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Objective: Neoadjuvant chemotherapy (NAC) is a key element of treatment for

locally advanced breast cancer (LABC). Predicting the response to NAC for

patients with Locally Advanced Breast Cancer (LABC) before treatment

initiation could be beneficial to optimize therapy, ensuring the administration

of effective treatments. The objective of the work here was to develop a

predictive model to predict tumor response to NAC for LABC using deep

learning networks and computed tomography (CT).

Materials and methods: Several deep learning approaches were investigated

including ViT transformer and VGG16, VGG19, ResNet-50, Res-Net-101, Res-

Net-152, InceptionV3 and Xception transfer learning networks. These deep

learning networks were applied on CT images to assess the response to NAC.

Performance was evaluated based on balanced_accuracy, accuracy, sensitivity

and specificity classification metrics. A ViT transformer was applied to utilize the

attention mechanism in order to increase the weight of important part image

which leads to better discrimination between classes.

Results: Amongst the 117 LABC patients studied, 82 (70%) had clinical-

pathological response and 35 (30%) had no response to NAC. The ViT

transformer obtained the best performance range (accuracy = 71 ± 3% to

accuracy = 77 ± 4%, specificity = 86 ± 6% to specificity = 76 ± 3%, sensitivity =

56 ± 4% to sensitivity = 52 ± 4%, and balanced_accuracy=69 ± 3% to
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balanced_accuracy=69 ± 3%) depending on the split ratio of train-data and test-

data. Xception network obtained the second best results (accuracy = 72 ± 4% to

accuracy = 65 ± 4, specificity = 81 ± 6% to specificity = 73 ± 3%, sensitivity = 55 ±

4% to sensitivity = 52 ± 5%, and balanced_accuracy = 66 ± 5% to

balanced_accuracy = 60 ± 4%). The worst results were obtained using VGG-16

transfer learning network.

Conclusion: Deep learning networks in conjunction with CT imaging are able to

predict the tumor response to NAC for patients with LABC prior to start. A ViT

transformer could obtain the best performance, which demonstrated the

importance of attention mechanism.
KEYWORDS

neoadjuvant chemotherapy, LABC, deep learning, ViT transformer, response prediction
and CT imaging
1 Introduction

Locally advanced breast cancer (LABC) is a diverse condition

that presents in various clinical forms (1, 2). It encompasses tumors

that are larger than 5 cm or involve the skin and chest wall (1, 2).

Additionally, LABC includes inflammatory breast cancer and cases

where patients have fixed axillary lymph nodes or involvement of

nodes in the ipsilateral supraclavicular, infraclavicular, or internal

mammary regions (1, 2). Managing LABC remains a formidable

clinical challenge since the most individuals with this stage of

disease tend to have poorer survival rates compared to those with

early-stage breast cancer (1, 2).

The standard approach for treating LABC involves a

multimodal strategy consisting of systemic therapy, surgery, and

radiotherapy (1, 2). In certain cases, the possibility of resecting

inoperable tumors becomes viable, particularly with the use of

Neoadjuvant chemotherapy (NAC), which helps shrink the

tumors. This is followed by surgical intervention and subsequent

adjuvant radiotherapy, and targeted therapy or hormonal therapy

when indicated (3).

Treatment with Neoadjuvant chemotherapy (NAC) in locally

advanced breast cancer (LABC) often yields variable responses, with

only 15-40% of cases eventually achieving a complete pathological

response to this treatment (4). It’s crucial to note that the

pathological response of tumors to NAC serves as a critical

prognostic indicator for long-term disease-free survival (DFS) and

overall survival (OS) in specific patient groups (5, 6). However,

several months after the therapy has started the conventional

assessment of treatment response in LABC tumors to NAC

occurs at the end of the treatment course. This evaluation

typically relies on pathological assessments, often using the

Miller-Payne (MP) grading system to compare tumor cellularity

between pre-treatment core needle biopsies and post-treatment

surgical specimens (6, 7). Given the invasive nature of these
02
methods, there is a growing interest in non-invasive imaging

techniques to evaluate therapy responses in LABC tumors. The

goal is to identify imaging biomarkers that can predict tumor

responses early in the course of NAC, facilitating personalized

treatment strategies.

