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Introduction: Acute respiratory distress syndrome (ARDS) presents a significant
clinical challenge, with ventilator-induced lung injury (VILI) being a critical
complication arising from life-saving mechanical ventilation. Understanding
the spatial and temporal dynamics of VILI can inform therapeutic strategies to
mitigate lung damage and improve outcomes.

Methods:Histological sections from initially healthy mice and pulmonary lavage-
injured mice subjected to a second hit of VILI were segmented with Ilastik to
define regions of lung injury. A scale-free network approachwas applied to assess
the correlation between injury regions, with regions of injury represented as
‘nodes’ in the network and ‘edges’ quantifying the degree of correlation between
nodes. A simulated time series analysis was conducted to emulate the temporal
sequence of injury events.

Results: Automated segmentation identified different lung regions in good
agreement with manual scoring, achieving a sensitivity of 78% and a specificity
of 85% across ‘injury’ pixels. Overall accuracy across ‘injury’, ‘air’, and ‘other’ pixels
was 81%. The size of injured regions followed a power-law distribution,
suggesting a ‘rich-get-richer’ phenomenon in the distribution of lung injury.
Network analysis revealed a scale-free distribution of injury correlations,
highlighting hubs of injury that could serve as focal points for therapeutic
intervention. Simulated time series analysis further supported the concept of
secondary injury events following an initial insult, with patterns resembling those
observed in seismological studies of aftershocks.

Conclusion: The size distribution of injured regions underscores the spatially
heterogeneous nature of acute and ventilator-induced lung injury. The
application of network theory demonstrates the emergence of injury ‘hubs’
that are consistent with a ‘rich-get-richer’ dynamic. Simulated time series
analysis demonstrates that the progression of injury events in the lung could
follow spatiotemporal patterns similar to the progression of aftershocks in
seismology, providing new insights into the mechanisms of injury distribution
and propagation. Both phenomena suggest a potential for interventions targeting
these injury ‘hubs’ to reduce the impact of VILI in ARDS management.
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1 Introduction

Acute respiratory distress syndrome (ARDS) is a life-threatening
condition characterized in part by increased blood-gas barrier
permeability, leading to diffuse alveolar damage and severe
hypoxemia (Rawal et al., 2018). Approximately 200,000 patients
will develop ARDS each year in the United States (Rubenfeld et al.,
2005) with an estimated mortality rate of approximately 35%–45%
(Bellani et al., 2016). Despite more than 50 years of research,
supportive mechanical ventilation to maintain gas exchange
remains as the fundamental treatment for ARDS (Banavasi et al.,
2021). Mechanical ventilation, while indispensable in managing
ARDS, introduces the risk of ventilator-induced lung injury
(VILI). This paradoxical phenomenon, where the very treatment
designed to support the compromised respiratory system may lead
to further lung damage, adds another layer of complexity to ARDS
management (Slutsky and Ranieri, 2013).

The pathogenesis of VILI is driven by the mechanical forces of
volutrauma (excessive stretch) and atelectrauma (cyclic collapse and
reopening) as well as biotrauma due to inflammation. These factors
are complicated by the spatial heterogeneity of the lung, which
results in an uneven distribution of mechanical forces during
ventilation, and is characterized by regional differences in
ventilation, perfusion, and mechanics (Herrmann et al., 2022;
Mattson et al., 2022; Miserocchi, 2023) that are exacerbated by
injury. In some areas, overdistension due to excessive tidal volumes
(volutrauma) may predominate, while in other areas, repetitive
opening and closing of small airways and alveoli may result in
atelectrauma (Bates and Smith, 2018).

Given the complexity and heterogeneity of lung tissue, the
pathophysiology of ARDS and VILI have proven difficult to
model and predict, resulting in an ongoing challenge to develop
effective lung protective ventilation strategies and therapeutic
interventions. There has been a recent shift in the field towards
understanding these conditions as complex, dynamic systems, an
approach that acknowledges the multitude of interconnected factors
and feedback loops contributing to the onset and progression of
ARDS and VILI (Bates and Smith, 2018). In that context, a
hypothesis that has been gaining momentum posits that the
progression of VILI is governed by ‘preferential attachment’ or
‘rich-get-richer’ dynamics, where regions of the lung that are
initially more damaged are more likely to accrue additional
injury over time due to ventilation (Hamlington et al., 2018;
Mori et al., 2019). Preferential attachment, and more broadly
network theory, has emerged as a powerful tool for studying
complex systems across various disciplines, from social networks
to biological systems (Czarnecki et al., 2021; Ivanov, 2021; West,
2022), and may offer new insights into the pathogenesis of
ARDS and VILI.

