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To expand the application of nobiletin (NOB) in semi-solid functional foods,
bovine serum albumin (BSA)/carboxymethyl inulin (CMI) complexes-stabilized
Pickering emulsion (BCPE) (φoil = 60%, v/v) was fabricated, and the swallowing
index and bioavailability of the NOB-loaded Pickering emulsion was evaluated.
Confocal laser scanning microscope (CLSM) and cryo-scanning electron
microscopy (cryo-SEM) images revealed that BSA/CMI complexes attached to
the oil–water interface. NOB-loaded BCPE exhibited a viscoelastic and shear-
thinning behavior. Fork drip test results suggested that the textural value of
unloaded and NOB-loaded emulsions was International Dysphagia Diet
Standardisation Initiative Level 4, which could be swallowed directly without
chewing. The in vitro lipolysis model suggested that NOB had a faster digestive
profile and a higher bioaccessibility in the BCPE than in the oil suspension. The
in vivo rat model revealed that the oral bioavailability of NOB was increased by
2.07 folds in BCPE compared to its bioavailability in unformulated oil. Moreover,
BCPE led to a higher plasma concentration of themajor demethylatedmetabolite
of NOB (4′-demethylnobiletin) than the unformulated oil. Accordingly, BCPE
enhanced the oral bioavailability of NOB by improving bioaccessibility,
absorption, and biotransformation.
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Highlights

• A bovine serum albumin/carboxymethyl inulin complexes-stabilized Pickering
emulsion (BCPE) with a 60% oil content was fabricated. The textural values of
unloaded and nobiletin (NOB)-loaded BCPE were International Dysphagia Diet
Standardisation Initiative (IDDSI) Level 4.

• BCPE enhanced the oral bioavailability of NOB in rats compared to oil suspension.
• BCPE improved the biotransformation of 4′-demethylnobiletin in vivo during 24 h.
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1 Introduction

Natural products are important sources of clinical drugs and
functional food owing to their bioactivities and low toxicity (Li et al.,
2022; Zhang et al., 2022; Wu et al., 2023). Nobiletin (NOB;
5,6,7,8,3′,4′-hexamethoxyflavone) is a major component of citrus
polymethoxyflavones (PMFs), which are a group of flavonoids
predominately found in citrus peels (Li et al., 2006a; Zhang et al.,
2021). NOB has healthcare functions due to its profound
bioactivities, such as anticancer, anti-inflammation, anti-
atherosclerosis, anti-viral, and neuroprotective effects, and its
ability to prevent neurodegenerative diseases and regulate lipid
metabolism, glucose metabolism, mitochondrial function, and
muscle physiology (Gao et al., 2018; Nakajima and Ohizumi,
2019; Nohara et al., 2019). These bioactivities can be achieved
by the blood circulation system in vitro (Chen et al., 2020; Min
et al., 2024). In vivo experiments infer that NOB and its metabolites
are distributed to different tissues via the blood circulation system
and ultimately excreted in urine. NOB undergoes phase I and II
reactions in the small intestine; the major metabolites of NOB in
the urine of mice are demethylated products of B-ring methoxyl
groups, including 4′-demethylnobiletin (4′-DMN), 3′-
demethylnobiletin (3′-DMN), and 3′,4′-didemethylnobiletin
(3′,4′-DDMN; Zhang et al., 2020). Among these metabolites, 4′-
DMN is the major metabolite of NOB and has a higher anti-
inflammatory and immunomodulatory therapeutic effect than the
parent NOB (Li et al., 2006b; Li et al., 2014; Wu et al., 2015; Zheng

et al., 2015; Huang et al., 2016; Wu et al., 2018). Therefore, NOB is
suitable for the functional enhancement of food. However, NOB
exhibits a bitter taste that hampers its product acceptance and
limits its application in the functional food area (Batenburg et al.,
2016). Specific food formulations must be developed to expand the
application of NOB in semi-solid functional foods. Although
formulation can reduce the bitterness of NOB, it changes the
oral bioavailability of NOB. Evaluation of the oral and digestive
characteristics of any novel formulations of NOB should
be performed.

A complexes-stabilized Pickering emulsion is one type of
emulsion stabilized by particles. The complexes are formed by
electrostatic interactions, which are physical reactions that do not
change the structure of raw materials. A complexes-stabilized
Pickering emulsion has various advantages, such as high loading,
high biocompatibility, and desired viscoelasticity, and it is being
composed of functional biopolymers and small molecules
(Dickinson, 1998; Jie et al., 2016). Owing to nutrient density,
remodeling ability, and easy-to-swallow. Complexes-stabilized
Pickering emulsion may be a novel food matrix for special
populations (Goldstein et al., 2017; Kerien et al., 2020). A
complexes-stabilized Pickering emulsion is made with a simple
process, and its textural properties can be shifted by adjusting
the raw materials (Ming et al., 2023).

