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Background: Prostate cancer is a leading cause of cancer-related deaths among
men, marked by heterogeneous clinical and molecular characteristics. The
complexity of the molecular landscape necessitates tools for identifying multi-
gene co-alteration patterns that are associated with aggressive disease. The
identification of such gene sets will allow for deeper characterization of the
processes underlying prostate cancer progression and potentially lead to novel
strategies for treatment.

Methods: We developed ProstaMine to systematically identify co-alterations
associated with aggressiveness in prostate cancer molecular subtypes defined
by high-fidelity alterations in primary prostate cancer. ProstaMine integrates
genomic, transcriptomic, and clinical data from five primary and one
metastatic prostate cancer cohorts to prioritize co-alterations enriched in
metastatic disease and associated with disease progression.

Results: Integrated analysis of primary tumors defined a set of 17 prostate cancer
alterations associated with aggressive characteristics. We applied ProstaMine to
NKX3-1-loss and RB1-loss tumors and identified subtype-specific co-alterations
associated with metastasis and biochemical relapse in these molecular subtypes.
InNKX3-1-loss prostate cancer, ProstaMine identified novel subtype-specific co-
alterations known to regulate prostate cancer signaling pathways including
MAPK, NF-kB, p53, PI3K, and Sonic hedgehog. In RB1-loss prostate cancer,
ProstaMine identified novel subtype-specific co-alterations involved in p53,
STAT6, and MHC class I antigen presentation. Co-alterations impacting
autophagy were noted in both molecular subtypes.

Conclusion: ProstaMine is a method to systematically identify novel subtype-
specific co-alterations associated with aggressive characteristics in prostate
cancer. The results from ProstaMine provide insights into potential subtype-
specific mechanisms of prostate cancer progression which can be formed into
testable experimental hypotheses. ProstaMine is publicly available at: https://
bioinformatics.cuanschutz.edu/prostamine.
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1 Introduction

Prostate cancer (PCa) is the second most common cancer in
men and the fourth most common cancer overall. In terms of
mortality, PCa accounts for the fifth-most deadly cancer in men
worldwide (Sung et al., 2021). Prostate cancer is a highly
heterogeneous disease in both its clinical presentation and
molecular features (Boyd et al., 2012). This heterogeneity makes
it difficult to anticipate outcomes of newly diagnosed patients, where
the vast majority of patients with localized disease will have little
impact on overall survival; however, an unknown subset of 10%–

15% of patients will progress with aggressive disease. The genomic
landscape of PCa has been well-defined, with alterations, such as the
TMPRSS2:ERG fusion (Tomlins et al., 2005; Taylor et al., 2010);
SPOP mutations (Barbieri et al., 2012; Abeshouse et al., 2015); and
the losses of NKX3-1 (Emmert-Buck et al., 1995; Abdulkadir et al.,
2002), CHD1 (Augello et al., 2019), MAP3K7 (Wu et al., 2012), and
PTEN (Cairns et al., 1997; Wang et al., 2003), playing a role in
disease development but none sufficient to drive PCa in men to
become metastatic. With the exception of AR amplifications in
castration-resistant and metastatic tumors (Abeshouse et al., 2015;
Abida et al., 2019), few alterations are enriched or consistently
associated with metastatic disease alone.

Recent efforts have focused on understanding how multiple
alterations interact to drive aggressive PCa. In genetically
engineered mice, co-loss of RB1 and PTEN facilitates lineage
plasticity and metastasis, and additional deletion of TP53
promotes therapeutic resistance (Ku et al., 2017; Mu et al.,
2017). In tumor xenograft studies, a combined alteration of
RB1 and TP53 drives increased tumor growth, stem-like
features, and therapeutic resistance to multiple antiandrogens
(Nyquist et al., 2020). Co-occurring deletion of MAP3K7 and
CHD1 is another example of coordinating interactions; this dual
loss drives aggressive phenotypes both in vitro and in vivo,
contributes to increased ARv7 expression, and is highly
enriched in brain metastases (Rodrigues et al., 2015; Ormond
et al., 2019; Jillson et al., 2021). These results indicate that
aggressiveness in PCa is driven by the combination of multiple
genomic loci, predominantly the loss of multiple tumor
suppressors. These findings also suggest that the specific
combination of alterations is important for disease
development. There is a need to identify the genetic
interactions that contribute to the progression of primary
prostate cancer into metastatic disease in a molecular subtype-
specific manner.

To systematically address this need, we developed a tool,
ProstaMine, that integrates molecular and clinical data from
multiple, independent PCa cohorts to identify co-alterations
associated with molecular subtypes defined in primary disease
that are enriched in metastasis and promote biochemical
relapse. We leverage five primary PCa cohorts to identify
putative molecular features, which we then use to find
enriched co-alterations in a cohort of metastatic disease.
We demonstrate our approach in PCa defined by the loss
of NKX3-1 or RB1 and make ProstaMine publicly accessible
to evaluate user-defined subtypes through a user-friendly
R Shiny application (https://bioinformatics.cuanschutz.edu/
prostamine).

2 Materials and methods

2.1 Data sources and processing

Genomic, transcriptomic, and clinical data analyzed in this
study were from primary and metastatic tumors profiled in the
literature (Taylor et al., 2010; Barbieri et al., 2012; Baca et al., 2013;
Hieronymus et al., 2014; Abeshouse et al., 2015; Abida et al., 2019).
We selected these studies based on the availability of copy number
alteration (CNA), gene expression, and clinicopathologic data
(Supplementary Figure S1). The curatedPCaData R package
(v.0.99.4), which provides harmonized data and common,
updated gene annotation across 19 independent PCa cohorts, was
used to access all genomic, transcriptomic, and clinicopathologic
data. CuratedPCaData allowed us to perform consistent and robust
downstream analysis with details on methods and curation available
in Laajala et al. (2023). Copy number data comprise discretized
GISTIC2 calls (Mermel et al., 2011). Gene expression data are
normalized counts transformed into z-scores relative to other
tumor samples from the same study. Tumor grade data are based
on the Gleason scoring system, and tumor stage data are based on
the TNM staging system.

2.2 Alteration landscape and
alteration hotspots

Copy number alteration gains (Gains) were defined as genes
with a GISTIC value >0. Copy number alteration losses (Losses)
were defined as genes with a GISTIC value <0 and/or genes with
single-base substitutions having a predicted damaging effect on
protein function, as computed by SIFT or PolyPhen-2 (Ng and
Henikoff, 2003; Adzhubei et al., 2010). Gene alteration frequency
was computed as the ratio of tumors with the alteration of the gene
to the total number of tumors. The ratio of tumors covered was
determined for each set of genes captured by alteration frequency
cut-offs between 0 and 1. At each cut-off, coverage was calculated by
the number of tumors with the alteration of at least one gene in the
set to the total number of tumors. Alteration hotspots were defined
as the contiguous loci containing five or more genes above a 10%
alteration frequency cut-off. Visualization of the alteration
landscape and alteration hotspots was done using the karyoploteR
R package (v.1.22.0).

2.3 Alteration heatmap

A total of 17 alteration hotspot regions were selected based on
the criteria from Section 2.2. Through manual inspection, we noted
the alteration hotspots harbored genes with known involvement in
prostate cancer or cancers of other tissues and that these genes were
located either directly at or near the peak of the alteration hotspot.
We selected a single cancer-associated gene to represent each of the
PCa17 hotspots and then consensus clustering spanning k = 2 to k =
6 to identify the four subgroups (A-high, CG-1, CG-2, and A-low;
Supplementary Figure S2). Between k = 4 and k = 5, we noted a
marginal change in the area under the CDF curve. Cluster
memberships at k = 4 indicated four stable clusters each holding
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a robust number of patients (Supplementary Figure S2). We selected
k = 4 as the distinct number of molecularly defined primary tumor
subgroups. Clustering analysis was performed using the
ConsensusClusterPlus R package (v.1.64.0), and the alteration
heatmap was generated using the ComplexHeatmap R
package (v.2.12.0).