In the current study, we further explore the concept of
preferential attachment as a driver of the spatiotemporal
dynamics of acute and ventilator-induced lung injury. In the
context of network theory, preferential attachment posits that
new connections within a network preferentially attach to more
connected nodes. This leads to a ‘rich-get-richer’ phenomenon,
where nodes that are already well-connected become even more
central to the network’s structure. A scale-free network is
characterized by a few highly connected hubs and many nodes

with fewer connections, which is a pattern that emerges from the
preferential attachment process. Within the context of our current
study, we suggest that this concept of preferential attachment can be
recontextualized as a network growth process; that is, areas of injury
observed in histological sections are analogous to nodes in a
network. These ‘injury nodes’ are interconnected based on factors
such as their relative size and proximity. Larger areas of injury are
subjected to higher stress and strain and disproportionately affect
the propagation of injury throughout the rest of the lung, much like
how the wealthiest in an economic system disproportionately affect
the rest of the economy or how popular internet sites attract
increasing levels of traffic due to their numerous connections.
The concept of lung injury as a scale-free network is extended
into the temporal domain using a simulated time series, offering a
model that could explain changes in the lung over time. By doing so,
we can provide insights into how lung injuries may evolve over time,
not just as isolated events but as part of an interconnected system.
This approach suggests that a small subset of large injury areas exert
a disproportionate influence on injury progression. This
phenomenon, reminiscent of how wealth accumulates in
economic systems or how seismic aftershocks cluster around a
main event, offers a compelling analogy for understanding the
mechanisms driving the distribution and exacerbation of
lung injuries.

2 Methods

2.1 Animal procedures

The current study is a secondary analysis of images generated in
previously reported experiments (Bilodeaux et al., 2023) and the key
experimental details are summarized below. The study was
conducted on female C57/BL6 mice, aged seven to 10 weeks, and
was approved by the University of Colorado Denver Institutional
Animal Care and Use Committee (IACUC) under protocol #00230.
A lavage group (LAV) of mice were subjected to injury by
administering an intratracheal instillation and suction of 0.15 mL
saline just before ventilation, while the control group (CTRL) was
not subjected to any injury.

The mice were anaesthetized through an intraperitoneal
injection of 100 mg/kg ketamine, 8 mg/kg xylazine, and 2.5 mg/kg
acepromazine, a tracheostomy was performed, and respiratory
muscle activity was halted by giving the mice a 0.8 mg/kg dosage
of pancuronium bromide at the commencement of mechanical
ventilation.

The LAV group underwent 25 min of injurious ventilation at an
inspiratory pressure of 37.5 cmH2O and a positive end expiratory
pressure (PEEP) = 0. The control group received 6 minutes of
stabilizing low tidal volume ventilation at PEEP = 3 cmH2O. All
groups then received a series of lung function measurements with
PEEPs ranging from 0 to 15 cmH2O as detailed elsewhere
(Bilodeaux et al., 2023). Total ventilation time was ≈35 min for
CTRL and ≈60 min for LAV.

After ventilation, a bilateral thoracotomy was performed and the
pulmonary circulation was flushed with heparinized saline. After
performing three recruitment maneuvers, the airway pressure was
sustained at 30 cmH2O for 3 seconds before being reduced to two
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cmH2O and ligating the trachea. The lungs were then perfused
through the vasculature with 5 mL of fixative and then immersion
fixed for 24+ hours. After post-fixing in osmium tetroxide and
uranyl acetate and embedding in glycol methacrylate the tissues
were sectioned at 1.5 μm and stained with toluidine blue.

2.2 Image segmentation

Whole slide images were captured using a ×20 objective and
imported into Ilastik version 1.4 (Berg et al., 2019). Ilastik’s random
forest classifier was iteratively trained on manual pixel-level
annotations, marking regions as ‘air’, ‘injured’, or ‘other’. The
training process was conducted through Ilastik’s graphical user
interface, which allows for real-time feedback by displaying the
classifier’s predictions overlaid on the original images. The
annotator (DG) adjusted these predictions by directly correcting
misclassified pixels, refining the classifier’s accuracy through
successive iterations until the segmentation appeared suitable.

We define ‘air’ as regions devoid of tissue but within the lung,
including large vessels that were cleared of blood during the
perfusion fixation. ‘Injured’ referred to regions of the
parenchyma with atelectasis, as indicated by multiple layers of
septal capillaries ‘piled up’ (Wallbank et al., 2023), or airspace
edema. ‘Other’ was defined to include all other tissue including
patent septa, airway walls, and interstitial space. Training data
comprised 12 whole-slide images, equally distributed between the
CTRL and LAV groups. 47 distinct features were used for pixel
classification including color, edge, and intensity variations across
scales from 2 to 100 pixels, and edge and texture details at a finer
scale of 0.7 pixels. The full set of features is provided in
Supplementary Table S1.

Pixel classifications were post-processed in MATLAB version
2022a, the segmentation performance was manually scored, and the
remainder of the data analysis was conducted.

Air and extraneous image artifacts found outside of the lung
were segmented with k-means clustering and excluded from the
analysis. Images containing multiple lobes were separated by
manually creating image masks to allow single-lobe analysis. A
mask was created by first identifying pixels classified as ‘other’ and
creating separate masks for contiguous regions more than 100 pixels
from each other. Masks smaller than 100000 pixels correlated with
noisy artifact and were removed. Lobes within 100 pixels of each
other were then manually separated from each other to create
distinct masks for each lobe. Extraneous artifacts greater than
100000 pixels in size that did not constitute a lobe also had their
masks removed. Finally, holes in each mask corresponding to large
airways were closed.

