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Resumo 

Existem apenas alguns métodos disponíveis para o estudo da ligação de metais ao ADN. 

Estes são baseados em técnicas espectroscópicas, que podem apenas ser utilizadas 

quando determinados cromóforos quer da molécula de ADN ou dos complexos 

metálicos estão directamente envolvidos na ligação de metais ao ADN. 

O objectivo deste projecto foi desenvolver um novo método que pode ser utilizado para 

detectar a ligação de um metal de transição ao ADN, utilizando Electroforese em gel de 

agarose (EGA). O método tem sido estudado para complexos de vanádio, mas pode ser 

adaptado para quaisquer metais de transição susceptíveis de sofrer reacções de tipo 

Fenton. O novo método envolve a adição ao gel de agarose de ácido tereftálico (TPA), 

um indicador bem conhecido para os radicais hidroxilo. Embebendo o gel desenvolvido 

em peróxido de hidrogénio, a presença de vanádio será revelada por uma reacção do 

tipo Fenton que irá gerar radicais hidroxilo e irá hidroxilar TPA em 2-hidroxi-TPA, uma 

molécula altamente fluorescente. Bandas electroforéticas contendo vanádio podem 

então ser fotografadas e analisadas utilizando um sistema de imagem. 

A metodologia envolveu quatro passos: 

  1. Um estudo preliminar do sistema utilizando a EGA. 

  2. O desenvolvimento do método para a quantificação dos complexos de vanádio 

baseado no mesmo sistema de reacção utilizando amostras aquosas. 

  3. Desenvolvimento do método em soluções aquosas com uma matriz semelhante à de 

agarose. 

4. Aplicação em géis de agarose. 

Os resultados preliminares foram mal sucedidos para detectar a presença de vanádio em 

géis de agarose. Concluiu-se que para ser usado um sistema de imagem, o método 

requer a utilização de um filtro (464 ± 40) nm. Foram efectuados mais testes utilizando 

um espectrofluorímetro. 

 Quando se utilizou um concentrado  peroxide (~ 9M), a intensidade máxima de 

fluorescência de 2-OH-TPA formado diminuiu ao longo do tempo. Com um peróxido 
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menos concentrado (1,8 mM) foi obtida uma boa sensibilidade. O LOD (limite de 

detecção) determinado para o vanádio foi de 4,1 µM. 

O sistema foi depois testado num sistema aquoso com galactose. O sistema tem uma 

boa gama de trabalho, até 300 µM na presença de 0,50% de galactose. A sensibilidade 

diminuiu significativamente na presença de galactose. O LOD determinado para o 

vanádio foi de 5,4 µM. 

  O sistema foi finalmente testado em géis de agarose. Houve alguma dificuldade em 

assegurar a homogeneidade da preparação, necessária para um estudo 

espectrofluorimétrico. Num gel onde a homogeneidade foi conseguida, foi observada 

uma banda de emissão muito fraca na região do espectro onde o complexo 2-hidroxi-

TPA emite. A sensibilidade obtida nesta preparação foi muito baixa. 

  Não foi possível completar os testes em EGA devido à falta de tempo disponível para 

este trabalho. No entanto, os resultados em solução aquosa mostram que o método é 

viável e pode proporcionar uma boa sensibilidade quando aplicado em matrizes EGA, 

desde que o método para a preparação de gel seja optimizado. 

 

 

 

 

 

 

 

Palavras-chave: nucleases de vanádio, eletroforese em gel de agarose, 

espectrofluorimetria, desenvolvimento do método, interacção metal-ADN. 
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Abstract 

There are few methods available for the study of the binding of metals to DNA. These 

are based in spectroscopic techniques which can only be used when certain 

chromophores, either from the DNA molecule or from the metal complexes, are directly 

involved into the binding of metals to DNA.  

The objective of this project has been to develop a new method that can be used to 

detect the binding of a transition metal to DNA using Agarose Gel Electrophoresis. The 

method has been studied for vanadium complexes, but can be adapted to any transition 

metals that can undergo Fenton-like reactions. The new method involves the addition to 

the agarose gel of terephthalic acid (TPA), a well-know indicator for hydroxyl radicals. 

By soaking a developed gel in hydrogen peroxide, the presence of vanadium will be 

revealed by a Fenton-like reaction that will generate hydroxyl radicals and will 

hydroxylate TPA into 2-hydroxy-TPA, a strongly fluorescent molecule. Electrophoretic 

bands containing vanadium can then be photographed and analysed using an imaging 

system. 

The methodology followed four steps:  

1.  A preliminary study of the system using AGE.  

2. The development of the method for the quantification of vanadium complexes 

based on the same reaction system using aqueous samples.  

3. Development of the method in aqueous solutions with a matrix as similar as 

possible to agarose. 

4. Application in agarose gels. 

Preliminary results were unsuccessful in detecting the presence of vanadium in agarose 

gels. It was concluded that to be used in an imaging system the method would require 

the use of a (464 ± 40) nm filter. Further testing was done using a spectrofluorimeter. 

When concentrated peroxide (~9 M) was used, the maximum fluorescence intensity of 

2-OH-TPA formed decreased over time. With a less concentrated peroxide (1,8 mM), a 

good sensitivity was obtained.  The LOD (limit of detection) for vanadium was 

determined to be 4,1 µM.  
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The system was then tested in aquous system with galactose. The system has a good 

working range for upto 300 µM when of 0,50% galactose was present. The sensitivity 

decreased significantly in the presence of galactose. The LOD for vanadium was 

established to be 5,4 µM.  

The system was finally tested in agarose gels. There were major issues in assuring the 

homogeneity of the preparation, necessary for a spectrofluorimetric study. In one gel 

where homogeneity was achieved, a very weak emission band was observed in the 

spectral region where 2-hydroxy-TPA emits. The sensitivity obtained in this preparation 

is very low.  

It was not possible to complete the tests in AGE because of time impediments for this 

work. Nevertheless, the results in aqueous solution show that the method is viable and 

should provide a good sensitivity when applied in AGE matrices, provided the method 

for the preparation of gel is optimized.  

 

 

 

 

 

 

 

Key Words: vanadium nucleases, agarose gel electrophoresis, spectrofluorometry, 

method development, metal-DNA interaction.  
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1. INTRODUCTION 

1.1. DNA-a brief overview 

DNA (Deoxyribonucleic acid) (Figure 1) is a polymer of nucleic acid containing the 

genetic information for living organisms.  It has a deoxyribose sugar and a nitrogen base 

(purine: adenine and guanine; pyrimidine: thymine and cytosine). The individual units 

are joined together by strong phosphodiester bonds from the 3‟of one unit to 5‟ of 

another unit. In DNA, the stands run antiparallel to each other and hydrogen bonding 

between the nitrogen bases provides the stability between the two strands. The 

phosphodiester bonds in the DNA have a half life (t1/2) of 130,000 years at neutral 

solution and at room temperature
1
. Any possible nucleophile is repelled by the negative 

charges in the sugar phosphate backbone
2
 and therefore the DNA is very stable 

molecule.  

 

Figure 1. A monomer of the DNA molecule. 

