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Green storage plays a key role inmodern logistics and is committed tominimizing
the environmental impact. To promote the transformation of traditional storage
to green storage, research on the capacity allocation of wind-solar-storage
microgrids for green storage is proposed. Firstly, this paper proposes a
microgrid capacity configuration model, and secondly takes the shortest
payback period as the objective function, and uses the improved sparrow
search algorithm (ISSA) for optimization. Firstly, the Logistic-Tent compound
chaotic mapping method is added to the population initialization of the sparrow
search algorithm (SSA). Secondly, the adaptive t-distribution mutation is used to
improve the discoverer, and the overall optimization ability of the algorithm is
improved. Finally, the hybrid decreasing strategy is adopted in the process of
vigilance position update. The ISSA can improve the search efficiency of the
algorithm, avoid premature convergence and enhance the robustness of the
algorithm, which is helpful to better apply to the optimal configuration of wind-
solar-storage microgrid capacity in green storage. By analyzing the optimal
capacity allocation results of two typical days, the system can better adapt to
the dynamic storage requirements and improve the flexibility and sustainability of
the supply chain.
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1 Introduction

With the growing global concern for environmental sustainability, green storage, as an
important component of modern logistics systems, has attracted extensive research interest
(Jiang, 2021). In traditional storage systems, the high dependence on energy and the
increase in environmental load has become a problem that cannot be ignored (Ma, 2023).
Green energy and energy structure transformation are important changes in the current and
future development of logistics parks. Rational use of clean energy is the key to achieving
carbon neutrality (Liu, 2023). Therefore, researchers have turned to the search for more
environmentally friendly and efficient storage solutions, among which wind-solar-storage
systems have attracted much attention as a potential green energy solution (Li et al., 2023).

As the main renewable energy, wind energy and solar energy have been widely used and
studied in various fields (Lazaroiu et al., 2023; Xu et al., 2024). In the logistics park, the use of
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the wind-solar-storage system can effectively deal with the instability
and security problems that may be brought to the power system
when renewable energy is introduced (Saxena et al., 2021; Jiang
J. et al., 2023). This system not only helps to improve the stability of
the power system, but also significantly reduces the energy
consumption and carbon emissions of the logistics park, to
achieve the goal of sustainable development (Kumar et al., 2019;
You, 2024). With the dynamic change in storage demand, how to
accurately and efficiently configure the capacity of wind and solar
energy storage systems in the change has become an urgent problem
to be solved (Li et al., 2016; Dulău, 2023). At present, there are few
studies on the optimal allocation of wind-solar-storage capacity for
green storage at home and abroad, but most of the optimal allocation
of wind-solar-storage capacity is distributed in demand response
and energy management (Nan, 2023).

Demand response plays an important role in optimizing the
capacity configuration of wind-solar-storage system. Through the
reasonable introduction and implementation of a demand response
mechanism, the efficient, stable and sustainable operation of the
power system can be realized, and the wide application and
development of clean energy can be promoted (Chen, 2023a). In
the problem of demand response, Jiang Z. et al. (2023) considered
several demand response mechanisms with flexible load
participation and established an energy storage economic
configuration model, which effectively reduced system costs and
improved energy consumption. Guo et al. (2022) added the electric
vehicle model to the microgrid model based on the time-of-use
electricity price and made full use of the flexible charging and
discharging characteristics of electric vehicles to configure the
capacity of the microgrid. Lei et al. (2024) proposed a two-layer
optimal configurationmethod of microgrid based on stepped carbon
trading and price-based demand response. Through two-layer
optimization, the impact of carbon trading and demand response
on system performance is fully considered, to realize the
comprehensive optimization of microgrid system. The above
literature covers several studies in the field of demand response,
aiming to improve the economy and efficiency of the system by
optimizing the capacity of different energy systems, and to promote
the consumption level of renewable energy.