Complexes-stabilized Pickering emulsions can be fabricated in
two steps. First, complexes are prepared via electrostatic interaction
between two types of biomacromolecules with opposite charges.
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Then, the complexes stabilize the Pickering emulsion by providing
steric and electrostatic repulsion or reducing interface tension.
Although many studies focus on the development of complexes-
stabilized Pickering emulsions, the texture and digestive
characteristics of the resulting emulsions have rarely been
reported. Emulsion systems used to obscure the bitterness of
natural products have been reported. Some emulsions can
distract off-flavor or trigeminal effects by their ingredients, while
others can reduce the contact time between natural products and
taste buds by being swallowed directly without chewing (Batenburg
et al., 2016). To define the swallowing characteristics of foods, the
International Dysphagia Diet Standardisation Initiative (IDDSI)
developed the IDDSI framework. This framework can be applied
to evaluate the swallowing characteristics of emulsions.

Inulin is a fructan-type plant polysaccharide derived from inulin
or chicory. Inulin has many biological activities, such as antioxidant
and anticancer effects; regulation of blood sugar, blood lipids, and
the immune system; and improvement of intestinal health, and
benefits for metabolic syndromes (Wan et al., 2020). Moreover,
because inulin has low non-specific absorption in most tissues and
can be easily filtered by kidneys, it has been used in the
pharmaceutical and food industries for decades. Carboxymethyl
inulin (CMI) is a derivative of inulin that changes surface electric
charge, increases solubility, and decreases viscosity (Joshi
et al., 2017).

Our previous work revealed that CMI and bovine serum
albumin (BSA) could form complexes induced by physical
interactions (Huang et al., 2019). In this study, we used BSA/
CMI complexes to stabilize a Pickering emulsion. The resulting
BSA/CMI complexes-stabilized Pickering emulsion (BCPE) was
applied to encapsulate NOB. The bioaccessibility of NOB-loaded
in BCPE was measured using an in vitro lipolysis model. The oral
bioavailability of NOB was monitored using a rat model to compare
the formulated form and an unformulated oil suspension. In
addition to evaluating the oral bioavailability of NOB in vitro
and in vivo, the biotransformation of NOB in rats is discussed.

2 Materials and methods

2.1 Materials

BSA (>98%) was purchased from Sigma-Aldrich Chemical Co.
(St. Louis, MO, USA). CMI was synthesized in our laboratory
(Rutgers University, NJ, USA) (Huang et al., 2019). Medium-
chain triglyceride (MCT) was requested from Stepan Company
(Northfield, IL, USA). NOB and tangeretin (98% purity) were
obtained from Shanxi Huike Plant Development Co., Ltd.
(Shanxi, China). 3′,4′-DDMN, 3′-DMN, and 4′-DMN were
synthesized and identified using LC-QTOF-MS/MS (Zhang et al.,
2020). Hydrochloric acid (HCl) was purchased from Fisher
Scientific (Waltham, MA, USA) (Zhang et al., 2020). Tris was
purchased from Saiguo Biotechnology Co., Ltd. (Guangdong,
China). Maleic acid was purchased from America SECOMA
Biotechnology Co., Ltd. (Beijing, China). Calcium chloride was
purchased from Damao Chemical Co., Ltd. (Tianjin, China).
Sodium taurodeoxycholate (NaTDC) was purchased from
Ruiyong Biotechnology Co., Ltd. (Shanghai, China). Lecithin

from soybean, pancreatin, and Tween 80 were purchased from
Macklin Biochemical Co., Ltd. (Shanghai, China). HPLC-grade
acetonitrile (ACN) and methanol were purchased from Gris
Pharmaceutical Chemical Technology Co., Ltd. (Tianjin, China).
HPLC-grade tetrahydrofuran, ammonium acetate, trifluoroacetic
acid (TFA), and acetic acid were purchased from Yien Chemical
Technology Co., Ltd. (Shanghai, China). Dimethyl sulfoxide
(DMSO), β-D-glucuronidase, and sulfatase were purchased from
Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). Milli-Q distilled
water was used in all experiments.

2.2 Formation of BSA/CMI complexes

BSA (1% w/v) and CMI (0.2% w/v) were mixed in water
solutions free from NaCl. After being fully dissolved for 1 h
using a magnetic stirrer, the solution was adjusted to
pH 4.0 using HCl solution, and a suspension of BSA/CMI
complexes was obtained. The mean particle size of the BSA/
CMI complexes was determined using a Brookhaven 90 Plus/
BI-MAS instrument equipped with a 15-mW solid-state laser
for multi-angle particle sizing. The BSA/CMI complexes were
diluted 10 times using water (pH 4.0) and dispersed for 30 min
using an ultrasonic oscillator (40 kHz) before particle size
measurement.