 DNA is a stable molecule and it creates a serious obstacle in DNA manipulation, 

namely, expression and duplication, repair of damaged DNA and elimination of foreign 

DNA. To overcome this obstacle, nature has come up with hydrolytic enzymes, 

topoisomerases and nucleases that catalyze the scission of DNA
3
. These enzymes 

contain certain metal ions such as Ca(II)
3
 Mg(II)

4
 and Zn(II)

5
 as cofactors and they play 

a very important part in the catalytic action. 

DNA can be further classified into genomic DNA (present in all living organisms) and 

plasmid DNA (found mostly in bacterias, or mitochondria/chloroplasts in higher 

organisms). In most biological systems, plasmid DNA is present as supercoiled form 

(Form I)(Figure 2). This form is important for gene expression, DNA replication and 
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recombination. If there is a nicking in one of the strands, it will result in loss of 

supercoils and the DNA will be in nicked form (Form II), or also called open circular 

form. If there is a nicking in both the strands at the (nearly) same points, the DNA will 

arrange itself into a linear form (Form III)
6
.   

 

Figure 2. Three forms of plasmid DNA- supercoiled (Form I), nicked (Form II) circular 

and linear(Form III)
3
 

1.2. Cleavage of DNA 

Since the nature uses many metallic ions for the interactions with biological molecules
7
, 

the humankind has attempted to reproduce those biological activities with artificial 

compounds.  The results include the synthesis of many inorganic complexes that have 

shown promising results in the medicinal field. The cleavage of DNA is no exception. 

DNA cleavage can be achieved by inorganic complexes and these complexes are called 

inorganic nucleases
8
.  The cleavage in DNA takes place mainly by two possible 

mechanisms- hydrolytic and oxidative cleavage.   

1.2.1. Hydrolytic cleavage 

An interest in hydrolytic cleavage comes from the fact that the mechanistic information 

obtained from such studies would help better understanding of hydrolytic enzymes. 

Also, the hydrolytic agents could be used to detoxify pesticides and chemical agents, as 

the pesticides and chemical agents often contain phosphate-ester like structures
3
. Since 

reported by J.K. Barton
9
 in 1987 the first artificial hydrolytic agent, much interest is 

present in the scientific world for these complexes.  Hydrolysis by natural nucleases is 

assumed to proceed via a 5 coordinated transition state10 and furthermore cleavage on 

P-O3‟ produces the breakdown products.  
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Figure 3 shows the mechanism for hydrolytic cleavage.  

 

 
 

Figure 3. Mechanism of hydrolytic cleavage
3
 

 

Metal ions and their complexes help facilitate faster reactions.  There are various 

activation modes by which the metal ions could facilitate the hydrolysis of phosphate 

diesters. The different proposed modes (Figure 4) are lewis acid activation, nucleophile 

activation, leaving group activation, metal coordinated hydroxides and metal 

coordinated water molecule 
2, 3,11

. When metals with redox chemistry are employed, 

another form of cleavage-oxidative cleavage could also take place
3
.  
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Figure 4. Different proposed activation modes for hydrolysis of phospodiester bonds: 

(a) lewis acid activation, (b) nucleophile activation, (c) leaving group activation, (d) 

metal coordinated hydroxides and (e) metal coordinated water molecule. (M denotes 

metal complex) 

 

1.2.2. Oxidative Cleavage 

Cu(II) and Fe(III) have been known to cleave DNA in an oxidative way. Also reported 

are transitional metal complexes in the presence of oxidants/reductants or without 

external agents
12

. The cleavage can occur either in the nitrogenous base or in the ribose 

sugar. The agents responsible are called reactive oxygen species (ROS) which include 

superoxide and hydroxyl radicals, single oxygen and high valence metal oxo species
13

. 

Since, there are 4 nitrogenous bases and different ROS and the fact that the oxidation 

could occur either in the base or in the sugar ring, various mechanisms of oxidations are 

possible. One such oxidative mechanism by Fe
II
Bleomycin

14,15
 is given in Figure 5.  
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Figure 5. Mechanism of oxidative cleavage. 

 

1.3. Inorganic Nucleases 

 

Although the field of medicinal chemistry has been largely dominated by organic 

chemistry, the advancement in research of metal based drugs has grown over the past 

years
7
.  Platinum compounds were one of the first metal based complexes to be used as 

antitumor agents
16

.  Numerous others inorganic complexes have been discovered to 

have medical applications.   

Among the applications, gene manipulation has been a hot topic. Certain metal 

complexes have shown promising results as DNA probes
17

, DNA targeting antitumor 

agents
18

 and in nucleic acid mapping
19

. En route towards gene manipulation, synthetic 

nucleases have attracted much attention with regards to their applications. The nucleases 

will not only be able to reveal the restriction enzyme mechanism but also as 



13  

 

conformational probes for DNA structure, antibiotic and chemotherapeutic drugs. In 

fact, they might even be more efficient cleavers of DNA than natural enzymes
20

. 

Among the metals that mediate DNA oxidation, transitional metal complexes of Fe, Cu, 

Ni, Pt, Ru, Rh, V, Cr, Co, Mn and Os have been reported
12

. Some of them are explained 

below.  

1.3.1. Vanadium Nucleases 

Although vanadium exists in III, IV or V oxidation states in aqueous media
21

, the 

oxidation state of vanadium in the biological system is debatable. While some argue 

that there is interconversion of V(IV) and V(V) species in the blood
22

, others state that 

regardless of the species injected, the fate of vanadium in the biological system ends up 

with V(IV)
23

. Also, the exact mechanism of how vanadium cleaves DNA is unknown.  

Vanadium complexes, already known for their insulin mimetic activity
24

, were first 

reported in 1996 for their nuclease activity
25

. The complexes that have proven to reduce 

the plasma glucose levels in streptozotocin-induced diabetic rats are 

bis(maltolato)oxovanadium(IV) (BMOV) and   bis(ethylmaltolato)oxovanadium (IV) 

(BEOV)
26

 (Figure 6). BEOV has passed clinical trials phase I and phase II
7
.  Other 

orally active compounds that have been studied as treatment for diabetes contain the 

oxidation state vanadium (IV) 
24

.  

 Vanadium(IV) compounds of salen(salicylaldehyde and ethylenediamine) derivatives 

cleaved DNA at guanine residues in presence of oxone. Proposed mechanisms included 

the formation of oxidation of V(IV) to V(V) and the production of SO4
-
• and SO5

-
• 

radicals
27

. Similarly, some oxovanadium (IV) schiff base complexes have demonstrated 

nuclease activity in UV-A light of 365 nm via the 
1
O2 pathway and via OH• pathway in 

presence of near-IR light(752.5-799.3 nm IR optics)
28

.  

Although most studies are done with vanadium(IV) complexes, there are a handful of 

reports on vanadium(III) and vanadium(V) nucleases. Bis(peroxo)vanadium(V) 

phenanthroline promotes a single strand DNA cleavage. During photooxidation of 

peroxo ligands, OH• are produced and this leads to the strand cleavage
29

. Vanadium(III) 

phenthroline and bipyridine dimers were found to have very strong interaction with 

DNA that ultimately led to the degradation of DNA
30

.  
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Figure 6. Vanadium compounds BMOV, BEOV and VO(acac)2. 