2.4 Mutual exclusivity

Mutual exclusivity was calculated using Fisher’s exact test for all
pairwise combinations of CHD1, MAP3K7, LRP1B, ERG, SHQ1,
TP53, HDAC5, and PTEN alterations. The ComplexHeatmap R
package (v.2.12.0) was used to visualize mutual exclusivity
analysis across all primary tumors.

2.5 Survival analysis

The Kaplan–Meier analysis was performed using progression-free
survival data from TCGA and Taylor studies (Taylor et al., 2010;
Abeshouse et al., 2015), as reported in the curatedPCaDataR package.
The survival R package (v.3.5–7) was used to fit Cox proportional
hazards models and compute statistics for progression-free survival
times between groups using the logrank test. The survminerR package
(v0.4.9) was used to visualize survival curves.

2.6 ProstaMine algorithm

ProstaMine first subsets the alteration data into two groups:
patient tumors that are wild-type, or diploid, for the selected
alteration (WT tumors) and patient tumors harboring the
selected alteration, or the selected subtype (ST tumors). This
results in four tumor groups for downstream analysis including
the following: WT primary tumors, ST primary tumors, WT
metastatic tumors, and ST metastatic tumors. After defining
groups, the algorithm proceeds in three sequential steps: 1)
genomic analysis, 2) transcriptomic analysis, and 3) clinical analysis.

For genomic analysis, primary and metastatic alteration data were
used to calculate alteration frequencies for Gains and Losses. Fisher’s
exact test was used to compute the statistical enrichment of alterations
between the four tumor groups. Alterations present at a frequency of 2%
or greater in ST primary tumors compared toWTprimary tumors were
captured and defined as primary tumor subtype co-alterations. Primary
tumor subtype co-alterations that were present at a frequency of 2% or
greater in ST metastatic tumors compared to ST primary tumors were
selected for further analysis. Hits from the genomic analysis can be
filtered above the 2% baseline by adjusting the primary co-alteration
frequency difference and metastatic co-alteration frequency difference
filtering parameters in the ProstaMine application.

For transcriptomic analysis, differential gene expression was
computed by comparing the mean expression of primary ST tumors
with and without the alteration and metastatic ST tumors with and
without the alteration. Gains with a negative fold change in gene
expression and Losses with a positive fold change in gene expression
in primary and metastatic tumors were removed from the analysis.
Statistical significance for the difference in gene expression was

computed using a Student’s t-test. Hits from the transcriptomic
analysis can be filtered by adjusting the concordant DGE FDR
filtering parameter in the ProstaMine application.

For clinical data analysis, ProstaMine computed the association of
each alteration’s gene expression with the Gleason grade group and
progression-free survival. For each alteration, ST and WT primary
tumors were median-stratified by gene expression into upper and
lower groups. A Fisher’s exact test was used to compute the
enrichment of the Gleason grade group ≥ 8 in the upper versus
lower groups. The logrank test was used to compute statistical
differences in progression-free survival times between these same
groups. Alterations lacking concordant Gleason grade group
enrichment and progression-free survival differences were
removed. Alterations lacking concordant metastasis and
progression-free survival associations were also removed.
Alterations with a survival difference of p ≤ 0.2 in ST tumors and
p ≥ 0.3 in WT tumors were captured as hits. Hits from the clinical
analysis can be filtered below the p = 0.2 baseline by adjusting the
survival p-value filtering parameter in the ProstaMine application.

We developed a prioritization scheme for ProstaMine hits. The
effect size for each hit in primary co-alteration, metastasis, and
progression-free survival was ranked and then normalized by the
total number of hits (Eq. 1). The final score of subtype-specific
aggressiveness was calculated by weighting the normalized rank for
the co-alteration frequency difference in ST primary tumors, co-
alteration frequency difference in ST metastatic tumors, and
association with progression-free survival (Eq. 2):

Normalized Rank � 1 − RankOrder/TotalNumber ofHits( ),

(1)
ProstaMine ScoreHit � 0.3 ·Normalized RankPrimaryAlteration frequency

+ 0.3 ·Normalized RankMetastatic Alterationfrequency

+ 0.4 ·Normalized RankSurvival p−val,

(2)

2.7 Analysis of NKX3-1-loss and RB1-loss
prostate cancer

For NKX3-1-loss and RB1-loss prostate cancer, we set
ProstaMine filtering parameters as follows: primary and
metastatic Co–alteration rate difference = 0.05, primary and
metastatic co-alteration FDR = 0.05, primary and metastatic
DGE FDR = 0.2, and survival p-val = 0.05. For enrichment
analysis in Metascape, we used the default settings for the
Metascape’s Express Analysis option (Zhou et al., 2019).

2.8 Data and code availability

All genomic, transcriptomic, and clinicopathologic data used in
this study are accessible through the curatedPCaData R package
(Laajala et al., 2023). The corresponding code generated for
performing all of the analyses in this study, creating ProstaMine
and the Shiny application, is available at: github. com/MikeOrman/
ProstaMine-Publication.git. ProstaMine is made available at: https://
bioinformatics.cuanschutz.edu/prostamine.

Frontiers in Pharmacology frontiersin.org03

Orman et al. 10.3389/fphar.2024.1360352

https://bioinformatics.cuanschutz.edu/prostamine
https://bioinformatics.cuanschutz.edu/prostamine
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1360352


3 Results

3.1 Alteration frequencies in primary
prostate cancer reveal high-confidence
alteration hotspots

We first verified that the molecular data published across
independent molecular profiling studies consistently identified bona
fide PCa gene alterations using the Taylor et al. (2010), Baca et al.
(2013), Barbieri et al. (2012), Hieronymus et al. (2014), and TCGA
cohorts (Supplementary Figure S1) (Taylor et al., 2010; Barbieri et al.,
2012; Baca et al., 2013; Hieronymus et al., 2014; Abeshouse et al., 2015).
Alteration data from these five profiling studies were harmonized into a
singular alteration matrix containing 15,869 genes across 921 primary

PCa tumors. We calculated the somatic alteration frequency for each
gene to define the PCa alteration landscape (Figure 1A).

The peaks observed in the genomic landscape span distinct
genomic intervals (Figure 1A). To systematically identify these
alteration hotspots, we computed the ratio of tumors covered by
alterations meeting a given alteration frequency cut-off (Figure 1B).
We observed a sharp decline in the number of genes captured at an
alteration frequency cut-off of 10% and found that 93% of tumors
were included at this cut-off. Using this threshold, we defined
17 alteration hotspots corresponding with the peaks depicted in
the Figure 1A alteration landscape. Alteration hotspots captured
3,373 genes covering the following 17 chromosomal locations: 2q14-
2q23, 3p13, 3q22-3q26, 5q11-5q23, 6q12-6q22, 7, 8p11-8p23, 8q11-
8q24, 10q22-10q26, 12p12-12p13, 13q12-13q34, 16q12-16q24,

FIGURE 1
Integrated analysis of five independent molecular profiling studies in primary prostate was performed to generate (A) a combined alteration
landscape of primary prostate cancer tumors and determine (B) primary tumor coverage over a range of alteration frequency cut-offs. An alteration
frequency cut-off of 10% captured (C) 17 characteristic regions of alteration with each region harboring a canonical cancer-associated gene used to
define the prostate cancer-17, or PCa17.
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17p11-17p13, 17q21, 18q11-18q23, 21q22, and 22q13 (Figure 1C).
These alteration hotspots were in agreement with previously
reported regions of loss and gain measured in PCa tumors
(Carter et al., 1990; Gao et al., 1995; Latil et al., 1997; Kibel et al.,
1998; Ozen et al., 1998; Erbersdobler et al., 1999; Alers et al., 2000;
Sattler et al., 2000; Dai et al., 2001; Verhagen et al., 2002; van Dekken
et al., 2003; Paris et al., 2004; Ueda et al., 2005; Perner et al., 2006;
Saramäki et al., 2006; Camp et al., 2007; Liu et al., 2007; Scheble et al.,
2010; Kluth et al., 2018; 2015; Hieronymus et al., 2017). We found
that each alteration hotspot harbored at least one cancer-associated
gene that was present either directly at or very near the peak
alteration frequency of the hotspot. We reasoned that grouping
primary PCa tumors by these high-fidelity, cancer-associated

alterations could be a powerful approach to stratify primary
tumor aggressiveness in PCa. Thus, we selected a single cancer-
associated gene to define each of the 17 alteration hotspots; we
named this set of genes prostate cancer-17, or PCa17 (Figure 1C).