However, in the face of increasing energy demand and
environmental protection pressure, effective energy
management can not only improve energy efficiency but also
achieve stable and sustainable development of system operation
(Yan, 2024). Kumar et al. (2020) proposed a novel adaptive control
technology AM-MKF (Adaptive Maximise-M Kalman Filter) and a
novel MPPT technology L-HC (Learning-based Hill Climbing) for
solar PV grid integrated system, to alleviate the oscillation problem
of the system under steady-state conditions and improve the
response speed of the system to dynamic changes. In the
problem of energy management, Wu et al. (2023) optimized the
configuration of the wind-solar power generation coupled
hydrogen energy storage model from the aspects of economic
and social benefits, which not only realized the efficient utilization
of energy resources but also took into account the impact and
benefits on society. Xu et al. (2024) not only considered the
economy and reliability of the system, but also considered the
environmental benefits. By introducing the carbon trading
mechanism, the carbon emission reduction capacity of the

microgrid was improved. In order to improve the economic and
environmental benefits of microgrid systems, Wang et al. (2023)
established the carbon emission measurement and carbon trading
mechanism of microgrid systems, and effectively improved the
economy of microgrid systems on the premise of reducing carbon
emissions as much as possible. The above research aims to improve
system reliability, improve the utilization efficiency of clean energy
reduce energy consumption costs, and take into account the
impact on the environment and society.

Aiming at the research of microgrid capacity optimization
configuration algorithm, swarm intelligence algorithm has been
widely used. Wang et al. (2022) used the particle swarm
optimization algorithm to solve the model, but the algorithm is
easy to fall into the local optimal solution. Zhao et al. (2022) adopted
the improved grey wolf optimization algorithm. By combining a
variety of improvement strategies, the problem that the grey wolf
optimization algorithm is easy to fall into local optimum is
improved. Yang (2010) adopts the bat algorithm and compares
the improved particle swarm optimization algorithm with the
genetic algorithm. However, the bat algorithm has some defects
in the process of solution exploration, that is, the lack of an effective
mutation mechanism, which leads to a certain probability of bat
individuals falling into the local optimal solution. To solve the
problem that the algorithm is easy to falls into the local optimal
solution and the convergence accuracy is insufficient when dealing
with the non-zero solution objective function, this paper proposes
an improved sparrow search algorithm.

In summary, based on the consideration of time-of-use electricity
price, this paper optimizes the capacity configuration model of
microgrid systems for green storage. The improved sparrow search
algorithm (ISSA) is used to optimize the microgrid capacity
configuration model, including the introduction of a Logistic-Tent
composite chaotic mapping strategy, adaptive t-distribution variation
strategy, andmixed decreasing strategy. Two typical days are selected to
solve themodel to verify the effectiveness of the proposedmodel and the
improved algorithm.

2 Microgrid capacity optimization
configuration model for green storage

2.1 Structure and model of wind-solar-
storage system

2.1.1 Wind-solar-storage system structure
Yang et al. (2023) proposed that the core concept of green storage

is to realize the recycling of resources and energy inside and outside the
storage system by imitating the operation principle of the natural
ecosystem, to achieve the economic, efficient, and environmentally
friendly operation objectives. In the configuration of the wind-solar-
storage system, the generation of electric energy and the satisfaction of
the storage power demand are regarded as part of the internal cycle. At
the same time, selling excess electricity back to the power grid and
interacting with the power grid constitutes another part of the external
cycle. These two aspects work together to build a comprehensive
application of wind-solar-storage in the green storage system. The
structure of the wind-solar-storage microgrid system proposed in this
paper is shown in Figure 1.
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2.1.2 Photovoltaic power generation output model
In this paper, the photovoltaic power (PV) generation model

proposed by Gao et al. (2023) and Diaf et al. (2007) is adopted. The
output power of the PV generation system of this model can be
calculated by Eq. 1.

Ppv � Npv × Pe−pv ×
S

Sref
1 + Kt Tc − Tref( )[ ] (1)

Where Pe−pv is the rated output power of the PV array at the
working point; Sref is the solar irradiance under standard
conditions; S is the actual solar irradiance at the working point;
Kt is the power temperature coefficient; Tc is the temperature at the
working point; Tref is the temperature under standard conditions;
Npv is the number of PV array units.

2.1.3 Wind power generation output model
In this paper, the wind power generation output model proposed

by Justus (1978) and Borhanazad et al. (2014), and Su et al. (2023) is
adopted. The output power of the wind turbine (WT) of this model
can be calculated by Eq. 2.