Injured regions (injury nodes) were defined from the 8-
connected islands of ‘injured’ class pixels. Injured regions of less
than 100 contiguous pixels (52.77 μm2) were deemed to be noise and
were removed from the image. Injured pixels were then processed
with morphological dilation and then erosion five times, each using
a five-pixel wide disk-shaped structuring element, to merge injured
regions in close proximity to each other. In our network analysis,
distinct ‘injured’ nodes were delineated based on these processed
segments, with any interruption by non-‘injured’ pixels serving to
define the boundaries of individual nodes.

To determine the accuracy of the segmentation, 20 pixels from
each post-processed segmentation class (‘injured’, ‘air’, and
‘other’) were chosen randomly for each whole-slide image and
manually scored by a reviewer (DG). This comparison aimed to
establish the ground truth for injury pixels within a subset of our
images. Sensitivity and specificity were calculated for each
segmentation class to quantify the accuracy of our automated
method in correctly identifying each class of pixels as compared to
a human reviewer.

2.3 Scale-free modeling

Following image segmentation, scale-free modeling of regions of
injury, which are defined as airspace edema and atelectasis, was
performed on the segmented whole-slide images. This approach is
adapted from a scale-free model previously used in seismology. This
approach, which correlates main shocks and aftershocks in both
spatial and temporal dimensions, relies on a power-law distribution
to describe the number of correlations that an injured region may
receive from other injured regions (Baiesi and Paczuski, 2004). The
rationale behind choosing a power-law distribution over
exponential, or other types, arises from the observation that in
competitive environments, like the stressed lung, resources, or, in
this case, the lung’s resilience to injury, are not uniformly
distributed. Thus, certain regions, akin to ‘hubs’ in a network,
disproportionately accumulate more damage. This phenomenon,
known as preferential attachment or the ‘rich-get-richer’ dynamic
mirrors phenomena observed in complex networks across various
fields, from ecology to seismology to economics, and has been
previously shown to describe the injured lung (Hamlington et al.,
2018; Mori et al., 2019; Gaver et al., 2020).

We first start with the proposition that sizes of injury follow a
power-law distribution, which has been empirically demonstrated in
previous literature and is recapitulated in the current study (Hamlington
et al., 2018; Mattson et al., 2022). Accordingly, the distribution of the
number of areas of injury (P) of size m in a given region is

P m( ) ~ m−α, (1)
with α fit to the segmentation data using maximum likelihood
estimation. Using the distribution described in Eq. 1, the average
number of areas of injury �n within an interval Δm ofm, occurring in
a radius r over a time interval τ, is

�n � C · τ · rdf · Δm ·m−α, (2)
with df representing the fractal dimension fitted according to a box-
counting algorithm and C a scaling constant. The box-counting
algorithm is a technique for estimating the fractal dimension of
injured regions by overlaying the lobe mask with a grid of boxes. The
size of the boxes is systematically reduced by powers of two, and the
number of boxes needed to cover all of the injured regions in a given
lobe is counted. By plotting the logarithm of the box count against
the logarithm of the inverse of the box size, a linear relationship
emerges. The slope of this line represents the fractal dimension,
which captures how densely injured regions fill a given two-
dimensional region in the lobe. Since it is not possible to obtain
time-dependent samples in the same rodent, Eq. 2 is modified
remove the time dependence:
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n* � C · rdf · Δm ·m−α. (3)

Next, we consider an area of injury denoted by j and we consider
how to correlate it with any arbitrary area of injury denoted by i.
Given Eq. 3, the expected number of injured areas that are expected
to occur within Δm of mi and in the area bounded by i and j is,

nij
* � C · ldf · Δm ·m−α, (4)

where l � lij is equal to the Euclidean distance between the centers of
regions i and j. The injury i that most strongly correlates with injury
j is injury i′ such that nij* is minimized. A smaller nij* means that the
average number of injuries between i and j is lower, indicating that
these two injured regions are likely associated and did not occur by
random chance alone. Note that Eq. 4 allows us to correlate injured
areas together without any assumptions of the generative
mechanisms of injury propagation.

In terms of network theory, Eq. 4 provides a network of nodes
and links, with nodes representing areas of injury and links, directed
from injured region i to injured region j, representing correlations
between nodes. We use the simplest implementation of the network,
which is for each node j we attach a single link to node i′ that
minimizes nij* and simplify the notation to nj**. Other links for node j
are discarded. This provides us with a hierarchically organized
cluster of injured areas, with smaller nj* denoting a stronger
correlation. The in-degree of node i is the number of regions j
that correlate to it. We demonstrate that the in-degree distribution
(the distribution of the degrees throughout the network) follows a
power law. A network with a power law in-degree distribution is also
referred to as a scale-free network.

The model formulation described above allows us to correlate
areas of injury across space. However, it is not possible to correlate
the injured areas through time because our experimental
measurements of injured regions require a terminal procedure.
To overcome this experimental constraint Eq. 4 is amended to
correlate areas of injury across space and time:

nij � C · ldf · tij · Δm ·m−α, (5)

with tij representing the simulated time interval between i and j and
nij � npijp tij. Thus, it is necessary to prove the in-degree distribution
of the network formed by minimizing nij is also power-law
distributed given that nij* is power-law distributed. A proof that
the network derived using Eq. 5 is scale-free and provided in the
Supplementary Material.