3.2 PCa17 alterations stratify primary
prostate cancer tumors into four subgroups
that associate with aggressive
clinical features

We used the PCa17 alteration profiles and consensus
clustering to define four distinct tumor subgroups (Figure 2A).

FIGURE 2
(A) Clustering primary prostate cancer tumors by PCa17 alterations defines four tumor subgroups with low overall alteration (A-Low), high overall
alteration (A-High), and two distinct patterns of co-alteration (CG-1 and CG-2). (B) Mutual exclusivity analysis of TP53, PTEN, ERG, HDAC5, SHQ1,
MAP3K7, CHD1, and LRP1B alterations across all primary tumors using Fisher’s exact test (*FDR<0.05). (C) Progression-free survival and proportional
hazard ratios with 95% confidence interval comparing the tumor subgroups (A-High, CG-1, and CG-2) to A-Low in TCGA dataset. The logrank test
was used to test for differences in progression-free survival times between groups. (D) Tumor grade and stage data for the four tumor subgroups. Fisher’s
exact test was used to test for the enrichment of Gleason grade ≥8 and T2+ tumors for each tumor subgroup versus all other tumors
(***FDR<0.001, ****FDR<0.0001).
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One subgroup had a reduced number of overall alterations
(A-Low, blue). Conversely, a second subgroup was
characterized by a high number of alterations (A-High,
orange) (Figure 2A). Certain alterations were enriched in one
of the two remaining groups, co-alteration group 1 (CG-1, red)
and co-alteration group 2 (CG-2, green) (Figure 2A). Alterations
in ERG, PTEN, SHQ1, TP53, and HDAC5 were depleted in CG-1
tumors at a frequency of 4%–13% and enriched in CG-2 tumors at
a frequency of 48%–51%. Alterations in MAP3K7, CHD1, and
LRP1B were enriched in CG-1 tumors at a frequency of 54%–63%
and depleted in CG-2 tumors at a frequency of 9%–11%
(Figure 2A). Given the patterns of enrichment and depletion
observed in subgroups CG-1 and CG-2, we also tested for the co-
alteration of MAP3K7/CHD1/LRP1B and ERG/PTEN/SHQ1/
TP53/HDAC5 across all primary tumors. We found that
MAP3K7, CHD1, and LRP1B alterations formed a set of
significantly co-occurring alterations (Figure 2B), while ERG,
TP53, HDAC5, PTEN, and SHQ1 alterations constituted a
second set of significantly co-occurring alterations (Figure 2B).
NKX3-1 and RB1 were the most commonly altered genes in
A-Low tumors at a 12% frequency. In CG-1, CG-2, and
A-high tumors, the NKX3-1 alteration frequency increased to
61%–84%, and the RB1 alteration frequency increased to 36%–

75% (Figure 2A).
We analyzed associations between tumor subgroups and

clinicopathologic features used in PCa staging. Survival
analysis in TCGA dataset indicated that A-High tumors were
the most likely to experience biochemical relapse over a 5-year
period, followed by CG-1 and CG-2 tumors relative to A-Low
tumors (Figure 2C). In the Taylor et al. dataset, we also found that
CG-1 and CG-2 tumors were more likely to experience
biochemical relapse over a 5-year period relative to A-Low
tumors, although at modest significance (Supplementary
Figure S3). Analysis of tumor grade and stage revealed that
A-Low tumors were depleted of high-grade tumors (Gleason
grade group ≥8), while A-High tumors were enriched with
high-grade and T2+ tumors. CG-1 and CG-2 tumors displayed
intermediate levels of tumor grade (Figure 2D). Clinical data on
lymphatic spread (N1) showed enrichment in A-High tumors
(Supplementary Figure S4). We also assessed the genomic
instability of each group by the total number of CNAs. A-Low
tumors had the least amount of CNAs relative to the other
subgroups, while A-High tumors harbored the most CNAs
(Supplementary Figure S4). Overall, these results show that
grouping primary prostate cancer tumors by PCa17 alterations
can stratify them into groups of less aggressive (A-Low) to
intermediate (CG-1 and CG-2) to more aggressive
characteristics (A-High).

3.3 ProstaMine: a computational tool for
data mining subtype-specific co-alterations
associated with PCa aggressiveness

Analysis of primary tumors confirmed many high-abundance
molecularly defined subtypes in PCa. Considering the high
abundance of these subtypes in primary PCa tumors, our goal
was to define additional co-occurring alterations that may

cooperate with these common single-genomic alterations to
promote aggressive disease. We developed ProstaMine to be a
publicly accessible bioinformatics tool that prioritizes subtype-
specific co-alterations associated with metastasis and biochemical
relapse in PCa. ProstaMine integrates tumor data on somatic CNAs,
single-base substitutions, gene expression, biochemical relapse, and
Gleason grade group across six independent PCa cohorts.
ProstaMine leverages these data to identify co-alterations
associated with aggressive tumors from molecularly defined Loss
and Gain subtypes (Figure 3).

ProstaMine has the capability to mine any user-selected
molecular subtype. Molecular alterations occurring early in
tumor evolution are particularly good for ProstaMine because
these subtypes are likely to contain many co-alterations that push
the subtype into an aggressive state over the course of tumor
development and progression. Recent work has shown that
NKX3-1 and RB1 copy number losses are among the first
alterations to occur in the evolution of prostate cancer
(Espiritu et al., 2018). We reasoned that there are co-
alterations that coordinate with NKX3-1 and RB1 losses to
drive tumor progression, and we can use ProstaMine to find
these co-alterations.

3.3.1 Co-alterations associated with
aggressiveness in NKX3-1-loss prostate cancer

In NKX3-1-loss tumors, ProstaMine identified 73 Loss co-
alterations distributed across 16 chromosomal locations: 1p13-
1p34, 2q37, 4p15-4p16, 5q12-5q23, 6q13-6q27, 9p24, 10q11-
10q26, 11q22, 12p11-12p13, 13q12-13q33, 15q21-15q25, 16q13-
16q24, 17p13, 18q12-18q23, 20p11, and 22q11-22q12
(Figure 4A). The third ranked single gene hit identified by
ProstaMine was GSTO2, followed by SMAD4 and MT1M, which
were ranked sixth and eighth, respectively. GSTO2 and MT1M
have been described as tumor suppressors in cancer, and SMAD4 is
listed as a tumor suppressor gene in the COSMIC Cancer Gene
Census (Mao et al., 2012; Sondka et al., 2018; Terayama et al., 2020;
Xu et al., 2020; Li et al., 2021, 2023; Sumiya et al., 2022).
GSTO2 and MT1M functions have not been reported as factors
in PCa progression, whereas loss of SMAD4 function has been
shown to drive tumor growth and metastasis (Ding et al., 2011).
Losses of GSTO2, SMAD4, and MT1M were significantly enriched
in NKX3-1-loss primary tumors at a frequency of 10%–19% above
primary WT tumors (Figure 4B). These alterations were enriched
in metastatic NKX3-1-loss tumors at a frequency of 18%–29%
above primary NKX3-1-loss tumors (Figure 4B). GSTO2, SMAD4,
and MT1M co-alterations also had concordant and significantly
reduced gene expression in primary and metastatic NKX3-1-loss
tumors (Supplementary Figure S5B). Reduced gene expression of
GSTO2, SMAD4, and MT1M was significantly associated with
shorter time to biochemical relapse in NKX3-1-loss tumors but
not in NKX3-1-WT tumors (Figure 4C). Reduced gene expression
of GSTO2, SMAD4, and MT1M was also significantly associated
with high-grade tumor histology (Gleason grade group ≥ 8) in
NKX3-1-loss tumors (Supplementary Figure S5C).