Pwt �
0, V≤Vin, V≥Vout

Nwt V3a − Peb( ), Vin <V<Ve

NwtPe, Ve <V<Vout

⎧⎪⎨⎪⎩ (2)

Where Pwt is the output power of the WTGs;Nwt is the number
of wind turbine generator systems (WTGs); Pe is the rated power of
the WTGs; V is the actual wind speed; Vin is the cut-in wind speed;
Vout is the cut-out wind speed; Ve is the rated wind speed. Where a
and b are computed as follows.

a � Pe

V3
e − V3

in

, b � V3
in

V3
e − V3

in

(3)

Where Pe is the rated power of the WTGs; Vin is the cut-in wind
speed; Ve is the rated wind speed.

2.1.4 Energy storage system model
Considering the advantages of mature battery energy storage

technology, fast response speed, and relatively low price, this paper
chooses centralized battery energy storage as the focus of research to
optimize the capacity of wind-solar-storage microgrid systems.

The mathematical energy model of the battery in the state of
charge is:

Ebat � Ebat t − 1( ) 1 − δ( ) + Pc t − 1( )ηcΔt (4)

The mathematical energy model of the battery in the discharged
state is:

FIGURE 1
Green storage of wind-solar-storage microgrid system structure.
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Ebat � Ebat t − 1( ) 1 − δ( ) + Pd t − 1( )
ηd

Δt (5)

Where Ebat is the power stored in the battery at the time of t; Pc

and Pd are the charging and discharging power respectively; δ is the
loss rate of the battery discharge; ηc and ηd are the charging and
discharging efficiency respectively; Δt is the sampling
circumference.

2.2 Optimization objective function and
constraints

2.2.1 Objective function
In this paper, considering the economy, reliability, and

environmental protection of the system, the shortest payback
period is taken as the objective function, and the Equation is
shown below:

minC � Cout − ISUB
Cin + IR − Cm

(6)

Where Cout is the investment cost ofWT, PV, and batteries; ISUB
is the government subsidy; Cin is the income from the sale of
electricity from PV and WT; IR is the recovery income from the
system; Cm is the operation and maintenance cost of the wind-solar-
storage system.

(1) Investment costs

Cout � Cins
rs 1 + rs( )n
1 + rs( )n − 1

(7)

Where Cins is the total capital cost of the system; rs is the
discount rate; n is the useful life of the equipment.

(2) Government subsidies

ISUB � E × xsub × ∑N
i�0

1

1 + rs( )i (8)

Where E is the annual generation of WT and PV system, kWh;
xsub is the subsidy per kWh of WT and PV power generation, yuan/
kWh, and the subsidy per kWh of power generation used in this
paper is 0.45 yuan.

(3) Revenue from electricity sales

The system sells the excess electricity generated by the PV and
the WT, and the revenue earned is the revenue from the sale of
electricity, which is expressed as:

Cin � pin ∑8760
ι�1

NpvPpv t( ) +NwtPwt t( )⎡⎣ ⎤⎦Δt (9)

Where pin is the selling price of electricity, Yuan/kWh.

(4) Recovery of benefits

IR � xR × S

1 + rs( )N (10)

Where xR is the unit area of the WT or PV panel recycling price,
yuan/m2. At present, China’s energy storage battery recycling
industry has not been formed, and its recycling value has not yet
been available for reference data, which is not considered in this
paper for the time being.

(5) Operation and maintenance costs

During the operation of the system, regular maintenance and
management of the power generation units is required to ensure that
the PV panels, WTGs, and batteries can operate in a stable and
normal manner. The cost incurred by these maintenance activities is
known as the maintenance cost, expressed as:

Cm � ∑8760
t�1

NPVCPVuPPV t( ) +NWTCWTuPWT t( ) +NLBCLBuPLB t( )⎡⎣ ⎤⎦Δt
(11)

Where Cm are the annual operation and maintenance costs of
the system; NPV, NWT, NLB represent the number of PV panels,
WTGs and batteries, respectively; CPVu , CWTu and CLBu are the
maintenance cost per unit capacity of PV panels, WTGs, and
batteries respectively; PPV(t), PWT(t), PBS(t) are the output
power of PV, WT and battery at time t, respectively.

2.2.2 Constraints
(1) System power balance constraints

Setting the limiting conditions for the output power of the wind-
solar-storage microgrid systems at any moment is shown in the
following Equation:

PWT t( ) + PPV t( ) + PBS t( )≥PLOAD t( ) (12)

Where PPV(t), PWT(t), PBS(t) are the output power of PV, WT
and battery at time t, respectively; PLOAD(t) is the load power.

