tanaka & Presnell, 1999). Typically, natural objects are more strongly 

associated with a specific color than artifacts. For example, a strawberry – a color 

diagnostic object – is clearly associated with the color red, whereas a comb – a 

non-color diagnostic object – is not strongly associated with any specific color when 

using color as a cue for object identification (Price & Humphreys, 1989). Nagai and 

Yokosawa (2003) studied the interaction between color diagnosticity and semantic 
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category in order to determine whether surface color helps in the recognition of 

color diagnostic objects independently from their semantic category. In a 

classification experiment, surface color improved the recognition of color 

diagnostic objects independently from their category, supporting the hypothesis 

that color diagnosticity is an important cue for object recognition. 

In this study, we used functional magnetic resonance imaging (FMRI) to 

investigate whether color information plays a different role in the recognition of 

natural objects compared to artifacts. We examined FMRI responses during a 

naming task that involved natural objects and artifacts presented in both color and 

black-and-white. The color diagnosticity was kept constant between the two 

categories (Rossion & Pourtois, 2004). If color information plays a different role in 

the recognition of artifacts compared to natural objects, then different brain 

regions should be engaged during the naming of colored objects from different 

categories. 

The neural correlates of color processing have been thoroughly investigated. 

Previous functional neuroimaging studies have associated area V4, located within 

the fusiform gyrus, as a centre of color perception in the human brain (Bartels & 

Zeki, 2000; Conway, Moeller, & Tsao, 2007; Conway & Tsao, 2006; Lueck et al., 

1989; McKeefry & Zeki, 1997; Murphey, Yoshor, & Beauchamp, 2008; Zeki et al., 

1991). At the neuroanatomical level, area V4 is involved in color constancy 

operations (Barbur & Spang, 2008; Bartels & Zeki, 2000), color ordering tasks 

(Beauchamp, Haxby, Jennings, & DeYoe, 1999), object color recognition (Chao & 

Martin, 1999; Martin, Haxby, Lalonde, Wiggs, & Ungerleider, 1995; Zeki & Marini, 

1998), conscious color perception (Morita et al., 2004), color imagery (Howard et 

al., 1998) and color knowledge (Simmons et al., 2007). Whereas V4 has been 

associated with color perception, the left inferior temporal gyrus has been 

described as the site of stored information about color knowledge (Chao & Martin, 

1999; Kellenbach, Brett, & Patterson, 2001). For example, Chao and Martin (Chao & 
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Martin, 1999) argue that the cortical areas that subserve color knowledge are 

distinct from the cortical areas that subserve color perception. 

With regard to colored object recognition, Zeki and Marini (1998) found that 

both naturally and unnaturally colored objects activated a pathway extending from 

the posterior occipital V1 to the posterior fusiform V4. In addition to the posterior 

parts of the fusiform gyrus, naturally colored objects activated the medial temporal 

lobe and the ventrolateral prefrontal cortex. These results suggest three broad 

cortical stages for color processing. The first stage is based in V1, and possibly V2, 

and is mainly concerned with registering the presence and intensity of different 

wavelengths and wavelength differences. The second stage, supported by V4, 

involves automatic color constancy operations and is independent from memory 

operations, perceptual judgment or learning. The third and final stage, based in the 

inferior temporal and frontal cortices, processes information for naturally colored 

objects and involves memory, judgment and learning (Zeki & Marini, 1998).  

One question of interest in this context is the role of surface color when color 

is a property of an object compared to when color is part of an abstract 

composition or a non-object. According to the three-stage model for color 

processing outlined by Zeki and Marini (1998), colored natural objects and artifacts 

should engage brain regions involved in the third stage of color processing, 

whereas colored non-objects should only engage brain regions involved in the first 

two stages. To address this issue, in addition to natural objects and artifacts, we 

included non-objects presented in color and in black and white. 

In summary, in the present FMRI study, we investigated whether the neural 

correlates of color information are the same for natural objects and artifacts. We 

also assessed the brain regions that are specific for color when color is a property 

of a recognizable object compared to when color is part of an unrecognizable 

composition. To address these issues, we examined FMRI responses in a silent 

naming task with two factors: color (color versus black and white) and stimulus 

type (natural objects versus artifacts versus non-objects). We expected to find 
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fusiform gyrus (V4) activation in the color versus black and white stimuli (for both 

objects and non-objects), confirming that the fusiform gyrus is the brain center for 

color perception. Additionally, we hypothesized that colored natural objects and 

artifacts would engage brain regions involved with color knowledge information 

and retrieval (inferior temporal and frontal activations) to a greater degree 

compared with black and white natural objects and artifacts. 

 

6.2 Methods 

Participants 

Twenty right-handed Portuguese native speakers (mean age [± SD] = 22 ± 4 years, 

range 19-32 years; mean years of education [± SD] = 14 ± 1 years, range 13-18 

years; 5 males and 15 females) with normal or corrected-to-normal vision 

participated in the study. All subjects completed health questionnaires prior to 

scanning, and none reported a history of head injury or other neurological or 

psychiatric problems. All subjects read and signed an informed consent form 

describing the procedures according to the Declaration of Helsinki. The study was 

approved by the local ethics committee. 

 

Stimulus Material 

We selected 56 drawings from the Snodgrass and Vanderwart set (1980). Twenty-

eight objects were from natural categories (animals and fruits) and twenty-eight 

were artifacts (tools and vehicles; see Appendix D). We also constructed 28 

matching non-objects (constructed with the Paint-software and approximately 

matched for visual complexity). The non-objects were scrambled lines and shapes 

without any obvious conventional meaning. All images were presented both in 

color and black-and-white. The color version was selected from the set of Rossion 

and Pourtois (2004) and the black and white version was selected from the gray-

scale set of Rossion and Pourtois (2004). We opted for the gray-scale version and 

not the original black and white version from the Snodgrass and Vanderwart (1980) 
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set in order to keep the luminance and brightness constant over the color and 

black-and-white conditions. All 56 images were classified according to familiarity 

based on norms for the Portuguese population (Ventura, 2003), color diagnosticity 

based on Rossion and Pourtois (2004), and visual complexity based on the original 

work of Snodgrass and Vanderwart (1980). There was no significant difference 

between stimulus types on these variables (p > 0.1). In addition, the natural and 

artifact stimuli were matched in terms of syllabic length (p > 0.2). Stimuli 

luminance, measured using Adobe Photoshop 7.0, of the natural objects, artifacts 

and non-objects (color and black-and-white versions) was similar (overall, p > 0.5). 

 

Experimental Procedures 

The stimuli were presented in a blocked design. The twenty-eight stimuli from each 

condition were distributed over four blocks (6 conditions x 4 blocks; seven objects 

in each block) resulting in twenty-four blocks. Four of each condition were 

allocated to two different sets (each set was composed of 84 stimuli grouped into 

two blocks for each condition – 2 blocks x 6 conditions x 7 stimuli). Two additional 

sets were constructed by changing the presentation order of the blocks in the two 

original sets. In each experimental set, we also included four blocks of seven 

baseline events, consisting of a visual fixation cross. For each subject, four sets 

were presented in four consecutive FMRI sessions. Altogether, 112 objects were 

presented to each subject per FMRI session, which included the seven 

experimental conditions: CN – colored natural objects, BWN – black and white 

natural objects, CA – colored artifacts, BWA – black and white artifacts, CNO – 

colored non-objects, BWNO – black and white non-objects, and finally VF – visual 

fixation, which served as a baseline condition. Each subject saw each object twice 

per condition during the experiment, but never in the same FMRI session. Each 

block lasted 19.6 seconds, and each stimulus was presented for 2.8 seconds (Figure 

6.1).  
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In four separate scanning sessions, with session order counterbalanced across 

subjects, subjects were asked to attentively view the picture and silently name 

each object, in a covert naming task. Each of the four FMRI sessions lasted 6 

minutes. Subjects were also asked to silently repeat “tan-tan” for the non-objects 

and for the visual fixation cross in order to encourage attention to the stimuli 

without attaching a particular verbal label. Subjects viewed the stimuli via a mirror 

mounted on a head-coil (the visual angle for the stimulus presentation was 

approximately 8 degrees). Prior to the FMRI experiment, subjects performed an 

object naming task in order to familiarize themselves with the objects and for the 

acquisition of behavioral naming data. The verbal responses and naming times 

were registered for subsequent behavioral analysis. Voice detection equipment 

was used to register response times between the onset of the stimulus display and 

that of the response. The same presentation paradigm was used for the object 

naming task as for the FMRI experiment. The Presentation 0.7 Software 

(http://nbs.neuro-bs.com/presentation) was used to display the stimuli on a 

computer screen (HP Laptop with 15” screen) and to register the response times. 

 

 

Figure 6.1. Schematic representation of the experimental design for one FMRI 
session. CN – color natural objects, BWN – black and white natural objects, CA – 
color artifacts objects, BWA – black and white artifacts objects, CNO – colored non-
objects, BWNO – black and white non-objects, VF – visual fixation. Each block 
lasted 19.6 seconds and each stimulus was presented for 2.8 seconds. 
 



Cortical brain regions associated with color processing 

123 

MRI Data Acquisition 

We acquired whole head T2*-weighted EPI-BOLD MRI data with a Philips 1.5 T 

Intera scanner using a sequential slice acquisition sequence (TR = 2.46 s, TE = 40 

ms, 90º flip-angle, 29 axial slices, slice-matrix size = 64 x 64, slice thickness = 3 mm 

with a slice gap = 0.4, field of view = 220 mm, isotropic voxel size = 3.4 x 3.4 x 3.4 

mm
3
). Following the experimental session, high-resolution structural images were 

acquired using a T1-weighted 3D TFE (TE = 3.93 ms, 10º flip-angle, slice-matrix size 

= 256 x 256, field of view = 256 mm, 200 axial slices, slice thickness = 1.0 mm, 

isotropic voxel-size = 1 x 1 x 1 mm
3
). 

 

MRI Data Analysis 

Image pre-processing and statistical analysis was performed using SPM5 

(http://www.fil.ion.ucl.ac.uk/spm) implemented in MatLab (Mathworks, Sherborn, 

MA). The functional EPI-BOLD images were realigned and slice-time corrected, and 

the subject-mean functional MR images were co-registered with the corresponding 

structural MR images. These were subsequently anatomically normalized. The 

normalization transformations were generated from the structural MR images and 

applied to the functional MR images. The functional EPI-BOLD images were 

transformed into an approximate Talairach space (Talairach & Tournoux, 1998) as 

defined by the SPM5 template and spatially filtered with an isotropic 3D spatial 

Gaussian kernel (FWHM = 10 mm). The FMRI data were statistically analyzed using 

the general linear model and statistical parametric mapping (Friston et al., 1995). 

At the first level, single-subject fixed effect analyses were conducted. The linear 

model included one box-car regressor for each of the CN, BWN, CA, BWA, CNO, 

BWNO and VF conditions. We temporally convolved these explanatory variables 

with the canonical hemodynamic response function provided by SPM5. In addition, 

we also included realignment parameters to account for movement-related 

variability. The data were high-pass filtered (128 s) to account for various low-

frequency effects. For the second-level random effect analysis, we generated 
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single-subject contrast images for the CN, BWN, CA, BWA, CNO and BWNO 

conditions relative to VF. 

We analyzed the contrast images in a two-way repeated measures ANOVA 

with the following factors: color type (color versus black and white) and stimulus 

type (natural objects versus artifacts versus non-objects). We analyzed the natural 

objects and artifacts together because there was no significant difference between 

these conditions, whether in color or black and white. Also, there was no significant 

difference in CN versus BWN or CA versus BWA (overall, p > 0.3). Thus, we 

generated single-subject contrasts for the colored objects – CO (= CN + CA) and the 

black and white objects – BWO (= BWN + BWA). We analyzed these collapsed 

contrasts in a two-way repeated measures ANOVA with the following factors: color 

type (color versus black and white) and stimulus type (objects versus non-objects). 

Statistical inference was based on the cluster-size statistic from the relevant 

SPM[T] volumes. In a whole brain search, the results from the random effects 

analyses were initially threshold at with p < 0.005 (uncorrected) and only significant 

clusters at p < 0.05 (family-wise error (FWE) corrected for multiple non-

independent comparisons) are reported (Worsley et al., 1996). All local maxima 

within significant clusters were subsequently reported with P-values corrected for 

multiple non-independent comparisons based on the false discovery rate (FDR, 

Genovese, Lazar, & Nichols, 2002). SPM[T] volumes were generated to investigate 

the effects of color and stimulus type. Finally, we applied a small volume correction 

(SVC, 5 mm radius) to regions typically involved in color perception: the fusiform 

gyrus (V4; [± 28, -62, -20]) and the hippocampus ([± 36, -10, -20]) bilaterally (Chao 

& Martin, 1999; Zeki & Marini, 1998) and in a region in the left temporal gyrus 

previously described as the site of stored information about colored objects ([-56, -

40, -14]; Chao & Martin, 1999; Kellenbach, Brett, & Patterson, 2001). All reported 

data are from the second-level random effect analyses. For portability of the 

results, we used the Talairach nomenclature (Talairach & Tournoux, 1998) with the 

original SPM coordinates in the tables. 
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6.3 Results 

Behavioral Results 

Subjects were able to correctly name all stimuli. Overall, the number of naming 

errors was small (< 2%), so we analyzed the naming times for the correct responses 

with latencies within 2.5 standard deviations from the mean for each subject and 

condition. Excessively long or short naming latencies were excluded from further 

analysis because these are likely due to lapses of attention/concentration and 

anticipatory responses, respectively. No-response trials and misregistered 

responses (software failure and responses anticipated by subject vocalizations 

other than the naming responses) were also excluded. In total, approximately 11% 

of the trials were excluded (3.8% due to lapses of attention or concentration, 1.6% 

due to anticipatory responses, 1.5% due to incorrect responses, 0.1% due to non-

answers, 3.8% due to misregistered responses). The naming times were analyzed 

with a repeated-measures ANOVA considering the following within factors: 

presentation version (color versus black and white) and semantic category (natural 

objects versus artifacts). The results showed a significant presentation version 

effect [F(1,19) = 30.6, p < 0.001] – subjects were faster at naming color compared 

to black and white objects. The semantic category effect [F(1,19) = 2.8, p = 0.13] 

and the interaction between presentation version and category [F(1,19) = 0.1, p = 

0.76] were not significant (Figure 6.2). 

 

FMRI Results 

Color and Black-and-white Effects 

The contrast between color versus black and white stimuli (for both objects and 

non-objects) did not result in any significant activation, nor did the contrast 

between color non-objects versus black and white non-objects. However, the 

contrast between colored objects versus black and white objects (Table 6.1) 

showed a significant cluster (p = 0.006, FWE corrected) that encompassed the 

superior parietal region and precuneus (BA 7) bilaterally. To further investigate the 
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regional effects related to color processing, we used a regions-of-interest (ROI) 

approach in combination with small volume correction (SVC) for the family-wise 

error rate. We selected regions of interest based on previous investigations that 

studied color effect in object recognition (Chao & Martin, 1999; Kellenbach, Brett, 

& Patterson, 2001; Zeki & Marini, 1998). These regions included the right/left 

fusiform gyrus (V4), the right/left hippocampus and the left inferior temporal gyrus. 

We investigated these regions in the following contrasts: 1) color versus black and 

white stimuli, 2) color versus black and white objects, and 3) color versus black and 

white non-objects. We found significant activations (Table 6.2 and Figure 6.3) for 

color versus black and white (p = 0.032, SVC corrected) in the right hippocampus 

and for color versus black and white objects in the right fusiform gyrus (V4; p = 

0.011, SVC corrected), right hippocampus (p = 0.033, SVC corrected) and left 

temporal inferior gyrus (p = 0.037, SVC corrected). The contrast between color 

versus black and white non-objects yielded no additional effects. 

 

Color and Black-and-white Object Recognition 

The contrast between object versus non-object stimuli resulted in two clusters of 

significant brain activation (p < 0.001, FWE corrected). These included the posterior 

occipital regions (BA 18/19), the fusiform gyrus (BA 19/37), and the inferior 

temporal lobe (BA 20) bilaterally (Table 6.3 and Figure 6.4). The contrast between 

colored objects versus color non-objects (Table 6.3 and Figure 6.4) resulted in 

additional activations in the right parahippocampal gyrus (BA 35/36), the inferior-

superior parietal lobule (BA 7/39/40) bilaterally, and in the left inferior-middle 

temporal region (BA 20/21). In addition, frontal regions (p = 0.006, FWE corrected) 

were also significantly activated in colored objects versus colored non-objects, 

including the left anterior-inferior frontal region (BA 10/47) and the left superior 

frontal region (BA 10). The contrast between black and white objects versus black 

and white non-objects activated similar brain regions as observed in objects versus 

non-objects, however the activation pattern was more restricted and primarily 
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observed in posterior brain regions (right: p = 0.021, FWE corrected; left: p = 0.009, 

FWE corrected; Table 6.3 and Figure 6.4). 

 

 

Figure 6.2. Two-way interaction between presentation version and semantic 
category on naming times. Bars represents standard error. 
 