Both histopathology analysis and quantitative imaging

techniques have provided insights into different characteristics

that can help identify how LABC tumors respond to NAC.

Responsive LABC tumors, for instance, tend to exhibit lower

levels of cell proliferation compared to non-responsive tumors,

often due to an increase in apoptosis (8, 9). Additionally, studies

have shown a correlation between the expression of the human

epidermal growth factor receptor 2 (HER2) and the response to

NAC (10). HER2-positive tumors have significantly higher rates of

achieving a complete pathological response compared to HER2-

normal tumors (10). Prior investigations using diffuse optical

spectroscopic techniques have reported significant differences in

hemoglobin content changes after just one week of therapy between

cases with complete pathological responses and those with

incomplete responses (11–13). Furthermore, studies employing

magnetic resonance imaging (MRI) (14) and measurements of

circulating DNA and RNA integrity (15) have assessed response

prediction shortly after the initiation of chemotherapy.

In cancer imaging, textural radiomics features are widely being

used in the context of quantitative imaging (16–18). Previous

studies have applied textural radiomics features for LABC therapy

response prediction using different modalities (19, 20). Likewise,

different imaging modalities have been utilized to extract

informative information to build a predictive model to analyze

the cancer treatment performance prior to start. In this regard,

dynamic contract-enhanced magnetic resonance imaging (DCE-

MRI) (14), positron emission tomography (PET) (21, 22), Diffuse

optical imaging (DOI) (23), Ultrasound (US) imaging (24–26) and

quantitative ultrasound (27–29) employed to assess the treatment
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response to breast cancer. Additionally, fusion of two different of

modalities can be employed to obtain more discriminative features.

To this end, Quantitative ultrasound Spectroscopic and CT

information were fused in feature level to predict the response of

head and neck cancer to radiation therapy treatment (30).

Although textural radiomics features are widely applied to

evaluate the treatment of cancer, “detail” features, which are the

most informative, can be extracted by deep learning-based

techniques. Radiomics-based techniques are limited to extracting

features at a superficial level, whereas deep learning techniques can

delve deeper to extract features. To this end, a hierarchical self-

attention-guided deep learning algorithm was trained to predict the

chemotherapy treatment response using digital histopathological

images (23). Likewise, in another study, outcome of radiotherapy

for brain metastasis was predicted using the combination of deep

learning features and clinical features. In this study, a deep

convolutional neural network (CNN) was trained on MRI images

to extract MRI features and thus deep textural MR-features are

combined with clinical features to predict the outcome of treatment

(31). Fujima et al. (32) conducted a study to predict treatment

outcome for patients with oral cavity squamous cell carcinoma

using deep learning and FDG-PET imaging.

Two types of deep learning networks have been widely

employed to predict treatment outcomes using medical imaging.

CNN-based techniques, which is called transfer learning, are

applied to extract textural features from medical images (33).

CNNs extract features using convolutional filters and reduce the

dimension using pooling layer. The extracted features are more

detailed in last layers. It means initial layers extract general features

and the last layers extract details. The last layer of CNNs is flattened

and then flatten layer is considered as an input of a fully connected

layer (multi-layer perceptron).

Although these networks such as ResNet-50, ResNet-101,

ResNet-152, Inception-V3 and Xception showed good

performance to predict treatment outcomes, these CNN-based

methods suffer the lack of attention mechanism. Nevertheless,

vision transformer (ViT) is developed based on attention

mechanism (self-attention) and it can increase the importance of

image that carries the essential information (34).

The objective of this study is to evaluate deep learning networks

to predict treatment outcomes for patient with LABC using CT

imaging. We hypothesize that extracted features from CT images

using deep learning techniques can provide vital information to

predict response to NAC prior to start for patients with LABC.