GSTO2 encodes a glutathione transferase involved in
cellular detoxification. GSTO2 functions as a tumor
suppressor through p38-mediated MAPK signaling in
esophageal and squamous skin cell carcinoma (Terayama
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et al., 2020; Sumiya et al., 2022). SMAD4 encodes a transcription
factor serving as the central regulator of the TGFb-activated and
BMP4-activated SMAD signaling pathways. SMAD4 provides a
barrier to metastatic progression in PTEN-null mouse prostates,
and when deleted, it drives highly aggressive prostate cancer
that metastasizes to the lymph node and lung (Ding et al., 2011).
MT1M encodes a metallothionein protein that functions as a
tumor suppressor by downregulating the NF-kB pathway
activity and subsequent proliferation in hepatocellular
carcinoma (Mao et al., 2012). In lung carcinoma, MT1M
overexpression inhibits cell viability and migration through
MDM2/p53 signaling, and in esophageal carcinoma, it
inhibits the epithelial–mesenchymal transition (EMT)
through the SOD1/PI3K signaling axis (Xu et al., 2020; Li
et al., 2021). Taken together, the tumor suppressive
mechanisms of GSTO2 and MT1M in these contexts suggest
that p38, NF-kB, MDM2/p53, and SOD1/PI3K signaling may be
contributing to aggressiveness in NKX3-1-loss tumors.

Pathway analysis of ProstaMine hits for NKX3-1-loss tumors
identified several enriched signatures that are related to fatty acid
metabolism, metabolism of lipids, and autophagy (Supplementary
Figure S5A) (Zhou et al., 2019). In prostate cancer, altered fatty
acid metabolism provides additional substrates for growth and

signaling molecules that promote cancer cell proliferation,
invasion, metastasis, and immune evasion. These processes are
mediated by a number of molecular players including AR, PTEN/
PI3K/AKT, c-Myc, and AMPK (Sena and Denmeade, 2021). In
healthy tissues, autophagy controls the recycling of cellular
material to maintain homeostasis; however, in PCa, the role of
autophagy is contextual, and it can have both tumor suppressive
and promotional effects (Loizzo et al., 2022). Taken together,
pathway analysis of ProstaMine hits in NKX3-1-loss tumors
suggests that dysregulated fatty acid metabolism and autophagy
are important processes contributing to aggressiveness in NKX3-
1-loss PCa.

3.3.2 Co-alterations associated with
aggressiveness in RB1-loss prostate cancer

In RB1-loss tumors, ProstaMine identified 42 co-alterations
distributed across 14 chromosomal locations: 1p13-1p34, 2p22,
4p16, 5q22, 8p21-8p23, 9p24, 10p13, 10q25-10q26, 11q23-11q24,
15q21-15q25, 16q11-16q24, 18q21, 19q13, and 22q11-22q12
(Figure 5A). The top ranked hit was CHMP1A, followed by
B2M and RSU1 which were ranked 11th and 23rd, respectively
(Figure 5A). B2M, CHMP1A, and RSU1 functions have not been
linked to PCa progression. These genes have all been reported to

FIGURE 3
ProstaMine is a bioinformatics tool that integrates molecular and clinical data across six independent molecular profiling studies to determine a
ranked list of subtype-specific co-alterations associated with aggressive features in prostate cancer.
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be tumor suppressors (Li et al., 2009; 2008; Gkretsi et al., 2019;
Louca et al., 2019; Wang et al., 2021). CHMP1A, B2M, and RSU1
loss alterations were significantly enriched in RB1-loss primary
tumors at a frequency of 7%–18% above RB1-WT primary tumors
and were significantly enriched in RB1-loss metastatic tumors at a
frequency of 16%–23% above RB1-loss primary tumors
(Figure 5B). CHMP1A and RSU1 loss alterations had
significantly reduced concordant gene expression in primary
and metastatic RB1-loss tumors (Supplementary Figure S6B).
B2M loss alterations also showed a concordant reduction in

gene expression but at moderate significance (Supplementary
Figure S6B). Reduced gene expression of CHMP1A, B2M, and
RSU1 was significantly associated with decreased time to
biochemical relapse in RB1-loss tumors but not in RB1-WT
tumors (Figure 5C). Low B2M gene expression was significantly
associated with high-grade tumor histology in RB1-loss tumors
(Supplementary Figure S6C). RB1-loss tumors with low CHMP1A
and RSU1 gene expression also had more high-risk Gleason scores
compared to those with high expression, although not statistically
significant (Supplementary Figure S6C).

FIGURE 4
Application of ProstaMine to NKX3-1-loss prostate cancer (A) identified 73 loss co-alterations associated with aggressiveness with GSTO2, SMAD4,
and MT1M loss alterations being top hits. Association of GSTO2, SMAD4, and MT1M hits with (B) NKX3-1-loss and metastasis and (C) progression-free
survival. Fisher’s exact test was used to test for differences in alteration enrichment in (B) and the logrank test was used to test for differences in
progression-free survival times in (C).
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CHMP1A encodes a chromatin remodeling protein that
functions as a tumor suppressor gene in pancreatic cancer cells
through the activation of p53 and retinoic acid signaling (Li et al.,
2008; Li et al., 2009). B2M encodes a component of the MHC class I
antigen presentation machinery and functions in immune
surveillance. Alteration of B2M is common across different
cancer types, and evidence suggests that B2M loss drives poor
response to immunotherapy through disruption of MHC class I
protein expression at the cell surface (Wang et al., 2021). RSU1
encodes a focal adhesion protein that suppresses v-Ras-dependent

oncogenic transformation (Cutler et al., 1992) and has recently been
shown that suppression of RSU1 increases cell invasion through
increased MMP13 expression and STAT6 phosphorylation (Louca
et al., 2019).

We observed an overlap in several ProstaMine hits between
RB1-loss and NKX3-1-loss tumors. Most notably, GSTO2 and
MT1M alterations were also among the top hits in RB1-loss
tumors and pathway analysis of RB1-loss hits via Metascape
once again identified autophagy among the significantly
enriched pathways. Identification of GSTO2- and MT1M-loss

FIGURE 5
Application of ProstaMine to RB1-loss prostate cancer (A) identified 42 loss co-alterations associated with aggressiveness with CHMP1A, B2M, and
RSU1 loss alterations being top hits. Association of CHMP1A, B2M, and RSU1 hits with (B) RB1-loss and metastasis, and (C) progression-free survival.
Fisher’s exact test was used to test for differences in alteration enrichment in (B), and the logrank test was used to test for differences in progression-free
survival times in (C).
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alterations by ProstaMine in NKX3-1-loss and RB1-loss contexts
suggests these co-alterations may be general regulators of
aggressiveness in PCa. Five hits were found to regulate
autophagy in NKX3-1-loss and RB1-loss tumors with three of
these five hits overlapping between the two tumor subtypes.
These findings provide evidence for dysregulated autophagy as
a factor involved in the aggressiveness of RB1-loss PCa and further
suggest a role for dysregulated autophagy as a general contributor
to PCa aggressiveness.

4 Discussion

By combining five independent molecular profiling studies in
primary PCa, we systematically identified high-confidence
alteration hotspots across the primary PCa genome and found
associations with clinicopathologic features related to
aggressiveness. The majority of genes present in the
PCa17 alteration signature have well-characterized tumor-
suppressive or oncogenic roles that drive PCa. Grouping
patients by these PCa17 alterations revealed a positive
relationship between total alterations and aggressive features in
primary PCa and is consistent with prior work, showing that a high
copy number alteration burden predicts prostate cancer relapse
(Hieronymus et al., 2014). We showed the most commonly altered
genes in A-Low tumors are NKX3-1 and RB1 and that their
alteration frequencies increase in CG-1, CG-2, and A-High
tumors. Thus, the loss of NKX3-1 and RB1 are found across the
entire spectrum of disease aggressiveness and is consistent with
their role as initiating alterations in the evolution of PCa (Espiritu
et al., 2018).