 

Table 6.1. Color objects and black-and-white objects. 

Region 
Cluster Level  Coordinates 

PFWE  x y z 

Color Objects vs. Black and white Objects      

Right superior parietal (BA 7) 0.006  16 -60 64 

Left superior parietal (BA 7)   -26 -64 46 

Right precuneus (BA 7)   10 -48 66 

Left precuneus (BA 7)   -8 -58 62 

SPM [T], Clusters significant at p < 0.05 corrected for multiple non-independent 
comparisons are reported (PFWE). Local maxima within the clusters are reported. 
Coordinated are the original SPM x, y, z in millimeters of the MNI space. 
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Table 6.2. Small volume corrections in SPM [T]. 

Region 
 Voxel Lexel  Coordinates 

 Z PFWE  x y z 

Color vs. Black and white        

Right Hippocampus  2.68 0.032  36 -10 -24 

        

Color Objects vs. Black and white Objects      

Right Fusiform (V4)  3.08 0.011  30 -66 -18 

Right Hippocampus  2.67 0.033  36 -14 -22 

Left Inferior Temporal Gyrus  2.62 0.037  -60 -42 -16 

SPM [T], threshold at p < 0.005, non-corrected. PFWE SVC corrected. Coordinates are the 
original SPM x, y, z in millimeters of the MNI space. 
 

 

 

 

Figure 6.3. BOLD signal change associated with color and black-and-white objects 
(CO, BWO) and with color and black-and-white non-objects (CNO, BWNO). 
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Table 6.3. Objects versus non-objects. 

Region 

Cluster 

Level 

 
Coordinates 

PFWE  x y z 

Objects vs. Non-Objects      

Right middle occipital (BA 18/19) < 0.001  34 -94 -6 

Right fusiform (BA 19/37)   36 -66 -18 

Right inferior temporal (BA 20)   48 -54 -22 

Left middle occipital (BA 18/19) < 0.001  -46 -90 -8 

Left fusiform (BA 19/37)   -36 -66 -14 

Left inferior temporal (BA 20)   -50 -36 -20 

Objects Color vs. Non-Objects Color      

Right middle occipital (BA 18/19) < 0.001  46 -78 -12 

Right fusiform (BA 19/37)   38 -62 -20 

Right parahippocampal (BA 35/36)   26 -26 -26 

Right inferior temporal (BA 20)   48 -56 -18 

Left middle occipital (BA 18/19) < 0.001  -38 -86 -4 

Left fusiform (BA 19/37)   -42 -60 -16 

Left inferior temporal (BA 20)   -48 -60 -16 

Left inferior-middle temporal (BA 20/21)   -44 -44 -18 

Right inferior-superior parietal (BA 7/39/40)   26 -88 38 

Right superior parietal (BA 7)   16 -90 42 

Left inferior-superior parietal (BA 7/39/40)   -22 -80 42 

Left superior parietal (BA 7)   -28 -62 50 

Left inferior frontal (BA 11/47) 0.006  -18 42 -6 

Left superior frontal (BA 10)   -20 48 8 

Objects Black and white vs. Non-Objects Black and white      

Left middle occipital (BA 18/19) 0.009  -32 -100 -2 

Left fusiform (BA 19/20/20)   -36 -70 -14 

Right middle occipital (BA 18/19) 0.021  36 -96 -8 

Right fusiform (BA 19/20/37)   36 -68 -18 

SPM [T], Clusters significant at p < 0.05 corrected for multiple non-independent 
comparisons (PFWE) are reported. Local maxima within the clusters are reported. 
Coordinated are the original SPM x, y, z in millimeters of the MNI space. 
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Figure 6.4. A - Brain regions associated with objects compared to non-objects, B - 
Brain regions associated with color objects compared to color non-objects, C - 
Brain regions associated with black and white objects compared to black and white 
non-objects. 
 

6.4 Discussion 

In this FMRI study, we aimed to clarify whether the neural substrates related to 

color information are the same when color is a property of a recognizable object, 

namely natural objects and artifacts, compared to when color is a property of an 

unrecognizable object, such as abstract compositions. 

 

Color Effects on Objects and Non-Objects 

According to the three cortical stages model for color processing proposed by Zeki 

and Marini (1998), we expected that color information presented in recognizable 

objects would activate the V4 area as well as brain areas involved in memory, 

classification, and learning operations. Our results show that color compared to 

black and white objects activated the right V4 area. In addition, we also observed 

brain activations in regions that are typically associated with color perception, the 

right hippocampus and superior parietal/precuneus region, corroborating previous 

findings (Bartels & Zeki, 2000; Chao & Martin, 1999; Howard et al., 1998; McKeefry 

& Zeki, 1997; Zeki & Marini, 1998; Zeki et al., 1991). 
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To better understand the role of color information in the recognition of 

familiar objects, we explored brain activation during the processing of colored 

objects and colored non-objects. In general, object naming activated brain regions 

that extended from the occipital to the inferior temporal regions, including 

fusiform activation, consistent with earlier neuroimaging studies on object 

recognition (Farah & Aguirre, 1999; Grill-Spector, 2003; Grill-Spector & Sayres, 

2008; Moore & Price, 1999b; Price, Devlin, Moore, Morton, & Laird, 2005; Stiers, 

Peeters, Lagae, Hecke, & Sunaert, 2006; Vihla, Laine, & Salmelina, 2006). 

Additionally, colored objects compared to colored non-objects activated an 

extensive network of brain regions including the left inferior temporal gyrus, right 

parahippocampal gyrus, left inferior and superior parietal lobule, and left superior 

and anterior-inferior frontal regions. These activations were exclusive for colored 

objects and were not found when black and white objects were contrasted against 

black and white non-objects, suggesting that color plays an important role in 

accessing the semantic level during object naming processes, as initially suggested 

by Zeki and Marini (1998). We did not find any particular brain region that 

responded only to black and white object naming, suggesting that the recognition 

of black and white objects does not add a cognitive operation to the recognition of 

colored objects. 

The temporal and frontal activations found during colored object naming 

suggest that color engages access to the semantic network that contains 

information/knowledge about the objects. Parahippocampal gyrus activation has 

been reported in post-recognition processes, such as visual and semantic analysis 

(Bar et al., 2001; Etard et al., 2000; Wiggs, Weisberg, & Martin, 1999), and during 

the encoding and retrieval of color information (Pulvermüller & Hauk, 2006; Ueno 

et al., 2007). It has been suggested that the inferior temporal gyrus stores 

information about colored objects (Chao, Haxby, & Martin, 1999; Kellenbach, Brett, 

& Patterson, 2001). The frontal activations observed during colored object naming 

suggest that the recognition of a colored object engages a semantic network that is 
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more active in comparison to black and white object recognition. Left inferior 

frontal activations have been reported during semantic knowledge tasks (Demonet, 

Wise, & Frackowiak, 1993; Ganis, Schendan, & Kosslyn, 2007; Murtha, Chertkow, 

Beauregard, & Evans, 1999; Petersen, Fox, Posner, Mintun, & Raichle, 1988; Price, 

Devlin, Moore, Morton, & Laird, 2005; Vandenberghe, Price, Wise, Josephs, & 

Frackowiak, 1996). On the other hand, the activations observed in the left inferior 

and superior parietal lobule might suggest that color is a feature that helps in the 

encoding of visuo-spatial properties of objects (Kosslyn et al., 1994; Oliver & 

Thompson-Schill, 2003). An alternative explanation is that the activated parietal 

and frontal regions during the recognition of colored objects versus colored non-

objects results from an increase in attention due to color information (Corbetta, 

Patel, & Shulman, 2008). However, if this was the case, then we should have also 

seen this pattern of activation when colored non-objects were contrasted with 

black and white non-objects. 

Regarding the role of color information in the processing of non-objects, we 

expected that color information would engage V4. However, the contrast between 

colored versus black and white non-objects did not yield an additional significant 

activation. The absence of V4 activation in the colored non-object condition might 

be related to methodological issues such as a lack of sensitivity or to experimental 

design issues. Previous studies that reported V4 activation in response to abstract 

colored stimuli used transient on/off presentations of each stimulus at a rate of 1 

Hz (McKeefry & Zeki, 1997; Zeki & Marini, 1998). 

We should point out that there are other variables that could contribute to 

the pattern of the observed results. In every trial, subjects had to covertly utter the 

name of the recognized object or utter “tan-tan” for non-objects. In the case of 

non-objects, subjects knew from the start of the block that they would only have to 

utter “tan-tan” while the block was running, without any further processing. In 

contrast, for object blocks, subjects had to recognize and name every object. 

Consequently, producing the non-sense word “tan-tan” for all non-objects did not 
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require the same level of complexity as retrieving lexical information for certain 

objects. This may therefore lead to condition-dependent biases in the associated 

attention state, lexical retrieval and covert naming. However, when we suggest 

that the colored objects (versus colored non-objects) activated a more extensive 

brain network than the black and white objects (versus black and white non-

objects), we are excluding the interference associated with attention state, lexical 

retrieval and covert naming because these effects are present in the contrast 

between both colored and black-and-white objects versus non-objects. 

 

Color Effects in Natural Objects and Artifacts 

Our results show that the brain regions responsible for color processing are the 

same when color is a property of natural objects and artifacts, suggesting that color 

information has the same role in the recognition of natural objects and artifacts. 

This result does not support the proposal of Humphreys and colleagues 

(Humphreys, Goodale, Jakobson, & Servos, 1994; Price & Humphreys, 1989) and 

suggests that previous behavioral differences reported in the processing of natural 

objects and artifacts might be due to color diagnosticity rather than to semantic 

category. When color diagnosticity is controlled, as in our study, no differences in 

the recognition of colored natural objects and artifacts were found in the FMRI or 

the behavioral results. Moreover, our results showed that the brain regions 

responsible for processing natural objects and artifacts are the same, both when 

the objects are presented in color and in black and white. Several candidate regions 

have emerged as potential sites that may be strongly involved in natural object 

recognition, including the medial occipital, right occipito-temporal and left anterior 

temporal cortex (Chao, Haxby, & Martin, 1999; Gerlach, Law, Gade, & Paulson, 

1999; Martin, Wiggs, Ungerleider, & Haxby, 1996; Moore & Price, 1999a). On the 

other hand, the fusiform gyrus, left precentral gyrus and left posterior middle 

temporal cortex have been reported as the sites that may be strongly involved in 

the recognition of artifacts compared with objects from other categories (Chao, 
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Haxby, & Martin, 1999; Martin, Wiggs, Ungerleider, & Haxby, 1996). Although 

category-specific brain activation patterns have been investigated in several 

neuroimaging studies, the results have not been consistent across studies. For 

example, Joseph (2001) performed a meta-analysis of stereotactic coordinates to 

determine if category membership predicts patterns of brain region activation 

across different studies. The author found no more than 50% convergence for the 

recognition of both natural objects and artifacts in any brain region. 

 

Conclusions 

Colored objects activate the inferior temporal, parahippocampal and inferior 

frontal brain regions, areas that are typically involved in visual semantic processing 

and retrieval. This suggests that the recognition of a colored object activates a 

semantic network in addition to the one that is active during the recognition of 

black and white objects. The engagement of the semantic network when color is 

present in the objects led subjects to name colored objects more quickly than black 

and white objects. These results suggest that color information can have an 

important role during the visual recognition process for familiar and recognizable 

objects (both natural objects and artifacts), facilitating semantic retrieval. 

Additionally, we did not find any particular brain region that responded only to the 

naming of black and white objects, suggesting that the recognition of a black and 

white object does not add a cognitive operation to the recognition of a colored 

object. 
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Abstract 

In this study, we systematically review the scientific literature on the effect of color 

information on object recognition. Thirty-five independent experiments, 

comprising 1535 participants, were included in a meta-analysis. Overall, we found a 

moderate significant effect of color on object recognition (d = 0.28). The specific 

effects of moderator variables was also analyzed, and we found that color 

diagnosticity is the factor with the greatest moderator effect on the influence of 

color on object recognition; studies using color diagnostic objects showed a 

significant color effect (d = 0.43), whereas a marginal significant color effect was 

found in studies that used non-color diagnostic objects (d = 0.18). The present 

review did not permit the drawing of specific conclusions about the modulation 

effect of the recognition task type; while the meta-analytic review showed that 

color information improves object recognition specially in naming (d = 0.36), but 

also in semantic classification tasks (d = 0.23), the literature review revealed a large 

body of evidence showing positive effects of color information on object 

recognition in studies using a large variety of visual recognition tasks. Further 

research is needed to clarify this discrepancy. In addition, we found that color is 

important in the ability to recognize both natural and artifact objects, to recognize 

objects presented as types (line-drawings) or presented as tokens (photographs), 

and to recognize objects that are presented without other surface details, such as 

texture or shadow. Taken together, the results of the meta-analysis strongly 

support the contention that color plays a role in object recognition, suggesting that 

color information should be considered in models of visual object recognition. 
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7.1 Introduction 

Traditionally, object recognition theories state that objects are recognized based on 

shape information, largely ignoring the potential role of color information 

(Biederman, 1987; Marr & Nishihara, 1978). For example, the recognition-by-

components model, proposed by Biederman (1987), hypothesizes that objects are 

represented in terms of geons, basic geometric building blocks. This model 

assumes that to identify an object, the perceptual system computes a structural 

description – it determines the geons of the object and the relations among them – 

and in turn, this description provides access to function and meaning, as well as 

information about the object name. More importantly, according to the model, 

neither geons nor the relations among them are associated with color information 

or color knowledge. 

More recently, a large body of behavioral, neuroimaging, and 

neurophysiological evidence suggests that color information contributes to object 

recognition, and for that reason, the role of color should be integrated in object 

recognition models (for a review, see Tanaka, Weiskopf, & Williams, 2001). 

However, although color information is now accepted to contribute to object 

recognition, the object properties and the viewing conditions that might benefit 

from color information are not well understood. 

In this review and the accompanying meta-analysis, we integrate and discuss 

the behavioral literature on the effect of color information on object recognition as 

well as draw conclusions regarding the moderator role of several variables that are 

typically manipulated in studies that examine the influence of color on object 

recognition. 

 

Color Diagnosticity 

Color diagnosticity is probably the most investigated property in studies exploring 

the role of color information in object recognition. Color diagnosticity is defined as 

the degree to which a particular object is associated with a specific color. For 
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example, a strawberry – a color diagnostic object – is clearly associated with the 

red color, whereas a comb – a non-color diagnostic object – is not strongly 

associated with any particular color. It has been proposed that color information is 

more important for the recognition of color diagnostic objects. Tanaka and Presnell 

(1999) found that colored versions of color diagnostic objects were recognized 

faster than uncolored versions of the same objects, while non-color diagnostic 

objects were recognized equally fast in color and in black and white. Similar results 

were reported by Nagai and Yokosawa (2003). However, other studies failed to 

replicate these findings and documented that color information, independent of 

the diagnosticity status, improves recognition (Bramão, Faísca, Petersson, & Reis, 

2010; Rossion & Pourtois, 2004; Uttl, Graf, & Santacruz, 2006; see also Biederman 

& Ju, 1988 and Wurm, Legge, Isenberg, & Luebker, 1993). A possible explanation 

for the discrepancy in the reported results is that different methods have been 

used to determine the color diagnosticity of an object. 

Tanaka and Presnell (1999) used a very strict method to classify the color 

diagnosticity of a specific object. The authors used both a feature listing (where 

subjects were instructed to list perceptual properties of the object) and a typicality 

judgment task (where subjects were asked about the typical color of the object). An 

object was classified as a high color diagnostic object if a color was listed at the first 

place in the feature listing and if at least 80% of the subjects agree with the typical 

color of the object. A similar method was used by Nagai and Yokosawa (2003). Less 

strict methods were used in the other studies. For example, Biederman and Ju 

(1988) asked a panel of three judges to determine whether the color was or was 

not diagnostic for a given object. Wurm and colleagues (Wurm, Legge, Isenberg, & 

Luebker, 1993) provided subjects with a color name, and the subjects were asked 

to rate the relative symptomaticity of the color for a given object. An object was 

rated as high in color diagnosticity if a color was highly symptomatic of one object 

and not symptomatic of other objects. Rossion and Pourtois (2004) asked a group 

of subjects to rate objects on a 5-point scale (where 1 indicated that a specific color 
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was not diagnostic of the object and 5 indicated that a specific color was highly 

diagnostic of the object). A similar method was used by Uttl and colleagues (Uttl, 

Graf, & Santacruz, 2006) and Bramão and colleagues (Bramão, Faísca, Petersson, & 

Reis, 2010; Bramão, Inácio, Faísca, Reis, & Petersson, 2011). It is possible that when 

a stricter method is used to determine color diagnosticity, such as the one used by 

Tanaka and Presnell (1999), color information appears to facilitate only the 

recognition of color diagnostic objects. However, when less strict criteria are used, 

objects not so strongly associated with a specific color might be classified as 

diagnostic. In fact, we observed that items classified as low color diagnostic objects 

by Tanaka and Presnell (1999) were considered as color diagnostic objects by 

Rossion and Pourtois (2004). For example, nail and fork were considered as low 

color diagnostic objects by Tanaka and Presnell (1999); however, Rossion and 

Pourtois (2004)found color diagnostic rates of 4.45 and 4.09, respectively, on their 

5 point scale. 