Deep convolutional neural networks (CNNs) can be applied to

classify medical images. These networks extract features using

convolution filters by applying a convolutional operation on

images. CNNs are translation invariance, which means if a filter

learn information of object in one position of image, it does not

need to learn same object in other position (33). In this study, five

networks including VGG16, VGG19, ResNet-50, Res-Net-101, Res-

Net-152, InceptionV3 and Xception were used to classify tumor

response to NAC.

Convolutional neural networks (CNNs) work well for

classification, segmentation, object detection and registration tasks

(33). However, the lack of an attention mechanism to increase the
Frontiers in Oncology 03
weight of important parts of image (data) plays a limiting role in

CNNs. Attention mechanisms were found in natural language

processes (NLP) at first (35). The vision transformer (ViT)

emerged to compensate for the lack of an attention mechanism in

traditional CNNs (36). The attention mechanism is the backbone of

ViT methodology and it improves the understanding of a global

representation of data, which leads to an improvement of the

learning during training phase by increasing attention of network

on important information. ViT splits the images into patches and

then patches are flattened to have linear sequences. Since the spatial

dependency among patches is significantly important, positional

encoding is performed in ViT to assign the position of each patch in

embedding space.
2 Materials and methods

2.1 Study protocol and data acquisition

This research was carried out in compliance with the ethical

guidelines set by Sunnybrook Health Sciences Center (SHSC) and

Sunnybrook research Institute (SRI). The study included a total of

117 patients, comprised of 82 responders and 35 non-responders,

who were diagnosed with locally advanced breast cancer (LABC)

and undergoing neoadjuvant chemotherapy (NAC). All patients

provided written informed consent. Tumor sizes were determined

through MRI scans performed as part of standard care. Pre-

treatment core needle biopsy specimens were subjected to

histopathological analysis, confirming a cancer diagnosis for all

patients. Post-operative pathology specimens provided crucial

information about initial cellularity, tumor subtype, and the

expression of hormone receptors, including estrogen receptor

(ER), progesterone receptor (PR), and HER2 status as part of

stand of care. All patients completed a full course of NAC,

typically lasting 4-6 months. Following surgery, patients received

adjuvant therapies in accordance with standard institutional

practices, which included radiation, maintenance Trastuzumab

for HER2-positive tumors, or endocrine therapy for hormonal-

receptor positive tumors.
2.2 Pathological evaluation of
tumor response

After finishing a full NAC regimen, patients underwent either

lumpectomy or mastectomy. As part of their clinical care, standard

clinical data and histopathological assessments of treatment

outcomes were used to evaluate the pathological response of

tumors to NAC. Specifically, patients were categorized into two

groups: non-responders (referred to as “NR”) consisting of patients

with stable disease or progressive disease and responders (referred

to as “R”) consisting of patients with partial or complete response.

This classification was determined using a modified response (MR)

grading system, which drew from the Response Evaluation Criteria

in Solid Tumor (RECIST) (37) and residual tumor cellularity (6).

RECIST assesses the percentage change in tumor size (measured in
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its longest dimension) before and after treatment. A MR score of 1

indicates that there was no decrease in tumor size. MR score of 2

corresponds to a reduction in tumor size of up to 30%. AnMR score

of 3 is linked to a reduction in tumor size ranging from 30% to 90%.

An MR score of 4 is indicative of a reduction in tumor size

exceeding 90%. An MR score of 5 signifies the absence of any

remaining evidence of a tumor.

In addition, to these criteria based on RECIST measurements,

we also took into account the residual tumor cellularity to evaluate

the treatment response. Specifically, we established a threshold of

5% for tumor cellularity. Patients are categorized as responders if

tumors have cellularity equal to or less than 5% ( ≤5%), otherwise

they are categorized as non-responders. There was no case with

cellularity equal to or less than 5% prior to start.