Another compound, VO
IV

(acac)2 (Figure 6) that has been known for insulin enhancing 

activity
24

, has also shown promising results in DNA cleavage. VO(acac)2 , above 1 µm 

has been reported as a very efficient cleavage agent. Moreover, it requires no activating 

agents such as air or irradiation. However, the use of buffer plays an important role for 

this compounnd
8
. 

  

1.3.2. Ruthenium Nucleases 

Ruthenium complexes have been a part of research interest over the past few years. 

Ruthenium complexes are one of the very few metal complexes to be studied as anti-

cancer drugs.   Two important complexes are KP109 and NAMI-A (Figure 7). NAMI-

A possesses high and selective anti-metastatic activity and has passed Phase I clinical 

trials (the first ruthenium antitumor complex to enter the trials)
31

 but has failed the 

screening for antitumor drugs
32

.  KP1019 demonstrates antineoplastic activity against a 

wide number of tumors
33

.  
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Figure 7. Ruthenium complexes KP1019 and NAMI-A. 

 

The targets of Ruthenium based complexes are still arguable
7
. NAMI-A and KP1019 

can irreversibly coordinate with DNA
32,34

. Nevertheless, Plasma proteins and 

glutathione are believed to be more essential than DNA for the antitumor activities for 

NAMI-A and KP1019
32

. Ru-arene complexes can interact with DNA via direct 

coordination to the bases, intercalation and stereospecific H-bonding
35

. Ruthenium(III) 

complexes with ligands phenanthroline, bipyridine, dipyridoquinoxaline and 

dipyridophenazine were found to bind to DNA in a non-covalent way before cleaving 

them
36

.  

Similarly, ruthenium(II) polypyridyl complex was found to hydrolytically cleave DNA 

in a enzyme-like manner
37

. A Ru(II) dimer was found to cleave DNA under anerobic 

conditions after undergoing an in situ reduction. When exposed to air, together with 

large amount of reducing agents, the cleavage activity was diminished. This could 

provide a means of selective cleavage activity for cells with low oxygen content
38

. 

Ruthenium(II) nitrofurylsemicarbazone complexes were revealed to affect the DNA 

conformation and also cleave it via oxidative mechanism. It was believed that the 

compound interacts with the minor groove in DNA
39

.  

However, ruthenium nucleases are relatively “new” in the field of inorganic nucleases 

and an in depth study is required for these complexes.  
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1.4. Analytical methods for the study of inorganic nucleases 

 

Inorganic nucleases can be even more effective than natural nucleases and also cheaper. 

Therefore, there is a bright future in the field of inorganic complexes as DNA cleavers. 

To study the interactions of metal complexes many analytical methods have been used. 

Spectrometric techniques such as UV/VIS absorption spectroscopy, CD (circular 

dichroism) fluorescence spectroscopy, electro-analytical techniques such as  voltametric 

techniques, imaging techniques such as AFM(atomic force microscopy) are widely used 

to study the interaction of the metal/metal complexes with DNA.  

Separation techniques such as capillary electrophoresis (CE) and gel electrophoresis –

agarose gel electrophoresis (AGE) and polyacrylamide gel electrophoresis (PAGE) are 

used for studies of DNA. Electrophoresis is a technique where the molecules are 

separated by their charge and their size. The charged molecules are placed in an electric 

field. The particles are accelerated by the electrical force, Fe :  

             Eq. 1 

Where,  

Zi  =  charge of the particle/component I 

e = elementary charge (1,602 × 10
-19 

C)  

E =   electric field strength (V.cm
-1

) 

However, when the particles are accelerated, there is a frictional force (Fd) present 

which slows the movement. Considering that the moving particles are spherical, Fd is 

given as 

         
      Eq. 2 

 Where,  

η = fluid viscosity (Pa•s) 

k =  constant (cm) 

vi
o
 = velocity of particle (cm•s

-1
) 
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For a spherical particle, according to the Stokes‟ law, k is given as,  

             Eq. 3 

Where,  

ri  = radius of the component/sphere 

So, when an electrical field is established, the electrical force is balanced by the 

frictional force, and therefore, the particle moves at a terminal velocity  vi
o
 

         Eq. 4 

           
            Eq. 5 

  
   

    

       
    Eq. 6 

 

The terminal velocity, vi
o
, is proportional to the electrical field E and the proportionality 

constant is called the absolute electrophoretic mobility, µi
o
 (cm

2
V

-1
s

-1
)  or  

  
   

  
 

 
  

    

       
   Eq. 7 

For large molecules such as DNA, the mobility also depends upon on the shape of the 

molecule.  

There are different kind of electrophoresis types including but not limited to capillary 

electrophoresis, isotachophoresis and gel electrophoresis. Gel electrophoresis is 

relatively easy to carry out and is often a widely used technique for the study of DNA 

and its interaction with metal complexes.  

At neutral pH, the DNA is negatively charged. Therefore, when an electric field is 

applied, the molecules migrate towards the positive pole. The migration occurs through 

the gel matrix. Gel matrices consist of pores and these pores sieve the DNA molecules 

according to its volume. The smaller molecules pass easily as they have a lesser 

effective volume than the bigger ones. The visualization of DNA is done by staining by 

fluorescent dyes such as ethidium bromide (EtBr). EtBr has planar rings and it 

intercalates between the stacked bases in the nucleotide. When exposed to ultraviolet 
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light, this intercalation increases intensely the fluorescence of EtBr and thus the DNA 

can be visualized.  

The gel matrices that are used are polyacrylamide and agarose. Agarose is a linear 

polymer of agarobiose.  Agarobiose is a disaccharide made up of D-galactose and 3,6-

anhydro-L-galactopyranose
40

. Polyacrylamide is a cross linked polymer of acrylamide. 

Polyacrylamide has smaller pores and a high resolving capacity but only over a narrow 

size range (eg. a few base pairs). However, during cleavage of DNA, the new fragments 

could differ to each other by hundreds of base pairs and therefore agarose gels provide a 

better resolution. A nicked or a circular DNA moves more slowly than a supercoiled 

DNA which is compact and has a small effective volume, thus helping them to migrate 

more rapidly during electrophoresis
41

.   

One such electrophoresis (AGE) sof plasmid DNA after incubation with vanadium 

complexes (details in the experimental section) is shown in Figure 8. 

 

Figure 8. AGE(3h, 110 V) of DNA samples inclubated with VO(acac)2 and VO(Clor) 

for 1h at 37
0
C 
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It can be observed that there are mainly 3 main bands- of supercoiled (Sc), linear (Lin) 

and nicked (Nck). The extremes (1 and 14) wells contained non-incubated plasmid 

DNA and wells (2 and 13) contained linearised DNA. 