Analysis of molecular and clinical progression in PCa has
revealed two distinct evolutionary trajectories including SPOP
mutation → CHD1 loss and ERG fusion → PTEN loss (Liu et al.,
2021). We confirmed the co-alteration between ERG/PTEN and
further captured SHQ1, HDAC5, and TP53 loss alterations as
significantly co-altered with ERG and PTEN. These findings
suggest SHQ1, HDAC5, and TP53 loss alterations may also be
molecular features that help promote progression in primary
PCa. Although SPOP was not included in the PCa17 alteration
signature due to an alteration frequency below the 10% cutoff, we
still found that CHD1- and MAP3K7-loss alterations were
significantly co-occurring, as reported previously (Rodrigues et al.
, 2015). Interestingly, LRP1B loss was tightly associated with CHD1
and MAP3K7 loss, suggesting that LRP1B loss alterations may have
functional significance in MAP3K7-loss and CHD1-loss PCa.

The co-alterations identified by ProstaMine may also inform
potential therapeutic targeting strategies for specific PCa molecular
subtypes. Co-alterations defined by Gains may be directly targetable
for genes with corresponding pharmacological inhibitor(s).
Alternatively, co-alterations defined by Losses will point toward
subtype-specific pathway dysregulation, and the dysregulated
pathways can potentially be therapeutically targeted. In NKX3-1-
loss and RB1-loss PCa, ProstaMine identified exclusively Loss co-
alterations, following filtering.MT1M loss was a top ProstaMine hit
in both NKX3-1-loss and RB1-loss prostate cancer and has not been
reported as a factor involved in PCa progression. MT1M
suppression is known to promote cell growth and stemness

properties in gastric cancer cell lines through increased
GLI1 expression (Li et al., 2023). Interestingly, SHH-GLI1
pathway components often show enhanced expression in tumor
versus normal prostatic epithelia, and suppressing GLI1 expression
in primary prostate tumor cell cultures inhibits cell proliferation
(Sanchez et al., 2004). Taken together, the ProstaMine results and
results from other cancer types suggest that targeted inhibition of
GLI1 or the SHH-GLI1 pathway may reduce the aggressiveness of
NKX3-1-loss and RB1-loss PCa. Additionally, our pathway analysis
of ProstaMine hits showed enrichment of fatty acid metabolism in
NKX3-1-loss PCa and enrichment of autophagy in both NKX3-1-
loss and RB1-loss PCa. Identification of positive regulators of fatty
acid metabolism that are overexpressed in NKX3-1-loss prostate
cancer may provide attractive targets for inhibiting the
aggressiveness of this subtype. Likewise, identification of positive
regulators of autophagy overexpressed in NKX3-1-loss and RB1-loss
prostate cancer may be effective targets for slowing the
aggressiveness of both subtypes.

The development of ProstaMine was possible through the
integration of different data types including CNAs, single-base
substitutions, gene expression, and clinicopathologic features.
When integrating these data types from the available
independent PCa studies, we noted four of the six studies
contained matched genomic, transcriptomic, and clinical data.
Inclusion of additional independent PCa profiling studies with
these matched data types would improve the statistical power of
ProstaMine, particularly for low-frequency subtypes. We also
considered the representation of primary versus metastatic
tumors used in ProstaMine. We obtained 919 primary tumors
and 484 metastatic tumors, with 446 of these metastatic tumors
sourced from Abida et al. (2019) and the remaining 38 coming from
Taylor et al. (2010) (Taylor et al., 2010; Abida et al., 2019). Addition
of more metastatic tumor data from independent profiling studies
would balance the representation of metastatic tumors and improve
the performance of ProstaMine. Our approach did not consider any
treatment information for primary and metastatic tumor samples.
Including treatment information would allow ProstaMine to
interrogate the role of treatments in PCa subtypes.

The analysis of co-occurring alterations in cancer is a powerful
approach for identifying subtype-specific mechanisms, driving
disease development, progression, and metastasis. ProstaMine
builds on this approach through integration of molecular and
clinical data across multiple independent cancer profiling studies
and is the first tool for the identification of molecular subtype-
specific drivers of aggressive phenotypes in PCa.

5 Conclusion

Wedeveloped ProstaMine to identify co-alterations associated with
metastasis and biochemical relapse in molecular subtypes of PCa.
ProstaMine was applied to NKX3-1-loss and RB1-loss tumors and
identified co-altered genes that function in canonical PCa signaling
pathways including MAPK, NF-kB, p53, SMAD, and PI3K. These co-
alterations also function in fatty acid metabolism and autophagy
processes. ProstaMine is available to the larger research community
to identify candidate genes and generate hypotheses on themechanisms
that drive aggressiveness in molecularly defined subtypes of PCa.

Frontiers in Pharmacology frontiersin.org10

Orman et al. 10.3389/fphar.2024.1360352

https://www.zotero.org/google-docs/?zLg5Wh
https://www.zotero.org/google-docs/?dP2miC
https://www.zotero.org/google-docs/?dP2miC
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1360352


Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding author.

Ethics statement

All data used for this study were taken from publicly available
and de-identified patient tumors. The studies were conducted in
accordance with the local legislation and institutional requirements.

Author contributions

MO: writing–review and editing, writing–original draft,
visualization, validation, software, methodology, investigation,
formal analysis, and conceptualization. VS: writing–review and
editing, visualization, software, resources, investigation, and data
curation. TL: writing–review and editing, software, resources, and
data curation. SC: writing–review and editing, supervision, and
conceptualization. JC: writing–review and editing, writing–original
draft, visualization, supervision, methodology, funding acquisition,
formal analysis, and conceptualization.

Funding

The author(s) declare that financial support was received for
the research, authorship, and/or publication of this article. This
work was generously supported by the Anschutz Foundation

and CA241647 to JC, CA231978 to JC and SC, CA262279 to SC,
and FICAN Cancer Researcher by the Finnish Cancer Institute
and Finnish Cultural Foundation to TL. This work used
resources from the Biostatistics and Bioinformatics Shared
Resource supported by the University of Colorado Cancer
Center, an NCI designated Comprehensive Cancer
Center (CA046934).

Conflict of interest

JC is the co-founder of OncoRx Insight.
The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2024.1360352/
full#supplementary-material

References

Abdulkadir, S. A., Magee, J. A., Peters, T. J., Kaleem, Z., Naughton, C. K., Humphrey, P. A.,
et al. (2002). Conditional loss of Nkx3.1 in adult mice induces prostatic intraepithelial
neoplasia. Mol. Cell. Biol. 22, 1495–1503. doi:10.1128/MCB.22.5.1495-1503.2002

Abeshouse, A., Ahn, J., Akbani, R., Ally, A., Amin, S., and Andry, C. D. (2015). The
molecular taxonomy of primary prostate cancer. Cell. 163, 1011–1025. doi:10.1016/j.
cell.2015.10.025

Abida, W., Cyrta, J., Heller, G., Prandi, D., Armenia, J., Coleman, I., et al. (2019).
Genomic correlates of clinical outcome in advanced prostate cancer. Proc. Natl. Acad.
Sci. 116, 11428–11436. doi:10.1073/pnas.1902651116

Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P.,
et al. (2010). A method and server for predicting damaging missense mutations. Nat.
Methods 7, 248–249. doi:10.1038/nmeth0410-248

Alers, J. C., Rochat, J., Krijtenburg, P.-J., Hop, W. C., Kranse, R., Rosenberg, C., et al.
(2000). Identification of genetic markers for prostatic cancer progression. Lab. Investig.
80, 931–942. doi:10.1038/labinvest.3780096

Augello, M. A., Liu, D., Deonarine, L. D., Robinson, B. D., Huang, D., Stelloo, S., et al.
(2019). CHD1 loss alters AR binding at lineage-specific enhancers and modulates
distinct transcriptional programs to drive prostate tumorigenesis. Cancer Cell. 35,
603–617. doi:10.1016/j.ccell.2019.03.001

Baca, S. C., Prandi, D., Lawrence, M. S., Mosquera, J. M., Romanel, A., Drier, Y., et al.
(2013). Punctuated evolution of prostate cancer genomes. Cell. 153, 666–677. doi:10.
1016/j.cell.2013.03.021

Barbieri, C. E., Baca, S. C., Lawrence, M. S., Demichelis, F., Blattner, M.,
Theurillat, J. P., et al. (2012). Exome sequencing identifies recurrent SPOP,
FOXA1 and MED12 mutations in prostate cancer. Nat. Genet. 44, 685–689.
doi:10.1038/ng.2279

Boyd, L. K., Mao, X., and Lu, Y.-J. (2012). The complexity of prostate cancer:
genomic alterations and heterogeneity. Nat. Rev. Urol. 9, 652–664. doi:10.1038/
nrurol.2012.185

Cairns, P., Okami, K., Halachmi, S., Halachmi, N., Esteller, M., Herman, J. G., et al.
(1997). Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer
Res. 57, 4997–5000.