Overall response assessment integrated both the RECIST-based

criteria concerning tumor size reduction and the assessment of

residual tumor cellularity. According to the RECIST criterion, a

patient was classified as a responder (‘R’) if either there was a

reduction in tumor size exceeding 30% (MR score 3-5) or if the

residual tumor cellularity was low (<=5%). Conversely, a patient

was categorized as a non-responder (‘NR’) if the reduction in tumor

size was less than 30% (MR score 1-2) or if there was an increase in

tumor size residual tumor cellularity was high (>5%).

The RECIST-based criteria and the evaluation of residual tumor

cellularity were used to determine the target response for

binary classification.
2.3 Data pre-processing and deep learning

Oncologists characterized the regions of interest (ROI)

for all CT image slices throughout the whole tumor.
Frontiers in Oncology 04
Transformer and transfer-learning techniques as deep learning

approaches were considered to discriminate responder from non-

responder patients.

Figure 1 shows a schematic of the methods used in the study to

predict responder and non-responder patients.
2.4 Implementation of deep
learning methods

The Python-3 language programing was employed to

implement deep-learning methods. Keras 2.11 version was

utilized to implement the transformer network and transfer

learning networks. Data was split into 60% training set, 10%

validation set and 20% test set (70:30 ratio). To see the effect of

partitioning percentage on classification accuracy, we tried different

train-test ratios including a 75:25 (65% training set, 10% validation

set and 25% test set) and a 80:20 (70% training set, 10% validation

set and 20% test set) and a 85:15 (75% training set, 10%

validation set and 15% test set) and a 90:10 (80% training set,

10% validation set and 10% test set).

Experiments were repeated 10 times (The training and test sets

were randomly split ten times to prevent bias towards any particular

segment of the dataset.) and the average values of classification

performance were reported. For transfer learning, networks were

pre-trained on the ImageNet 1k dataset, and ViT was trained from

scratch on the available training data.

Data augmentation was implemented using transformations

including rotation, translation, zoom and flip. 150 epochs with

early stop for training were considered. Learning rate was set to

0.001 and weight decay was set to 0.0001. Dropout rate was set to 0.5,

optimizer was “AdamW” and “gelu” was the activation function.
FIGURE 1

The diagram illustrates a deep learning methodology for forecasting the response to NAC in LABC patients. The lower segment illustrates the
application of transfer learning utilizing pre-trained CNNs, while the upper segment illustrates training from the ground up using the Vision
Transformer (ViT) approach. In the ViT architecture, images are segmented into patches and converted into a sequential format, akin to the
sequence of words in Natural Language Processing (NLP). The positional encoding ensures that each patch’s location retains crucial information.
The core component is the transformer encoder, which includes patch embedding transformation, multi-head attention, and MLP.
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3 Evaluation metrics

Accuracy, sensitivity, specificity, and balanced_accuracy of

classifications were used to evaluate the performance of classifiers

on test data expressed as follows;

Accuracy =
TP + TN

TP + TN + FP + FN
,  

Sensitivity =
TP

TP + FN
,  

Specificity =
TN

TN + FP
,  

Balanced _Accuracy =
Sensitivity + Specificity

2

Where TP, TN, FP and FN indicate true positive (true

response), true negative (true Non-response), false positive and

false negative, respectively.
4 Results

In this study, there were 117 women with a mean age of 52 ± 11

(mean ± standard deviation) years. Eighty-two (n=82) participants

had a clinical-pathological treatment response (partial or complete

response) based on RECIST criteria (37). Thirty-five (n=35) women

had no treatment response (stable disease or progressive disease).