2.3 Fabrication of unloaded and NOB-
loaded BSA/CMI complexes-stabilized
Pickering emulsion

The aqueous phase was prepared as follows. BSA (10 mg/mL)
and CMI (2 mg/mL) were fully dissolved in 5 mL distilled water, and
the solution was adjusted to pH 4.0. The aqueous phase was
homogenized for 2 min at 10,000 rpm using a T25 digital
ULTRA-TURRAX® homogenizer (IKA-Werke GmbH & Co. KG,
Germany) equipped with an S25N-10G dispersing rotor. The oil
phase was slowly added to the aqueous phase. Then, the BCPE with
an oil fraction of 60% was obtained after homogenization for 3 min
at 10,000 rpm.

The oil phase of NOB-loaded BCPE was prepared as follows.
NOB powder of 2% (w/v) was added into 10 mL MCT and
stirred at 90°C using an oil bath until the NOB was completely
dissolved. Then the MCT solution was cooled to 35°C before
being added to the water phase. The concentrations of NOB,
BSA, CMI, and MCT were set at 1.2%, 1%, 0.2%, and 60% (w/v),
respectively.

2.4 Microstructure measurement of BCPE

The microstructures of the BCPE samples were observed on a
Zeiss FV120 confocal laser scanning microscope (CLSM) with an
inverted microscope (model Leica DM IRB). The oil and the
aqueous phases were stained with curcumin (green) and
rhodamine B (red), respectively. The CLSM was performed using
two laser excitation sources (488 and 543 nm).
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Freeze fracture scanning electron microscopy (cryo-SEM) was
used to examine the interfacial structure of BCPE droplets. A small
sample volume was placed onto a Cu sample stub and snap-frozen in
a liquid nitrogen bath. The frozen sample was transferred to a
preparation chamber (PP3010T Cryo-SEM preparation system,
USA). After being fractured with a cooled knife and subjected to
sublimation at 95°C for 9 min, the sample was sputtered and coated
with platinum. SEM measurement of the sample was performed
using a cold-field emission scanning electron microscope (S-
4800 Hitachi, Japan).

2.5 Microstructure analysis of NOB-
loaded BCPE

Themicrostructure of NOB-loaded BCPE was analyzed using an
inverted microscope with a refrigeration charge-coupled device
(CCD) camera (OPTEC DV330). Images (40×) were captured
after the sample was placed on a glass microscopic slide.

2.6 Rheological properties of NOB-
loaded BCPE

Rheological measurement of complexes and Pickering emulsion
was performed following the method described in Zou (2018). The
shear viscosities were determined at 25°C using a TA ARES-G2
rheometer (TA Instruments, New Castle, DE, USA) with parallel
plates (d = 20 mm). The shear rate range was set to 1–100 s−1.
Frequency sweeps were performed from 0.08 to 10 Hz at the strain of
the identified linear viscoelastic region. Dynamic strain scanning
was performed in the range of 0.01%–100%. All the samples were
loaded onto the parallel plate with the gap at 1 mm for 10 min
before analysis.

2.7 Fork drip test of unloaded or NOB-
loaded BCPE

A fork drip test was performed using the IDDSI testing methods
(Hadde and Chen, 2020). The IDDSI framework consists of a
continuum of eight levels (0–7), where flow tests are used in
levels 0–3, while fork drip tests are applied in levels 4–7. Ten
participants were provided with pictures and descriptions of
IDDSI Levels 3–5. The participants then assigned each sample to
an IDDSI category. Each judgment was determined individually
without discussion.

2.8 Lipolysis analysis of NOB in BCPE and
MCT suspension

An in vitro lipolysis study was performed using the Ting et al.
(2015) method. The lipolysis buffer consisted of tris maleate
(50 mM), sodium chloride (150 mM), calcium chloride (5 mM),
NaTDC (5 mM), and phosphatidylcholine (5 mM). Pancreatin
powder (1 g) was added into 5 mL of lipolysis buffer, and then

the well-mixed solution was centrifuged at 2000 rpm for 10 min. The
obtained supernatant was stored on ice until further use. The
simulated small intestinal fluid (SSIF) was mixed with 1 mL of
pancreatin suspension and 9 mL of lipolysis buffer.