Camp, N. J., Cannon-Albright, L. A., Farnham, J. M., Baffoe-Bonnie, A. B., George, A.,
Powell, I., et al. (2007). Compelling evidence for a prostate cancer gene at 22q12.3 by the
international consortium for prostate cancer genetics.Hum. Mol. Genet. 16, 1271–1278.
doi:10.1093/hmg/ddm075

Carter, B. S., Ewing, C. M., Ward, W. S., Treiger, B. F., Aalders, T. W., Schalken, J. A.,
et al. (1990). Allelic loss of chromosomes 16q and 10q in human prostate cancer. Proc.
Natl. Acad. Sci. U. S. A. 87, 8751–8755. doi:10.1073/pnas.87.22.8751

Cutler, M. L., Bassin, R. H., Zanoni, L., and Talbot, N. (1992). Isolation of rsp-1, a
novel cDNA capable of suppressing v-Ras transformation. Mol. Cell. Biol. 12,
3750–3756. doi:10.1128/mcb.12.9.3750

Dai, Q., Deubler, D. A., Maxwell, T. M., Zhu, X. L., Cui, J., Rohr, L. R., et al. (2001). A
common deletion at chromosomal region 17q21 in sporadic prostate tumors distal to
BRCA1. Genomics 71, 324–329. doi:10.1006/geno.2000.6436

Ding, Z., Wu, C., Chu, G. C., Xiao, Y., Ho, D., Zhang, J., et al. (2011).
SMAD4–dependent barrier constrains prostate cancer growth and metastatic
progression. Nature 470, 269–273. doi:10.1038/nature09677

Emmert-Buck, M. R., Vocke, C. D., Pozzatti, R. O., Duray, P. H., Jennings, S. B.,
Florence, C. D., et al. (1995). Allelic loss on chromosome 8p12-21 in microdissected
prostatic intraepithelial neoplasia. Cancer Res. 55, 2959–2962.

Erbersdobler, A., Graefen, M.,Wullbrand, A., Hammerer, P., andHenke, R.-P. (1999).
Allelic losses at 8p, 10q, 11p, 13q, 16q, 17p, and 18q in prostatic carcinomas: the impact
of zonal location, Gleason grade, and tumour multifocality. Prostate Cancer Prostatic
Dis. 2, 204–210. doi:10.1038/sj.pcan.4500324

Espiritu, S. M. G., Liu, L. Y., Rubanova, Y., Bhandari, V., Holgersen, E. M., Szyca, L.
M., et al. (2018). The evolutionary landscape of localized prostate cancers drives clinical
aggression. Cell. 173, 1003–1013. doi:10.1016/j.cell.2018.03.029

Frontiers in Pharmacology frontiersin.org11

Orman et al. 10.3389/fphar.2024.1360352

https://www.frontiersin.org/articles/10.3389/fphar.2024.1360352/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2024.1360352/full#supplementary-material
https://doi.org/10.1128/MCB.22.5.1495-1503.2002
https://doi.org/10.1016/j.cell.2015.10.025
https://doi.org/10.1016/j.cell.2015.10.025
https://doi.org/10.1073/pnas.1902651116
https://doi.org/10.1038/nmeth0410-248
https://doi.org/10.1038/labinvest.3780096
https://doi.org/10.1016/j.ccell.2019.03.001
https://doi.org/10.1016/j.cell.2013.03.021
https://doi.org/10.1016/j.cell.2013.03.021
https://doi.org/10.1038/ng.2279
https://doi.org/10.1038/nrurol.2012.185
https://doi.org/10.1038/nrurol.2012.185
https://doi.org/10.1093/hmg/ddm075
https://doi.org/10.1073/pnas.87.22.8751
https://doi.org/10.1128/mcb.12.9.3750
https://doi.org/10.1006/geno.2000.6436
https://doi.org/10.1038/nature09677
https://doi.org/10.1038/sj.pcan.4500324
https://doi.org/10.1016/j.cell.2018.03.029
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1360352


Gao, X., Zacharek, A., Salkowski, A., Grignon, D. J., Sakr, W., Porter, A. T., et al.
(1995). Loss of heterozygosity of the BRCA1 and other loci on chromosome 17q in
human prostate cancer. Cancer Res. 55, 1002–1005.

Gkretsi, V., Kalli, M., Efstathiades, C., Papageorgis, P., Papanikolaou, V., Zacharia, L.
C., et al. (2019). Depletion of Ras Suppressor-1 (RSU-1) promotes cell invasion of breast
cancer cells through a compensatory upregulation of a truncated isoform. Sci. Rep. 9,
10050. doi:10.1038/s41598-019-46575-0

Hieronymus, H., Iaquinta, P. J., Wongvipat, J., Gopalan, A., Murali, R., Mao, N., et al.
(2017). Deletion of 3p13-14 locus spanning FOXP1 to SHQ1 cooperates with
PTEN loss in prostate oncogenesis. Nat. Commun. 8, 1081. doi:10.1038/s41467-017-
01198-9

Hieronymus, H., Schultz, N., Gopalan, A., Carver, B. S., Chang, M. T., Xiao, Y., et al.
(2014). Copy number alteration burden predicts prostate cancer relapse. Proc. Natl.
Acad. Sci. 111, 11139–11144. doi:10.1073/pnas.1411446111

Jillson, L. K., Rider, L. C., Rodrigues, L. U., Romero, L., Karimpour-Fard, A., Nieto, C.,
et al. (2021). MAP3K7 loss drives enhanced androgen signaling and independently
confers risk of recurrence in prostate cancer with joint loss of CHD1. Mol. Cancer Res.
19, 1123–1136. doi:10.1158/1541-7786.MCR-20-0913

Kibel, A. S., Schutte, M., Kern, S. E., Isaacs, W. B., and Bova, G. S. (1998).
Identification of 12p as a region of frequent deletion in advanced prostate cancer.
Cancer Res. 58, 5652–5655.

Kluth, M., Ahrary, R., Hube-Magg, C., Ahmed, M., Volta, H., Schwemin, C., et al.
(2015). Genomic deletion of chromosome 12p is an independent prognostic
marker in prostate cancer. Oncotarget 6, 27966–27979. doi:10.18632/oncotarget.
4626

Kluth, M., Volta, H., Hussein, M., Taskin, B., Frogh, S., Möller-Koop, C., et al.
(2018). Deletion of 3p13 is a late event linked to progression of TMPRSS2:ERG
fusion prostate cancer. Cancer Manag. Res. 10, 5909–5917. doi:10.2147/CMAR.
S172637

Ku, S. Y., Rosario, S., Wang, Y., Mu, P., Seshadri, M., Goodrich, Z. W., et al.
(2017). Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity,
metastasis, and antiandrogen resistance. Science 355, 78–83. doi:10.1126/science.
aah4199

Laajala, T. D., Sreekanth, V., Soupir, A. C., Creed, J. H., Halkola, A. S., Calboli,
F. C. F., et al. (2023). A harmonized resource of integrated prostate cancer
clinical, -omic, and signature features. Sci. Data 10, 430. doi:10.1038/s41597-
023-02335-4

Latil, A., Cussenot, O., Fournier, G., Driouch, K., and Lidereau, R. (1997). Loss of
heterozygosity at chromosome 16q in prostate adenocarcinoma: identification of three
independent regions. Cancer Res. 57, 1058–1062.