Invasive ductal carcinoma (IDC) was the major histopathology for

patients, and a minority of the patients were diagnosed with

invasive lobular carcinoma (ILC) and invasive metaplastic

carcinoma (IMC). A majority of patients (42%) had positive

estrogen (ER+) and progesterone (PR+) receptors in tumors

(major molecular features), and positive Her2/Neu (HER2+)

receptor and triple negative tumor (ER-, PR-, HER2) were found

in a minority of patients (15% and 22%, respectively). The tumor

size changed from 5.2 ± 1.1 cm (mean ± standard deviation) to 1.4 ±

0.4 cm for responders and from 5.6 ± 1.3 cm to 6 ± 1.5 cm in non-

responders. Chemotherapy regimens used were doxorubicin

(Adriamycin), cyclophosphamide followed by paclitaxel (Taxol)

(AC-T), or 5-fluorouracil, epirubicin, cyclophosphamide followed

by docetaxel (FEC-D), doxorubicin, cyclophosphamide followed by

docetaxel (Taxotere) (AC-D), paclitaxel and cyclophosphamide

(TC). Additionally, the monoclonal antibody trastuzumab

(Herceptin) (TRA) was utilized for LABC patients with HER2+

tumors. No changes were made to therapy based on imaging in the

course of this observational study. Table 1 provides a summary of

the pathological and clinical characteristics of the patients.

Supplementary Table 1 characterizes each patient in terms of

their characteristics individually.

Figure 2 presents individual representative CT images from

responding and non-responding patients. No apparent differences

were visually present.

In terms of response prediction, ViT (Accuracy=77 ± 3,

Balanced_Accuracy=69 ± 4) obtained the best performance.

Xception with Accuracy=72 ± 4 and Balanced_Accuracy=66 ± 5

placed in second rank, and ResNet-50 obtained third place

with Accuracy=72 ± 5 and Balanced_Accuracy=64 ± 4. Results

for ViT ranged from accuracy = 71 ± 3% to 77 ± 4%, specificity =
Frontiers in Oncology 05
86 ± 6% to 76 ± 3%, sensitivity = 56 ± 4% to 52 ± 4%, and

balanced_accuracy=69 ± 3% to =69 ± 3 with different train-test

splitting ratios. Tables 2–6 show the performance of networks for

different train-test split ratios 90:10, 85:15, 80:20, 75:25 and

70:30, respectively.

We applied a t-test to the resulted balanced _accuracy of

different networks and this statistical test demonstrated that

results are statistically significant.
5 Discussion

In this study, two different approaches of deep learning were

applied to predict treatment response to NAC for patients with

LABC. CT images of 117 patients with LABC were collected prior to

the start of NAC treatment for gross disease. Response to NAC

treatment was evaluated using standard clinical methodology for

ground truth labelling. Specifically, the assessment of the

chemotherapy treatment response was determined following the

conclusion of the NAC regimen, using standard clinical RECIST

criteria as well as histopathological methods.

The ViT technique obtained the best result in comparison with

the other transfer learning techniques. This demonstrates that the

attention mechanism improved the performance of the algorithm

by applying different weights for different parts of an image. The
TABLE 1 Clinical characteristics of patient cohort.

Characteristics Responders
Mean (std)

Non-responders
Mean (std)

Age 52 (11) 54 (10)

Initial Tumour Size 5.2 (2.5) cm 5.6 (2.7) cm

Histology Percentage (Count)

IDC 58 (70) 23 (65)

ILC 1 (1) 4 (11)

IMC 3 (3) 2 (5)

Molecular Features Percentage (Count)

ER+ 42 (51) 29 (82)

PR+ 37 (45) 24 (68)

HER2+ 28 (34) 9 (26)

ER-/PR-/HER2- 22 (27) 4 (11)

ER+/PR+/HER2+ 15 (18) 6 (17)

ER+/PR+/HER2- 22 (27) 20 (57)

ER-/PR-/HER2+ 15 (18) 4 (11)

Residual Tumour Size 1.4 (2.4) cm 6 (5.5) cm

Response Percentage (Count)

Responding Patients 70 (82) –

Non-responding Patients – 30 (35)
std, Standard Deviation; IDC, Invasive Ductal Carcinoma; ILC,Invasive Lobular Carcinoma;
IMC,Invasive Metaplastic Carcinoma; ER, estrogen; PR, progesterone.
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important parts of the image received more attention during the

training phase leading to better learning. Additionally, the effect of

unimportant parts of the image is considerably decreased, which

leads to less redundant information. ViT excels at efficiently

capturing global contextual information due to its mechanism. In

contrast to CNNs, which depend on local receptive fields and

pooling layers, ViT simultaneously analyzes the entire image,

enabling it to effectively model extensive dependencies over long

ranges (36).