 

Object Semantic Category 

The role of color in the recognition of objects from different semantic categories is 

a topic that also has been addressed in the literature. Price and Humphreys (1989) 

found that object naming was facilitated by color when objects were from natural 

categories. Because objects from natural categories tend to be more structurally 

similar than artifacts, the competition within the object recognition system is 

greater for natural objects, and color information appears to be an important cue 

in resolving this competition. Moreover, Wurm and colleagues (Wurm, Legge, 

Isenberg, & Luebker, 1993) showed that prototype images exhibit a smaller color 

advantage compared to non-prototypical images. These observations led to the 

idea that color plays an important role in object recognition when shape is not 

diagnostic or typical. In a recent study, Laws and Hunter (2006) examined the role 

of color and blurring in two naming experiments across natural and artifact 

categories. When the objects were presented in a non blurred format the authors 
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report no color advantage in the naming accuracy for both categories, although the 

error rates were very low. However, interestingly when the objects were presented 

in a blurred format, a color advantage for the naming accuracy was found for 

objects belonging to the natural categories, but not for objects belonging to artifact 

categories. The authors argue that the blurring of the images may increase the 

level of visual crowding and that color might be therefore helpful segmenting the 

shape components of the natural objects. 

Additionally, the observed color advantage for natural objects might be 

related to the fact that they are typically strongly associated with a specific color 

and therefore, their color tends to be more diagnostic compared to artifacts. This 

interaction between category and color diagnosticity was addressed by Nagai and 

Yokosawa (2003), who reported a color advantage for high color diagnostic objects 

regardless of their category. Corroborating this idea, other studies have reported a 

similar color advantage for natural objects and artifacts (Bramão, Faísca, Forkstam, 

Reis, & Petersson, 2010; Rossion & Pourtois, 2004; Uttl, Graf, & Santacruz, 2006). 

 

Object Recognition Task 

The studies reviewed here mostly used naming, object-name verification, and 

semantic classification (natural versus artifact) tasks to evaluate the role of color in 

object recognition. Different object recognition tasks impose different cognitive 

demands (Humphreys, Price, & Riddoch, 1999). To name an object, subjects must 

activate the semantic representation and the name of a specific object; in contrast, 

to perform a semantic classification task, they only need to activate the semantic 

representation. A dissociation of the color effects in these two tasks might indicate 

the visual recognition stage at which color information affects object recognition 

process. To match an object with a previous presented name, subjects needed to 

activated semantic and object name representations. Biederman and Ju (1988) did 

not find any advantage of color in semantic verification tasks. Nevertheless, they 

found a small but significant advantage of color in one of their object naming 



Color information: A meta-analysis 

141 

experiments (unmasked condition); however, this advantage was not replicated in 

the masked condition. Davidoff and colleagues also failed to find any color effect 

on semantic classification but reported an advantage of color in object naming 

(Davidoff & Ostergaard, 1988; Ostergaard & Davidoff, 1985). 

The finding that color information improves object naming to a greater degree 

than semantic categorization led some researchers to propose that color effects 

are reserved for latter stages of visual processing (i.e., after semantic access has 

occurred) and thus provide an associative link between the representations of 

object shape and object name (Davidoff, 1991; Davidoff & Ostergaard, 1988; 

Tanaka, Weiskopf, & Williams, 2001). However, a number of recent investigations 

have not replicated these findings and have instead reported a recognition 

advantage related to color information, both in naming and semantic verification 

tasks for objects (e.g., Therriault, Yaxley, & Zwaan, 2009) as well as visual scenes 

(e.g., Oliva & Schyns, 2000). These findings suggest that the role of color is not 

restricted to the access of the name representations. In line with this hypothesis, 

several studies have reported color effects in the early stages of visual processing 

(Gegenfurtner & Rieger, 2000; Wurm, Legge, Isenberg, & Luebker, 1993). For 

example, Wurm and colleagues (Wurm, Legge, Isenberg, & Luebker, 1993) found 

evidence for a low-level sensory contribution, as color improved object 

identification irrespective of color diagnosticity. Others have argued that color is 

represented at a perceptual level in a structural representation system (Price & 

Humphreys, 1989) and/or at a semantic level where stored conceptual knowledge 

of prototypical object color provides an associative link between a representation 

of object shape and the object name (Davidoff, Walsh, & Wagemans, 1997). In 

support of this idea, there is evidence suggesting that stored knowledge of object 

color also plays a role in object identification (Joseph, 1997; Joseph & Proffitt, 

1996; Mapelli & Behrmann, 1997). 
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Stimulus Type 

Recently, Uttl and colleagues (Uttl, Graf, & Santacruz, 2006) suggested that a line-

drawing of an object is typically viewed as a representative of an object class – a 

type – while photographs are viewed as an individual object – a token. The 

recognition of types and tokens may recruit different perceptual and semantic 

processes and for that reason color information might make a different 

contribution when recognizing a line-drawing rather than a photograph. Most of 

the studies that evaluate the role of color in object recognition have compared 

black-and-white and color line-drawings (e.g., Vernon & Lloyd-Jones, 2003) or 

black-and-white and color photographs (e.g., Lloyd-Jones & Nakabayashi, 2009). 

Only three studies explored both line-drawings and photographs of the same 

object in investigating the role of color information in object recognition. In these 

studies the impact of color information was evaluated using color and black-and-

white photographs and color and black-and-white line-drawings similar to the 

photographs. Two studies reported a similar color advantage for both stimulus type 

(Bramão, Inácio, Faísca, Reis, & Petersson, 2011; Price & Humphreys, 1989). The 

third study explored the effect of color, using both line-drawings and photographs, 

by comparing the performance of illiterate and literate elderly subjects in a naming 

task. The authors showed that whereas the illiterate subjects benefitted from color 

information in line-drawings and in photographs, the literate subjects only 

benefitted from color information in line-drawings and not in photographs (Reis, 

Faísca, Ingvar, & Petersson, 2006). 

In a recent study, Adlington, Laws and Gale (2009b) investigated the naming 

performance of a group of patients with Alzheimer’s disease (AD) and elderly 

controls using color photographs, monochromatic photographs and line-drawings 

derived from the photographs. The authors showed that the naming accuracy of 

the control group improved with the addition of surface detail (photographs) and 

with the addition of color. However, the naming accuracy of the AD patients did 

not improve with the addition of color or surface details. 
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Surface Details 

Color is usually displayed together with other surface properties, for example 

texture and shadow. Most of the studies in this review used color object images 

that displayed color together with other surface information, making it difficult to 

distinguish the color effect from the effect of other surface details. None of the 

studies reviewed here investigated the color effect in images with and without 

other surface properties. However, four independent experiments reported a color 

effect using images without other surface properties besides color (Joseph, 1997; 

Moore & Price, 1999a; Vernon & Lloyd-Jones, 2003), suggesting that color alone is 

a property that improves object recognition. 

 

Snodgrass and Vanderwart Set (1980) 

The Snodgrass and Vanderwart set (1980) of images is one of the most used set of 

objects in cognitive experimental research. Snodgrass and Vanderwart (1980) 

presented a normative picture set of 260 line-drawings of common objects from 

different semantic categories, together with normative data for familiarity, visual 

complexity and name agreement for the English language. Subsequently, this set of 

objects have been standardized in different languages, including French (Alario & 

Ferrand, 1999; Bonin, Peereman, Malardier, Méot, & Chalard, 2003), Italian 

(Dell’Acqua, Lotto, & Job, 2000), Spanish (Cuetos, Ellis, & Alvarez, 1999; Sanfeliu & 

Fernandez, 1996) and Portuguese (Ventura, 2003), among others. More recently, 

Rossion and Pourtois (2004) modified the 260 line-drawings from the set of 

Snodgrass and Vanderwart by adding texture and shadow details. Because the 

Snodgrass and Vanderwart set is one of the most used set of objects in cognitive 

science research, it might be of interest to explore the color effects using this 

specific set of objects compared to a set of different objects. 
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7.2 Methods 

Study Selection 

Studies included in the meta-analysis were identified and select by searching the 

PubMed and PsycINFO databases, using the search terms “surface detail”, “surface 

information”, “colo(u)r diagnosticity”, “colo(u)r AND object recognition”, and 

“colo(u)r AND object identification” during March and April 2010. This procedure 

identified 93 articles. The title and abstract of the initial set of articles were 

screened for potential inclusion, leaving 34 studies that met at least some of the 

inclusion criteria. For inclusion in the meta-analysis, a study had to meet the 

following inclusion criteria: 1) include report response time data from object 

recognition tasks, 2) have presented the stimuli both in typical color and in a black 

and white or gray-scale version, 3) used participants between 18 and 60 years of 

age, 4) used participants that were healthy, and 5) contain information that 

allowed the computation of effect size. In general, subjects perform close to ceiling 

in the object recognition tasks, and for that reason we did not consider the 

accuracy data in the meta-analysis. The average of the error rate for the studies 

included in the meta-analysis is less than 5%. Thus, studies not reporting response 

times (Laws & Hunter, 2006; Uttl, Graf, & Santacruz, 2006), that used visual scenes 

as stimuli (Gegenfurtner & Rieger, 2000; Oliva & Schyns, 2000), or only presented 

data from typical or atypical colored objects (Joseph & Proffitt, 1996; Naor-Raz & 

Tarr, 2003) were excluded from the meta-analysis. Also, studies presenting data 

from elderly subjects (Boucart, Despretz, Hladiuk, & Desmettre, 2008; Reis, Faísca, 

Ingvar, & Petersson, 2006), from brain lesioned (Mapelli & Behrmann, 1997) or 

non-normal vision individuals (Boucart, Despretz, Hladiuk, & Desmettre, 2008) 

were not included in the meta-analysis. One study was excluded because it did not 

provide sufficient information to compute the effect size (Nagai & Yokosawa, 

2003). 

From the initial pool of 34 studies, only 10 met all of the inclusion criteria. 

Thus, some of the studies included in the literature review above were not included 
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in the meta-analysis. Further, the bibliographies from the ten papers identified as 

outlined were inspected, and eight additional relevant references were identified. 

Selected studies were restricted to those appearing in English language journals, 

with the exception of one non-published study (Faísca et al., 2004). The non-

published study was conducted in our lab and intended to establish normative data 

for the Portuguese population related to naming response times for a set of 70 

object representations. In this study, the objects were presented both as line-

drawings and as photographs. The line-drawings, selected from the original 

Snodgrass and Vanderwart (1980) set, were presented as contours (without surface 

details) and in a gray-scale and colored version selected from the set generated by 

Rossion and Pourtois (2004). The photographs were also presented in a color and in 

a black and white version that matched as far as possible in terms of color, size, 

shape and orientation to the line-drawings. 

The 18 resultant articles and the non-published study yielded 35 independent 

experiments where the object recognition performance, evaluated in terms of 

response time, was tested in a typical colored and in a black and white object 

version (see Figure 7.1). 

 

Figure 7.1. Flow chart of studies considered and finally selected for inclusion in the 
meta-analysis. 
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Data Extraction 

For each study, we extracted information about the stimulus characteristics: color 

diagnosticity status (diagnostic versus non-diagnostic color), semantic category 

(natural object versus artifact), stimulus type (line-drawings versus photographs), 

surface details (present versus absent) and stimulus set (Snodgrass and Vanderwart 

(1980) set versus other sets). We also identified for each study the object 

recognition task used. Finally, for each study we checked whether low level visual 

properties of the images (for instance, luminance and contrast) were controlled 

between the black-and-white and the color conditions (see Table 7.1). This 

information is important for assessing the moderator effect on the role of color in 

object recognition of the following variables: (1) object color diagnosticity, (2) 

object semantic category, (3) type of recognition task, (4) stimuli type (line-drawing 

versus photographs), (5) presence of stimuli surface details, and (6) if the 

experimental stimuli belong to the Snodgrass and Vanderwart (1980) set. 

 

Color diagnosticity 

None of the studies selected in the meta-analysis tested the effects of color 

exclusively for non-diagnostic objects. To maximize the likelihood of meeting the 

methodological assumption that effect size estimates taken from individual studies 

are independent of each other, whenever a study presented both the information 

for color and non-color diagnostic objects, we only selected the information about 

the non-color diagnostic objects. Thus, the moderator effect of color diagnosticity 

was assessed by comparing the effect size estimated from studies that tested the 

color effect only in color diagnostic objects with the effect size from studies that 

tested color effects on both color and non-color diagnostic objects but using only 

the information about the non-color diagnostic objects. 
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Object Semantic Category 

Only one of the studies selected to be part of the meta-analysis tested the color 

effects exclusively in artifacts (Brodie, Wallace, & Sharrat, 1991). To test the 

semantic category influence on the color effect, while maximizing the likelihood of 

meeting the methodological assumption that effect size values came from 

independent studies, we used a similar procedure to the one adopted to evaluate 

the color diagnosticity effects: whenever a study presented both the information 

for natural objects and artifacts, we only selected the information about the 

objects belonging to the artifact category. Consequently, the effect of the semantic 

category was assessed by comparing the effect size estimated from studies that 

tested the color effect only in natural objects with the effect size from studies that 

tested both artifacts and natural objects but using only the information about the 

artifacts. 

 

Object Recognition Task: Naming versus Semantic Classification Task versus 

Verification Task 

Only one experiment included in this meta-analysis tested the color effects in 

object recognition using exclusively a semantic classification task (where subjects 

had to decide if a present object was from a natural or an artifact semantic 

category; Price & Humphreys, 1989). Five experiments tested the color effects 

using exclusively verification tasks (where subjects had to match a previous 

presented name/object with a object/name; Biederman & Ju, 1988; Bramão, 

Faísca, Petersson, & Reis, 2010; Tanaka & Presnell, 1999). To test the moderator 

effect of the object recognition task, while assuming that the effect size values 

came from independent studies, we employed a similar procedure to the one 

adopted to evaluate the color diagnosticity effects: whenever a study presented 

both the information for semantic classification task or verification task together 

with other visual tasks, we only selected the information about the semantic 

classification or about the verification task. As a result, the moderator role of the 
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recognition task was evaluated by contrasting the effect size estimated from 

studies that assessed color effects in naming tasks with the effect size from studies 

that used semantic classification tasks and from studies that used verification tasks 

(object-name or name-object verifications). 

 

Stimulus Type 

The effect of the stimulus type was assessed by comparing the effect size 

estimated from studies that compared color and black-and-white photographs with 

effect size from studies that compared color and black-and-white line-drawings. 

 

Surface Details 

The effect of surface details was evaluated by comparing the effect size from 

studies that used stimuli with surface details both in the colored and in the black 

and white version of the stimuli with the effect size estimated from studies that 

used colored and black-and-white objects without surface details. The surface 

details considered in the meta-analysis were texture and shadow. 

 

Snodgrass and Vanderwart Set (1980) 

The object set effect was evaluated by comparing the effect size estimated from 

studies that used stimuli from the Snodgrass and Vanderwart (1980) set or its 

colored version from Rossion and Pourtois (2004) set with the effect size estimated 

from studies that used another object set. The studies using photographs were not 

included in this comparison. 

 

Effect Size Estimates 

Data were analyzed with the Comprehensive Meta-Analysis software v.2.2. For 

each color versus black and white comparison, we calculated Cohen’s d to estimate 

the magnitude of the color effect on the response time data. When means and 

standard deviation were not provided, d values were estimated from reported t or 
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F statistics. A positive d value indicates a color effect. By convention, an effect size 

of ±0.2 is considered to be a small effect, a value of ±0.4 is a moderate effect and a 

value of ±0.6 or greater is considered a relatively large effect. For each meta-

analysis, we calculated the 95% confidence interval (CI), statistical significance (p), 

within-group heterogeneity (Qwithin), and the percentage of variation across studies 

due to heterogeneity rather than sampling error (I
2
). For additional clarification of 

differences between effect size estimates, we proceeded with a subgroup analysis 

to test the moderator variable effects, with mixed-effects between-group 

heterogeneity (Qbetween). Studies varied according to sample size (range 8–180); this 

creates a risk that a small, outlying sample will exert disproportionate influence 

over the mean effect size. To minimize this risk, we weighted the effect size 

estimates by sample size (Rosenthal, 1991). When individual studies included 

multiple independent experiments, separate effect sizes were calculated for each 

experiment. When studies presented information sufficient to derive more than 

one effect size estimate for an individual experiment, effect size estimates were in 

some cases (for example, in the overall analysis) aggregated using the arithmetic 

mean. This aggregation prior to meta-analytic integration is necessary to avoid the 

over representation of multi-experiment studies in the overall analyses (Rosenthal, 

1991). 