For the in vitro lipolysis study, a sample containing 250 mg of
the oil phase was injected into 10 mL of the SSIF. The mixture was
maintained at 37°C ± 1°C and stirred in an oil bath. The pH of the
mixture was adjusted to 7.50 ± 0.02 by titrating with 0.25 N sodium
hydroxide solution. The temperature and pH were kept constant for
2 h. The consumption of sodium hydroxide solution was recorded at
each time point.

After the 2-h lipolysis, the final mixture was ultracentrifuged at
4°C for 60 min at 50,000 rpm using an Optima XE-100
ultracentrifuge (Beckman Coulter Life Sciences, Indianapolis, IN,
USA). After ultracentrifugation, the mixture was separated into
three layers. The upper layer was the undigested oil phase, the
middle transparent layer was the micelle phase containing soluble
NOB, and the bottom was the solid precipitant. The micelle phase
was tested for NOB concentration by HLPC, and its volume
was measured.

A 100-μL aliquot of the micelle phase sample was filtered and
added to 400 μL of methanol. The content of NOB in the micelle
phase was analyzed using HPLC. The bioaccessibility (%) of NOB
was calculated using the following equation:

Bioaccessibility %( ) � total mass of solubilized NOB g( )

totalmass of NOB in original lipid samples g( )
× 100%

2.9 Animal experiment

The animal experiment was performed according to the
previously reported method of Zhang et al. (2020). Young
(6 weeks old) healthy male Sprague-Dawley rats were purchased
from Southern Medical University (Guangdong, China). During a
week of acclimation, all rats were housed in a controlled
environment (about 25°C and 40%–60% relative humidity) with a
12-h light–dark cycle. All rats were fed with Purina Laboratory
Chow 5001 and ad libitum water. Care of the rats followed the
Chinese Government’s Guide for the Care and Use of Laboratory
Animals. The experimental protocol (protocol number: 2019048)
was approved by the Institutional Animal Care and Use Committee
of South China Agricultural University.

Before conducting a pharmacokinetics study, the rats (around
250 g) were fasted overnight and randomly divided into four groups
(five rats in each group). Rats in the first group were orally
administered 100 mg/kg NOB-loaded BCPE using oral gavage,
while rats in the second group were orally administered
100 mg/kg NOB in MCT. Blood samples from eyeballs were
collected at 0.5, 1, 2, 4, 6, 10, and 24 h. The whole-blood samples
were immediately centrifuged at 5,000 rpm at 4°C for 15 min, and
the plasma samples were collected and stored at −80°C before
HPLC analysis.

Prior to HPLC analysis, a plasma sample of 200 μL was mixed
with 20 μL tangeretin (10 μg/mL, methanol solution) as an internal
standard and 20 μL enzymes of β-D-glucuronidase (500 U) and
sulfatase (10 U). The mixture was incubated at 37.8°C for 45 min.
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Then, ethyl acetate of 400 μL was added, and the suspension was
vortexed at 3,000 rpm for 3 min. After centrifugation at
10,000 rpm for 5 min, the supernatant was transferred to a
centrifuge tube. After repeating the steps, the combined
supernatant was dried using flowing nitrogen. Dried samples
were dissolved in 150 μL of 80% methanol in water containing
0.2% acetic acid. The solution was filtered with a 0.22-μm filter
membrane before HPLC analysis.

2.10 UPCL–MS/MS analysis of NOB in
plasma of rat

NOB and its metabolites in the rat plasma were identified using
UPLC−MS/MS (Shimadzu, Kyoto, Japan) consisting of an LC-30AD
and a triple quadrupole linear ion trap mass spectrometer (model
QTRAP 4500) (AB SCIEX, Concord, Canada) based on multiple
reaction monitoring (MRM). An Agilent Poroshell 120 PFP (4.6 ×
150 mm, 2.7 μm) column was used in the detection. The
measurement was performed according to the method previously
reported by Zhang et al. (2020).

2.11 HPLC analysis of NOB in rat plasma

The measurement of NOB concentration in plasma samples was
conducted using an LC-20A HPLC system equipped with a PDA (UV-
VIS) absorption detector (Shimadzu Corporation, Kyoto, Japan) and an
Ascentis RP-Amide reversed-phase HPLC column (15 cm × 4.6 mm id,
3 μm; Sigma-Aldrich, St. Louis, MO, USA), according to the previously
reported method of Zheng et al. (2015) with minor modifications.
Detection wavelength, column temperature, flow rate, and injection

volume were set to 320 nm, 20°C, 1 mL/min, and 30 μm, respectively.
The detection of NOB was performed using a gradient elution of two
complexmobile phases, A andB. Awas 75%water, 20%ACN, 5%THF,
and 50 mM ammonium acetate; B was 50% water, 40% ACN, 10%
THF, and 50 mM ammonium acetate. The pH values of both mobile
phases were adjusted to 3.0 using TFA. The gradient elution using
phases A and B began with 10% B, and then increased to 20%, 40%,
60%, 70%, and 100%B at 3, 8, 23, 29, and 32min, respectively. Then, the
volume percent of phase B was reduced to 10% in 3 min, and detection
was stopped after 1 min. The total elution time was 36 min.