In terms of transfer learning networks, Xception, which is

inception with depth-wise separable convolutions, obtained the

best performance among all CNN-based networks. Likewise,

ResNet50 obtained the second best among all CNN networks.

The performance of VGG16 was not promising and it ranked as

the last network in terms of classification accuracy. Although

VGG16 effectively captures a diverse range of features, it does not

explicitly acquire spatial hierarchies. In contrast, contemporary

architectures like ResNets have incorporated skip connections and
Frontiers in Oncology 06
feature reuse mechanisms, enhancing their ability to capture both

low-level and high-level features more efficiently.

CT Imaging is not able to visualize the details of cellular

structures because of its resolution limitations. However, there

might be variations in cellular structure and density, and

arrangement which carry significant important information about

treatment response. To this end, several studies have demonstrated

the correlation between cellular micro-structure characteristics and

tumor response (38–40). Additionally, voxel intensity in CT

imaging, which shows the attenuation coefficient of tissue, can be

used as a good feature to evaluate the variations in tissue micro-

structure (41). In order to tackle the challenge of tumor tissue

micro-structure characterization using CT, textural features

quantification techniques have been frequently employed. To this

end, Sadeghi et al. (42) extracted textural features from optical

spectroscopic (DOS) images using the grey level co-occurrence

matrix (GLCM) technique to predict NAC response in an LABC

study. Tran et al. (19) utilized DOS-GLCM textural features to
TABLE 2 The performance of deep learning networks on the prediction of treatment response for 90:10 ratio (80% train data, 10% validation and 10%
test data).

Network \ Metric Accuracy
Mean (SD)

%

Balanced_
Accuracy
Mean (SD)

%

Sensitivity
Mean (SD)

%

Specificity
Mean (SD)

%

VGG-16 64 (3) 61 (4) 52 (3) 69 (4)

VGG-19 68 (3) 61 (3) 51 (3) 71 (5)

Resnet-50 67 (4) 62 (3) 52 (4) 74 (4)

ResNet-101 61 (5) 63 (4) 52 (3) 70 (4)

Resnet-152 62 (3) 60 (3) 53 (4) 72 (5)

InceptionV3 65 (4) 60 (4) 54 (4) 71 (4)

Xception 67 (4) 62 (5) 53 (3) 75 (4)

Transformer ViT 73 (3) 65 (4) 54 (3) 78 (4)
SD, Standard Deviation
FIGURE 2

CT images of tumors of patients with LABC who did not respond to treatment (left) and tumors of patients with LABC who did respond to
treatment (right).
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predict NAC response to LABC by training different machine

learning classifiers. Tadayyon et al. (20) extracted features from

quantitative ultrasound (QUS) to assess the tumor response to NAC

for patients with LABC. Dastjerdi et al. (43) combined first-order

and second-order GLCM features, which are extracted from CT, to

predict the tumor response to NAC.

In other work, Teruel et al. (39) used GLCM features which are

extracted from dynamic contrast-enhanced MRI (DCE-MRI) to

predict the response of NAC for LABC patients. Cheng et al. (40)

applied textural features extracted from 18F-FDG PET/CT images

in order to predict pathological complete response (pCR) to NAC.

Imaging parameters were maximum standardized uptake value,

metabolic tumor volume, and total lesion glycolysis, while textural

features included entropy, coarseness, and skewness. They found

that variations in textural features after two cycles of treatment

could be found in both HER2- and HER2+ patients.