 

7.3 Results 

Overall 

An overall effect size was calculated that incorporates all 35 effect sizes, comprising 

a total of 1535 subjects. The summarized results indicate a moderate significant 

color information effect on object recognition (d = 0.28, 95% CI = 0.19 – 0.38, p < 

0.001). Moreover, the heterogeneity test was significant (Qwithin = 88.87, p < 0.001, 

I
2
 = 61.74%), suggesting that more than two-thirds of the observed variance was 

not accounted for by sampling error. This finding implies that further meta-analytic 

subdivision of the overall sample was warranted. A systematic analysis of 
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theoretically meaningful (selected a priori) moderator variables was therefore 

conducted on six subsets of the overall pool of studies. The results of the separated 

meta-analysis are given in Figure 7.2 and Table 7.2. 

 

 

Figure 7.2. Mean effect size (d) and 95% confidence intervals for the 13 meta-
analysis conducted. The moderator variables tested in specific meta-analytic 
comparison are labeled on the left side. Labels to the right side of the figure 
indicate the number of independent effect sizes (experiments) which contributed 
to each meta-analysis (NE), and the number of subjects these effect sizes were 
based upon (Ns). 
 

Color Diagnosticity 

To assess the effect of color diagnosticity, we compared studies where the color 

effect was evaluated using color diagnostic objects with studies using non-color 

diagnostic objects. This comparison was significant (Qbetween = 4.28, p = 0.04), with 

greater effects observed in studies where the color effect was assessed using color 

diagnostic objects. In fact, studies using non-color diagnostic objects showed a 
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marginally significant color effect (d = 0.18, p = 0.06), whereas studies using color 

diagnostic objects showed a moderate color effect (d = 0.43, p < 0.001). 

 

Semantic Category 

The color effect in studies that used objects from natural categories was compared 

with the effect from studies that used artifact categories. We did not find any 

difference in the color effect estimated from these two types of studies (Qbetween = 

0.59, p = 0.44). Studies that used natural objects and artifacts showed a similar 

color advantage effect (natural objects: d = 0.45, p < 0.001; and artifacts: d = 0.36, p 

< 0.001). 

 

Object Recognition Task 

To examine the moderator effect of the recognition task, we compared studies that 

used naming tasks with those that used semantic classification and verification 

tasks. The comparison was significant (Qbetween = 6.46, p = 0.04); studies that used 

naming tasks showed a moderate color effect (d = 0.36, p < 0.001), while studies 

that used verification tasks did not show a significant color effect (d = 0.11, p = 

0.15). Studies that used semantic classification tasks showed a marginally 

significant color effect (d = 0.23, p = 0.06). 

 

Stimuli Type 

The color effect in studies that used line-drawings was compared with studies that 

used photographs. We did not find a significant difference between the two types 

of studies (Qbetween = 0.001, p = 0.97); both showed a moderate color effect (line-

drawings: d = 0.35, p < 0.001; photographs: d = 0.34, p < 0.001). 

 

Surface Details 

The estimated color effect from studies that used colored stimuli together with 

other surface details, such as shadow and texture, was compared with the 
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estimated color effect from studies that used stimuli without surface details. The 

comparison did not show significant results (Qbetween = 2.06, p = 0.15), although 

both types of studies showed significant effect sizes (surface details present: d = 

0.26, p < 0.001; surface details absent: d = 0.44, p < 0.001). 

 

Snodgrass and Vanderwart Set (1980) 

To evaluate the moderator effect of using the Snodgrass and Vanderwart set 

(1980), we estimated an effect size of color information from studies that used 

these stimuli, and we compared it to the effect size of color from studies that used 

other object sets. Our results show that the color advantage is greater in studies 

that used the Snodgrass and Vanderwart set compared to studies that used other 

object sets (Qbetween = 6.83, p = 0.01). Although both types of studies were 

associated with significant effect sizes, a larger effect for those studies using the 

Snodgrass and Vanderwart set (d = 0.43, p < 0.001) was observed compared to 

studies that used other object sets (d = 0.14, p < 0.001). 

 

7.4 Discussion 

In this meta-analytic review of 35 independent experiments, we intended to clarify 

the role of color information in object recognition. The overall meta-analysis 

unambiguously revealed that, in contrast to occasional declarations to the contrary 

(Biederman & Ju, 1988), color information improves object recognition. This result 

suggests that object recognition theories should consider the role of color 

information and elaborate its role in object recognition. Moreover, if we consider 

the evolution of the human species, then color vision most likely developed for 

specialized uses, including detecting ripe fruit amongst foliage (Gegenfurtner, 2003; 

Surridge, Osorio, & Mundy, 2003). Taking such considerations together with the 

fact that color plays a prominent part in our subjective experience of the visual 
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world, it would make sense to include color processing, and its consequences, as an 

integral part of models of object recognition (Tanaka, Weiskopf, & Williams, 2001). 

This meta-analysis also shows that the contribution of color information to 

object recognition depends on object properties and task conditions. In particular, 

the results show that color information participates in the recognition of color 

diagnostic objects but less so in the recognition of the non-color diagnostic objects. 

This result is not consistent with the color diagnosticity hypothesis formulated by 

Tanaka and Presnell (1999; see also Nagai & Yokosawa, 2003), that proposed that 

color information only improves the recognition of high color diagnostic objects. In 

the literature review, we also found a large body of evidence showing a color 

advantage both for color and non-color diagnostic objects (Biederman & Ju, 1988; 

Bramão, Faísca, Petersson, & Reis, 2010; Rossion & Pourtois, 2004; Uttl, Graf, & 

Santacruz, 2006; Wurm, Legge, Isenberg, & Luebker, 1993). Still, the studies that 

report a color advantage in the non-color diagnostic objects recognition always 

showed a greater effect for color in color diagnostic object recognition (e.g., 

Rossion & Pourtois, 2004). This observation is congruent with our meta-analytic 

result: a strong color effect for color diagnostic objects and a small color effect for 

non-color diagnostic objects. Moreover, in a recent study (Bramão, Inácio, Faísca, 

Reis, & Petersson, 2011), we observed that color information effects are restricted 

to the early stages of the visual processing for the non-color diagnostic objects. In 

that sense, the failure to find strong color effects for non-color diagnostic objects 

could be related to the nature of the recognition tasks. It might be that the color 

effect in non-color diagnostic object recognition is only evident when the 

recognition task is perceptually demanding. It is also important to note that the Q 

statistic indicates that the effect size estimate for these two groups of studies are 

not homogenous reflecting high variability between studies (color diagnostic 

objects: Qwithin = 24.12, p = 0.01; non-color diagnostic objects: Qwithin = 24.93, p < 

0.001). However, the limited number of studies did not allow us to further 

investigate what other variables could account for this heterogeneity. 
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Several methods have been used to classify the color diagnosticity of a 

particular object. Research investigating the contribution of color information to 

object recognition would benefit from a standardization of the method to measure 

color diagnosticity. Tanaka and Presnell (1999) assessed color diagnosticity using 

two criteria: feature listing and typicality judgments. In the feature-listing task, the 

subjects listed perceptual features associated with an object. In the typicality task, 

the subjects were asked to indicate the color that was most typical of an object. An 

object was rated as high in color diagnosticity only if a specific color was 

consistently mentioned first in the feature list and was rated as the typical color. 

This approach might be too strict and might prevent objects that are moderately or 

even strongly associated with a specific color from being classified as color 

diagnostic objects. Moreover, the feature listing task assesses which properties are 

more typical and distinct for an object and not if this object is highly associated 

with a particular color or not. Using a much more straightforward task, Rossion and 

Pourtois (2004) evaluated the color diagnosticity of the objects with a 5-point 

rating scale. They present each colorized object to a group of subjects and asked 

them to rate the object according to the following instruction: “give a score 

between 1 (the color of the object depicted is not diagnostic at all, i.e. this object 

could be in any other color equally well) and 5 (the color depicted is highly 

diagnostic of the object, i.e. the object appears only with that color in real life)”. 

We propose that such a method is more indicated to assess if a particular object is 

or not associated with a specific color. Moreover, we also think that one important 

aspect in this context is to ask subjects to not classify the object image itself but, 

instead, to classify the object concept as being associated or not with a specific 

color. This approach might help to avoid results being dependent on a particular 

set of images, making studies more homogeneous and thus more comparable. 

An important consideration is that most of the studies that explored the role 

of color diagnosticity in object recognition classify the objects as being either color 

diagnostic or non-color diagnostic (see, for an exception, Rossion & Pourtois, 2004). 
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We believe that color diagnosticity status is probably better described as a 

continuous variable, with high color diagnostic objects lying on one end of the 

continuum, the non-color diagnostic objects on the other end, and the objects with 

moderate color associations lying somewhere in between. 

The meta-analytic results also showed a similar color advantage effect for 

studies that used natural objects and artifacts. This result was expected and is 

consistent with the large body of literature (Bramão, Faísca, Forkstam, Reis, & 

Petersson, 2010; Rossion & Pourtois, 2004; Uttl, Graf, & Santacruz, 2006). 

However, it is important to note that the Q statistic indicates that the effect size 

estimates for these two groups of studies are non-homogenous, reflecting high 

variability (natural objects: Qwithin = 19.67, p = 0.02; artifacts: Qwithin = 16.63, p = 

0.03). It would be interesting to determine what other variables are contributing to 

the high variability, for example, to cross the semantic category variable with the 

color diagnostic variable. However, the limited number of studies available 

prevented us from pursuing such analyses.  

Another interesting result that was revealed in the meta-analysis is the fact 

that color information contributes to object recognition mainly in studies that used 

naming tasks but less so in studies that used semantic classification tasks. 

Surprisingly, the studies that used verification tasks did not show a significant color 

effect. These tasks also require semantic and name activation similar to the naming 

task. In the literature review, we found a robust body of evidence showing that 

color information improves object recognition in object and scene verification 

tasks; however, the meta-analysis did not replicate this finding. One possible 

explanation for the discrepancy could be related with the color diagnosticity factor. 

In fact, on close examination, out of the seven studies that employed a verification 

task, only two experiments used only color diagnostic objects (Joseph, 1997; 

Therriault, Yaxley, & Zwaan, 2009). Two other used both color and non-color 

diagnostic objects (Biederman & Ju, 1988), and in the other three experiments we 

only considered the non-color diagnostic objects results (to guarantee that effect 
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size values came from independent studies; Bramão, Faísca, Petersson, & Reis, 

2010; Tanaka & Presnell, 1999). It is also relevant to note that the effect sizes in 

studies that used naming and semantic classification tasks are non-homogeneous, 

which suggests that other sources are causing the between-study variability 

(naming task: Qwithin = 46.31, p < 0.001; semantic classification task: Qwithin = 11.06, p 

= 0.03). 

The fully understating of which object recognition tasks might benefit or not 

with color information is an important insight to understand the level of processing 

at which color information improves object recognition. In the literature review, we 

also found evidence that color information improves object naming to a greater 

degree than semantic classifications (Biederman & Ju, 1988; Davidoff & Ostergaard, 

1988). In fact, Davidoff (1991) proposed a model of object recognition where color 

information is considered to participate in object recognition only in the later 

stages of the visual processing, after the structural description of the object is 

achieved. In this model, the pictorial input is analyzed by a boundary feature 

contour system. This information is then temporary stored and activates the object 

structural description. The object structural description is spatially defined by 

shape and size information, but not by color. Then the associated stored 

knowledge for that particular object is activated. Davidoff (1991) considered two 

basic forms of stored knowledge: the hasa knowledge concerning sensory 

information and the isa knowledge concerning information about the function of 

the object. Object color, according to this model, is specifically part of the 

associated hasa properties. So, the color effects in object recognition are 

considered to take place after the initial visual representation. In concordance with 

the prediction that color information is not available in the structural descriptions, 

Davidoff and Ostergaard (1988) found that the introduction of color did not 

improve performance in a size comparison task. 

The absence of color at the stored structural description was first disputed by 

Price and Humphreys (1989). The authors showed that color is required at the 
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structural description stage to disambiguate objects from categories that are 

structurally similar and proposed that the characteristic color of an object is 

represented in its structural representation. The authors argued that there are 

separated representations for color and shape, but that these representations are 

richly interconnected. Appropriated color objects activate color representations 

that in turn activate associated shape representations (Humphreys, Goodale, 

Jakobson, & Servos, 1994; Price & Humphreys, 1989). Actually, it has been reported 

that when the correlation between color and shape is high, as it is in color 

diagnostic objects, the presence of color aids recognition at a greater degree than 

thus when the correlation between shape and color is low, as it is in the case of 

non-color diagnostic objects (e.g., Rossion & Pourtois, 2004). In a recent study, we 

also showed that the role of color information in object recognition is dependent of 

the color diagnosticity status of the objects (Bramão, Inácio, Faísca, Reis, & 

Petersson, 2011). For the recognition of the color diagnostic objects, color 

information was especially important at the semantic representation level, 

whereas for non-color diagnostic objects, color information improved object 

recognition only at the early stages of the visual processing. These results may 

suggest that color improves object recognition in the early stages of the visual 

processing for all objects. However, since non-color diagnostic objects are not 

strongly associated with a color, no further color advantage is expected at the 

higher processing levels. 

Moreover, based on the review of the literature, it seems plausible that color 

information might contribute in more ways to object recognition than only to 

provide a link between the object shape and object name representations and to 

facilitate semantic access for color diagnostic objects. The studies included in our 

meta-analysis mostly investigated naming, object verification and semantic 

classification tasks and this made it impossible to test whether color also has a role 

in the early processing stages of object recognition. However, there is evidence 

suggesting that this might actually be the case (Davidoff, Walsh, & Wagemans, 
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1997; Gegenfurtner & Rieger, 2000; Wurm, Legge, Isenberg, & Luebker, 1993). For 

example, Gegenfurtner and Rieger (Gegenfurtner & Rieger, 2000) tested the role of 

color vision in the recognition of briefly presented images of natural scenes using a 

delayed match-to-sample task. The results showed a clear (and rapid) effect of 

color on the recognition of natural images in at least two ways: at an early stage, 

where color contributes with an additional cue for image segmentation; and at a 

later stage, where color serves as a cue for memory retrieval. Further research is 

needed to clarify the role of color and the processing stages where color 

information improves (or hinders) object recognition. 

Additional moderator variables related to the effects of stimulus 

characteristics (stimulus type and surface detail) were explored in the meta-

analysis. We observed color effects independent of these characteristics. Thus, it 

seems that color information does not play a different role in the recognition of a 

type (line-drawings) and a token (photographs) and that color alone (i.e., without 

other surface details) unambiguously improves object recognition, which is 

consistent with the findings of the literature review (Bramão, Inácio, Faísca, Reis, & 

Petersson, 2011; Joseph, 1997; Moore & Price, 1999a; Price & Humphreys, 1989; 

Reis, Faísca, Ingvar, & Petersson, 2006; Vernon & Lloyd-Jones, 2003). The 

homogeneity measures (Q and I
2
) indicated that the effect size for these groups of 

studies were non-homogenous, suggesting that other variables contribute to the 

high variability between studies. However, the limited number of studies does not 

allow us to further explore other potential sources of variability. 

Interestingly, we found a superior color advantage for studies that used the 

Snodgrass and Vanderwart set (1980) or its colored version (from Rossion and 

Pourtois 2004). This advantage could be due to the set itself and the way the 

objects are drawn or painted. Other differences between the Snodgrass and 

Vanderwart set and other object sets have been reported in the literature. For 

example, Laws and colleagues (2007) point out that Snodgrass and Vanderwart set 

produces normal subjects to perform near to ceiling which can exacerbate the 
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naming effect sizes when the naming performance of the clinical populations is 

compared with the naming performance of the normal controls groups (Laws, 

Adlington, Gale, Moreno-Martínez, & Sartori, 2007). To solve this problem the 

authors construct a new set of pictures were pictures of not so familiar objects are 

also included (Adlington, Laws, & Gale, 2009a). Once more, the homogeneity 

measures (Q and I
2
) indicate that the effect size for the studies that used the 

Snodgrass and Vanderwart set were not homogenous. 

In summary, the literature review and the meta-analysis both suggest that 

color information contributes to object recognition specially when objects are 

strongly associated with a color, but also when object are not so strongly 

associated with a particular color. Color information also improves, to the same 

degree, the recognition of natural objects and artifacts, as well as the recognition 

of tokens (photographs) and types (line-drawings). Thus, the color advantage effect 

seems to be independent of other surface details, including shadows and texture. 

Finally, in almost all the subsets of the included studies, the effect size estimates 

are heterogeneous, with the exception of the following: studies that used images 

without surface details, and studies not using the Snodgrass and Vanderwart set 

(1980). We suggest that it is important to explore the sources of heterogeneity in 

future research. 
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Table 7.1. Characteristics of the studies included in the meta-analysis. 