2.12 Statistical analysis

Experiments were conducted in duplicate, and results were
expressed as the mean ± standard deviation (SD). Error bars on
figures represent standard deviations. The Q test with 90%
confidence interval was applied in the rat experiments.

3 Results and discussion

3.1 Fabrication of BCPE

BSA/CMI complexes were prepared before the BCPE was
fabricated. CMI samples with 0.5 degrees of substitution were
synthesized by etherification technology (Figure 1A). A mixed
solution of BSA and CMI complexes at a 5:1 ratio was prepared at
pH 4. DLS analysis showed that the average size of the complexes was
200.33 nm. The transmission electron microscope photograph of the
complex indicated that the complexes were formed by the aggregation
of spherical particles. In our previous study, isothermal titration

FIGURE 1
Structure of inulin and CMI (A), particle size distribution of BSA/CMI complexes (B), and TEM images of BSA/CMI complexes (bar scale = 500 nm) (C).
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microcalorimetry (ITC) data revealed that BSA/CMI complexes were
dominated by enthalpy changes (ΔH < 0, ΔS < 0). Therefore,
electrostatic and hydrogen bonding interactions occurred between
BSA and CMI. CMI was the bridge for the connection of BSA
particles. Raman spectra suggested that the formation of complexes
led to the change in the secondary structure of BSA and to the
aggregation of BSA (Huang et al., 2019). The BSA/CMI complexes
were used to stabilize the Pickering emulsion with an oil phase of 60%
(Li and Huang, 2015). Therefore, BCPE was fabricated based on the
combined mechanisms of BSA and CMI to prevent flocculation and
coalescence (Bouyer et al., 2012).

3.2 Microstructures of BCPE

Figure 2A shows the photographs of BCPEs after 7 days of
preservation. A uniform milky gel-like material was observed,
suggesting that a stable emulsion was fabricated. The microscope
image shows BCPE droplets with an average droplet size of 28 μm.
CLSM measurement of BCPE was performed. The oil and aqueous
phases were stained with curcumin (green) and rhodamine B (red),
respectively. The green globes in Figure 2C indicated that the
Pickering emulsion is an O/W emulsion Figure 2D showed that a
certain thickness aggregated around the oil droplets. This evidence

FIGURE 2
Visual photograph (A) and microscopic image (B) of NOB BSA/CMI-PE (bar scale = 25 μm); CLSM images of BSA/CMI-PE: excitation at 488 nm (C)
and excitation at 543 nm (D). The oil and water phases were stained with curcumin (green) and rhodamine B (red), respectively (bar scale = 30 μm); cryo-
SEM images of BSA/CMI-PE particles (E) and the surface of BSA/CMI-PE particles (F).
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suggests that the BSA/CMI complexes adsorbed on the surface of oil
droplets, and the complexes provided the steric hindrance to stabilize
BCPE (Jiang et al., 2021).

The emulsion samples were quickly frozen using liquid nitrogen.
The water in the samples cooled rapidly and formed amorphous ice.
The emulsion samples were embedded in amorphous ice, and their
state was captured in cryo-SEM images. Typical emulsion droplets
stabilized by BSA/CMI complexes with indentations are exhibited in
Figure 2E. When observed under higher magnification, rod-like
nanoscale particles were absorbed onto the surface of emulsion
droplets (Figure 2F; Xiao et al., 2016). These particles were larger
than pure BSA particles, suggesting that the nanoparticles on the
surface of oil droplets were BSA/CMI complexes. Based on the high
oil content and droplet density, the distance between the oil droplets
is relatively close. The BSA/CMI complexes stabilized the Pickering
emulsion by reducing interfacial energy and shielding oil droplets
from coalescence.