Nevertheless, feature engineering is an essential step for using

radiomics features; however, deep learning techniques do not need

feature selection. Additionally, in deep learning, detailed features
Frontiers in Oncology 07
can be extracted by adding more layers. Although adding more

layers increases the computational time, as well as the probability of

overfitting and gradient vanishing, these challenges can be

ameliorated using dropout techniques and regularization

constraints. Furthermore, the use of an attention mechanism can

increase the weight of important parts of an image, whereas

machine learning-based techniques do not have this option.

CNN-based deep learning and transformers can be used for end-

to-end tasks such as tumor segmentation, feature extraction, and

classification using a deep learning network (44). Additionally, the

reproducibility of radiomics features is significantly affected by the

protocol of feature extraction, which is not a limitation of deep-

learning methods.

Jalalifar et al. (23) employed the InceptionResNetV2 network

and transformer to extract features from MRI to predict the

response of radiotherapy for brain metastasis patients. The

transformer was used to preserve spatial dependencies among

MRI slices. In another study, Jalalifar et al. (34) proposed a

method based on data-efficient image transformer (DEiT) to use
TABLE 4 The performance of deep learning networks on the prediction of treatment response for 80:20 ratio (70% train data, 10% validation and 20%
test data).

Network \ Metric Accuracy
Mean (SD)

%

Balanced_
Accuracy
Mean (SD)

%

Sensitivity
Mean (SD)

%

Specificity
Mean (SD)

%

VGG-16 63 (4) 58 (4) 50 (4) 67 (4)

VGG-19 66 (4) 60 (4) 50 (3) 70 (4)

Resnet-50 65 (4) 61 (5) 51 (4) 72 (3)

ResNet-101 60 (4) 61 (4) 51 (3) 69 (4)

Resnet-152 61 (4) 58 (4) 51 (4) 71 (4)

InceptionV3 63 (3) 59 (3) 52 (4) 70 (3)

Xception 65 (4) 60 (4) 51 (3) 73 (3)

Transformer ViT 71 (4) 63 (4) 53 (3) 76 (3)
SD, Standard Deviation
TABLE 3 The performance of deep learning networks on the prediction of treatment response for 85:15 ratio (75% train data, 10% validation and 15%
test data).

Network \ Metric Accuracy
Mean (SD)

%

Balanced_
Accuracy
Mean (SD)

%

Sensitivity
Mean (SD)

%

Specificity
Mean (SD)

%

VGG-16 69 (4) 63 (3) 51 (3) 77 (6)

VGG-19 73 (5) 62 (4) 51 (3) 80 (5)

Resnet-50 72 (5) 64 (4) 53 (4) 82 (6)

ResNet-101 68 (5) 65 (4) 52 (4) 81 (5)

Resnet-152 67 (5) 64 (4) 52 (5) 82 (6)

InceptionV3 69 (6) 63 (5) 51 (3) 82 (5)

Xception 72 (4) 66 (5) 55 (4) 81 (6)

Transformer ViT 77 (3) 69 (4) 56 (4) 86 (6)
SD, Standard Deviation
frontiersin.org

https://doi.org/10.3389/fonc.2024.1359148
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Moslemi et al. 10.3389/fonc.2024.1359148
ViT for chest X-ray abnormality detection. They considered a

teacher-student strategy to train the network such that DensNet

is the teacher and ViT is the student. Saednia et al. (31) trained a

hierarchical self-attention deep learning network to predict the

response of NAC to LABC using digital histopathological images.

The study here demonstrated the potential of employing deep

learning networks to predict the response of LABC patients to NAC.

The outcomes underscored the efficacy of these networks in terms

of both sensitivity and specificity. Furthermore, the study sheds

light on the pivotal role of the attention mechanism within the

transformer model in enhancing prediction performance.

Identifying non-responders to NAC treatment among LABC

patients is a formidable challenge, as any deviations from the

standard treatment protocol may introduce complications for

those patients who do respond. To address this, the study

assigned equal importance weights to both non-responders and

responders, striking a balance between sensitivity and specificity.