Study d N 
Color 

Diagnosticity 
Semantic 
Category 

Task 
Color 

Stimuli 
B&W 

Stimuli 
Color 

Details 
B&W 

Details 
S&V 

Visual 
Properties 

Biederman and Ju (1988) Exp. 1 -0.18 30 ND/DI AO/NA naming PH LD yes no no not reported 

Biederman and Ju (1988) Exp. 2 0.18 30 ND/DI AO/NA naming PH LD yes no no not reported 

Biederman and Ju (1988) Exp. 3 0.18 30 ND/DI AO/NA naming PH LD yes no no not reported 

Biederman and Ju (1988) Exp. 4 -0.10 96 ND/DI AO/NA VT PH LD yes no no not reported 

Biederman and Ju (1988) Exp. 5 0.10 96 ND/DI AO/NA VT PH LD yes no no not reported 

Bramão et al. (2010) 0.55 20 ND/DI AO naming LD LD yes yes yes controlled 

Bramão et al. (2010) 0.12 28 ND AO VT PH PH yes yes no controlled 

Bramão et al. (2011) -0.02 144 ND AO/NA SCT PH/LD PH/LD yes yes no controlled 

Brodie et al. (1991) Exp. 3 0.00 18 ND/DI AO naming PH PH yes yes no controlled 

Brodie et al. (1991) Exp. 4 0.55 15 ND/DI AO OVT PH PH yes yes no controlled 

Chao and Martin (1999) -0.11 12 --- --- naming --- --- --- --- --- not reported 

Davidoff and Ostergaard (1988) Exp. 1 0.32 32 ND/DI AO/NA SCT LD LD yes no yes controlled 

Davidoff and Ostergaard (1988) Exp. 2 0.83 16 ND/DI AO/NA SCT LD LD yes no yes controlled 

Faísca et al. (2004) 0.08 60 ND AO naming PH/LD PH/LD yes yes yes/no controlled 

Gale et al. (2006) Exp. 4 0.39 32 ND/DI AO naming LD LD yes no yes controlled 

Hocking and Price (2008) 0.33 15 ND/DI AO/NA naming PH PH yes yes no not reported 

Humphreys et al. (1994) Exp 2 0.51 37 ND AO naming PH PH yes yes no controlled 

Humphreys et al. (1994) Exp 3 1.64 30 DI NO naming PH PH yes yes no controlled 

Joseph (1997) 0.77 23 DI NO VT LD LD no no no not reported 
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Lloyde-Jones and Nakabayashi (2009) 0.59 21 DI AO/NA naming PH PH yes yes no controlled 

Moore and Price (1999a) Exp. 1 0.24 8 ND AO naming LD LD no no no not reported 

Oostergard and Davidoff (1985) Exp. 1 0.65 45 DI NO naming PH PH yes yes no controlled 

Oostergard and Davidoff (1985) Exp. 2 0.36 75 DI NO naming PH PH yes yes no controlled 

Oostergard and Davidoff (1985) Exp. 3 0.38 32 DI NO naming PH PH yes yes no controlled 

Price and Humphreys (1989) Exp 1 0.13 50 DI NO SCT PH/LD PH/LD yes/no yes/no no controlled 

Price and Humphreys (1989) Exp 2 0.31 25 DI NO SCT PH/LD PH/LD yes/no yes/no no controlled 

Rayn et al. (2003) Exp. 2 0.05 32 ND/DI AO/NA naming LD LD yes yes no not reported 

Rossion and Pourtois (2004) 0.71 180 ND AO naming LD LD yes yes yes controlled 

Tanaka and Presnell (1999) Exp. 2 0.03 45 ND AO/NA VT LD LD yes yes no controlled 

Tanaka and Presnell (1999) Exp. 3 0.10 36 ND AO/NA naming LD LD yes yes no controlled 

Tanaka and Presnell (1999) Exp. 4b 0.04 30 ND AO/NA VT LD LD yes yes no controlled 

Therriault et al. (2009) Exp. 1 0.18 84 DI AO/NA VT PH PH yes yes no not reported 

Vernon and Lloyd-Jones (2003) Exp. 1a 0.40 30 DI NO naming LD LD no no yes controlled 

Vernon and Lloyd-Jones (2003) Exp. 1b 0.35 30 DI NO naming LD LD no no yes controlled 

Wurm et al. (1993) Exp. 2 0.41 48 DI NO naming PH PH yes yes no controlled 

Effect sizes (d) for each study, the total number of subjects these effect sizes were based upon (N). DI – Color diagnostic objects, ND – Non-color 
diagnostic object. NO – Natural objects, AO – Artifacts objects. VT – verification task, OVT – object verification task, SCT – semantic classification 
task. LD – Line-drawings, PH – Photographs. S&V? – Did the study use the Snodgrass and Vanderwart set (1980)? Visual Properties? – Did the study 
control the low level visual properties? 
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Table 7.2. Effect Sizes and comparisons across the subgroups. 
 Effect Size and 95% confidence interval  Heterogeneity 

 Ne Ns d Lower Limit Upper Limit Z-value p value  Qwithin p value I2 Qbetween p value 

Overall 35 1535 0.28 0.19 0.38 5.9 0.00  88.87 0.00 61.74   

Color Diagnosticity              
Color diagnostic objects 12 493 0.43 0.28 0.58 5.73 0.00  24.12 0.01 54.40   
Non-color diagnostic objects 9 568 0.18 -0.01 0.36 1.87 0.06  24.93 0.00 67.91   
            4.28 0.04 

Semantic Category              
Natural Objects 10 388 0.45 0.29 0.62 5.39 0.00  19.67 0.02 54.25   
Artifacts Objects 9 398 0.35 0.16 0.55 3.54 0.00  16.63 0.03 51.89   
            0.59 0.44 

Object Recognition Task              
Naming Task 22 851 0.36 0.24 0.48 5.81 0.00  46.31 0.00 54.65   
Semantic Classification Task 5 267 0.23 0.00 0.46 1.92 0.06  11.06 0.03 63.84   
Name-Object Verification Task 7 402 0.11 -0.04 0.26 1.43 0.15  12.05 0.06 50.21   
            6.46 0.04 

Stimuli Type              
Line-Drawings 13 514 0.35 0.19 0.50 4.31 0.00  26.48 0.01 54.68   
Photographs 12 448 0.34 0.18 0.50 4.24 0.00  21.85 0.03 49.65   
            0.001 0.98 

Surface Details              
Present Surface Details 20 995 0.26 0.13 0.38 4.08 0.00  49.06 0.00 61.27   
Absent Surface Details 4 91 0.44 0.22 0.66 3.93 0.00  2.35 0.50 0.00   
            2.06 0.15 

Snodgrass and Vanderwart Set (1980)              
Snodgrass and Vanderwart (1980) Set 7 340 0.43 0.25 0.60 4.84 0.00  13.23 0.07 47.10   
Other Object Sets 9 393 0.24 0.01 0.27 2.13 0.00  11.18 0.19 28.42   
            6.83 0.01 

Effect sizes (d), 95% confidence intervals, Z-value and significance level (p) for each meta-analysis, number of the independent effect sizes (studies 
or sub-studies) that contributed to each meta-analysis (Ne), the total number of subjects these effect sizes were based upon (Ns), within-group 
homogeneity of variance (Qwithin) and significance level (p), percentage of the variation across studies that is due to heterogeneity (I

2
), between-

group homogeneity of variance (Qbetween) and significance level (p). 
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8.1 Summary of the Main Findings 

The role of color information during object recognition was addressed in this thesis. 

One of the main questions investigated here was the interaction between surface 

color and color knowledge information during the recognition process. While 

surface color refers to the visual percept generated by the color present in the 

object image (e.g., the color red in a picture of a red strawberry), color knowledge 

uses semantic information about the prototypical color of an object (e.g., the 

knowledge that strawberries are typically red). The Shape + Surface model 

proposes that object recognition is achieved by a combination of the bottom-up 

influences of surface color information and the top-down influences of color 

knowledge information (Tanaka, Weiskopf, & Williams, 2001). However, the 

proposed model does not clarify which of these two sources of color information is 

the most relevant during object recognition processes. In the first two studies 

(chapters 2 and 3), we presented data that clarifies the interaction between surface 

color and color knowledge information and identifies the system with the greatest 

input during object recognition. 

In chapter 2, a name-object verification task was used to evaluate the effect 

of color knowledge on object recognition. Subjects were asked to verify whether a 

previously presented name matched an object that could be similar or dissimilar in 

shape and color information. The objects were presented in three different 

formats: typical color, black and white, and atypical color. We predicted that, if 

color knowledge information contributes to the recognition process, subjects will 

take longer to respond in non-matching trials whenever the color knowledge 

information activated by the name and object are the same, not only when the 

objects were presented in their typical color but also when black-and-white and 

atypical color versions were used. Our results showed a strong effect of both shape 

and color information in typical color presentations: subjects were slower when the 

name and the object activated similar shape and color information. However, when 

black-and-white and atypical color versions were presented, the color similarity 
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effect disappeared, leaving only the shape similarity effect. This result suggests that 

the effect of color knowledge information strongly depends on the presence of the 

appropriate surface color information. Moreover, it indicates that surface color 

plays a more prominent role during object recognition processes. 

In chapter 3, ERPs (Event-Related Potentials) were used to further explore the 

interaction of these two sources of color in object recognition. The use of the ERP 

technique permitted us to evaluate when surface color and the color knowledge 

information are recruited during object recognition. ERPs were recorded while 

subjects performed two color verification tasks: a surface color and color 

knowledge. The perceptual color of the objects was manipulated to create a 

surface color interference/help in the color knowledge verification task and color 

knowledge interference/help in the surface color verification task. We observed a 

strong effect of surface color information during the color knowledge verification 

task, whereas no effect of the color knowledge was observed during the surface 

verification task. In the color knowledge verification task, subjects more quickly 

responded that the typical color of a strawberry was red when the image of the 

strawberry was colored red when compared to when it was colored gray. In the 

same way, subjects more slowly answered that the typical color of a mouse was 

not red when the image of the mouse was colored red compared to when it was 

colored gray. The ERP results from this task showed surface color effects in the 

temporal windows of the N350 and of the late positive complex (LPC) components. 

While the color effect found in the N350 temporal window indicates that surface 

color is involved in the selection of an object description form to be matched with 

the perceptual input, the color effect found in the LPC component suggests that 

color activates semantic and associative knowledge related to the presented 

objects. On the other hand, no effects of color knowledge were found in either the 

behavioral or ERP results of the surface verification task. Subjects verified with 

equal ease that a red strawberry and a red mouse were colored in red and that a 

gray strawberry and a gray mouse were not colored in red. The outcomes from this 
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study clearly corroborate the idea that surface color information represents a more 

prominent input during the recognition process. Taken together, the results of 

these studies show that the activation of color knowledge associated with specific 

objects is somewhat dependent on the presence of the appropriate surface color 

information input, suggesting that surface color plays a more prominent role than 

color knowledge information during object recognition. 

Another question explored in this thesis was the effect of the color 

diagnosticity level of specific objects on the color effects observed during object 

recognition. At the present moment, there is no agreement in the literature 

concerning the effect of color during recognition of color and non-color diagnostic 

objects. Although some studies report that color information only improves the 

recognition of color diagnostic objects (e.g., Tanaka & Presnell, 1999), others report 

that color information improves recognition of both color and non-color diagnostic 

objects (e.g., Uttl, Graf, & Santacruz, 2006). To clarify this question, we investigated 

the level of the visual process at which color information improves the recognition 

of these two types of objects (chapters 4 and 5). In these studies, recognition of 

color and non-color diagnostic objects was compared using color and black-and-

white versions. Chapter 4 showed that, during the recognition of non-color 

diagnostic objects, the role of color was restricted to recognition tasks that 

required high visual perceptual demanding. During recognition of color diagnostic 

objects, however, color was found to play a role in tasks that required high 

semantic processing. In chapter 5, we further explored this question using ERPs. 

Independent of the color diagnosticity status, a color effect was found early (~100 

ms) after stimulus onset, suggesting that color aids image segmentation, thus 

lowering the visual demand of early visual recognition stages. For color diagnostic 

objects, we found color effects occurred later (~350 ms) after stimulus onset. The 

color effects found in these later temporal windows of the ERP components 

indicate that color is involved in the later stages of the recognition process during 

recognition of color diagnostic objects. Together, these results indicate that color 
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information contributes to the recognition of both color and non-color diagnostic 

objects but at different stages of visual processing. Color information has proven to 

be an important cue for solving the early perceptual demands at the initial stages 

of visual processing for both types of objects. Moreover, during the recognition of 

color diagnostic objects, color information also participates in the later stages of 

the visual processing. 

In chapter 6, brain responses related to color information were measured 

with functional magnetic resonance imaging (FMRI) during a covert naming task. 

The aim of this study was to clarify whether the neural pathways concerning color 

processing are the same for natural and artifacts objects. Different roles of color 

information have been proposed for these two categories of objects (Price & 

Humphreys, 1989). However, our study did not corroborate this finding. Our results 

showed the involvement of the same brain regions during the recognition of 

colored natural objects and colored artifacts. In general, object naming activated 

brain regions that extended from the occipital to the inferior temporal regions, 

including fusiform activation. These findings are consistent with earlier 

neuroimaging studies of object recognition (e.g., Grill-Spector, 2003; Price, Devlin, 

Moore, Morton, & Laird, 2005). Additionally, when compared to colored non-

objects, colored objects (natural and artifacts) activated a more extensive network 

of brain regions that included the right parahippocampal gyrus (BA 35/36), the 

superior parietal lobule (BA 7; bilateral), the left inferior middle temporal region 

(BA 20/21) and the inferior and superior frontal regions (BA10/11/47). These 

additional activations were unique to colored objects and were not found when 

black and white objects were contrasted with black and white non-objects. These 

findings suggest that colored objects recruit brain regions that are related to visual 

semantic information, retrieval and visual-spatial processing. These findings are 

congruent with previous studies of colored object processing (Zeki & Marini, 1998). 

Finally, in chapter 7, we attempted to reconcile the findings in the field by 

performing a meta-analysis of the literature concerning the effects of color 
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information on object recognition. A significant effect of color information was 

found, clearly establishing the involvement of this visual attribute during object 

recognition processes. Additionally, this meta-analysis investigated the specific 

moderator role of other variables that might contribute to the effects of color on 

object recognition. Color diagnosticity level was the factor with the greatest 

moderator effect on the influence of color during object recognition: studies using 

color diagnostic objects show a strong significant effect of color (d = 0.43), whereas 

studies using non-color diagnostic objects show a marginally significant effect of 

color (d = 0.18). Moreover, we found that color information is an important cue for 

recognition of both natural and artifacts objects and objects presented as line-

drawings or photographs. 

 

8.2 General Discussion 

Traditionally, object recognition models are edge-based, largely ignoring the 

influence of color information (Biederman, 1987; Marr & Nishihara, 1978). In the 

past twenty years, a number of neuroimaging, neurophysiological, and behavioral 

studies have shown that color information participates, at least to some degree, 

during object recognition (Tanaka, Weiskopf, & Williams, 2001). These findings, 

together with the fact that humans developed and retained visual mechanisms to 

support color vision (Gegenfurtner, 2003; Osorio & Vorobyev, 1996), makes the 

study of the effect of color information on object recognition worth to investigate 

in deep detail. A review of the literature yields mixed results, and no consensus has 

been reached concerning the role of color information in object recognition. The 

studies reported here make advances in the field and undoubtedly confirm the 

participation of color information during object recognition; however, our current 

comprehension of the visual conditions and the object types that may benefit from 

this visual attribute is far from complete. 

One of the outcomes of this thesis is that, relative to color knowledge 

information, surface color information is more important during object recognition. 
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In chapter 2 and 3, we investigated whether surface color or color knowledge had a 

greater influence on object recognition. The results clearly show that the bottom-

up influence of surface color plays a more prominent role, over the top-down color 

knowledge information, during object recognition. In chapter 2, we found that 

subjects took longer to say that the object name orange did not match with the 

picture of a carrot, only if the carrot was presented in a typical color format. This 

result shows that, when objects are not presented in a typical color, color 

knowledge information is not automatically activated by the object. Thus, the 

effect of color knowledge during object recognition is dependent on the presence 

of the typical color information in the object image. We can also speculate that the 

interference observed in this study when the objects were presented in a typical 

color format is due to the fact that the color knowledge information activated by 

the object name interfered with the surface color presented in the object shape, 

and that, not even in this condition, the color knowledge information was 

activated. That is, the color knowledge “orange” activated by the object name 

orange interfered with the surface color “orange” presented in the picture of a 

carrot (without the activation of the color knowledge information). In fact, in 

chapter 3, in the non-matching trials of the color knowledge verification task, we 

observed a strong interference of surface color in color knowledge. Subjects were 

slower to respond that the typical color of a mouse was not red when the mouse 

was presented in red compared to when it was presented in gray. It is possible that 

part of the interference observed in chapter 2 is actually caused by the interference 

of color knowledge activated by the object name and the surface color presented 

in the object picture. However, we also observed in chapter 3, that the surface 

color depicted on the objects promotes the activation of the color knowledge 

associated with that object. Subjects were slower to respond that the typical color 

of a strawberry was red when the strawberry was presented in gray compared to 

when it was presented in red. Although we cannot rule out the possibility that part 

of the interference observed in chapter 2 is actually caused by the interference of 
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the color knowledge with the surface color, it is also caused by the interference 

between the color knowledge activated by the object name with the color 

knowledge activated by the object picture. 