3.3 Textural properties of unloaded and
NOB-loaded BCPEs

An optimal BCPE formulation was used to encapsulate 1%
(w/v) NOB. Its stability was evaluated using rheological

measurements. Dynamic (oscillatory) measurements of BCPE and
NOB-loaded BCPE (NOB-BCPE) were carried out as a function of
frequency. Both the storage modulus G′ and the loss modulus G″ of
BCPE and NOB-BCPE slightly increased with increased frequency,
revealing little dependence on frequency (Figures 3A,B). The
significantly higher G′ than G″ at all frequencies indicated that the
BCPE and the NOB-BCPE formed an interconnected gel-like network
microstructure. The viscoelastic properties of this microstructure led
to the uniform distribution of NOB in BCPE (Sun et al., 2018). The
complex viscosity of BCPE decreased nearly linearly with frequency,
suggesting shear-thinning behaviors. A similar phenomenon was
observed in the rheological properties of a NOB-loaded
nanoemulsion (Zhang et al., 2020). However, this result was in
contrast to the result found with a tangeretin- or a 5-
demethyltangeretin-loaded nanoemulsion or a PMF (tangeretin of
66% andNOB of 23%)-loaded whey protein isolate/pectin complexes-
stabilized Pickering emulsion (Ting et al., 2013; Wijaya et al., 2021).
Therefore, the rheological properties of PMFs-loaded emulsion were
probably associated with the type and concentration of PMFs and the
different kinds of emulsion systems.

FIGURE 3
Plots of storage modulus (G′) and loss modulus (G″) versus
angular frequency for NOB-loaded BSA/CMI-PE (A). Plots of tan δ
versus angular frequency for NOB-loaded BSA/CMI-PE (B). FIGURE 4

In vitro comparison of the lipid digestion kinetics of NOB BCPE
and MS expressed as the amount of NaOH added as a function of time
(A). Comparison of NOB percent bioaccessibility relative to the
original dose in BCPE and MS (B). Data are presented as mean ±
standard deviation (n = 3).

Frontiers in Pharmacology frontiersin.org07

Huang et al. 10.3389/fphar.2024.1375779

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1375779


The 10 participants in the fork drip test experiments identified
the texture values of unloaded and NOB-loaded BCPEs as IDDSI
Level 4. The flowability of the unloaded BCPE was better than that of
the NOB-loaded BCPE. The emulsions could be brought to the back
of the mouth by the tongue for swallowing without being bitten or
chewed. The oral chewing properties of the emulsions could
be ignored.

3.4 In vitro lipolysis model analysis of NOB in
BCPE and MCT suspensions

The bioaccessibility of NOB loaded in BCPE and MCT
suspensions was evaluated using an in vitro lipolysis model
study. The absorption of hydrophobic bioactives was positively
related to their water solubility and stability in the GI tract (Ting
et al., 2015). Lipid-based formulations are developed to improve the
water dispersity and enhance the absorption of hydrophobic
compounds. After digestion in the GI tract, the lipids would be
hydrolyzed and then released as free fatty acids (FFAs). The release
of FFAs promoted the formation of mixed micelles. The mixed
micelles generated in the small intestine, which consist of FFAs and
bile salts, could solubilize hydrophobic compounds for intestinal
transport. The solubilization capacity for NOB was enhanced by the
increase of mixed micelles.

In this in vitro model, the existing FFAs led to decreased
pH in the SSIF. The addition of NaOH could neutralize the FFAs
and maintain the pH at an initial value of 7.50 ± 0.02. The
consumption of NaOH as a function of time can be used to
indicate the rate of lipid digestion (McClements and Li, 2010).
Figure 4A shows the consumption of NaOH solution as a
function of time; most of the lipid digestion of NOB-loaded
BCPE occurred within the first 10 min. By contrast, the BCPE
consumed more than three times the amount of NaOH within the
first 10 min. After 2 h, the final consumption of NaOH in the
BCPE was nearly twice that in the MCT suspension. Figure 4B
shows that the bioaccessibility of NOB was much higher in the
BCPE (82.55% ± 3.97%) than it was in the MCT (43.04% ±
2.84%). The higher bioaccessibility of NOB in the BCPE resulted
from the higher surface area-to-volume ratio and, thus, the
greater extent of lipid hydrolysis of the BCPE than of the
MCT suspension.

Three major factors caused the difference in FFA release from
the BCPE andMCT suspensions. First, BCPE increased the contact
area between the oil droplets and the SSIF. Second, the interfacial
properties were altered by the BSA/CMI complexes. The
complexes absorbed on the droplet surfaces and formed a
thicker layer to prevent the flocculation and coalescence of oil
droplets in the small intestine digestion fluid (McClements, 2018;
Wijaya et al., 2021). Third, although the digested BSA probably
released peptides, amino acids, and some protons (H+), which
might lead to an over-estimate of the actual value of released FFA,
the peptides or amino acids could favor the formation of mixed
micelles (Wijaya et al., 2020). Accordingly, BCPE could enhance
the bioaccessibility of NOB proportionally to the rate and extent of
lipid digestion (Ting et al., 2015). Due to the liposolubility at the
concentration of 1.2% (w/v), the first-pass effect of NOB could
be enhanced.