1.5. Aim of the project 

 When performing AGE of plasmid DNA digested with vanadium nucleases, a number 

of unexplained weak bands are often observed. These can be viewed in Figure 8: band 

A1, A2, A3 and B1. These bands have been named „Phantom bands‟ and will be 

referred as same in the rest of the manuscript. Some characteristics of these bands are-   

a. These bands were present in samples that contained vanadium complexes but 

not in the native DNA sample (1 and 14 wells). This indicates the effect is 

provided by incubation with the vanadium complexes.  

b. The bands increased in intensity with the increase in concentration of the 

vanadium complexes.  

c. These bands always appear at the same place in the gel.  

There have been a few possible explanations thought of for these bands. The DNA 

molecules in bands A1, A2 and A3 have a lower electrophoretic mobility than the 3 

plasmid DNA bands (supercoiled, nicked and linear). The factors that the 

electrophoretic mobility depends on are size, charge and the shape of the molecules. 

Since the viscosity of the medium is same for all the bands, the size and charge of the 

molecules in phantom bands are a question.  

Charge of the molecules: When the electrophoresis is perfomed  at neutral pH, the DNA 

is believed to be negatively charged. However, during incubation with vanadium 

complexes, there could have been some binding of the metal complex with the nucleic 

acid and eventually neutralizing some of the charges in the DNA backbone. This would 

lower the charge in the molecule and thus finally lowering the overall charge of the 

molecule resulting in a smaller effective mobility. 

  

Size and shape of the molecules: During the incubation of DNA samples with the 

vanadium complexes, the complexes could have created an environment where the 

strands could have agglomerated and thus the size of the molecule increased thus 

lowering the mobility in the gels. Or, perhaps, the incubation could have changed the 
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shape of the DNA molecules from the globular shape(as one might expect) and thus the 

migration in the gels is distorted. 

 

Thus, the project was to develop a method to detect and quantify vanadium  bound to 

the DNA molecules, using AGE.  This method could also be extended for detection and 

quantification of other metals that take part in the Fenton-like reaction. The steps of the 

project are-  

a. First to develop a method in quantifying the metal using aqueous solutions, then 

optimize the time of reactions and the concentration of reagents to obtain the 

best possible sensitivity at a reasonable analysis time.  

b. To be able to transfer the method to real matrix(agarose gel after the 

electrophoresis) 

c. Detection of the band by means of UV/VIS imaging.  

 

1.6. Chemistry of the method 

1.6.1. Fenton Reaction 

According to the IUPAC definition, Fenton reaction is the iron-salt dependent 

decomposition of dihydogen peroxide, generating the highly reactive hydroxyl radical, 

possibly via an oxoiron(IV) intermediate. Addition of a reducing agent, such as 

ascorbate, leads to a cycle which increases the damage to biological molecules. (-It was 

first discovered by Henry Fenton
42

. Haber and Weiss later discovered the Fenton 

reaction was both a radical and a chain reaction. They also described following set of 

equations of the reaction
43

 - 

                               (Eq. 8) 

                           (Eq. 9) 

                              (Eq. 10) 

                           (Eq. 11) 
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The later revised form of the reaction by Barb
44

 concluded that 

a. When Fe
2+

 was present in excess over H2O2, the reaction would be restricted to 

quantitative oxidation of Fe
2+

 by H2O2,  

                         (Eq. 12) 

 

b. When H2O2 was present in excess over Fe
2+

, there was catalytic decomposition 

of H2O2, and it accompanied the oxidation of Fe
2+

 ions,  

                   (Eq. 13) 

 

c. The rate of reaction is of the first order with [Fe
2+

] and [H2O2] at the beginning. 

However, the apparent order of the reaction increases with [Fe
2+

].  

 

Although the Fenton reaction has been studied for over more than a hundred years, the 

exact mechanism has not been unanimously selected.   

Similar to the reactions with ferrous salts, Fenton reactions could also involve other 

metal cations. The process is described as
45

,  

                                   (Eq. 14) 

Such processes are described as “Fenton-like
46

” mechanism where organic substrates 

are oxidized by a mixture of low-valent transition metal complex and hydrogen 

peroxide. Common examples
47

 of such metals would be VO
2+

, Ti
3+ 

and Cr
2+

. Vanadium, 

at physiological conditions, may produce hydroxyl radicals
48

 -  

                                 (Eq. 15) 

1.6.2. TPA(terephthalic acid) Hydroxylation 

The hydroxyl radicals can hydroxylate TPA molecule and form 2-hydroxy-terepthalic 

acid (2-OH-TPA) (Figure 9)
49

.  TPA hydroxylation is one of the most sensitive 

methods for detection of •OH radicals.  
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Figure 9. TPA hydoxylation. 

 

Armstrong et al.,
50

  used it as a replacement to calcium benzoate dosimeter and 

discovered it to be five to six times as sensitive as the benzoate dosimeter. Mason et 

al.,
51

  used TPA to assay radicals in sonochemistry. TPA itself is not fluorescent. 

However, the 2-OH-TPA (hydroxylated TPA) is fluorescence, the excitation 

wavelength being 315 nm and the emission wavelength being 425 nm
52

 .  

The hydroxylation reaction has been tested with Fenton reaction. The 2-OH-TPA was 

found to be stable for 24 h and the limit of detection for hydroxyl radical was 

determined to be 5nmol/L
53

 . 

This project was aimed to couple the Fenton-like reaction with the hydroxylation of 

TPA (Figure 10. Fenton-like reaction coupled with TPA-hydroxylation.).  
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Figure 10. Fenton-like reaction coupled with TPA-hydroxylation. 

 

 

1.7. Techniques used. 

1.7.1. Agarose Gel Electrophoresis (AGE)  

 

AGE is a very commonly used technique to determine the cleavage activity.  

Plasmid DNA exists in 3 different forms (Figure 2). The different forms have different 

velocities in a medium of agarose gels under an electric potential. Since DNA has a 

phosphate backbone, it has a negative charge. At neutral pHs, the DNA is negatively 

charged. In the presence of an electric field, it moves towards the positive electrode. 

The movement of DNA depends on size and charge of the molecules.  The larger the 

size of the molecules, the slower they move. The movement is directly proportional to 

the charge as well. It is assumed that the charge will remain constant after cleavage of 

plasmid DNA. The instrumental set-up of agarose gel electrophoresis is given in Figure 

11.  

 



24  

 

 

Figure 11. Instrumental set-up for AGE
54

 

Theoretical modeling has shown that under a uniform electric field, the movement of 

nucleic acid occurs in three formats-ogston sieving, reptation and rigid rods
55

.  

Ogston Sieving 

This model explains that the nucleic acid molecules pass through the gel via formation 

of random globular molecules. The passage through the gel depends on the radius of 

gyration of the molecules. The fragments which have a radius of gyration smaller than 

the pores are able to pass through the gel quickly and the larger ones get blocked. 

However, these large molecules could switch from the globular molecules to other 

alternative conformations for passage through the pores.  

Reptation 

Under the influence of electric field, the nucleic acids, although present a globules, can 

enter the gel „end on‟. The movement through the gel occurs in a reptile like fashion. 

They move in a coiled and helical manner. The shorter molecules will pass quickly, but 

the larger ones will have to wind their way through the matrix and this separates the 

different fractions of nucleic acid.  
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Rigid Rods 

At higher field strengths, the coiled/helical molecules begin to deform and migrate as 

rigid rods. However, the separating ability decreases under such conditions because the 

migration becomes size independent. 