The results reported in chapter 3 also confirm that the surface color offers a 

greater input during object recognition processes when compared with color 

knowledge information. In this study, we found a clear interference and facilitation 

of the surface color information during the color knowledge verification. No 

interference or facilitation of the color knowledge information, however, was 

found during the surface color verification task. Two main contributions of surface 

color information in object recognition were reported here. First, surface color 

information is involved in matching the perceptual input with a structural 

description form stored in the long-term visual memory. Second, surface color 

information triggers the access and retrieval of semantic properties related to the 

object. 

The current view in the literature is that color knowledge represents a more 

prominent source of information than does surface color (Joseph, 1997; Joseph & 

Proffitt, 1996). Joseph and collaborators (Joseph, 1997; Joseph & Proffitt, 1996) 

reported results from a series of verification tasks where they found that color 

knowledge is more influential during object recognition than is surface color. In 

their verification tasks, subjects were required to perform object verifications 

against three types of distractors: similar in shape and color, dissimilar in shape and 

color, and similar in shape but not in color. Because the visual system is a shape-

driven system (Tanaka, Weiskopf, & Williams, 2001), the color interference 

observed in these previous studies was probably confounded with the interference 

of shape information. This fact is important because the effects of color and shape 

might not be additive; rather, it is plausible that shape and color similarly yield 

super-additive effects at the later stages of object recognition. In chapter 2, we 

added a fourth distractor (i.e., dissimilar in shape and similar in color), and we did 

not replicate these previous findings. Instead, we observed a superiority of surface 
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color information over color knowledge information during object recognition 

processes. 

Although we did not find any role of color knowledge in chapters 2 and 3, we 

do not discard the idea that color knowledge takes part in object recognition 

processes. In chapter 3, the electrophysiological brain responses associated with 

typical and atypical color objects were the same in the surface color verification 

task. This observation suggests that color knowledge information associated with 

the objects is not automatically activated when subjects did not need this 

information to perform the task. However, the surface color task was much easier 

than the color knowledge task; subjects performed the perceptual task within 350 

ms after stimuli presentations in the surface color task, whereas there was a 650 

ms lag for the color knowledge task. Moreover, the task did not require full 

activation of the object properties, and this fact might have masked the potential 

role of color knowledge information. Alternatively, it is unlikely that subjects do not 

activate any properties related to the presented objects. It is known that, 200-300 

ms after stimuli onset, the functional and perceptive properties of the objects are 

automatically activated (Vihla, Laine, & Salmelina, 2006). At this point, the only 

claim that we can do is that color knowledge plays, at most, a very limited role 

during easy perceptual color verifications. However, we believe that this topic 

should be investigated further by employing more demanding perceptual color 

tasks. Actually, neuroimaging studies have reported an overlap in the brain regions 

responsible for color perception and color knowledge only if the perceptual color 

task is high demanding (e.g., Beauchamp, Haxby, Jennings, & DeYoe, 1999; 

Simmons et al., 2007). Neuroimaging studies have also elucidated the interactions 

between surface color and color knowledge. The current view in the literature is 

that the neural systems involved in color perception and stored color knowledge 

are distinct, but overlap in some neural regions. Although the posterior regions of 

fusiform gyrus (V4) and the occipital lingual gyrus are part of the color perception 

network (e.g., Zeki & Bartels, 1999; Zeki et al., 1991), the posterior ventral 



Summary and discussion 

173 

temporal cortex supports the color knowledge system (Chao & Martin, 1999; 

Wiggs, Weisberg, & Martin, 1999). These two systems interact in the fusiform 

gyrus; anterior to regions responsible for color perception, and posterior to regions 

supporting color knowledge retrieval (e.g., Simmons et al., 2007; Ueno et al., 2007). 

Martin (2007) suggests that this region in fusiform gyrus acts as a neural substrate 

for the acquisition of new object-color associations and allows these new 

representations to be utilized by the conceptual color processing system. 

Another outcome of this thesis is the finding that the influence of color 

information on object recognition is dependent upon the object diagnosticity level. 

Tanaka and Presnell (1999) proposed that color information participates in object 

recognition only when objects are color diagnostic objects (see also, Nagai & 

Yokosawa, 2003; Oliva & Schyns, 2000). However, this theory is not empirically 

supported by recent studies showing a participation of color information in the 

recognition of both color and non-color diagnostic objects (Rossion & Pourtois, 

2004; Uttl, Graf, & Santacruz, 2006). Chapter 4 and 5 provide data that may help 

explaining these apparently contradictory results. These studies suggest that, 

during the recognition of color and non-color diagnostic objects, color information 

participates at different levels of visual processing. For the recognition of non-color 

diagnostic objects, color information was found to be an important cue for the 

initial image segmentation and visual input organization, thus, lowering the initial 

demand on the visual system. The results presented in chapter 4 show that 

reducing the demand of these initial processes makes the selection of a structural 

description form stored in the long-term visual memory easier and faster, resulting 

in faster object verifications. Moreover, these studies also show an absence of 

color effects for non-color diagnostic objects in the later stages of the visual 

process.  

During color diagnostic object recognition, we observed additional roles for 

color information. Beyond the facilitation that color information confers to the 

initial visual stages, chapter 4 and 5 (and also chapter 3) showed a strong color 
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effect in the later stages of object recognition. Our data suggest that color takes 

place in the later stages of the color diagnostic objects recognition in two different 

ways. First, color information triggers the selection of the structural object 

description model from the long-term visual memory to be matched to the 

perceptual input. When we see an object, color and shape are most likely 

processed in a parallel fashion. Some studies indicate that the same neural circuits, 

in the early visual cortical areas, processes information about color, shape and 

luminance (Gegenfurtner, 2003). At some point, this information must be 

combined to achieve a unitary and robust representation of the visual world. One 

possibility is that this information is combined during the structural description 

selection stage, where color might act as a cue to limits the range of candidate 

structural description forms. These data also suggest that the templates 

corresponding to color diagnostic objects are stored in our visual memory system 

in a typical color format. Second, color information participates in the activation 

and retrieval of the semantic network associated with these objects. The 

mechanisms involved in the participation of color in the activation and retrieval of 

the semantic network information of color diagnostic objects are not totally 

understood. The results presented in chapter 2 and 3 indicate that the color 

information presented in the object image activates the typical color that is 

associated with the objects. We postulate that other associative and functional 

properties are more easily accessed when objects are presented in a typical color 

format, making object recognition easier. 

Color information appears to be important for the recognition of non-color 

diagnostic objects in the initial stages of the visual processing. If this is the case, 

why did we not observe an effect of color for these objects in the category and 

name verification tasks in chapter 4? Importantly, these tasks also required 

perceptual analyses. A possible explanation for the absence of a color effect in 

these tasks is that these tasks impose high processing demands at the semantic 

level; thus, the contribution of color information in the initial visual stages might be 
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then diluted. This assumption presupposes that we should observe a strong color 

effect for non-color diagnostic objects in visual tasks having high initial perceptual 

demands and low semantic demands. Rather, our results suggest that tasks that 

impose high semantic demands will demonstrate a strong color effect for color 

diagnostic objects. This hypothesis requires further investigation. 

Previous research has established a role for color information in the early and 

late visual processes of object recognition; however, these studies either did not 

control for the color diagnosticity status of the objects or only high-color diagnostic 

objects were used (Davidoff, 1991; Davidoff, Walsh, & Wagemans, 1997; 

Gegenfurtner & Rieger, 2000; Goffaux et al., 2005; Lu et al., 2010; Wurm, Legge, 

Isenberg, & Luebker, 1993). For example, Davidoff (1991) proposed a model of 

object recognition where color information is considered to participate in object 

recognition in the later stages of the visual processing. In this model, the author 

proposed the existence of two separated representations for object structure 

versus object function information, termed hasa and isa representations, 

respectively. Object color, according to this model, is specifically part of the 

associated hasa properties, so that recognition of an object’s color takes place after 

the initial visual representation has accessed the hasa color knowledge. The 

absence of color at the stored object structure was first disputed by Price and 

Humphreys (1989). The authors argued that there are separated representations 

for color and shape, but that these representations are richly interconnected and 

that appropriated color objects activate color representations that in turn activate 

associated shape representations (Humphreys et al., 1994; Price and Humphreys, 

1989). Actually, the data presented in this work shows that the role of color in 

object recognition dependents on the correlation between color and shape. When 

the correlation between color and shape is high, as it is in the case of the color 

diagnostic objects, color information is especially important at the semantic 

representation level, whereas when the correlation between color and shape is 

low, as it is in the case of the non-color diagnostic objects, color information 
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improves object recognition only at the early stages of the visual processing. These 

results suggest that color improves object recognition in the early stages of the 

visual processing for all objects. However, because non-color diagnostic objects are 

not strongly associated with a color, no further color advantage is expected at the 

higher processing levels. 

The data presented here advance our current understanding of the role of 

color information during object recognition and its relationship with the object’s 

color diagnosticity status. The current view in the literature and the results 

described in chapter 4 and 5 are summarized in Figure 8. The information 

presented in the figure does not imply that the processing of color information or 

object recognition occurs in the serial fashion as depicted by the flowcharts. 

Moreover, we do not intend to put forth a new theoretical model or framework to 

explain how color information affects object recognition. The figure is simply a 

schematic illustration showing the main color effects encountered in our studies 

and considers the visual processing stages necessary to identify and name an object 

according to Humphreys and colleagues (Humphreys, Price, & Riddoch, 1999). The 

left side of the figure illustrates the recognition of a color diagnostic object in black-

and-white and color formats. The right side of the image illustrates the recognition 

of a non-color diagnostic object presented in both black-and-white and color 

versions. The dotted and shorted arrows and boxes represent the processes and 

stages during which color information might help the recognition of both color and 

non-color diagnostic objects. Therefore, name representations that appear further 

to the bottom reflect the finding that more time is needed to recognize a black and 

white object. This illustration also explains why the effects of color during object 

recognition are stronger for color than non-color diagnostic objects (e.g., Rossion & 

Pourtois, 2004; Uttl, Graf, & Santacruz, 2006). However, we still need to investigate 

whether these color effects are dependent on the perceptual and semantic 

demands imposed by the visual tasks. 
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Figure 8. A schematic account for the processing of color information found in our 
studies. The visual processing stages depicted in the figure were proposed by 
Humphreys and colleagues (Humphreys, Price, & Riddoch, 1999). B&W CDO – color 
diagnostic object presented in black and white, COLOR CDO – color diagnostic 
object presented in colors, B&W NCDO – non-color diagnostic object presented in 
black and white, COLOR NCDO – non-color diagnostic object presented in colors. 
The dotted and shorted arrows and boxes represent the processes and stages 
where color information might aid recognition of both color and non-color 
diagnostic objects. 

 

The interaction between color effects and the object’s color diagnosticity 

status was also addressed in the meta-analysis presented in chapter 7. The meta-

analysis showed a significant difference between the color effects observed in 

studies that used color diagnostic objects and studies that used non-color 

diagnostic objects. This is congruent with the results presented in chapters 4 and 5. 

Studies that used color diagnostic objects were found to have a strong effect of 

color; however, a marginally significant effect of color information was observed in 

studies that used non-color diagnostic objects. 
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The discussion of which object types might benefit from the presence of color 

information during recognition does not end with the object’s color diagnosticity 

status. The impact of the semantic category has also been investigated. Previous 

studies have shown that color information improves the recognition of objects 

from natural but not artifacts categories (Humphreys, Goodale, Jakobson, & Servos, 

1994; Mapelli & Behrmann, 1997; Price & Humphreys, 1989). Because objects from 

natural categories are more similar to each other, recognition requires a higher 

level of competition within the recognition system. Color information could help to 

resolve this competition. However, in this thesis, using a set of stimuli where color 

diagnosticity and structural similarity were controlled, we found no differences in 

the role of color information between natural objects and artifacts in both the 

behavioral and neuroimaging results. In chapter 6, we found that color information 

depicted in natural objects and in artifacts activated the same brain regions, 

suggesting that color has the same role in the recognition of natural objects and 

artifacts. This finding was replicated in chapters 2 and 4, where we observed that 

color information improved the recognition of both natural and artifacts objects. 

Moreover, in the meta-analysis performed in chapter 7, we found no differences 

regarding the color effects in studies that used natural and artifacts objects. In 

summary, color information improves both natural and artifacts objects (chapter 2 

and 4) at the same levels of the visual recognition process (chapter 6). More recent 

studies that controlled for color diagnosticity level found the same pattern of 

results (Rossion & Pourtois, 2004; Uttl, Graf, & Santacruz, 2006). 

Chapter 6 also discusses the neural regions involved in colored object 

recognition. Zeki and Marini (1998) proposed three broad cortical stages for color 

processing. The first, supported by V1 and V2, registers the presence and intensity 

of different wavelengths. The second, supported by V4, is involved in automatic 

color constancy operations. The third stage is related to the inferior temporal and 

frontal cortices and is involved in object color processing, memory, judgment and 

learning processes (Zeki & Marini, 1998). We corroborated these previous studies, 
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showing that colored objects activated brain regions typically related to visual 

semantic information, retrieval and visuo-spatial processing (e.g., Ganis, Schendan, 

& Kosslyn, 2007; Oliver & Thompson-Schill, 2003; Vandenberghe, Price, Wise, 

Josephs, & Frackowiak, 1996). 

Another significant result of this work is the finding that color information 

plays the same role during the recognition of both types (line-drawings) and tokens 

(photographs). Uttl and colleagues (Uttl, Graf, & Santacruz, 2006) argue that line-

drawings are typically viewed as a representation of an object class, a type, 

whereas photographs are viewed as a particular individual object, a token. To a 

certain extent, the recognition of types and tokens may recruit different perceptual 

and semantic processes, and color information could have different roles during 

the recognition of a type and a token. It might seem intuitive that color, combined 

with the additional surface information present in the photographs (e.g., texture 

and shadow), would have a greater effect. However, this question was explicitly 

addressed in chapter 4. We observed that color information affects types and 

tokens in the same way. Additionally, in chapter 7 we also observed similar color 

effects for studies using line-drawings and photographs. These results suggest that 

color, texture, and brightness information are processed during the same time-

window, probably in a parallel fashion and that both surface attributes 

independently contribute to object recognition. 

 

8.3 Future Directions 

One important question that remains unanswered is the role that color knowledge 

plays during object recognition processes. We found a very limited role for this 

type of color information in chapters 2 and 3. However, we are not convinced that 

color knowledge information plays no role in object recognition. If this were the 

case, an atypical color object and a typical color object would be recognized as 

easier and faster. Moreover, we found strong color effects at the semantic level 

during color diagnostic object recognition. For color to improve color diagnostic 
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object recognition at the semantic level, the color knowledge information for the 

objects needs to be activated. More research is needed to investigate the role of 

color knowledge and how it is activated during object recognition processes. It is 

also important to note that surface color and color knowledge information 

participate at different levels of visual processing during object recognition. 

Although surface color greatly contributes to the initial segmental and encoding 

stages, the role of color knowledge is most likely restricted to the later visual 

stages. Moreover, compared with simple identification or classification of isolated 

objects, color knowledge is likely to play a greater role during tasks involving 

memory recognition. Different and independent mechanisms have been proposed 

for object identification and object memory (Lloyd-Jones, 2005; Lloyd-Jones & 

Nakabayashi, 2009; Vernon & Lloyd-Jones, 2003). The distinction between object 

identification and memory recognition suggests that the former relies more on an 

achromatic description system and the latter relies on a surface-based episodic 

memory system that stores color information (Wichmann, Sharpe, & Gegenfurtner, 

2002). 

Another result that deserves further investigation was the absence of early 

effects (< 300 ms after stimulus onset) related to surface color information in 

chapter 3. In chapter 5 a strong color effect was observed around 100 ms after 

stimulus onset. The latter suggests that, when objects are presented in color, there 

is less demand placed on the initial visual processes. Importantly, there are 

methodological differences in the two studies. In chapter 3, we compared typical 

and atypical color presentations. In chapter 5, however, we compared typical color 

and black-and-white presentations. The absence of an early color effect in chapter 

3 might be an indication that the presence of atypical color information also 

facilitates image segmentation by lowering the initial perceptual demands imposed 

by the visual recognition task. During early recognition processes, the visual system 

may not distinguish between typical and atypical colors. Furthermore, the surface 

color information present in the image may aid visual segmentation independent of 
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its typicality for the object. To confirm this hypothesis, it would be necessary to 

compare object recognition during the three presentation modes in a single ERP 

experiment. In a recent study, Lu and collaborators (Lu et al., 2010) reported data 

that contradicts this assumption. The authors compared the ERP responses elicited 

by stimuli presented in typical, atypical, and black-and-white presentations. They 

showed that the early components (< 300 ms after stimuli onset) of atypical and 

black-and-white conditions essentially overlapped, suggesting that gray is 

processed as an incongruent color by the visual system. However, the authors used 

unnatural colors (e.g., fluorescent purple) to paint the atypical objects. This color 

scheme could have created perceptual demands as high as the black and white 

condition. In future research, the use of the same color for typical and an atypical 

object colors is needed to fully control for the effects of color frequency and 

typicality. 