Li, D., Peng, W., Wu, B., Liu, H., Zhang, R., Zhou, R., et al. (2021). Metallothionein
MT1M suppresses carcinogenesis of esophageal carcinoma cells through inhibition of
the epithelial-mesenchymal transition and the SOD1/PI3K Axis.Mol. Cells 44, 267–278.
doi:10.14348/molcells.2021.2179

Li, J., Belogortseva, N., Porter, D., and Park, M., 2008. Chmp1A functions as a novel
tumor suppressor gene in human embryonic kidney and ductal pancreatic tumor cells.
Cell. Cycle Georget. Tex 7, 2886–2893. doi:10.4161/cc.7.18.6677

Li, J., Orr, B., White, K., Belogortseva, N., Niles, R., Boskovic, G., et al. (2009).
Chmp 1A is a mediator of the anti-proliferative effects of All-trans Retinoic
Acid in human pancreatic cancer cells. Mol. Cancer 8, 7. doi:10.1186/1476-
4598-8-7

Li, K., Sun, S., Lu, Y., Liang, W., Xu, X., Zhang, H., et al. (2023). MT1M regulates
gastric cancer progression and stemness by modulating the Hedgehog pathway
protein GLI1. Biochem. Biophys. Res. Commun. 670, 63–72. doi:10.1016/j.bbrc.2023.
05.121

Liu, D., Augello, M. A., Grbesa, I., Prandi, D., Liu, Y., Shoag, J. E., et al. 2021. Tumor
subtype defines distinct pathways of molecular and clinical progression in primary
prostate cancer. J. Clin. Investig. 131, e147878. doi:10.1172/JCI147878

Liu, W., Ewing, C. M., Chang, B.-L., Li, T., Sun, J., Turner, A. R., et al. (2007). Multiple
genomic alterations on 21q22 predict various TMPRSS2/ERG fusion transcripts in
human prostate cancers. Genes. Chromosom. Cancer 46, 972–980. doi:10.1002/gcc.
20482

Loizzo, D., Pandolfo, S. D., Rogers, D., Cerrato, C., di Meo, N. A., Autorino, R., et al.
(2022). Novel insights into autophagy and prostate cancer: a comprehensive review. Int.
J. Mol. Sci. 23, 3826. doi:10.3390/ijms23073826

Louca, M., Stylianou, A., Minia, A., Pliaka, V., Alexopoulos, L. G., Gkretsi, V., et al.
(2019). Ras suppressor-1 (RSU-1) promotes cell invasion in aggressive glioma cells and
inhibits it in non-aggressive cells through STAT6 phospho-regulation. Sci. Rep. 9, 7782.
doi:10.1038/s41598-019-44200-8

Mao, J., Yu, H., Wang, C., Sun, L., Jiang, W., Zhang, P., et al. (2012). Metallothionein
MT1M is a tumor suppressor of human hepatocellular carcinomas. Carcinogenesis 33,
2568–2577. doi:10.1093/carcin/bgs287

Mermel, C. H., Schumacher, S. E., Hill, B., Meyerson, M. L., Beroukhim, R., and Getz,
G. (2011). GISTIC2.0 facilitates sensitive and confident localization of the targets of
focal somatic copy-number alteration in human cancers. Genome Biol. 12, R41. doi:10.
1186/gb-2011-12-4-r41

Mu, P., Zhang, Z., Benelli, M., Karthaus, W. R., Hoover, E., Chen, C. C., et al.
(2017). SOX2 promotes lineage plasticity and antiandrogen resistance in TP53-
and RB1-deficient prostate cancer. Science 355, 84–88. doi:10.1126/science.
aah4307

Ng, P. C., and Henikoff, S. (2003). SIFT: predicting amino acid changes that
affect protein function. Nucleic Acids Res. 31, 3812–3814. doi:10.1093/nar/
gkg509

Nyquist, M. D., Corella, A., Coleman, I., De Sarkar, N., Kaipainen, A., Ha, G., et al.
(2020). Combined TP53 and RB1 loss promotes prostate cancer resistance to a spectrum
of therapeutics and confers vulnerability to replication stress. Cell. Rep. 31, 107669.
doi:10.1016/j.celrep.2020.107669

Ormond, D. R., Kleinschmidt-DeMasters, B. K., Cavalcante, D., Smith, E. E., Cramer,
S. D., and Lucia, M. S. (2019). Prostatic adenocarcinoma CNS parenchymal and dural
metastases: alterations in ERG, CHD1 and MAP3K7 expression. J. Neurooncol. 142,
319–325. doi:10.1007/s11060-019-03099-x

Ozen, M., Navone, N. M., Multani, A. S., Troncoso, P., Logothetis, C. J., Chung, L.
W., et al. (1998). Structural alterations of chromosome 5 in twelve human prostate
cancer cell lines. Cancer Genet. cytogenet. 106, 105–109. doi:10.1016/S0165-4608(98)
00051-X

Paris, P. L., Andaya, A., Fridlyand, J., Jain, A. N., Weinberg, V., Kowbel, D., et al.
(2004). Whole genome scanning identifies genotypes associated with recurrence and
metastasis in prostate tumors. Hum. Mol. Genet. 13, 1303–1313. doi:10.1093/hmg/
ddh155

Perner, S., Demichelis, F., Beroukhim, R., Schmidt, F. H., Mosquera, J. M., Setlur, S.,
et al. (2006). TMPRSS2:ERG fusion-associated deletions provide insight into the
heterogeneity of prostate cancer. Cancer Res. 66, 8337–8341. doi:10.1158/0008-5472.
CAN-06-1482

Rodrigues, L. U., Rider, L., Nieto, C., Romero, L., Karimpour-Fard, A., Loda, M., et al.
2015. Coordinate loss of MAP3K7 and CHD1 promotes aggressive prostate cancer,
Cancer Res. 75, 1021–1034. doi:10.1158/0008-5472.CAN-14-1596

Sanchez, P., Hernández, A. M., Stecca, B., Kahler, A. J., DeGueme, A. M., Barrett, A.,
et al. (2004). Inhibition of prostate cancer proliferation by interference with SONIC
HEDGEHOG-GLI1 signaling. Proc. Natl. Acad. Sci. 101, 12561–12566. doi:10.1073/
pnas.0404956101

Saramäki, O. R., Porkka, K. P., Vessella, R. L., and Visakorpi, T. (2006). Genetic
aberrations in prostate cancer by microarray analysis. Int. J. Cancer 119, 1322–1329.
doi:10.1002/ijc.21976

Sattler, H. P., Lensch, R., Rohde, V., Zimmer, E., Meese, E., Bonkhoff, H., et al.
(2000). Novel amplification unit at chromosome 3q25-q27 in human prostate cancer.
Prostate 45, 207–215. doi:10.1002/1097-0045(20001101)45:3<207::aid-pros2>3.0.co;
2-h

Scheble, V. J., Braun, M., Beroukhim, R., Mermel, C. H., Ruiz, C., Wilbertz, T., et al.
(2010). ERG rearrangement is specific to prostate cancer and does not occur in
any other common tumor. Mod. Pathol. 23, 1061–1067. doi:10.1038/modpathol.
2010.87

Sena, L. A., and Denmeade, S. R. (2021). Fatty acid synthesis in prostate cancer:
vulnerability or epiphenomenon? Cancer Res. 81, 4385–4393. doi:10.1158/0008-5472.
CAN-21-1392

Sondka, Z., Bamford, S., Cole, C. G., Ward, S. A., Dunham, I., and Forbes, S. A.
(2018). The COSMIC Cancer Gene Census: describing genetic dysfunction
across all human cancers. Nat. Rev. Cancer 18, 696–705. doi:10.1038/s41568-
018-0060-1

Sumiya, R., Terayama, M., Hagiwara, T., Nakata, K., Sekihara, K., Nagasaka, S., et al.
(2022). Loss of GSTO2 contributes to cell growth and mitochondria function via the
p38 signaling in lung squamous cell carcinoma. Cancer Sci. 113, 195–204. doi:10.1111/
cas.15189

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al.
(2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. Ca. Cancer J. Clin. 71, 209–249. doi:10.3322/
caac.21660

Taylor, B. S., Schultz, N., Hieronymus, H., Gopalan, A., Xiao, Y., Carver, B. S., et al.
(2010). Integrative genomic profiling of human prostate cancer. Cancer Cell. 18, 11–22.
doi:10.1016/j.ccr.2010.05.026