(2) Battery storage charging and discharging power, depth
of discharge

Smin ≤ S t( )≤ Smax (13)
Pc,min ≤Pc ≤Pc,max

Pd,min ≤Pd ≤Pd,max
{ (14)

Where Smax and Smin are the maximum and minimum values of
the battery charge respectively; Pc,max and Pc,min are the maximum
and minimum values of the battery charging power, respectively;
Pd,max and Pd,min are the maximum and minimum discharge power
of the battery, respectively.

(3) Photovoltaic and wind turbine installation quantity
constraints

NPV,min#NPV#NPV,max

NWT,min#NWT#NWT,max

NBS,min#NBS#NBS,max

⎧⎪⎨⎪⎩ (15)

WhereNPV,min,NWT,min andNBS,min are the minimum number
of PV panels, WTGs, and batteries to be installed;NPV,max,NWT,max
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and NBS,max are the maximum number of PV panels, WTGs, and
batteries to be installed according to the actual site.

3 Microgrid capacity optimization
algorithm for green storage

3.1 Sparrow search algorithm (SSA)

The sparrow search algorithm (SSA) originates from observing
the survival behavioral patterns of a sparrow population, which
contains discoverers, early warners, and followers. The discoverer
searches for food while guiding the follower to access resources, and
the less adapted sparrows forage around and even compete for the
discoverer’s food, but the population share of both remains stable in
the competition. Marginal individuals tended to move to relatively
safe positions, while central individuals reduced the risk of
predation. Alerts are issued when predators are detected, and
when warnings exceed a safety threshold, the discoverer leads the
follower to move toward a safe area. This algorithm can be applied to
solve a variety of optimization problems by modeling the
collaborative, competitive, and adaptive behavior of groups
of organisms.

Discoverer location update strategy is:

Xt+1
i,j �

Xt
i,j · exp − i

β · itermax
( ), ifR2 < ST

Xt
i,j + Q · L, ifR2 ≥ ST

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (16)

Where Xt
i,j is the value of j(j � 1, 2, 3,/, D) dimension of the

i(i � 1, 2, 3,/, n) sparrow in the t iteration; β is a random number
between (0,1]; ST is a random number between [0.5,1]; itermax is the
maximum number of iterations; R2 is a random number between
[0,1]; Q is a random number that satisfies the normal distribution; L
denotes a D dimensional vector with elements of one in
each dimension.

The formula for updating the position of the followers is
as follows:

Xt+1
i,j �

Q · exp Xt
worst −Xt

i,j

i2
( ), i> n/2

Xt+1
p + Xt+1

i,j −Xt+1
p

∣∣∣∣∣ ∣∣∣∣∣ · A+ · L, others

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (17)

Where Xp denotes the optimal position owned by the
discoverer; Xworst denotes the global worst position; A denotes
the matrix where the elements within the matrix will be
randomly assigned a value of one or -1 to 1 × d ,
and A+ � AT(AAT)−1 .

The updating formula for an early warning person’s position is
as follows:

xt+1
i,j �

xt
best + β · xt

i,j − xt
best

∣∣∣∣∣ ∣∣∣∣∣, fi >fg

xt
i,j + K · xt

i,j − xt
worst

∣∣∣∣∣ ∣∣∣∣∣
fi − fw + ε

⎛⎝ ⎞⎠, fi � fg

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (18)

Where xt
best denotes the current global optimal position; β is a

standard normally distributed random number; K is a random

number in [-1,1]; fi denotes the fitness value of the current
individual sparrow; fg is the fitness value of the global optimal
position; fw is the fitness value of the global worst position; the
smallest parameter, ε , is used to avoid the denominator to be 0;
when fi >fg , the sparrow is easy to be attacked by the natural
enemy, and when fi � fg , the sparrow is aware of the danger to
approach to other sparrows.

Although the SSA is superior to traditional heuristic algorithms
such as particle swarm optimization (PSO) and grey wolf
optimization (GWO) in terms of optimization ability and
convergence speed, some solutions of SSA will gather near the
origin in the later stage of iteration, which reduces the diversity
of sparrow population and increases the possibility of ’ premature ’
convergence. To deal with these problems, this paper proposes an
improved sparrow search algorithm.