Although this thesis makes important advances in our understanding of the 

role of color in the recognition of color and non-color diagnostic objects, we believe 

that additional research is needed to corroborate these initial studies. For example, 

the participation of color information during the activation and retrieval of 

semantic networks related to recognition of color diagnostic objects needs further 

investigation. Here we observed that, when compared with black and white 

objects, a more extensive semantic brain network is involved during the 

recognition of colored objects (chapter 6). In addition, strong color effects in ERP 

components are related to semantic processing (N400 and LPC; chapters 3 and 5). 

Furthermore, color information improves object recognition during tasks with high 

semantic demands (chapter 4). These results suggest that color information is 

involved at the semantic level during the recognition of color diagnostic objects. 

However, at the present moment, we do not have a clear picture of how this 

process takes place. For color to improve recognition of color diagnostic objects at 

the semantic level, the relationship between the color and the object’s identify 

must be, at least to some extent, previously determined. Most likely, an object’s 
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color identity is processed in parallel or in cascade with other visual or semantic 

features of the objects. If the relationship between color and shape is strong, the 

semantic network that is related to the objects is more readily and rapidly 

activated. Chapter 2 and 3 also suggest that surface color information prompts 

activation of color knowledge in the cognitive system. We postulate that the 

activation of color knowledge information triggers access to other functional and 

associative properties. However, this hypothesis needs further investigation. 

Although we focused our studies on the effect of color during object 

recognition, it would be interesting to evaluate whether these results can also be 

generalized to recognition of visual scenes or other types of objects, such as faces. 

Indeed, a number of models of scene recognition have argued that surface-based 

cues are used to categorize scenes (scene gist) without the need to identify 

particular objects within those scenes (Oliva & Schyns, 1997, 2000). During face 

processing, research has shown that surface color can assist in the discrimination of 

gender, particularly when other cues, such as the shape of the face, are non-

predictive (Tarr, Kersten, Cheng, Doerschner, & Rossion, 2002; Tarr, Kersten, 

Cheng, & Rossion, 2001). 

Additionally, the role of surface texture also merits further exploration. 

Studies indicate that color and texture information are processed independently 

(e.g., Cant, Arnott, & Goodale, 2009), although the extraction of color information 

seems to occur relatively early in visual analysis when compared with surface 

textures. 
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8.4 Conclusions 

In summary, the general picture that emerges from this work is that color 

information participates in object recognition processes. Although it was outside 

the scope of this thesis to provide a new model of object recognition, this work 

helps to establish certain principles that future successful models of color 

information must incorporate. First, the role of surface color is more influential 

than the role of color knowledge during recognition of color diagnostic objects. 

Second, color information improves the recognition of color and non-color 

diagnostic objects at different stages of the visual processing. Although color is an 

important cue for both object types during early visual processes, it is also 

important for recognition of color diagnostic objects in the late stages of the visual 

processing. Namely, color information aids in the selection of a structural 

description model that matches the perceptual input and participates in the access 

and activation of the semantic network associated with these objects. Third, color 

information improves the recognition of natural and artifacts objects as well as 

objects presented as types (line-drawings) and tokens (photographs). It is clear that 

color influences object processing at multiple levels of representation. The 

challenge now is to determine more precisely how color, and perhaps also texture, 

combine with object shape when we identify and recall previously encountered 

objects. 
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Resumo 

O ser humano tem uma capacidade incrível para reconhecer objectos. As 

propriedades específicas que são extraídas do ambiente visual, e a forma como 

essas propriedades se integram para resultar num reconhecimento rápido e eficaz 

são ainda um mistério para as Ciências Cognitivas. Sabemos que, para além da 

forma, o sistema visual utiliza informação sobre movimento, cor, textura, entre 

outras propriedades, para reconhecer os objectos que nos rodeiam. O trabalho 

aqui apresentado procura esclarecer o papel da cor no reconhecimento visual de 

objectos. 

Se considerarmos que o cérebro humano desenvolveu mecanismos 

especializados para lidar com a cor, faz sentido questionarmo-nos sobre o papel 

que essa informação poderá ter no reconhecimento visual de objectos. A retina 

humana está equipada com três tipos de cones, permitindo ao ser humano uma 

visão tricromática. A maioria dos mamíferos possui unicamente um ou dois tipos de 

cone na retina, sendo apenas os humanos e alguns primatas a possuir visão 

tricromática. Qual será a vantagem evolutiva deste tipo de visão? Um ponto de 

vista é que a visão tricromática teria evoluído para facilitar a procura de alimentos, 

pois permite detectar mais facilmente folhas e frutos maduros (e.g., Osorio & 

Vorobyev, 1996; Regan et al., 2001). Apesar desta vantagem evolutiva óbvia, as 

teorias sobre o reconhecimento visual de objectos têm negligenciado o potencial 

papel da cor no reconhecimento (Biederman, 1987; Marr & Nishihara, 1978). No 

entanto, actualmente há alguma concordância na literatura relativamente ao 

contributo da cor para o reconhecimento de objectos: objectos apresentados a 

cores são reconhecidos mais rapidamente que objectos apresentados a preto e 

branco (ver, para uma revisão, Tanaka, Weiskopf, & Williams, 2001). Desta forma, 

faz sentido investigar e aprofundar o conhecimento existente sobre o papel do 

atributo cor no reconhecimento visual de objectos. 

Neste contexto é importante diferenciar entre o atributo visual cor presente 

na imagem de um objecto (e.g., um morango pintando de vermelho) e o 
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conhecimento de cor activado quando se vê a imagem de um objecto (e.g., perante 

uma imagem de um morango a preto e branco, o conhecimento da cor típica do 

morango pode ser activado). Na primeira situação fala-se de cor de superfície e na 

segunda fala-se de conhecimento de cor. Tanaka, Weiskopf e Williams (2001) 

sugeriram que a cor participa no reconhecimento de objectos através de 

mecanismos bottom-up (cor de superfície) e de mecanismos top-down 

(conhecimento de cor). No entanto, fica ainda por esclarecer quais destas duas 

informações de cor é a mais determinante durante os processos de 

reconhecimento de objectos ou como é que estas duas fontes de informação 

interagem de modo a reconhecer um objecto. Assim, um dos objectivos deste 

trabalho foi tentar clarificar estas questões. Nos capítulos 2 e 3 estudámos como é 

que estas duas fontes de informação relativas à cor interagem e qual delas é a mais 

determinante durante os processos de reconhecimento visual de objectos. 

No estudo apresentado no capítulo 2, investigámos se o papel do 

conhecimento de cor é independente da cor de superfície, ou seja, tentámos 

perceber se o conhecimento de cor é activado no sistema cognitivo 

independentemente da presença a cor de superfície. Joseph e colaboradores 

(Joseph, 1997; Joseph & Proffitt, 1996) mostraram previamente que o 

conhecimento de cor é mais determinante durante o reconhecimento visual de 

objectos do que a cor de superfície. No entanto, nestes estudos os papéis da cor e 

da forma não foram testados de uma forma completamente independente, o que 

poderá camuflar os resultados obtidos (Joseph, 1997; Joseph & Proffitt, 1996). 

Neste sentido, pretendemos replicar estes resultados no capítulo 2, manipulando o 

papel da cor e da forma de modo independente. Pedimos a um grupo de 

participantes para verificarem se um nome previamente apresentado correspondia 

ou não a uma imagem que se lhe seguia. Estas imagens eram fotografias de 

objectos comuns e foram apresentadas na sua cor típica, a preto e branco e numa 

cor atípica. O tempo de resposta dos participantes nos ensaios negativos (ou seja, 

quando nome e objecto não correspondiam) foi utilizado para avaliar se existia 



Resumo 

189 

interferência na resposta. Partiu-se do princípio que quanto mais similares fossem 

o objecto representado pelo nome e o objecto representado pela fotografia (em 

termos de cor e forma), mais tempo os participantes demorariam a responder que 

nome e objecto correspondiam a objectos diferentes. De modo a verificar a 

interferência da cor independentemente da forma, definiram-se quatro tipos de 

ensaios negativos: forma e cor semelhantes (morango-tomate), forma semelhante 

e cor diferente (limão-cebola), forma diferente e cor semelhante (cenoura-laranja), 

e forma e cor diferentes (ananás-pêra). Se o conhecimento de cor for activado 

independentemente da presença de cor de superfície no objecto, então espera-se 

observar maior interferência quando o conhecimento de cor activado pelo nome 

corresponda ao conhecimento de cor activado pelo objecto, não só quando o 

objecto for apresentado na sua cor típica, mas também quando for apresentado 

numa versão a preto e branco ou numa cor atípica. 

Os nossos resultados mostraram um efeito acentuado da semelhança de cor e 

de forma quando os objectos eram apresentados na sua cor típica, ou seja, os 

participantes eram mais lentos a dizer que nome e objecto não correspondiam 

quando estes partilhavam características de cor e de forma. No entanto, quando os 

objectos foram apresentados a preto e branco ou numa cor atípica, a interferência 

devida à semelhança de cor desapareceu, permanecendo apenas a interferência 

devida à semelhança de forma. Estes resultados mostraram que o conhecimento 

de cor de um objecto não é automaticamente activado e que está fortemente 

dependente da presença de cor de superfície. Assim, os resultados deste estudo 

sugerem que a influência da cor de superfície é mais determinante durante o 

reconhecimento visual de objectos do que o conhecimento de cor. 

No capítulo 3, continuámos a investigar esta questão. O estudo apresentado 

neste capítulo recorre a medidas comportamentais (tempos de resposta) e 

electrofisiológicas (Potencias Evocados) para investigar a interacção entre a cor de 

superfície e o conhecimento de cor durante o reconhecimento de objectos. Os 

potenciais evocados permitem a análise dos processos cognitivos com uma 
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resolução temporal na ordem dos milissegundos, constituindo assim a técnica ideal 

para investigar o momento em que o sistema visual recruta a cor de superfície e o 

conhecimento de cor durante o reconhecimento de objectos. 

Neste estudo foi pedido aos participantes para efectuarem duas tarefas de 

verificação cor-objecto: uma tarefa de verificação de conhecimento de cor, onde os 

participantes deveriam decidir se a cor típica do objecto apresentado correspondia 

ou não a uma determinada cor, independentemente da cor com que o objecto 

aparecia apresentado; e uma tarefa de verificação de cor de superfície, em que os 

participantes deveriam decidir se a cor com que o objecto era apresentado 

correspondia ou não a uma determinada cor, independentemente da cor típica do 

objecto. Os objectos foram apresentados numa cor típica e numa cor atípica, de 

forma a avaliar o papel da cor de superfície e do conhecimento de cor durante o 

reconhecimento. Como forma de verificar o contributo/interferência da cor de 

superfície durante a tarefa de conhecimento de cor e o contributo/interferência do 

conhecimento de cor durante a tarefa de cor de superfície, os potenciais evocados 

pelos objectos de cor típica e atípica foram comparados nas duas tarefas de 

verificação. 

Na tarefa de verificação de conhecimento de cor, observámos um efeito da 

cor em dois componentes da resposta electrofisiológica ao estímulo: o N350 e o 

Late Positive Complex (LPC). O N350 é um componente com uma distribuição 

frontal negativa que ocorre por volta dos 300 milissegundos depois do 

aparecimento do estímulo. Este componente é considerado a primeira marca do 

reconhecimento visual e é indicativo da selecção de um modelo armazenado em 

memória a longo termo que melhor corresponde com o input visual, sendo mais 

negativo para objectos apresentados em formas atípicas (Pietrowsky et al., 1996; 

Schendan & Kutas, 2002, 2003, 2007). O LPC é um componente com uma 

distribuição positiva que ocorre 550 milissegundos depois do aparecimento do 

estímulo. É também mais negativo para objectos mais difíceis de reconhecer do 

que para objectos mais fáceis de reconhecer e reflecte a activação do 
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conhecimento semântico e associativo relacionado com os objectos (Mazerolle, 

D'Arcy, Marchand, & Bolster, 2007; Pietrowsky et al., 1996; Schendan & Kutas, 

2002, 2003, 2007; Stuss, Picton, Cerri, Leech, & Stethem, 1992). Os efeitos de cor 

encontrados nestes dois componentes na tarefa de verificação de conhecimento de 

cor sugerem que a cor de superfície contribui e influencia a verificação do 

conhecimento de cor dos objectos pelo menos de duas formas. Primeiro, 

facilitando a selecção de um modelo armazenado em memória para corresponder 

com o input visual, e segundo, contribuindo para a activação da rede semântica 

relacionada com os objectos. Os resultados comportamentais corroboraram os 

resultados electrofisiológicos: observámos um efeito forte da cor de superfície 

durante a tarefa de verificação de conhecimento de cor. Os participantes são mais 

rápidos a decidir que a cor típica de um morango é vermelho quando o morango 

está apresentado a vermelho do que quando está apresentado a cinzento. Da 

mesma forma, os participantes são mais rápidos a decidir que a cor típica de um 

morango não é cinzento quando o morango está apresentado a vermelho do que 

quando está apresentado a cinzento. 

Na tarefa de verificação de cor de superfície não se verificaram quaisquer 

diferenças nos potenciais evocados por objectos apresentados na cor típica e 

atípica, mostrando que não há participação do conhecimento de cor nesta tarefa. 

Mais uma vez os resultados comportamentais corroboraram os resultados 

electrofisiológicos, não se tendo observado nenhum efeito do conhecimento de cor 

na tarefa de cor de superfície. Os participantes são igualmente rápidos a decidir 

que um morango vermelho (objecto tipicamente vermelho) e um rato vermelho 

(objecto que não é tipicamente vermelho) estão apresentados a vermelho e a 

decidir que um morango cinzento (objecto tipicamente vermelho) e um rato 

cinzento (objecto que não é tipicamente vermelho) não estão apresentados a 

vermelho. Estes resultados mostram que o papel do conhecimento de cor é 

limitado durante o reconhecimento visual de objectos. 
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De um modo geral, os estudos apresentados nos capítulos 2 e 3 mostram que 

durante o reconhecimento visual de objectos o papel da cor de superfície é mais 

determinante que o papel do conhecimento de cor. 

Outra das questões investigadas nesta tese foi o estudo do tipo de objectos 

cujo reconhecimento visual beneficia com a presença de cor, procurando-se 

identificar o estádio do processamento visual onde a informação sobre cor é 

recrutada durante o processo de reconhecimento. Os resultados que emergem da 

literatura relativamente a estas questões são pouco consistentes. Por exemplo, há 

estudos que afirmam que a cor apenas facilita o reconhecimento de objectos que 

pertencem a categorias semânticas biológicas (Price & Humphreys, 1989) ou de 

objectos que têm cor diagnóstica (i.e., objectos que estão altamente associados a 

uma cor particular; Nagai & Yokosawa, 2003; Tanaka & Presnell, 1999). Contudo, 

outros autores argumentam que a cor facilita o reconhecimento de todos os 

objectos, independentemente da sua categoria semântica ou da diagnosticidade da 

sua cor (Rossion & Pourtois, 2004; Uttl, Graf, & Santacruz, 2006). As razões desta 

discrepância de resultados podem estar relacionadas com o estádio do 

processamento visual em que a cor intervém para facilitar o reconhecimento de 

objectos de cor diagnóstica e não diagnóstica. Há estudos que mostram que a cor 

participa nos estádios iniciais do processamento visual (Gegenfurtner & Rieger, 

2000; Wurm, Legge, Isenberg, & Luebker, 1993), facilitando a segmentação da 

imagem, e/ou ao nível semântico, onde a activação da cor pode facilitar a activação 

do conhecimento semântico sobre os objectos (Davidoff, 1991; Tanaka, Weiskopf, 

& Williams, 2001). 

Nos capítulos 4 e 5 deste trabalho, testámos a hipótese de que a cor de 

superfície participa em etapas diferentes durante o reconhecimento de objectos 

com cor diagnóstica e não diagnóstica. Como referimos, os objectos com cor 

diagnóstica estão fortemente associados a uma cor. Neste caso, faz sentido que a 

informação de cor participe na activação da rede semântica associada a estes 

objectos, facilitando o seu reconhecimento. Pelo contrário, como os objectos com 
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cor não diagnóstica não estão associados a uma cor particular, não faz sentido que 

a informação de cor providencie uma pista importante durante as etapas mais 

tardias do reconhecimento. Assim, esperamos que a cor de superfície participe no 

reconhecimento de objectos com cor diagnóstica quer nos estádios iniciais do 

processamento visual, quer em estádios mais tardios. No entanto, esperamos que 

o papel da cor durante o reconhecimento de objectos com cor não diagnóstica 

esteja limitado aos estádios iniciais do processamento visual. 

No estudo apresentado no capítulo 4, os participantes realizaram três tarefas 

de reconhecimento visual, onde objectos com cor diagnóstica e não diagnóstica 

foram apresentados na sua cor típica e a preto e branco: tarefa de verificação de 

nome, tarefa de verificação de categoria, e tarefa de verificação de objecto. Estas 

três tarefas de reconhecimento visual implicam exigências e processamentos 

cognitivos distintos (Humphreys, Price, & Riddoch, 1999). Na tarefa de verificação 

de nome era pedido aos participantes para verificarem se o objecto correspondia 

ou não a um nome previamente apresentado. Para o desempenho desta tarefa é 

necessário, numa primeira etapa, que a imagem do objecto seja segmentada de 

forma a ser emparceirada com um modelo armazenado na memória a longo termo. 