3.5 In vivo animal model analysis of NOB in
BCPE and MCT suspensions

The biological activity of NOB is associated with intake and
bioavailability, depending on its absorption, metabolism, and
excretion in the human body. After absorption in the small
intestine, NOB underwent phase I and II metabolisms. In these
two phases, NOB was converted into sulfates, glucuronides, and
methylated metabolites in the small intestine. The metabolites of
NOB, consisting of 3′,4′-DDMN, 3′-DMN, and 4′-DMN, formed.
The metabolites pass to the portal vein and liver before entering the
blood and being excreted in urine (Arshad et al., 2023). Because the
Pickering emulsion might lead to a slow release and because its
ingredients could affect enzymatic activity, NOB and its major
metabolites were identified and detected in serum (Ting et al.,
2015; Wan et al., 2020). After a single oral administration of
NOB (100 mg/kg) in either BCPE or MCT suspension, the
distinctive pharmacokinetic profiles of NOB and its metabolites
of 4′-DMN, 3′-DMN, 3′,4′-DDMN, and 5-demethylnobiletin in rats
were confirmed by UPLC-MS/MS at 6 h. 3′-DMN and 4′-DMN
were further identified by HPLC-DAD. NOB and its metabolites
were detected by HPLC-DAD at 0.5, 1, 2, 4, 6, 10, and 24 h.

After the conjugates of NOB and its metabolites were treated by
enzymes, mass spectral data were obtained with the ESI positive-ion
mode under different collision voltages. NOB and its metabolites
were observed at 0.5 h after oral administration, suggesting the
absorption and metabolism of NOB. NOB and 4′-DMN had the
highest concentrations within 24 h in all plasma samples, compared
to the other metabolites, illustrating that 4′-DMN was the major
metabolite. This result was similar to the metabolites identified in
the urine of mice fed with NOB after absorption in the small
intestine and liver metabolism (Li et al., 2006b; Zheng et al.,
2013). 4′-DMN, 3′-DMN, and 5-demethylnobiletin were
converted from NOB directly, while 3′,4′-DDMN was converted
from 4′-DMN and 3′-DMN (Figure 5). The MRM LC-MS/MS
spectrum indicated that a small amount of 5,4′-
didemethylnobiletin (8.8 min) and an unknown demethylated
NOB (5.3 min) were present.

The concentration kinetics of NOB and its major metabolite,
4′-DMN, in rat plasma after oral administration of NOB were
monitored for 24 h (Figure 6). The pharmacokinetic parameters
are summarized in Table 1. The highest peak appeared at a similar
time in the NOB-loaded MCT suspension (1.216 ± 0.422 h) and
the BCPE (1.152 ± 0.378 h), suggesting that the rates of absorption,
metabolism, and excretion were about the same at Tmax. However,
the plasma Cmax of NOB-loaded BCPE (0.936 ± 0.220 μg/mL) was
much higher than that of the NOB-loaded MCT suspension
(0.532 ± 0.094 μg/mL) at this time. Combined with the in vitro
results, these findings suggest that BCPE might enhance
bioavailability by improving aqueous solubility and controlling
release. The plasma concentration of NOB delivered by the MCT
suspension dropped dramatically at around 4 h, while the plasma
concentration of NOB delivered by BCPE had little change. Then,
the plasma concentration of the NOB-loaded BCPE reached a
second peak at 6 h. In the TIM-1 GI study of the PMF-loaded whey
protein isolate/pectin complexes-stabilized Pickering emulsion,
the concentration of NOB in the emulsion reached a peak after
3 h of digestion and then decreased (Wijaya et al., 2020). This
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phenomenon revealed that BCPE had a sustained release effect.
The AUC0–24 of NOB in the MCT suspension (6.84 ± 1.48 h*μg/
mL) and BCPE (14.19 ± 1.67 h*μg/mL) were significantly different.
The relative bioavailability of NOB loaded in BCPE was 2.07 times
higher than that suspended in MCT over 24 h. Plasma

concentrations of NOB in both BCPE and MCT suspensions
returned to similar levels at 24 h.

In the plasma concentration–time curve, the plasma
concentration data suggest a two-compartment model. The
extended release of NOB delivered by BCPE could be associated
with the viscoelasticity and viscosity of BCPE (Ting et al., 2015). In
addition, the composition of the emulsion stabilizer might
contribute to different absorption and metabolism rates of NOB
(Dickinson, 2009).