 

1.7.2. Absorption Spectrometry 

When light of a certain wavelength irradiates a molecule, the molecules undergo a 

transition from a ground-state to an excited-state
56

. The difference between the energy 

of the ground state electrons and the excited state electrons is the magnitude of the 

absorption. When a molecule absorbs energy, the transition that is most likely to take 

place is form HOMO (Highest Occupied Molecular Orbital) to LUMO (Lowest 

unoccupied molecular orbital). The greater the number of molecules capable of 

absorbing light of certain wavelength, the greater is the absorption.  

When light at certain wavelength (λ) of intensity (I0) enters a solution of concentration 

(c) in a cuvette, a part of light gets absorbed. (Figure 12 ) 

 

Figure 12. Light passing through a cuvette 

 

The absorbance (A) is defined as  

                  (Eq. 16) 

According to Beer-lambert‟s law, the absorbance (A) is given as,  

             (Eq. 17) 
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where ε is the molar absorptivity coefficient (moL
-1 

cm
-1

) and l is the optical path 

length. This way, the absorption can be related with the concentration of the molecule 

being studied. The functioning of the double beam spectrophotometer is given in Figure 

13
57

. 

 

Figure 13. Schematic diagram of a spectrophotometer
57

 

 

Deuterium lamp is used as a light source. The monochromator provides the required 

wavelength. The rotating mirror is responsible for passing the light into the reference 

and the sample via mirrors. As a result, one beam of light passes through the reference, 

and another beam passes through the sample. The detector compares the electric 

circuitry between these two beams and thus the difference would depend on the 

absorbance of the light by the sample
58

.  

1.7.3. Fluorescence Spectroscopy 

 

When a molecule absorbs a photon, it undergoes a transformation from ground level 

(S0) to excited level (Sn, n>1). An excited molecule will return to the ground level 

following successive steps
59

. This is illustrated in Jablonski diagram in Figure 14. 
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Step 1. The molecule returns from Sn to its lowest excited level S1 following energy 

dissipation into the surrounding environment.  

Step 2. From S1, the molecule can return to S0 via emission of a photon (fluorescence) 

with a radiative rate constant kr. Other possible mechanisms are possible which are not 

discussed here. The lifetime of fluorescence lasts from 10
-9

 to 10
-12

 seconds. The 

lifetime of the fluorescence is affected by temperature, pressure, quenchers, and the 

different type of matrices used.  

The spectrofluorometer is equipped with a Xenon lamp as a light source. The equipment 

(Figure 15
60

) possesses two monochromators for selecting both the emission and 

excitation wavelength. The fluorescence is detected with photomultiplier tubes and 

quantified with appropriate electronic devices.  

 

 

Figure 14. Jablonski Diagram illustrating the absorption and the emission processes. 
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Figure 15. Schematic diagram of a spectrofluorometer
60

. 

 

1.8. Method validation parameters 

1.8.1. LOD (limit of detection) 

The LOD is the lowest concentration of analyte that the instrument can distinguish from 

against the blank/noise within a certain confidence interval (usually 95% intervals). 

Usually, it is determined by using the standard deviation (sd) of the blank sample. 

However, in this manuscript, the LOD is calculated using the least square methods.  

    
         

 
    Eq. 18. 

Where, sdy is the standard error in the y-estimate and m is the slope.  

1.8.2. Sensitivity 

It is the ability of the instrument in a particular method to distinguish very small 

changes in concentration of the analyte. The slope (m) provides an estimation of 

sensitivity in this manuscript.   

 



29  

 

 

1.8.3. Precision 

Precision in analytical method is the difference in the results when the same amount of 

analyte is used. The less difference in results there is for a certain concentration of 

analyte, the better the method is.  

The precision in the analyte concentration is calculated in this manuscript The standard 

deviation for the residuals, sdy, obtained from the least squares linear regression can be 

used as an estimate of the precision of the method: 

The standard deviation in output (sdy) is given as,  

      
        

   
    Eq. 19 

Where,  

n is the number of measurements and          is the sum of the squares of the 

residuals. 

The standard deviation in the analyte concentration (sdx) is given as,  

    
   

 
    Eq. 20 

 

1.8.4. Estimation of errors 

The estimation of errors (in the slope and the y-intercept) is performed using the t-

student distribution at 95% confidence intervals. For example, the error in the slope 

(Δm) is given as,  

                   Eq. 21 
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2. Experimental Section 

2.1. Instruments 

A Shimadzu 1700 Pharmaspec UV-VIS absorption spectrophotometer was used to 

estimate the concentration of hydrogen peroxide. Three spectrofluorometers (Fluromax 

3 and Fluoromax 4, Horiba and Jasco FP-777) were used to study the fluorescence of 

TPA-OH that was formed during the course of the reaction. The software used to 

operate the Horiba spectrofluorimeters was FluorEssence v3.5  

A 1 cm quartz cystal cuvette (Sigma Aldrich) was used to measure the fluorescence.  

AlphaImager from Alpha Innotech was used for capturing the gel images. AlphaEaseFC 

was the software used to operate the instrument.  

2.2. Preparation  of  solutions 

2.2.1. Phosphate buffer:  

A solution of K2HPO4 (Panreac, 99%) was made by dissolving 50 mmoles of K2HPO4  

in  500 mL water. The pH of the solution was adjusted to 7,4 by the addition of 

concentrated HNO3 (Merck, 65%). The solution was then stored in the refrigerator for 

further use.  

2.2.2. TPA(Terephthalic acid) solution  

The TPA solution was made by dissolving 66 mg TPA (Sigma Aldrich, 95%) in 20mM 

Phosphate buffer. 

2.2.3. Concentrated TBE solution 

A solution of 101,81 g Trizma base(Sigma Aldrich, 99%), 55,029 g Boric acid(Riedel 

de Häen, 99,5%) and 7.776 g of EDTA(analaR, 99,5%) were dissolved in 1,0 L of 

water. The pH was measured (~8,0) and kept in the refrigerator for further use. The 

solution was labeled 10X TBE. Further dilutions were made when necessary.  

2.2.4. Water 

In all cases, Millipore water (resistivity > 18MΩ.cm) was used, unless otherwise 

mentioned.  
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2.2.5. Vanadium complexes solution 

Different solutions of VOSO4, VO(acac) and VO(clor) were made by dissolving 

respective concentrations of complexes in water.  

 

2.2.6. Hydrogen Peroxide 

Water was used to dilute the original hydrogen peroxide (Sigma Aldrich and BDH 

Prolab , 30%) into required concentration amounts. The concentration of peroxide was 

estimated using absorbance measurements
61

.  

ε = 74M
-1

cm
-1

 

2.3. Spectrofluorimetric measurements 

2.3.1. Preparation of solutions 

 

A solution of 400 µM TPA was prepared in 20 mM phosphate buffer. 10 mL of this 

solution was poured into a 20,0 mL volumetric flask. A certain volume of vanadium 

complex [VO(acac)2 (Sigma Aldrich, 98%) or VOSO4 (Aldrich)] solution depending on 

the concentration needed was added and water was used to fill upto the 20 mL mark. 10 

mL of this solution (final concentrations : 200 µM TPA, 10 mM phosphate buffer and 

0-100 µM of vanadium complex) was added to another  beaker.  