Seguidamente os participantes têm que aceder às propriedades semânticas dos 

objectos e só depois o nome do objecto poderá ser activado. Na tarefa de 

verificação de categoria era pedido aos participantes para verificarem a categoria 

semântica dos objectos (biológico versus não-biológico). Para realizarem esta tarefa 

os participantes não necessitam de aceder à representação do nome dos objectos. 

Finalmente, na tarefa de verificação de objecto era pedido aos participantes para 

verificar se o objecto apresentado era um objecto familiar ou não (objecto versus 

não-objecto). Para efectuarem esta tarefa os participantes não necessitam de 

aceder nem ao nome, nem à informação semântica associada aos objectos 

apresentados. Esta tarefa implica apenas a segmentação da imagem e a sua 

correspondência com um modelo armazenado em memória a longo termo. A 

comparação dos tempos de resposta, nas três tarefas, entre objectos apresentados 
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a cores e a preto e branco permite-nos verificar onde é que a informação de cor é 

recrutada durante o reconhecimento de objectos com cor diagnóstica e não 

diagnóstica. 

Os resultados mostraram que apenas na tarefa de verificação de objecto se 

observa um efeito de cor no reconhecimento de objectos com cor não diagnóstica. 

Pelo contrário, o efeito da cor para objectos com cor diagnóstica foi mais forte 

durante as tarefas de verificação de categoria e de verificação de nome. Estes 

resultados sugerem que o papel da cor no reconhecimento de objectos de cor não 

diagnóstica está limitado a um nível pré-semântico. No entanto, durante o 

reconhecimento de objectos de cor diagnóstica, o atributo cor revelou-se mais 

importante a um nível semântico. 

No capítulo 5, esta questão continuou a ser investigada, mas desta vez 

recorrendo a medidas electrofisiológicas. Neste estudo também foram 

apresentados aos participantes imagens de objectos com cor diagnóstica e não 

diagnóstica tanto na sua cor típica como a preto e branco. Os potenciais evocados 

pelas imagens a cores e a preto e branco foram comparados em três componentes 

electrofisiológicos: N1, N350 e N400. O N1 é um componente electrofisiológico que 

atinge o seu pico máximo aproximadamente 150 milissegundos após o 

aparecimento do estímulo e é mais visível nas regiões occipito-temporais. Este 

componente está associado aos estádios de processamento visual iniciais e é maior 

tanto mais negativo quanto maior for a exigência do processamento visual 

(Johnson & Olshausen, 2003; Kiefer, 2001; Rossion et al., 2000; Tanaka, Luu, 

Weisbrod, & Kiefer, 1999; Wang & Kameda, 2005; Wang & Suemitsu, 2007). Os 

componentes N350 e N400 são componentes relacionados com estádios de 

reconhecimento mais tardios. Como foi descrito anteriormente, o N350 é um 

componente negativo com uma distribuição topográfica anterior e é considerado o 

primeiro sinal de sucesso no reconhecimento (Barrett & Rugg, 1990; McPherson & 

Holcomb, 1999; Pratarelli, 1994). O N350 é seguido do N400 que se caracteriza por 

uma deflexão negativa nas regiões centro-parietais com amplitude máxima por 
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volta dos 400 milissegundos depois do aparecimento do estímulo. O N400 é um 

indicador de processamento semântico e é maior (ou seja, mais negativo) para 

estímulos semanticamente não relacionados do que para estímulos 

semanticamente relacionados (Kutas & Hillyard, 1980a, 1980b). 

Os nossos resultados mostraram um efeito de cor para os objectos com cor 

diagnóstica e não diagnóstica no componente N1. Os potenciais evocados pelos 

objectos apresentados a preto e branco apresentaram um N1 mais negativo do que 

os objectos apresentado a cores, sugerindo que a cor diminui as exigências dos 

estádios iniciais de processamento visual em ambos os tipos de objectos. 

Observámos ainda um efeito de cor nos componentes N350 e N400 apenas para 

aos objectos com cor diagnóstica. Este resultado mostra que a participação da cor 

em estádios de processamento visual mais tardios está restrita ao reconhecimento 

de objectos com cor diagnóstica. 

De um modo geral, os resultados dos estudos apresentados nos capítulos 4 e 

5 mostram que a cor de superfície tem diferentes papéis durante o 

reconhecimento de objectos com cor diagnóstica e não diagnóstica. Durante o 

reconhecimento de ambos os tipos de objectos a cor mostrou ser uma informação 

importante durante as etapas iniciais de processamento visual, provavelmente 

ajudando a segmentar a imagem e a extrair a forma do objecto. Para além disso, a 

cor tem um papel nos estádios de processamento visual mais tardios, mas apenas 

para os objectos com cor diagnóstica. Primeiro, facilita a selecção de um modelo da 

memória a longo termo para corresponder com o input fornecido pela imagem do 

objecto. Este resultado pode ser indicativo de que os modelos correspondentes aos 

objectos de cor diagnóstica estão armazenados num formato colorido. Segundo, a 

cor mostrou ser um atributo que actua ao nível semântico, activando a rede 

semântica associada aos objectos de cor diagnóstica e fazendo com que o seu 

reconhecimento e identificação sejam mais eficazes. 

No capítulo 6 deste trabalho continuámos a investigar quais os objectos cujo 

reconhecimento beneficia com a presença de cor, procurando identificar as áreas 
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cerebrais envolvidas no processamento da cor durante o reconhecimento visual de 

objectos. Com o objectivo de investigar se o atributo visual cor beneficia apenas os 

objectos pertences a categorias semânticas biológicas (Price & Humphreys, 1989), 

os participantes deste estudo nomearam objectos de categorias biológicas e não 

biológicas apresentados a cores e a preto e branco enquanto as respostas cerebrais 

hemodinâmicas eram medidas através da técnica de imagem de ressonância 

magnética funcional. Os resultados mostraram que ambos os tipos de objectos 

activavam uma rede cerebral mais extensa quando apresentados a cores do que 

quando apresentados a preto e branco, rede esta que englobava a circunvolução 

parahipocampal direita (BA 35/36), o lóbulo parietal superior bilateralmente (BA 7), 

a região temporal inferior esquerda (BA 20/21) e ainda regiões frontais superiores 

(BA 10/11/47). Estas activações indicam que o processamento de objectos a cores 

activa regiões cerebrais responsáveis pelo armazenamento e recuperação de 

informação visuo-semântica e regiões responsáveis pelo processamento visuo-

espacial. Mais uma vez, os resultados mostram o envolvimento da cor ao nível da 

activação da rede semântica relacionada com os objectos e mostram ainda que o 

papel da cor é independente da categoria semântica à qual pertencem os objectos. 

Por fim, procurando chegar a algum consenso relativamente ao papel da cor 

do reconhecimento de objectos, efectuámos uma meta-análise no capítulo 7 deste 

trabalho. Nesta meta-análise incluímos 35 estudos independentes, englobando um 

total de 1535 participantes, onde o papel da cor no reconhecimento de objectos foi 

investigado. Encontrámos um efeito moderado e significativo do papel da cor no 

reconhecimento de objectos (d = 0.28). O efeito específico de uma série de 

variáveis moderadoras também foi investigado. Verificámos que a diagnosticidade 

de cor é o factor com efeito moderador mais forte: nos estudos que utilizam 

objectos com cor diagnóstica encontrámos um efeito forte e significativo da cor (d 

= 0.43); no entanto, em estudos que utilizam objectos com cor não diagnóstica, o 

efeito da cor foi apenas marginalmente significativo (d = 0.18). Para além disso, 

verificámos que a cor é importante quer para reconhecer objectos pertencentes a 
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categorias biológicas quer para reconhecer objectos de categorias não biológicas, e 

também igualmente importante no reconhecimento de objectos apresentados 

através de fotografias ou de desenhos. Os resultados desta meta-análise apontam 

para o facto da cor desempenhar um papel preponderante no reconhecimento 

visual de objectos, mostrando que esta propriedade deve ser tida em conta nos 

modelos teóricos que pretendem descrever este processo cognitivo. 

De um modo geral, este trabalho confirma a importância do atributo cor no 

reconhecimento visual de objectos. Apesar de não ser ambição deste trabalho 

avançar com um modelo teórico explicativo do papel da cor no reconhecimento de 

objectos, são aqui estabelecidos uma série de princípios que qualquer modelo 

futuro deverá considerar. Primeiro, a cor de superfície parece ter um papel mais 

relevante no reconhecimento de objectos do que o papel do conhecimento de cor. 

Segundo, a cor intervém no reconhecimento de objectos a diferentes níveis do 

processamento visual. Assim, a informação visual de cor mostrou ser importante 

durante os primeiros estádios de processamento visual tanto para reconhecer 

objectos com cor diagnóstica como para reconhecer objectos com cor não 

diagnóstica. No entanto, o envolvimento da cor nos estádios de processamento 

visual mais tardios está limitado ao reconhecimento de objectos com cor 

diagnóstica, para os quais a cor pode ser uma pista importante para limitar o 

número de modelos compatíveis com o input visual, podendo também facilitar a 

activação e recuperação de informação semântica relacionada com este tipo de 

objectos. Terceiro, a cor facilita quer o reconhecimento de objectos biológicos, 

quer o reconhecimento de objectos não biológicos e o reconhecimento de objectos 

apresentados em desenhos e em fotografias. Neste momento acreditamos que a 

cor influencia o reconhecimento visual de objectos em múltiplos níveis do 

processamento. O desafio agora é determinar de um modo mais preciso como cor 

e forma interagem quando temos que reconhecer e identificar objectos 

previamente encontrados. 
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Appendix A – Stimuli used in the study reported in Chapter 3 

 

Color Object Name 

Red Apple, Cherry, Heart, Lips, Strawberry, Tomato, Ladybug 

Gray Key, Mouse, Nail, Scissors, Hippopotamus, Shark, Elephant 

Orange Carrot, Lobster, Orange, Pineapple, Pumpkin, Crab, Traffic cone 

Green Alligator, Artichoke, Frog, Lettuce, Pepper, Tree, Pea 

Yellow Banana, Bee, Lemon, Star, Sun, Cheese, Bird 

Brown Camel, Deer, Fox, Kangaroo, Monkey, Peanut, Nut 

Pink Arm, Ear, Finger, Pig, Leg, Hand, Foot 

White Cigarette, Cloud, Sheep, Swan, Bone, Igloo, Tooth 
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Appendix B – Stimuli used in the study reported in Chapter 4 

 

Color Diagnostic Objects 

Object Name Color Diagnosticity Object Name Color Diagnosticity 

Banana Yellow 4.53 Lemon Yellow 4.80 

Barrel Brown 4.07 Lettuce Green 4.47 

Basket Ball Orange 4.40 Light Bulb Glass 4.33 

Bathing-tub Beige 4.07 Nail Gray 4.33 

Binoculars Black 4.07 Nut Brown 4.60 

Broccoli Green 4.53 Onion Golden 4.60 

Carrot Orange 4.73 Orange Orange 4.73 

Cherry Red 4.60 Padlock Golden 4.07 

Chick Yellow 4.33 Peanut Brown 4.40 

Cigar Brown 4.13 Pig Pink 4.33 

Crab Orange 4.53 Pineapple Orange 4.73 

Door Brown 4.20 Pipe Brown 4.07 

Dresser Brown 3.93 Pumpkin Orange 4.47 

Fire Extinguisher Red 4.40 Strawberry Red 4.67 

Grapes Purple 4.13 Table Brown 4.20 

Guitar Brown 4.13 Tire Black 4.47 

Hammer Brown 4.07 Tomato Red 4.67 

Kangaroo Brown 4.33 Watermelon Red 4.53 
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Non-Color Diagnostic Objects 

Object Name Color Diagnosticity Object Name Color Diagnosticity 

Apple Red 3.13 Funnel Black 2.53 

Bear Brown 3.67 Glass Glass 2.67 

Beret Orange 1.93 Glasses Brown 1.80 

Bicycle Black 1.93 Glove Pink 1.27 

Book Orange 2.07 Horse Brown 2.87 

Boot Brown 1.60 Lamp Golden 1.87 

Bottle Golden 2.67 Leaf Green 2.87 

Bowl Purple 1.53 Mushroom Brown 2.93 

Bucket Orange 1.47 Pen Orange 1.87 

Butterfly Red 1.80 Pepper Green 3.67 

Candle Red 2.27 Rabbit Brown 2.93 

Cat Gray 2.47 Shirt Red 1.27 

Chicken Beige 3.27 Snake Brown 3.41 

Comb Yellow 1.47 Sock Yellow 2.40 

Cow Brown 2.93 Tie Yellow 1.47 

Cup Orange 1.93 Tulip Red 2.87 

Duck Brown 2.67 Turtle Brown 2.67 

Fish Orange 2.53 Watering Can Brown 2.13 
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Appendix C – Stimuli used in the study reported in Chapter 5 

 

Color Diagnostic Objects 

Object Name Color Diagnosticity Object Name Color Diagnosticity 

Banana Yellow 4.53 Kangaroo Brown 4.33 

Barrel Brown 4.07 Ladybug Red 4.67 

Basket Ball Orange 4.40 Lemon Yellow 4.80 

Bathing-tub Beige 4.07 Lettuce Green 4.47 

Bee Yellow 4.27 Light Bulb Glass 4.33 

Binoculars Black 4.07 Lips Red 4.46 

Bone White 4.30 Lobster Orange 4.73 

Bonfire Red 4.20 Nail Gray 4.33 

Brick Orange 4.60 Nut Brown 4.60 

Broccoli Green 4.53 Octopus Purple 4.80 

Carrot Orange 4.73 Onion Golden 4.60 

Cherry Red 4.60 Orange Orange 4.73 

Chick Yellow 4.33 Padlock Golden 4.07 

Cigar Brown 4.13 Pea Green 4.80 

Cigarette White 4.82 Peanut Brown 4.40 

Crab Orange 4.53 Pear Green 4.13 

Door Brown 4.20 Pig Pink 4.33 

Dresser Brown 3.93 Pineapple Orange 4.73 

Eggplant Purple 4.40 Pipe Brown 4.07 

Fire Extinguisher Red 4.40 Pumpkin Orange 4.47 

Fox Brown 4.27 Strawberry Red 4.67 

Garlic White 4.40 Table Brown 4.20 

Grapes Purple 4.13 Tire Black 4.47 

Guitar Brown 4.13 Tomato Red 4.67 

Hammer Brown 4.07 Traffic Cone Orange 4.50 

Hand Pink 4.18 Traffic Signal Red 4.20 

Harp Golden 4.07 Watermelon Red 4.53 
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Non-Color Diagnostic Objects 

Object Name Color Diagnosticity Object Name Color Diagnosticity 

Apple Red 3.13 Funnel Black 2.53 

Balloon Red 1.36 Glass Glass 2.67 

Bear Brown 3.67 Glasses Golden 1.80 

Beret Orange 1.93 Glove Pink 1.27 

Bicycle Black 1.93 Horse Brown 2.87 

Bird Brown 2.00 Lamp Golden 1.87 

Book Orange 2.07 Leaf Green 2.87 

Boot Yellow 1.60 Monkey Brown 3.55 

Bottle Golden 2.67 Mushroom White 2.93 

Bow Red 1.07 Pen Brown 1.87 

Bowl Purple 1.53 Pepper Green 3.67 

Box Orange 1.18 Purse Purple 1.00 

Brush Orange 1.80 Rabbit Brown 2.93 

Bucket Orange 1.47 Racket White 2.40 

Butterfly Red 1.80 Scarf Purple 1.00 

Candle Red 2.27 Shirt Red 1.27 

Carnation Red 3.50 Shoe Red 1.87 

Cat Gray 2.47 Shovel Yellow 2.43 

Chicken Beige 3.27 Skirt Green 1.00 

Comb Red 1.47 Snake Brown 3.41 

Cow Brown 2.93 Sock Green 1.40 

Cup Orange 1.93 Sofa Yellow 1.80 

Dice White 3.40 Tie Yellow 1.20 

Dog Brown 2.91 Tulip Pink 2.13 

Dress Orange 1.20 Turtle Brown 3.40 

Duck Brown 2.67 Umbrella Orange 1.20 

Fish Brown 2.53 Watering Can Orange 1.87 
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Appendix D – Stimuli used in the study reported in Chapter 6 
 

Natural objects Artifacts objects 

Alligator Accordion 

Ant Airplane 

Apple Anchor 

Bear Barrel 

Butterfly Basket 

Chicken Bell 

Cow Belt 

Dog Boot 

Duck Bus 

Fox Car 

Gorilla Cigarette 

Grapes Drum 

Horse Flute 

Lemon Fork 

Monkey Glasses 

Mushroom Gun 

Onion Hammer 

Pear Harp 

Pepper Key 

Pig Nail 

Potato Needle 

Rabbit Nut 

Rooster Pencil 

Seal Piano 

Squirrel Scissors 

Strawberry Shoe 

Tiger Spoon 

Turtle Thimble 



 

 

 