3.2 ISSA for optimal configuration of
microgrid capacity for green storage

3.2.1 Chaos mapping strategy
To solve problems such as the lack of diversity of sparrow

populations in later iterations, this paper introduces chaotic
mapping to generate the initial sparrow populations to increase
their diversity and improve the quality of the initial solution of the
algorithm. The particle distribution scatter plot and histogram are
shown in Figure 2. Chaotic variables are random, so in the search
optimization problem, it is used to increase the population diversity
of the algorithm and improve the ability of the algorithm to jump
out of the local optimal solution, thereby enhancing the global
search performance of the algorithm.

Gao (2021) created a Logistic-Tent composite chaotic system by
combining the classical one-dimensional Logistic chaotic system
and the Tent chaotic system. This chaotic system combines the
complex chaotic dynamics of the Logistic system with a faster
iteration speed, more autocorrelation, and applicability to a large
number of sequences of the Tent system, which is defined by the
following mathematical formula:

Xn+1 � rXn 1 −Xn( ) + 4 − r( )Xn/2( )mod 1, Xn < 0.5
rXn 1 −Xn( ) + 4 − r( ) 1 −Xn( )/2( )mod 1, XnP0.5

{
(19)

Where Xn is the system variable, Xn ∈ [0, 1]; r is the control
parameter, r ∈ (0, 4), in this paper, r � 0.1.

3.2.2 Adaptive t-distribution variation strategy
Because the t-distribution combines the robustness of the

Cauchy-distribution and the smoothness of the Gaussian-
distribution, the adaptive t-distribution variation strategy for the
leading discoverers in the population can allow the discoverers to
search for the best point faster. The adaptive t-distribution variation
strategy aims to make the algorithm show strong global
development ability in the early stage of iteration, and show good
local exploration ability in the later stage of iteration, and improve
the convergence speed of the algorithm. In this way, the advantages
of global search and local search can be comprehensively utilized
throughout the iteration process to optimize the SSA more
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effectively. The improved discoverer‘s location update method is
as follows:

Xnew � Xt+1
i,j + ω ·Xt+1

i,j · t iter( ) (20)

Xt+1
i,j � Xnew, fi <ft

Xt+1
i,j , others

{ (21)

Where Xt+1
i,j is the value of the j(j � 1, 2, 3,/, D) dimension of

the i(i � 1, 2, 3,/, n) sparrow in the t + 1 iteration; t(iter) is the
t-distribution of iter for the parameter degrees of freedom, and with
the increase of the number of iterations iter , the t-distribution
gradually converges to the Gaussian distribution, which is conducive
to the enhancement of the convergence speed of the algorithm; ω is
the adaptive parameter. Xnew is the position of the sparrow after
variation disturbance; fi is the individual fitness value of the i
discoverer; ft is the average fitness value of the discoverer; if fi <ft,
the t-distribution mutation perturbation is performed, otherwise the
mutation perturbation will not be performed.

The purpose of introducing the adaptive parameter ω is to increase
the population diversity in the early stage of the algorithm while
ensuring that the optimal solution for the sparrow population can
be retained in the later stage. The change curve of adaptive parameters is
shown in Figure 3. At the initial stage of iteration, the adaptive
parameter ω can take a larger value to increase the population
diversity through the new solution generated by the t-distribution
variation. As the number of iterations increases and the algorithm
approaches the optimal solution, the role of the adaptive parameter ω is
gradually reduced to ensure that the optimal solution in the sparrow
population is fully retained. This strategy balances the need for global
exploration and local optimization during the search process. The
formula for calculating the adaptive parameter is as follows:

FIGURE 2
Comparison of scatter plot and histogram of particle distribution. (A) SSA Initial Particle Distribution Plot. (B) SSA Initial Particle Distribution
Histogram. (C) Chaos Algorithm Initial Particle Distribution Plot. (D) Chaos Algorithm Initial Particle Distribution Histogram.

FIGURE 3
Dynamic adaptive weight change curve.

Frontiers in Energy Research frontiersin.org06

Zhu et al. 10.3389/fenrg.2024.1383332

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1383332


ω � ωstart · exp − t
α

( ) (22)

Where ωstart is the initial value of the decrement; t is the current
iteration number; α is the parameter to control the decrement speed,
in this paper, α � 250.

3.2.3 Mixed decreasing strategy
In the SSA, the step control parameters K and β of the vigilant

play a key role in balancing the global search and local search, and
the search efficiency and accuracy of the algorithm can be improved
by adjusting its parameters. For this reason, this paper uses a hybrid
decreasing strategy to adjust this parameter.