In later experiments with galactose, necessary amount of galactose (Koch-Light, pure) 

was added to the solution of TPA. The solutions were made of 0,050 % (0,05 g 

galactose in 100 mL solution), 0,25% and 0,50%.  
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Figure 16. Procedure of spectrofluorimetric measurement 

 

2.3.2. Fluorescence measurement 

 

The excitation wavelength was 312 nm and the emission was monitored from 350 nm to 

500 nm. The slit wavelength was 1 nm (excitation and emission slits) for the 

measurements in aqueous solutions and 2 nm (for both the excitation and the emission 

slits) in solutions with galactose concentration higher than 0,050% or with agarose gels. 

The integration time was set 1 nm/s for Fluoromax 3, and 0,1 nm/s for Fluoromax 4. 

These integration times were default settings of the instrument.  

The fluorescence was measured after 45 seconds (timed 0 minute) of addition of H2O2 

to the TPA/Vanadium solution, 5 minute 45 seconds (timed 5 minutes) and so on until 

20 minutes.  

When the data contained large levels of noise (observed in presence of galactose), the 

smoothening was performed using Savitzky-Golay algorithm(10 points of window, 2 

degree polynomial).  
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2.4. Agarose gel preparation.  

 

2.4.1. Agarose Gel Electrophoresis 

 

2.4.1.1. Plasmid DNA  

pA1 plasmid DNA[consisting of full-length cDNA from Cytochrome P450 CYP3A1 

inserted in the PBS plasmid vector(pBluescribe, Stratagene, UK)]
Error! Bookmark not defined.

 

repared by Nataliya Butenko was used for gel electrophoresis experiments. The linear 

DNA(also prepared by Nataliya) was obtained by digesting of pA1 with HINDIII and 

was used was a reference in agarose gel electrophoresis.  

2.4.1.2. DNA cleavage activity 

The cleavage activity of DNA was studied by the transformation of the supercoiled 

plasmid DNA (Sc) to nicked circular and linear DNA. The reaction mixture was 

prepared by addition (in this order) 6 µL of water, 2 µL (0.2 µg) of supercoiled pA1 

DNA, 2 µL of 100 mM K2HPO4 buffer (pH 7,4) and 10 µL of the aqueous solution of 

the vanadium complex [VO(acac)2 –Sigma Aldrich, 98% purity) and VO(clor) ( sample 

from Prof. Susana Etcheverry].  

Before gel electrophoresis, the samples were wrapped up in aluminum foil were 

incubated for 1 h at 37
0
C. After incubation, 5 µL of loading buffer (0.25% bromophenol 

blue, 0.25% xylene cyanol, 30% glycerol in water), were added to the samples and the 

solutions were loaded onto a 1% agarose gel containing ethidium bromide (EtBr). Non-

incubated and linearized plasmid DNA was used in the extremes of 18 welled gel for 

control purposes. The electrophoresis was done at 110 V for 3 h. The bands were then 

photographed under UV light using AlphaImager.   
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2.4.2. Agarose gels for testing the Fenton-like reaction coupling with TPA 

hydroxylation.  

 

To a dissolved solution of 200μM TPA (Sigma Aldrich, 99%) in 150 mL of 0,50X TBE, 

1,5 g of agarose was added. The solution was then microwave- heated until the agarose 

dissolved. When the solution cooled down, it was poured in a gel holder to facilitate the 

solidification. 

In one of the experiments, a very concentrated (saturated) and a 100 µM sample of 

VOSO4 and H2O2 were added while the gel was solidifying. Water was used as a 

control. It was taken care that the tip of the pipette did not touch the gel solution during 

addition. 

Marks were made on a side by the use of pipette-tips. The schematic diagram of the gel 

is given in (Figure 17). The illumination was performed with UV light of 302 nm.  

 

 

Figure 17. The position of samples of vanadium in 1% agarose gel containing 200 µM TPA. 
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2.4.3. Agarose gels in cuvette 

To study the fluorescence in gels, agarose gel was prepared with TPA and VO(acac)2 

and H2O2.  

2.4.3.1. Boiling and dissolving agarose only with TPA.  

A solution(Solution 1) of 0,0066 g (400 µmol) TPA and 2,0g (2%) agarose were added 

to a solution of 50 mL  40 mM phosphate buffer and 50 mL 2X TBE. In another flask, a 

solution (Solution 2) of 0,0159 g (600 µmol) VO(acac)2 was prepared. A solution of 

hydrogen peroxide (1,6 mM) was prepared as well.   

Solution 1 was heated until agarose dissolved. 1,0 mL of this solution was added to a 

cuvette where 1,0 mL of Solution 2 and 0,4 mL of peroxide were already added. In 

another cuvette, 1,0 mL of heated Solution 1 was added followed by 1,0 mL of 

Solution 2 and 0,4 mL of hydrogen peroxide solution.      

2.4.3.2. Boiling and dissolving agarose with TPA,VO(acac)2 and H2O2 

A solution of 0,0034 g TPA (200 µmol), 0,0079 g VO(acac)2 (300µmol), 1,0 g agarose 

(1%) were added  in a 100 mL volumetric flask. The vanadium complex was not added 

for blank measurements. Instead, water was used.  Also added was 4,0 mL 10X TBE,    

10,0 mL of 100 mM phosphate buffer and the water was used to fill upto the mark. The 

solution was then added to another beaker and 15,0 mL of 1,8 mM H2O2 was added and 

left for 30 minutes. The solution was then heated until the agarose dissolved. When the 

temperature of the solution was ~80
o
C, the solution was added to a cuvette and left for 

solidification and later fluorescence measurements were performed.  
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3. Results and Discussion 

3.1. Agarose gel electrophoresis 

The result from one agarose gel electrophoresis is given in Figure 8 .  

It can be observed that both VO(acac)2 and VO(Clor) cleave DNA. There is presence of 

linear and nicked bands in the samples containing vanadium complexes but not in the 

control sample. The band intensity of supercoiled DNA decreases with increasing 

concentration of VO(acac)2 and the band intensity of the nicked  and linear DNA 

increase with increasing concentration.   

3.2. Preliminary tests in agarose gel.  

The results of the gel imaging with Vanadium is given in (Figure 18) 

 

    

Figure 18. Gel imaging of experiment from Figure 17 before addition of H2O2 (left) 

and after addition of H2O2 (right). [Excitation at 302 nm and filter at (595 ± 40) nm] 

 

The spots that contained VOSO4 (conc) appeared as dark spots on the image. At lower 

concentrations of VOSO4, no such spots were observed. The dark spots (on the left in 

Figure 18. Gel imaging of experiment from Figure 17 before addition of H2O2 can be 

attributed to the precipitation of vanadium hydroxides. An interesting observation was 

that after the addition of peroxide, large bright spots appeared in the gel. This could be 

due to fluorescence of 2-OH-TPA formed by the reaction of TPA with .OH generated 
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by H2O2 in contact with the gel. The maximum for the emission of 2-OH-TPA occurs at 

425 nm, a lower wavelength lower than the (595 ± 40) nm imaging system filter 

window. The bright areas were probably due to diffraction in the gel caused by surface 

changes in the gel. Using this method would require acquiring a different filter of (464 ± 

40) nm for the imaging system.  