The primary objective of this research was to develop an expert

recommender system aimed at optimizing NAC treatment.
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Physicians could leverage this artificial intelligence-based system

to customize treatments and enhance their effectiveness. This

system harnessed the power of routine diagnostic CT images and

deep learning algorithms to forecast whether a patient would

respond to NAC or if an alternative regimen should be

considered. A notable limitation of the study was the size of the

dataset, which could restrict its generalizability. Since the dataset

was small, a considerable difference could not be found in changing

the ratio of the training set and test set. Moreover, the validation of

results using an external cohort dataset could be instrumental in

assessing the technique’s robustness and gauging the algorithm’s

applicability beyond the initial dataset. Furthermore, it is worth

noting that all patients in the study originated from a single medical

center. Although this homogeneity aids in training the algorithm

for consistency, incorporating data from multiple centers would

enhance the algorithm’s generalizability by accounting for

variations associated with diverse practices across different sites.

For future work, we can train ViT on large medical image datasets

and subsequently fine-tune it on our LABC dataset. Additionally,
TABLE 6 The performance of deep learning networks on the prediction of treatment response for 70:30 ratio (60% train data, 10% validation and 30%
test data).

Network \ Metric Accuracy
Mean (SD)

%

Balanced_
Accuracy
Mean (SD)

%

Sensitivity
Mean (SD)

%

Specificity
Mean (SD)

%

VGG-16 65 (4) 60 (4) 51 (4) 71 (5)

VGG-19 69 (4) 60 (5) 50 (4) 75 (5)

Resnet-50 68 (4) 61 (5) 51 (5) 78 (5)

ResNet-101 63 (4) 62 (5) 51 (4) 74 (4)

Resnet-152 64 (5) 61 (4) 52 (4) 75 (6)

InceptionV3 67 (5) 61 (5) 52 (5) 74 (6)

Xception 69 (5) 63 (6) 52 (5) 78 (5)

Transformer ViT 74 (5) 66 (3) 52 (4) 81 (5)
SD, Standard Deviation
TABLE 5 The performance of deep learning networks on the prediction of treatment response for 75:25 ratio (65% train data, 10% validation and 25%
test data).

Network \ Metric Accuracy
Mean (SD)

%

Balanced_
Accuracy
Mean (SD)

%

Sensitivity
Mean (SD)

%

Specificity
Mean (SD)

%

VGG-16 67 (4) 61 (4) 50 (4) 75 (5)

VGG-19 72 (5) 61 (5) 50 (4) 78 (5)

Resnet-50 70 (4) 63 (5) 52 (5) 80 (5)

ResNet-101 65 (4) 64 (5) 50 (4) 79 (4)

Resnet-152 65 (6) 62 (4) 51 (4) 80 (6)

InceptionV3 68 (5) 62 (5) 50 (5) 81 (6)

Xception 70 (5) 64 (6) 53 (5) 80 (5)

Transformer ViT 75 (4) 67 (3) 54 (4) 84 (5)
SD, Standard Deviation
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using generative models such as generative adversarial networks

(GAN) or diffusion probabilistic models can improve performance.

Particularly, using GAN to augment data in the training phase may

improve training.

In summary, this research demonstrated the capacity of deep

learning networks, including transformers and transfer learning, to

predict the response to NAC treatment in LABC patients before the

commencement of treatment. The methodology involved applying

various transfer learning networks, such as ViT transformer,

VGG16, VGG19, ResNet-50, ResNet-101, ResNet-152,

InceptionV3, and Xception, to extract features from CT images

for predicting treatment response prior to start. Notably, the ViT

transformer exhibited the highest performance, underscoring the

effectiveness of the attention mechanism. The results from this

preliminary study, particularly the accuracy of predictions, hold

promise, indicating that this algorithm can serve as a valuable

recommender system for forecasting NAC response before

treatment commencement.
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