This strategy can dynamically adjust the search strategy
according to the changes in the number of iterations, gradually
shifting from a global search to a more focused local search, and the
mathematical representation of this strategy is shown in the
following Equation. With this strategy, the behavior of the
algorithm can be flexibly adjusted at different stages to better
adapt to the complexity of the problem and the characteristics of
the search space.

K � 1
2

Kmax − Kmin( ) 1 + cos
πn

Nmax
( ) + Kmax (23)

Where K is the current value of the vigilant parameter; Kmax is
the maximum value, representing the maximum search capability of
the vigilant; Kmin is the minimum value, representing the minimum
search capability of the vigilant; n is the current number of iterations;
Nmax is the maximum number of iterations.

The step control parameter β adopts a linear decreasing strategy,
that is, decreasing its value at a fixed step size in each iteration, as
shown in the following formula.

β � βmax −
n

Nmax
βmax − βmin( ) (24)

Where βmax and βmin are the maximum and minimum values of,
respectively.

The hybrid decrementing strategy cleverly combines two different
decrementing methods to adapt the search behavior of the algorithm
more flexibly and efficiently. Such a strategymakes it possible to find an
appropriate balance between global and local search, ensuring a better
adaptation to the nature of the problem at different stages of the
algorithm, thus improving the efficiency and accuracy of the search.

Based on the proposed improvement strategy, the pseudo-
code of the ISSA is shown in Figure 4, and the process of solving
the capacity optimization configuration of the ISSA is shown
in Figure 5.

FIGURE 4
Pseudo-code of ISSA.
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Step 1: Initialization parameters: the population size is n, the
maximum number of iterations is, the spatial dimension is J, the
number of discoverers is PD, the number of alerts is SD, the alarm
threshold is ST, the initial upper and lower bounds are lb and ub, and
the fitness function is;

Step 2: Population initialization: generate the initial population
according to Eq. 19;

Step 3: Calculates and sorts the fitness value of each sparrow
individual, and records the optimal fitness value and the optimal
individual position;

Step 4: Determines whether the individual fitness value of the
discoverer is greater than the average fitness value. If it is greater
than, the location of the discoverer is updated according to Eq. 16. If
the conditions are not met, the location of the discoverer is updated
according to Eqs 20–22;

Step 5: Update the follower position according to Eq. 17;
Step 6: Update the follower position according to Eqs 18–24;
Step 7: Update the position of the best and worst individuals and

the corresponding fitness value;
Step 8: Until the maximum number of iterations is reached, the

global optimal position is output.
In summary, the SSA itself has a certain global search ability.

Introducing the Logistic-Tent chaos mapping strategy and the
adaptive t-distribution variation strategy, can not only further

enhance the global search ability of the algorithm, but also help
the algorithm to perform more effectively in the search process.
These two strategies help to explore potential optimization
solutions more extensively in the search space and fine-tune
the performance of solutions. The mixed decreasing strategy is
introduced to the step size control parameters of the early
warning, and the decreasing step size strategy makes the
algorithm less sensitive to the choice of initial parameters.
Even if the initial parameter setting is not good, the algorithm
still can achieve good optimization results by gradually adjusting
the step size in the later stage, which enhances the robustness of
the algorithm. Therefore, the ISSA can improve the search
efficiency of the algorithm, avoid premature convergence, and
enhance the robustness of the algorithm, which is helpful for
better application to solve the problem of optimal capacity
allocation of wind-solar-storage microgrid.

4 Case study

4.1 Date settings

Taking the storage in a certain area as an example object, according
to the proposed capacity optimization allocation model and

FIGURE 5
Flow chart of ISSA.
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optimization strategy, the ISSA is used to optimize the capacity of the
wind-solar-storage system in a microgrid. The total electricity
consumption of the storage load for the whole year (8760 h) is

1.004MWh, and the average load is 114.59 kWh, while the average
annual wind speed of the region is 8.43 m/s, and the average light
intensity is 234W/m2, and the data of the storage is shown in Figure 6.

FIGURE 6
Annual data for this storage. (A) Hourly light intensity throughout
the year. (B) Hourly wind speed throughout the year. (C) Hourly loads
throughout the year.

FIGURE 7
Weather conditions and load demand under two typical days. (A)
Light intensity. (B) Wind speed. (C) Load demand.