 

 

3.3. TPA-hydroxylation coupled with Fenton-like reactions 

3.3.1. Method development in aqueous solutions.  

 

Experiments with TPA-hydroxylation with Fenton-like reaction using 

VO(acac)2/VOSO4 were done. The concentration of the Vanadium complexes were 

varied from 0-100 µM and H2O2 was added in a large excess (~9,0 M). The 

fluorescence emission spectra were measured every 5 minutes upto 60 minutes. The 

results can be seen in Figure 19 and Figure 20. 

 

Figure 19. Time evolution of maximum intensity (410 nm) of 2-OH-TPA generated 

from different concentrations of VOSO4 over time. H2O2conc = (~9M) 
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It was expected that the fluorescence intensity should increase over time due to the 

increase in formation of 2-OH-TPA. However, this was not the case in this experiment. 

A particular example can be seen in that Figure 21. The intensity decreases as a 

function of time regardless of the concentration of vanadium complex used.  

 

Figure 20. Time evolution of maximum intensity (410 nm) of 2-OH-TPA generated 

from different concentrations of VO(acac)2 over time. H2O2conc = (~9M) 

 

A possible explanation is that the reaction between •OH and TPA provides a mono-

hydroxylated compound and the further hydroxylation is negligible only under the 

conditions when the concentration of TPA is much higher than the concentration of 

hydroxide radicals
53

. When the concentration of •OH is higher than the concentration of 

TPA conditions, hydroxylation could have taken place in one or more carbon atoms 

than the ortho position (Figure 22).     
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Figure 21. Fluorescence spectra measurements for 80µM VO(acac)2 over  time. 

H2O2conc = ~9M 

 

 

 

 
 

Figure 22. Figure showing the different positions in the benzene ring where 

hydroxylation can take place when large excess of .OH radicals are present. 

 

A low concentration of H2O2 was used in the further experiments. When the 

concentration of H2O2 used was 1,8 mM, the intensity of 2-OH-TPA in the solution 

increased with time for all concentrations except blank. The results can be seen in 

Figure 23 and Figure 24.  
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Figure 23. Time evolution of maximum intensity (428 nm) of 2-OH-TPA generated 

from concentrations of VO(acac)4 over time. H2O2conc = 1,8M 
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Figure 24.Individual fluorescence spectrum measurements 

for different concentrations of VO(acac)2. 

H2O2conc =1,8 mM. 
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It can be seen that in Figure 23, the intensity of the formed 2-OH-TPA species in the 

solution increases slightly over time during a course of 20 min. The increase is related 

to increase in the number of fluorescent species, i.e., 2-OH-TPA. There was no increase 

in intensity observed for the blank solution.  

The next step was to develop a relation between the concentration of Vanadium used 

and the fluorescence produced. So, a graph between amount of fluorescence and the 

concentration of vanadium used was made in Figure 25.  

 

Figure 25. Maximum intensity (428nm) of 2-OH-TPA with different concentrations of 

VO(acac)2 over time. H2O2conc = 1,8 mM 

 

 

 

 

 

 

To optimize the particular time period, sensitivity was checked at different time 

intervals. A rough estimation of the precision in the concentrations was also performed. 

The results are given in Table 1. 
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Table 1. Parameters to study the sensitivity at different time intervals for TPA 

hydroxylation coupled to Fenton-like reactions.The errors are presented with 95% 

confidence intervals 

 
Time (t) 

(min) 

Slope (m)/(10
3
) 

(a.u./µM) 
 

y-intercept (b)/ 

(10
3
) (a.u.) 

 

Standard 

deviation  (sdx) 

(µM) 

0 1,70 ± 0,11 0,73 ± 4,2 0,8 

5 1,90 ± 0,16 1,0 ± 6,0 1,0 

10 2,10 ± 0,24 1,3 ± 8,9 1,3 

15 2,20 ± 0,34 2,4 ± 13 1,8 

20 2,30 ± 0,37 3,4 ± 14 2,0 

 

 

At time 0, the sensitivity is significantly less compared to time 10 minutes or above. 

However, at times 10 minutes or above, the errors in the slope, y-intercept and CVx are 

higher. At time 5 minutes, the sensitivity is not significantly different from other time 

intervals. Therefore, time 5 minutes would be the most favorable time to measure the 

fluorescence of the 2-OH-TPA species formed in the samples. LOD for time period 5 

minutes was calculated to be 4,1 µM from the calibration curve.  

The equation for the line at 5 minutes are given as,  

                                      Eq. 22 

 

3.3.2. With D-galactose 

The next step of the method was to try it in agarose. The problem with agarose is that 

agarose has to be heated to solidify into gels. It was decided that the system should first 

be used in galactose. Galactose would provide a very close resemblance to agarose in 

terms of matrix composition and is easily soluble. Therefore, in the further experiments, 

increasing concentrations of galactose were added to the TPA solutions.  

An initial set of measurements were done with 0,050%, 0.25% and 0,50% D-galactose. 

The peroxide concentration used was estimated to be 1,8 mM and the data was treated 

with Savitzky-Golay smoothening.  

With the presence of galactose, the fluorescence was lower (the maximum value ~25k 

units with 110 µM VO(acac)2  (Figure 26) compared to ~130k for 62 µM VO(acac)2     

( Figure 23 and Figure 24). 
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Figure 26.Individual fluorescence spectrum measurements for 

different concentrations of VO(acac)2 in presence  of 0,050% 

D-galactose. H2O2 conc =1,8 mM 
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Figure 27. Maximum intensity (428nm) of 2-OH-TPA generated from different 

concentrations of VO(acac)2 over time. H2O2conc = 1,8 mM, galactose= 0,050%. 

 

 

It can be observed from Figure 27 that the maximum intensity of the formed 2-OH-

TPA species increased with concentrations in a linear fashion. The galactose 

concentration was then increased from 0,050% to 0,50%. At 0,50%, a working range 

was studied. The study is shown in Figure 28  and Figure 29. The peroxide 

concentration used for this experiment were 1,9 mM for VO(acac)2 and 1,8 mM for 

VOSO4 respectively. It can be observed that at concentrations of 0-300 μM of vanadium 

complexes, the fluorescence increased in a linear fashion. However, at higher 

concentrations the fluorescence intensity remained constant or decreased. It is a 

possibility that that the complexes precipitated at higher concentrations.  
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Figure 28. Maximum intensity (428nm) of 2-OH-TPA generated from different 

concentrations of VO(acac)2 over time. H2O2conc = 1,9 mM, galactose= 0,50%. 

 

 

Figure 29. Maximum intensity (428nm) of 2-OH-TPA generated from different 

concentrations of VOSO4 over time. H2O2conc = 1,8 mM, galactose= 0,50%. 
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The next steps were to determine the LOD (Limit of Detection) in presence of 0,50% 

galactose. Concentrations of as low as 2,0 μM and the highest 83 μM were used. The 

concentration of peroxide used was estimated to be 1,9 mM. The relationship between 

the concentrations and the fluorescence is given in Figure 30.  