Terayama, M., Yamada, K., Hagiwara, T., Inazuka, F., Sezaki, T., Igari, T., et al.
(2020). Glutathione S-transferase omega 2 regulates cell growth and the expression
of E-cadherin via post-transcriptional down-regulation of β-catenin in
human esophageal squamous cells. Carcinogenesis 41, 875–886. doi:10.1093/
carcin/bgz189

Tomlins, S. A., Rhodes, D. R., Perner, S., Dhanasekaran, S. M., Mehra, R., Sun, X. W.,
et al. (2005). Recurrent fusion of TMPRSS2 and ETS transcription factor genes in
prostate cancer. Science 310, 644–648. doi:10.1126/science.1117679

Ueda, T., Komiya, A., Suzuki, H., Shimbo,M., Sakamoto, S., Imamoto, T., et al. (2005).
Loss of heterozygosity on chromosome 2 in Japanese patients with prostate cancer.
Prostate 64, 265–271. doi:10.1002/pros.20228

van Dekken, H., Alers, J. C., Damen, I. A. A. J., Vissers, K. J., Krijtenburg, P. J.,
Hoedemaeker, R. F., et al. (2003). Genetic evaluation of localized prostate cancer in a

Frontiers in Pharmacology frontiersin.org12

Orman et al. 10.3389/fphar.2024.1360352

https://doi.org/10.1038/s41598-019-46575-0
https://doi.org/10.1038/s41467-017-01198-9
https://doi.org/10.1038/s41467-017-01198-9
https://doi.org/10.1073/pnas.1411446111
https://doi.org/10.1158/1541-7786.MCR-20-0913
https://doi.org/10.18632/oncotarget.4626
https://doi.org/10.18632/oncotarget.4626
https://doi.org/10.2147/CMAR.S172637
https://doi.org/10.2147/CMAR.S172637
https://doi.org/10.1126/science.aah4199
https://doi.org/10.1126/science.aah4199
https://doi.org/10.1038/s41597-023-02335-4
https://doi.org/10.1038/s41597-023-02335-4
https://doi.org/10.14348/molcells.2021.2179
https://doi.org/10.4161/cc.7.18.6677
https://doi.org/10.1186/1476-4598-8-7
https://doi.org/10.1186/1476-4598-8-7
https://doi.org/10.1016/j.bbrc.2023.05.121
https://doi.org/10.1016/j.bbrc.2023.05.121
https://doi.org/10.1172/JCI147878
https://doi.org/10.1002/gcc.20482
https://doi.org/10.1002/gcc.20482
https://doi.org/10.3390/ijms23073826
https://doi.org/10.1038/s41598-019-44200-8
https://doi.org/10.1093/carcin/bgs287
https://doi.org/10.1186/gb-2011-12-4-r41
https://doi.org/10.1186/gb-2011-12-4-r41
https://doi.org/10.1126/science.aah4307
https://doi.org/10.1126/science.aah4307
https://doi.org/10.1093/nar/gkg509
https://doi.org/10.1093/nar/gkg509
https://doi.org/10.1016/j.celrep.2020.107669
https://doi.org/10.1007/s11060-019-03099-x
https://doi.org/10.1016/S0165-4608(98)00051-X
https://doi.org/10.1016/S0165-4608(98)00051-X
https://doi.org/10.1093/hmg/ddh155
https://doi.org/10.1093/hmg/ddh155
https://doi.org/10.1158/0008-5472.CAN-06-1482
https://doi.org/10.1158/0008-5472.CAN-06-1482
https://doi.org/10.1158/0008-5472.CAN-14-1596
https://doi.org/10.1073/pnas.0404956101
https://doi.org/10.1073/pnas.0404956101
https://doi.org/10.1002/ijc.21976
https://doi.org/10.1002/1097-0045(20001101)45:3<207::aid-pros2>3.0.co;2-h
https://doi.org/10.1002/1097-0045(20001101)45:3<207::aid-pros2>3.0.co;2-h
https://doi.org/10.1038/modpathol.2010.87
https://doi.org/10.1038/modpathol.2010.87
https://doi.org/10.1158/0008-5472.CAN-21-1392
https://doi.org/10.1158/0008-5472.CAN-21-1392
https://doi.org/10.1038/s41568-018-0060-1
https://doi.org/10.1038/s41568-018-0060-1
https://doi.org/10.1111/cas.15189
https://doi.org/10.1111/cas.15189
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/j.ccr.2010.05.026
https://doi.org/10.1093/carcin/bgz189
https://doi.org/10.1093/carcin/bgz189
https://doi.org/10.1126/science.1117679
https://doi.org/10.1002/pros.20228
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1360352


cohort of forty patients: gain of distal 8q discriminates between progressors
and nonprogressors. Lab. Investig. 83, 789–796. doi:10.1097/01.LAB.0000074889.76221.49

Verhagen, P. C. M. S., Hermans, K. G. L., Brok, M. O., van Weerden, W. M., Tilanus,
M. G. J., de Weger, R. A., et al. (2002). Deletion of chromosomal region 6q14-16 in
prostate cancer. Int. J. Cancer 102, 142–147. doi:10.1002/ijc.10677

Wang, H., Liu, B., and Wei, J. (2021). Beta2-microglobulin(B2M) in cancer
immunotherapies: biological function, resistance and remedy. Cancer Lett. 517,
96–104. doi:10.1016/j.canlet.2021.06.008

Wang, S., Gao, J., Lei, Q., Rozengurt, N., Pritchard, C., Jiao, J., et al. (2003). Prostate-
specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate
cancer. Cancer Cell. 4, 209–221. doi:10.1016/S1535-6108(03)00215-0

Wu, M., Shi, L., Cimic, A., Romero, L., Sui, G., Lees, C. J., et al. (2012). Suppression of
Tak1 promotes prostate tumorigenesis. Cancer Res. 72, 2833–2843. doi:10.1158/0008-
5472.CAN-11-2724

Xu, W., Jiang, G.-J., Shi, G.-Z., Chen, M. Z., Ma, T. L., and Tan, Y. F. (2020).
Metallothionein 1M (MT1M) inhibits lung adenocarcinoma cell viability, migration,
and expression of cell mobility-related proteins through MDM2/p53/MT1M signaling.
Transl. Cancer Res. 9, 2710–2720. doi:10.21037/tcr.2020.02.61

Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O.,
et al. (2019). Metascape provides a biologist-oriented resource for the analysis
of systems-level datasets. Nat. Commun. 10, 1523. doi:10.1038/s41467-019-
09234-6

Frontiers in Pharmacology frontiersin.org13

Orman et al. 10.3389/fphar.2024.1360352

https://doi.org/10.1097/01.LAB.0000074889.76221.49
https://doi.org/10.1002/ijc.10677
https://doi.org/10.1016/j.canlet.2021.06.008
https://doi.org/10.1016/S1535-6108(03)00215-0
https://doi.org/10.1158/0008-5472.CAN-11-2724
https://doi.org/10.1158/0008-5472.CAN-11-2724
https://doi.org/10.21037/tcr.2020.02.61
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1038/s41467-019-09234-6
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1360352

	ProstaMine: a bioinformatics tool for identifying subtype-specific co-alterations associated with aggressiveness in prostat ...
	1 Introduction
	2 Materials and methods
	2.1 Data sources and processing
	2.2 Alteration landscape and alteration hotspots
	2.3 Alteration heatmap
	2.4 Mutual exclusivity
	2.5 Survival analysis
	2.6 ProstaMine algorithm
	2.7 Analysis of NKX3-1-loss and RB1-loss prostate cancer
	2.8 Data and code availability

	3 Results
	3.1 Alteration frequencies in primary prostate cancer reveal high-confidence alteration hotspots
	3.2 PCa17 alterations stratify primary prostate cancer tumors into four subgroups that associate with aggressive clinical f ...
	3.3 ProstaMine: a computational tool for data mining subtype-specific co-alterations associated with PCa aggressiveness
	3.3.1 Co-alterations associated with aggressiveness in NKX3-1-loss prostate cancer
	3.3.2 Co-alterations associated with aggressiveness in RB1-loss prostate cancer


	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