2.4 Centrality

In order to designate areas of injury that were considered
important in the context of the overall network the concept of
centrality from graph theory was used. Indicators of centrality assign
numbers or rankings to nodes in a graph corresponding to their
importance in the graph. Numerous centrality measures exist. In the
current study we use PageRank centrality, a version of eigenvector
centrality originally developed for Google’s ranking of webpages in
their search results (Brin and Page, 1998). Eigenvector centrality
ranks nodes based on the number of connections that they have and
the centrality scores of the nodes that they are connected to.

PageRank modifies this by introducing a regularization term that
ensures that each node has a baseline centrality score and that high-
scoring nodes have an upper bound that prevents runaway
centrality scores.

2.5 Statistical analysis

Data was curated and analyzed in MATLAB version 2022a.
Differences in median fraction of injured area between CTRL and
LAV samples were assessed by bootstrapping 10,000 samples and
counting the proportion of bootstrapped difference of medians that
exceeded the actual difference in median. This same method was
used to assess for difference in mean and to create 95% confidence
intervals for other analyses.

Assessment of power-law fit in our analysis was done through
combined maximum-likelihood fitting and Kolmogorov-Smirnov
(KS) goodness-of-fit tests with p≥ 0.1 signifying that a power-law
distribution is a plausible fit for the data (Clauset et al., 2009). The
null hypothesis in this case is that a power-law function could
plausibly explain the distribution of the data; thus, higher p-values
indicate a greater likelihood that the distribution follows a power
law. Injury size, degree distribution of the network with and without
synthetic time points, and a theoretical analysis of secondary injury
event rates were all assessed using KS goodness-of-fit tests.

For each lobe in our analysis, a time-point was randomly
assigned to each injured region with inter-temporal intervals
drawn from an exponential distribution with a mean inter-injury
rate of 2 seconds. The exponential distribution is chosen for
illustrative purposes because it is the probability distribution for
time between events in a Poisson point process. This was repeated
100 times to create a distribution of possible values for each analysis.
10,000 bootstrapped samples were used to assess for statistically
significant differences of means or medians and to create 95%
confidence intervals for analysis involving repeated temporal
simulations. To capture secondary injury event rates across
varying time frames, we employed exponentially increasing time
bins, allowing for a more uniform sampling of event rates over time.
When relevant, multiple comparisons were corrected for using the
Benjamini–Hochberg procedure.

3 Results

3.1 Morphometric analysis

Twenty pixels from each of the three Ilastik-identified classes
(‘injury’, ‘air’, and ‘other’) for each image were manually scored
using the post-processed segmentations as shown in the confusion
matrix (Figure 1). The automated classification of ‘injury’ pixels
demonstrated a sensitivity of 0.78, indicating that 78% of true
‘injury’ pixels were correctly identified when compared to human
scoring. Specificity was 0.85, indicating that 85% of non-injury pixels
were correctly excluded. For the ‘air’ class, both sensitivity and
specificity were 0.97. For the ‘other’ class, which encompasses a
range of tissue types, the sensitivity was 0.69 and the specificity was
0.89. The overall accuracy across all classes was 0.81.
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The percentage of the lung lobe area occupied by each pixel class
in the CTRL and LAV groups is shown in Figure 2. Notably, the
median injury extent of 19.82% in the LAV group is significantly
elevated compared to the 9.88% in the CTRL group. The LAV group
also demonstrated a significantly reduced fractions of air and ‘other’
tissue (which includes aerated septa) compared to CTL. Based on

our prior work (Hamlington et al., 2018; Mattson et al., 2022) we
hypothesized that the distribution of injured region sizes would
follow a power-law distribution and that the power law exponents
would differ between the two injury groups. All tissue sections
except for one sample in the LAV group demonstrated a power-law
distribution of injury sizes (Figure 3). The power-law slope of the
histogram of injury sizes was calculated and shows that the median
slope for LAV was significantly less than for CTRL, indicating a
higher prevalence of larger injury areas in LAV than CTRL.

3.2 Scale-free network

The link weights (nj**) serve as a measure of the correlation
strength between nodes i and j in the network model. Smaller nj**

indicate stronger correlations. The in-degree distribution of the
network, which is indicative of the number of correlation, is
scale-free: the in-degree distribution of the network (x) fits a
power-law distribution P(x) � x−α, where α is the slope
(Figure 5). To elucidate the nature of these correlations a
threshold value (nc) is used to exclude weaker node correlations
with nj** > nc. This approach reveals a spectrum of network structures,
ranging from a larger, interconnected network with many weaker
correlations, to a decomposition of the network into isolated clusters
with stronger correlations (Figure 4). Choosing nc at the 25th
percentile of link weights demonstrates a network composed of
many isolated injured regions with only strong correlations linking
injured regions together. At the 50th percentile, more correlations
emerge, while nc at the 75th percentile shows little difference from a
threshold at the 90th percentile. Hubs are observed at every nc
percentile, where a ‘hub’, has a disproportionate number of
correlations compared to other nodes in the network. As the
threshold is increased, hubs tend to disproportionately gain more
correlations compared to other nodes in the network, suggesting a
‘rich-get-richer’ phenomenon.