The clearance of 4′-DMN in the plasma might be due to 1)
further biotransformation to other metabolites, 2) delivery into
targeted organs, and 3) excretion in urine. Compared with the in
vivo biotransformation results of NOB in conventional
emulsion, the different pattern of 4′-DMN in rat plasma
observed in this study suggested that the emulsion types
could be an important factor for the biotransformation
in vivo (Zhang et al., 2020). Due to the properties of the
Pickering emulsion, the particles or complexes were difficult
to detach from the interface of water and oil. Therefore, the
Pickering emulsion was considered to have a higher stability
than conventional emulsions. The complexes consisted of CMI,
an anionic derivative of inulin. Given that CMI could be digested
by gut microbiota, the upward trend of plasma 4′-DMN within
10–24 h might result from microbial biotransformation and
reabsorption from the colon. Future encapsulation strategies
might utilize prebiotics as the building blocks of delivery
systems to benefit the gut microbiota.

Figure 7 shows the plasma concentration of 4′-DMN after oral
administration of NOB in BCPE and unformulated MCT over

FIGURE 5
LC-MS/MS profile of 3′,4′-DDMN (1), 3′-DMN (2), 4′-DMN (3), NOB (4), tangeretin (5), and 5-demethylnobiletin (6) in plasma at 6 h after oral
administration.

FIGURE 6
Profiles of plasma concentration of NOB as a function of time
after oral administration of 100 mg/kg in the form of BCPE (solid line)
and MS (dashed line). Data from five rats are presented as mean ±
standard deviation.

Frontiers in Pharmacology frontiersin.org09

Huang et al. 10.3389/fphar.2024.1375779

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1375779


24 h. A much higher level of 4′-DMN was observed in rats
receiving BCPE than in rats receiving the MCT suspension,
suggesting a higher metabolic rate for NOB-loaded in BCPE
than for the MCT suspension. In particular, the concentration
of 4′-DMN exhibited an upward trend from 10 h to 24 h. This
trend was different from the result of in vivo experiments of
untreated NOB; the concentration of 4′-DMN sharply decreased
from 10 h to 24 h, and 4′-DMN could not be detected in any organ
after 24 h, suggesting that BCPE could prolong the residence time
of 4′-DMN (Murakami et al., 2002). Such an upward trend of 4′-
DMN was not observed in rats receiving the NOB-loaded
conventional emulsion (Ting et al., 2015; Zhang et al., 2020).
This pattern was probably attributed to the biotransformation
of NOB in serum at 6 h, which was the second peak of digestion
(Figure 6). Therefore, BCPE could alter the host’s
biotransformation of NOB.

4 Conclusion

NOB-loaded BCPE was fabricated, and its swallowing and
digestive characteristics were evaluated in this study. The
characteristics of NOB-loaded BCPE were observed as follows:
1) based on the IDDSI framework, NOB-loaded BCPE was semi-
solid and could be swallowed without being chewed. This
property could reduce the contact time between NOB and the
taste buds to lower the impact of bitterness. In addition, NOB was
distributed inside the emulsion, and the ingredients in the water

phase might distract from any off-flavor or trigeminal effect. 2)
The in vitro digestion model revealed that BCPE could enhance
the bioaccessibility of NOB by accelerating lipid digestion and
micelle formation. 3) The in vivo animal study revealed that the
plasma concentration of NOB in rats was enhanced after the oral
administration of NOB-loaded BCPE. CMI could not be
degraded by pepsin, CMI protected BSA from proteolysis, and
sustained release of NOB-loaded in BCPE was achieved. 4) The
biotransformation content of the major metabolite (4′-DMN) in
rat plasma was promoted. BCPE might enhance the
bioavailability and promote the biotransformation content of
major metabolites by adjusting the micelle formation and
intestinal permeability.

The swallowing and digestive profile of BCPE was
characterized by the IDDSI framework model, an in vitro
digestion model, and an in vivo animal model, which is
useful for precisely applying the system to natural products.
According to the results, BCPE might be a potential functional
food matrix that can be shaped as needed. It might be a
good delivery system for hydrophobic and bitter
natural products.
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TABLE 1 Pharmacokinetic parameters of NOB in rats after oral administration.

Formulation NOB dose (mg/kg) Tmax (hr) Cmax (μg/mL) AUC0–24 (hr × μg/mL) Relative bioavailability

MCT suspension 100 1.216 ± 0.422 0.532 ± 0.094 6.84 ± 1.48 2.07

Emulsion 100 1.152 ± 0.378 0.936 ± 0.220 14.19 ± 1.67

FIGURE 7
Profiles of plasma concentration of 4′-DMN as a function of time
after oral administration of 100 mg/kg in the form of BCPE (solid line)
and MS (dashed line), respectively. Data from five rats are presented as
mean ± standard deviation.
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