 

Figure 30. Maximum intensity (428nm) of 2-OH-TPA generated from different 

concentrations of VO(acac)2 over time. H2O2conc = 1,9 mM, galactose= 0,50%. 

 

Least squares method was used to calculate the LOD. 4 lowest concentrations were 

taken for a better estimate of LOD.  

A comparison between the different galactose concentrations and the sensitivities (at 5 

minutes) for VO(acac)2 was performed, the results of which are given in Table 2. 

Table 2. A comparison (at 5 min) between the sensitivities when different wt% of 

galactose was used. The values are presented with 95% confidence intervals. 

 

Galactose 

(wt %) 

(g/100mL) 

Slitwidth 

(nm) 

Slope 

(m)/(10
3
) 

(a.u./µM) 

y-intercept/ 

(10
3
) (b) 

(a.u.) 

 

Standard 

deviation(sdx) 

(µM) 

Standard 

deviation(sdx) 

(µM) 

Range 

(µM) 

0,0  1  1,9 ± 0,2  1,0 ± 6,0  1,0  1,0  0-62  

0,050  1  0,17 ±0,07  0,5 ± 4,5  8,8  8,8  0-107  

0,49  2  0,33 ± 0,03  1,7 ± 1,2  3,0  3,0  0-83  
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The slope without the presence of galactose is higher (1900 ± 160) a.u./µM whereas, for 

0,050% of galactose is (170 ± 70) a.u./µM. The change in the sensitivity is significant at 

95% confidence intervals. The precision is lower when galactose is used. (CVx for 

0,050% galactose is 8,8 µM whereas for 0,0% galactose is 1,0µM). 

The lowering of the sensitivity and the precision could be because the presence of 

galactose interferes with the fluorescent species (2-OH-TPA). Or, perhaps, galactose, in 

high concentration, will act as a radical scavenger and decrease the concentration of 

hydroxyl radicals available to react with TPA. However, with increasing slitwidth 

increases the sensitivity significantly. With the use of 0,50% galactose and 2 nm 

slitwidth, the slope obtained was (330 ± 28) a.u./µ.M. whereas with the use of 0,050% 

galactose and 1 nm slitwidth, the slope obtained was (170 ± 70) a.u./µM. the precision 

is also better when slitwidth is increased( CVx= 8,8 µM for 0,050% and 3,0 for 0,50%)  

3.4. Fluorescence in agarose gels 

This would theoretically be the part of the experiment where one could determine if the 

methodology functions. The main aim of the experiments was to transform the 

hydroxylation of TPA coupled to Fenton-like mechanism from an aqueous medium to 

agarose gels.  

3.4.1. Boiling and dissolving agarose only with TPA 

As the agarose/TPA solution was warm and the Vanadium solution is cold, a 

homogeneous solution was difficult to achieve. Without a homogenous sample, the 

results obtained from fluorescence spectrofluorometry are inconclusive because there 

exists numerous light scattering effects. Thus, another approach of boiling all 

components of agarose gel-agarose, TPA, H2O2 and VO(acac)2 together was pursued.  

3.4.2.  Boiling and dissolving agarose with TPA,VO(acac)2 and H2O2 

TPA, VO(acac)2, agarose and H2O2 were mixed in one beaker and heated until agarose 

dissolved. The sample was added in a cuvette and taken for fluorescence after 

solidification. The result is given in Figure 31. Fluorescence spectra measurement of 

1% agarose gels containing 200µM TPA and 1,8 mM H2O2..   
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Figure 31. Fluorescence spectra measurement of 1% agarose gels containing 200µM 

TPA and 1,8 mM H2O2. 

It can be observed that in Figure 31, the fluorescence with 300 µM VO(acac)2  is lower 

than the blank. However, one particular aspect to notice is that for the spectra with 

Vanadium, there appears a hump near from approximately 395 to 440 nm. This is very 

similar with the spectra that were obtained for 2-OH-TPA. No such hump can be 

observed with the blank sample. The intensity at 428 nm is not very high and it could 

have resulted from poly-hydroxylation of TPA or the degradation of 2-TPA during the 

heating or the suppression of the fluorescence by agarose gels.  
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3.5. Stability of Hydrogen Peroxide 

 

As H2O2 is a very good oxidizing agent. Due to its oxidizing nature, this compound is 

not very stable. Therefore, the concentration of peroxide was an important factor to 

monitor. Various dilution factors were made and the absorbance measurements were 

performed over a time of 6 hours (the usual time of an experiment). 

The results are shown in Figure 32.  

 

Figure 32. Absorbance of hydrogen peroxide over time. 

There was no significant change observed during a period of 6 hours and thus it can be 

concluded that the experimental data was not affected by change in the peroxide 

concentration.  

3.6. Choice of excitation wavelength 

Different papers define various wavelengths for the excitation wavelengths. It was 

decided to verify the data and therefore an excitation scan was carried out for a 20 µM 

VO(acac)2. The emission wavelength was maintained at 429 nm and the excitation 

spectrum was measured. The highest intensity for excitation was observed at ~312 nm.  
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4. CONCLUSIONS 

4.1. Aqueous system 

The system was first tested in the aqueous system. When concentrated peroxide (~9M) 

was used, the maximum fluorescence intensity of 2-OH-TPA formed decreased over 

time. This was related to polyhydroxylation of the TPA molecule. However, when a 

peroxide concentration of ~1,8 mM was used, the signal of the formed 2-OH-TPA in the 

sample increased over time. An increase in fluorescence with an increase in vanadium 

complex concentration was observed. A good sensitivity was obtained with 1,8 mM 

H2O2. The LOD for vanadium was determined to be 4 µM.  

4.2. Aqueous system containing galactose  

The system was then tested in aquous system with galactose to provide a matrix as 

similar as possible to the agarose gel. The system has a good working range for upto 

300 µM when of 0,50% galactose was present. The sensitivity decreased significantly 

during the presence of galactose. The LOD for vanadium was established to be 5 µM.  

4.3. Agarose gels 

The system was finally tested in agarose gels. The sensitivity in agarose gels is worse 

than the system containing agarose gels. There were major issues in homogeneity 

during preparation of the gel. In gels where homogeneity was achieved, a small hump 

was observed in the region where 2-OH-TPA emits. A different sample preparation 

technique should be used in the future. The concentrated vanadium complexes/H2O2 

could be added in the gel containing TPA while the gel is solidifying.  

4.4. Overall 

Due to time restrictions it was not possible to complete the development of this method. 

Even though the studies in the agarose matrix were not complete, the method has shown 

promising results in aqueous solutions. The interference from high concentrations of 

galactose decreased sensitivity, but did not affect the limit of detection significantly. 

The future optimization of the gel conditions when using agarose matrices should also 

give good results. This will provide a new method that can be used to complement 

existing ones in the study of metal binding to DNA, and provide useful insights into the 

nature of metal-DNA interactions. 
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