We next consider the distribution of link weights using repeated
temporal simulation. As in the no-time simulation analysis, the

FIGURE 1
Confusion matrix of human classification versus automated pixel
classification using Ilastik for the three pixel classes: ‘Injury’, ‘Air’, and
‘Other’. Rows are human scores while columns are Ilastik scores. For
each tissue section, twenty pixels from each class were
manually scored.

FIGURE 2
Fraction of ‘Injury’, ‘Air’, and ‘Other’ pixels in the tissue sections for
the CTRL (blue) and LAV (orange) groups. Points show individual
sections. Statistically significant difference of means between CTRL
and LAV are denoted with an asterisk (p < 0.05).

FIGURE 3
Distribution of power law slopes of the frequency of injury sizes
for CTRL and LAV files. The one tissue section that did not fit a power
law distribution is annotated with the p-value. The significant
difference between CTRL and LAV is denotedwith an asterisk (p <
0.05) indicates a greater frequency of large regions of injury in LAV.
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FIGURE 4
The strength of correlations between different injured areas are elucidated by varying the threshold nc according to percentiles of nj*

*. (A) has a
threshold at the 25th percentile, (B) at the 50th percentile, (C) at the 75th percentile, and (D) at the 90th percentile. Injured pixels are red, while other tissue
is grey. Nodes of the network, corresponding to discrete, injured regions, are denoted with a blue circle and green lines represent correlations between
nodes in the network. The number of correlations that a given injured region receives is directly proportional to the size of the blue circle
representing that injured region.

FIGURE 5
Slopes of power-law fits for the in-degree distribution between non-time simulated and time simulated scale-free networks for (A) CTRL and (B)
LAV. Error bars represent 95% CI for slopes of the in-degree distribution for the time simulated dataset. Significant differences (p<0.05) between the
slope for the in-degree distribution between no-time simulation and time-simulation are denoted with an asterisk while differences that are not
significantly different (p≥0.05) are denoted with ‘ns’. All samples included in this analysis were found to have in-degree distributions that could be
plausibly fitted with a power-law distribution.
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temporal simulations follow a scale-free network as indicated by in-
degree distributions (k) that fit a power-law distribution P(k) � k−γ,
where γ is the slope fitted from maximum likelihood estimation
(Figure 5). For most samples, γ was significantly greater in the no-
time simulations than in the temporal simulations leading to a
significantly higher median γ (Figure 6).

The PageRank centrality was calculated for each lobe, both with
and without temporal simulations, to identify the most influential
nodes, or injured regions, within the network. A representative lobe
is depicted in Figure 7 showing the no time simulation (A) and time
simulation (B) analyses. While this figure does not provide a
quantitative comparison between the ‘no time simulation’ and
‘time simulation’ analyses, it allows visual comparison of
influential nodes between the two analyses.

To quantitatively compare of the consistency between the
time and no-time simulation centrality scores two subsets of no-
time simulation injured areas were generated using the top 0.5%
(Figure 8A) and top 1% (Figure 8B) of scores. The overlap
between the no-time simulation and increasing percentages of
the top time simulated centrality scores is shown in Figure 8.
This analysis revealed that injured areas with the highest

centrality scores in the no time simulation analysis
frequently corresponded to those with high scores in the
time simulation analysis. The degree of overlap increased as
the size of the subset in the time simulation analysis expanded.
For example, approximately 90% of the top 0.5% injured areas
in the no time simulation analysis were found within the top 8%
of the time simulation analysis (Figure 8A). Similarly, about
90% of the top 1% of injured areas in the no time simulation
analysis were identified within the top 10% of the time-
dependent analysis (Figure 8B). The overlap for both CTRL
and LAV was significantly greater than chance alone, denoted
by the dashed black line (Figure 8). While the LAV group
visually appears to show better agreement, the mean
difference in overlap between the two groups was not
statistically significant, except for a few instances as indicated
by confidence bands in Figure 8A.

Using the time simulation analysis, we next consider the rate of
secondary injury occurrence related to primary injury events. This
analysis was inspired by Omori’s law in seismology, drawing a
parallel between secondary lung injuries and seismic aftershocks.
Here, a secondary injury event is defined as one that is correlated
with a preceding primary injury event in the temporal simulations.
Because the order of injury is randomly generated each temporal
simulation was repeated 100 times and ensemble averages are
reported. The simulated secondary injury event rate shown for
representative CTRL and LAV lobes is provided in Figure 9 and
shows that the rate of secondary injury events tends to follow an
approximate power-law behavior relative to the time elapsed after
primary injury events. Notably, this rate is also influenced by the
magnitude of the primary injury event, with larger primary injury
events demonstrating statistically significant higher rates of
secondary injury events. Although LAV lobes display a
significantly higher percentage of injury pixels compared to
CTRL lobes, both groups exhibit a similar power-law
distribution in the temporal pattern of their secondary injury
event rates.

An aggregate analysis of aftershock rates, encompassing both
CTRL and LAV groups, reveals that the distribution of secondary
injury event rates adheres to a power-law distribution. Interestingly,

FIGURE 6
The in-degree distribution for no time simulation (green) and
time simulation (cyan). The significant difference in the median
between no time simulation and time simulation is denoted with an
asterisk (p<0.05).

FIGURE 7
Visualization of PageRank centrality of injured regions with no-time simulation (A) and time simulation (B). PageRank centralities are shown if they
are in the 99th percentile for magnitude. Centralities are normalized for each lobe (two lobes, analyzed separately, are shown in each image), allowing for
comparison within lobes but not between lobes. Injured pixels are red while healthy tissue pixels are grey.
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FIGURE 8
The frequency at which injuries with top centrality scores in the no time simulations are found in the set of injuries with top centrality scores and
temporal simulation. The horizontal axis shows the fraction of the injured areas with the highest centrality scores in the time simulation analysis; the
vertical axis denotes the fraction of injured areas in the no time simulation analysis that are found in the subset of injured areas in the time simulation
analysis (i.e., overlap). (A) shows the top 0.5% of injured areas based on centrality scores in no time simulation analysis while (B) shows the top 1% of
injured areas from the no time simulation analysis. Error bars are 95% CI capturing inter-lobar variability. The black dashed line indicates the percentage
overlap that would occur by chance alone.

FIGURE 9
Simulated secondary injury event rates after a primary injury event are shown for randomly chosen CTRL (A, B) and LAV (C, D) sections. Simulated
secondary injury event rates are shown separated bymagnitude (A, C) and not separated bymagnitude (B, D). 95% confidence bands are plotted for each
magnitude and for the aggregatedmagnitudes. Injury magnitudes (sizes) are shown in a log10 scale, analogous to the Richter scale, with a reference injury
size of 1. Secondary injury event rates approximate power-law behavior with clear separation between secondary injury event rates at different
magnitudes. Exponential binning is used to obtain approximately equal sample sizes in each time bin.
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there was no significant difference observed between the CTRL and
LAV groups in terms of secondary injury event rates, as shown
in Figure 10.

4 Discussion

While mechanical ventilation is a necessary, life-saving
treatment in patients with ARDS, it poses a risk of further lung
damage. This study aims to better understand the spatiotemporal
dynamics of a murine two-hit model of acute and ventilator
induced lung injury. Using algorithmically segmented images,
we apply a network theory approach inspired by prior
seismology work to describe how disparate regions of injury are
correlated to one another. We found that the distribution of injury
sizes in segmented, whole-lobe histological sections follows a
power-law distribution, recapitulating findings from our prior
work (Hamlington et al., 2018; Mattson et al., 2022). The
network theory-based analysis revealed that correlations
between separate regions of injury follow a scale-free network,
suggesting a ‘rich-get-richer’ phenomenon. This approach was
extended using repeated simulations of the temporal dynamics
for each whole-slide image. The network remained scale-free with
the simulated time-points, with a subsequent exploratory analysis
finding that secondary injury event rates follow a power-law with
clear delineation between magnitudes, analogous to Omori’s law
from seismology. The analogy to seismic aftershocks not only
illustrates the cascading nature of lung injury but also underscores
the competitive environment within the lung, where larger injury
sites are more prone to expansion. Understanding that larger
injury sites are more likely to expand provides insight into the
spatiotemporal progression of VILI and suggests that ‘hubs’ of
injury could become important targets for therapeutic
interventions.

The cornerstone of the analysis is pixel classification, which
was performed in Ilastik. Comparison to manual classification
(Figure 1) shows that the sensitivity for ‘injury’ pixels was 0.78,
indicating that automated segmentation and the morphological

post-processing steps accurately describes ‘injury’ pixels, while the
specificity of 0.85 indicates that most non-injury pixels are
correctly excluded. In a prior study a different observer (BJS)
performedmanual morphometry (stereology) on the same samples
(Bilodeaux et al., 2023) and found that the percentage of collapsed
septal tissue in the entire lung was 14.55% for LAV and 2.28% for
CTRL. In the current study the automated approach yielded
19.82% in the LAV group and 9.88% in the CTRL group. Some
of this bias towards the injury classification may be attributed to
the different observers in the two studies. This is particularly
relevant when differentiating a region of atelectasis (i.e., injury),
which is characterized by two or more layers of septal capillaries
‘piled up’ (Rizzo et al., 2021), from an image region where the
section plane passes in parallel through the septa and the intra-
septal capillary network is revealed (a ‘tangential cut’). While our
automated segmentation method demonstrates high sensitivity
and specificity compared to a trained expert, it is important to
consider the implications of misclassification. Misclassification
could impact the interpretation of injury distribution and
progression patterns, potentially affecting the identification of
injury ‘hubs’ and the application of scale-free analysis.
However, given the likelihood that regions misclassified as
injury (instead of healthy septa) are ‘tangential cuts’ of the
alveolar septa, and thus have a small size relative to other
injured regions and a relatively homogenous distribution
throughout the lungs, we expect that overestimation of those
injured regions does not substantially affect the network
analysis. Furthermore, this issue should affect both the LAV
and CTRL groups equally, thus minimizing its impact on the
comparative analysis of our results.

Prior studies suggest that the pathophysiology of ARDS may be
driven, in part, by a ‘rich-get-richer’ phenomenon, wherein larger
injured regions expand more rapidly during ventilation. This
conceptual framework yields a distribution of injury sizes that
follows a power-law distribution (Hamlington et al., 2018; Mori
et al., 2019; Gaver et al., 2020; Mattson et al., 2022) and has been
demonstrated to exist at scales ranging from perforations in the
blood-gas barrier (Hamlington et al., 2018) through cellular injury

FIGURE 10
Aggregate secondary injury event rates for the simulated temporal analysis are shown for CTRL and LAV on both a (A) linear and (B) log-log scales.
95% confidence bands are also shown. Secondary injury event rates demonstrate power-law behavior with no significant difference between CTRL and
LAV throughout the entire simulated duration of secondary injury event rates.
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patterns at the lobar scale (Mori et al., 2019; Gaver et al., 2020;
Mattson et al., 2022). On a global scale, computed tomography
(CT) scans of chronic obstructive pulmonary disease (COPD)
patients have found that the volumes of low attenuation
regions, correlating to the presence of lung disease, also follow
a power-law distribution (Mondonedo et al., 2019). In the current
study we also found that the sizes of injured regions, primarily
comprised of microatelectases, followed a power-law distribution
(Figure 3). The inter-animal heterogeneity within groups
(Figure 3), may also suggest that this scale-free behavior
extends through the animal scale.

Our network analysis, without time dependence, lends additional
support to this ‘rich-get-richer’ idea. Note that we are performing this
analysis using histological sections so repeated measurements in the
same animal are not possible. Qualitatively, we observed a distinct
hierarchy within the lung injury network, where certain regions, acting
as ‘hubs’, were disproportionately more correlated with other injured
areas (Figure 4). Upon introduction of a threshold to eliminate weaker
correlations, these ‘hubs’ tend to retain more of their correlations than
less-connected injured regions, reinforcing the ‘rich-get-richer’
dynamic found in previous literature (Hamlington et al., 2018;
Mori et al., 2019; Gaver et al., 2020). Quantitatively, we find that
the network’s in-degree distribution adheres to a power-law (Figure 5).
In other words, most injured areas are only minimally interconnected,
while a few key regions exhibit extensive correlations with other
injured areas, reinforcing the ‘rich-get-richer’ pattern. The concept
of injury hubs underscores the non-uniform nature of lung injury
progression, where certain regions become critical nodes of damage
amplification. Biologically, these hubs could be areas of heightened
vulnerability within the lung, possibly due to pre-existing
microstructural heterogeneities, differential exposure to mechanical
stress during ventilation, or variations in local immune responses.
Once established, these hubs are likely to propagate injury by
generating mechanical stress concentrations. Such a pattern aligns
with the scale-free behavior observed at smaller scales and highlights
potential targets for therapeutic interventions. Protecting these hubs, or
mitigating their expansion, could disrupt the ‘rich-get-richer’ dynamic,
potentially halting the progression of lung injury at a critical juncture.
This approach could involve strategies such as personalized ventilator
management to eliminate stress concentrations or localized delivery of
anti-inflammatory agents, pulmonary surfactant, antioxidants, or
therapies designed to enhance tissue repair mechanisms specifically
within or around these hubs. The development of such targeted
interventions necessitates a multidisciplinary approach, combining
insights from bioengineering, pharmacology, and clinical medicine
to translate our understanding of injury hubs into practical treatments
for ARDS and VILI. Perhaps most important is the concept of
preventing formation of the injury-driving hubs before the form
through preemptive lung protective ventilation (Brower et al., 2000;
Jabbari et al., 2013; Nieman et al., 2023).

The temporal dynamics of injury are a key concern in the
management and treatment of lung injury. However, high-
resolution serial imaging of lung parenchyma remains
challenging due to methodological constraints. To bridge this
gap, we employed a simulated time series analysis. Here, our
motivation was to explore the concept of secondary injury
events which could be viewed as analogous to seismic
aftershocks, where initial injury events could trigger subsequent

damage in a cascading temporal sequence. Before analyzing the
secondary injury events, we compared PageRank centrality scores
for injured regions without the time series and with an ensemble of
100 time series simulations as shown for a pair of sections in
Figure 7, which qualitatively demonstrates good overlap between
influential regions of injury. This overlap between the two analyses
is quantified in Figure 8 showing that the simulated time series,
while a constructed model, aligns closely with the non-simulated
time series. Using the simulated time series we investigated the
concept of secondary injury events, inspired by the analogous
phenomena observed in seismology (Yukutake and Iio, 2017).
Similarly to seismic aftershocks, we find that secondary injury
events in the simulated time series follow a pattern similar to
Omori’s law, with clear delineation of secondary injury event rates
by magnitude and secondary injury event rates that follow power-
law behavior over time (Figure 9). Despite inter-group differences
in injury region size, we observe no difference in the secondary
injury event rate between CTRL and LAV (Figure 10). This
suggests that despite differences in initial injury, ventilation,
and injury severity the dynamics of injury propagation remain
similar between groups.

This concept of injury aftershocks extends Mead’s concept of
parenchymal stress concentrations (Mead et al., 1970) beyond
the boundaries of the original injury site and further into the
parenchyma. Parenchymal tethering, or alveolar
interdependence, occurs because alveoli share septal walls. As
such, the collapse or stiffening of one alveolus will increase stress
and strain in neighboring regions. This theory has been
bolstered in subsequent computational analyses employing,
e.g., finite element spring networks (Wilson and Bachofen,
1982; Makiyama et al., 2014; Albert et al., 2019) or systems of
differential equations (Ma et al., 2023) to show that stress
accumulates heterogeneously in the lung parenchyma, with
the largest stresses found near areas with greater extents of
injury. Other spring network simulations have shown that
tethering (or stiffening) has both localized and longer length-
scale effects on the distribution of lung stress and strain (Ma
et al., 2013; Ma et al., 2015; Hall et al., 2023). Probabilistic
methods, based on experimental data, have also been employed
to understand the forces contributing to injury propagation, the
mechanisms of injury heterogeneity, and the rich-get-richer
mechanisms of VILI pathogenesis and offer a complementary
perspective to deterministic mechanical models (Mattson et al.,
2022; Mattson and Smith, 2023). That stochastic approach
reaffirms the local to global range of injury interdependencies
that emerge in a lung subjected to injurious ventilation.
Collectively, this body of research shows how the presence of
existing parenchymal injury alters the stress environment and
drives the genesis of subsequent injury, supporting the
conceptual framework of the current study. The spring
network simulations provide a mechanism for injury
propagation while the probabilistic models support this
concept using in vivo data.

Our works builds upon these established theories by drawing
an analogy to seismology, specifically the concept of aftershocks
clustering around a main seismic event, to provide a novel
perspective on lung injury propagation. The heterogeneity of
forces within the lung may be viewed analogously to the
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heterogeneous redistribution of mechanical stress along geological
fault lines, leading to asymmetric rupture propagation (Araki et al.,
2006; Zaliapin and Ben-Zion, 2011). The dynamics of edema and
pulmonary surfactant may also relate to the aftershock concept. In
edematous areas of injury, high surface tension liquid might be
‘squeezed out’ into adjacent airspaces on expiration, spreading
aftershocks of injury into adjacent regions (Perlman, 2020).
Considering the sub-hour timescale of the experiments,
inflammatory processes are unlikely to play a dominant role in
the current study. Regardless of the exact mechanisms at play here,
the analogy to seismology, particularly the concept of aftershocks
clustering around a main seismic event, offers a vivid illustration of
how lung injury might propagate. Just as aftershocks extend the
impact of an earthquake, secondary injury sites can exacerbate and
extend the damage initiated by a primary injury site. Recognizing
this pattern enables us to conceptualize lung injury in a new light,
offering insights into the mechanisms driving injury propagation
in the lung.

Our study, while providing novel insights into the
pathophysiology of acute and ventilator induced lung injury, has
several limitations. First, the use of a simulated time series to model
the progression of lung injury allows us to infer temporal dynamics
that are otherwise unmeasurable. Our adoption of scale-free
modeling and simulated time series analysis rests on simplifying
assumptions that conceptualize the size and temporal development
of lung injuries as independent variables. This perspective facilitates
our exploration of injury distribution and progression patterns but
may not fully capture the in vivo development of lung injury where it
may be that larger injured regions form preferentially at later
timepoints. Given that this information is currently unknown, we
elected to maintain independence between injury size and temporal
development. Nevertheless, the simulated time series results are
consistent across the 100 different simulations in the ensemble and
thus likely provide a reasonable approximation. Furthermore, in the
simulated time series the regions of injury are generated
instantaneously which does not capture the temporal growth of
injury size, a process that may include adjacent injured regions
merging with one another. In order to accommodate these factors, a
spatially defined model framework would need to be employed and
additional mechanistic or probabilistic factors would be necessary to
drive injured region growth. Given the additional complexity and
parameterization requirements posed by these additions we propose
that the current approach provides a good balance between
simplicity, feasibility, and accuracy. Reflecting on these
assumptions, we recognize the need for caution in extrapolating
our findings to clinical scenarios. Second, our reliance on 2D
analysis for evaluating lung injury may oversimplify the
inherently complex 3D structure of the lung and injured regions.
This dimensional reduction could potentially obscure important
spatial relationships and injury dynamics. The experimental
challenges in 3D imaging at the whole-lung scale and necessary
image resolution are formidable and will hopefully be addressed in
years to come. Third, training algorithms to differentiate injured
from healthy regions of the lung parenchyma is challenging. This is
exacerbated by the limited staining options in glycol methacrylate
sections which were chosen to avoid the dramatic shrinkage of lung
tissue that occurs in paraffin processing (Schneider and Ochs, 2014).

In summary, automated segmentation of histological sections
shows a power-law distribution of the size of regions of
microatelectases and edema (injury) in the lung parenchyma of
controls and mice subjected to an injurious pulmonary lavage and a
half hour of VILI. The application of a network theory approach
derived from seismology demonstrates that the number of
correlations received by injured regions (the in-degree
distribution) follows a power-law distribution. This distribution is
indicative of a scale-free network. Simulated time series analysis
suggests that the ‘aftershocks’ of these injured regions could follow
similar patterns to earthquakes, where larger injured regions spawn
more numerous secondary injury events in nearby regions of the
parenchyma. Taken in the context of prior studies showing power-
law distributions of perforations in the blood-gas barrier and
pulmonary cell injury, the current findings suggest that the rich-
get-richer mechanism of lung injury is present across a wide range of
length scales and may govern the spatiotemporal heterogeneity that
characterizes acute and ventilator-induced lung injury.
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