TABLE 1 Distributed power economy parameters.

Equipment Capacity
(kW)

Investment cost
coefficient (yuan/kW)

Annual operation and
maintenance costs (yuan/kW)

Replacement cost
(yuan/kW)

Lifespan
(a)

WTG 35 4237 36.2 — 20

Solar panel 25 3550 50.3 — 25

Battery unit 30 450 137.7 500 10
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To capture the performance characteristics of the system under
seasonal extreme conditions, the performance characteristics of the
system under high wind speed, low wind speed, high light intensity,
and low light intensity are considered, and two typical days are
selected and their data are analyzed; the typical days are July in
summer when the wind speed is high and the light intensity is high,
and December in winter when the wind speed is low and the light
intensity is low, as shown in Figure 7. The economic parameters of
the configured wind-solar storage equipment are shown in Table 1.
The electricity price between the microgrid system and the power
grid in different periods is shown in Table 2.

In Figure 7, the light intensity of typical day I was larger from 10:
00 to 15:00, and there was no light at about 19:00, and the wind

speed was larger in the whole period. On the typical day II, the light
intensity was larger during the period of 10:00–12:00, and there was
no light at 17:00. The wind speed was larger during 1:00–5:00 and 8:
00–11:00.

4.2 Microgrid capacity configuration results
in green storage

To verify the optimal configuration model of power capacity of a
wind-solar-storage microgrid in this paper, simulation analysis is
carried out in two typical days. The capacity configuration results of
the wind-solar-storage microgrid for green storage are in Table 3.
The operation of the two typical days under the optimal capacity
configuration results is shown in Figure 8.

Table 3 shows that the investment cost of typical day I is less
than that of typical day II, the payback period is also shorter than
that of typical day II, and the number of PV panels and wind
turbines connected is less than that of typical day II. This shows
that the economy of the system is superior under the climate
conditions of typical day I. Under different climate conditions,
the number of PV panels and wind turbines need to be adjusted to
ensure that the system can operate efficiently under various
weather conditions and to improve the overall economy, and
better climate conditions make the system require less
investment in equipment under the condition of obtaining the
same amount of power generation. Such a comparison illustrates
that the wind and solar storage capacity configuration must take
full account of local climatic conditions and that different wind
and solar weather will directly affect the capacity configuration of
the system, and thus the economics. Under better wind and solar

TABLE 2 Time-share electricity purchase and sale tariffs.

Time-of-use intervals Times Purchased electricity (yuan/kWh) Electricity sales (yuan/kWh)

Peak 7:00-11:00, 17:00-21:00 0.588 0.501

Off-peak 23:00-7:00 the following day 0.328 0.27

Shoulder 11:00-17:00, 21:00-23:00 0.538 0.45

TABLE 3 Capacity allocation results.

Configuration Application scenes

Typical day I Typical day II

Number of equipment WTGs 2 3

Solar panels 10 13

Battery units 3 5

Payback period (years) 9 11

Investment cost (million yuan) 122.46 166.61

Maintenance Cost (million yuan) 2.75 4.08

Wind and Solar Utilization Rate 89% 89%

Self-Balancing Rate 94.46% 51.89%

FIGURE 8
The operation of two typical days under the optimal capacity configuration results (A) Operation of typical day I. (B) Operation of typical day II.
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climatic conditions, the system is more likely to obtain higher
power generation efficiencies, which reduces the need for
equipment, lowers the cost of investment, and shortens the
payback period.

Thewind and light utilization rates of typical day I and typical day II
are both higher, indicating that the system can convert solar and wind
energy into electricity more efficiently and maximize the use of
renewable resources, which is of great significance for improving the
economy and sustainability of the system. In Figure 9, there is no need
to purchase electricity from the power grid on the typical day I from 8:
00 to 16:00 during the peak period of electricity consumption, and
electricity can be sold to the power grid from 7:00 to 10:00 and 11:00 to
13:00. The self-balancing rate of the system is high, which reduces the

dependence on the external power grid, increases the independence of
the system, and improves the comprehensive utilization rate of the
system energy. In contrast, the self-balancing rate of typical day II is low,
and power is purchased from the power grid from 10:00 to 19:00 during
the peak period of power consumption, indicating that the system is
more dependent on the external power grid tomeet the power demand,
thus increasing the operating cost and reducing the self-sufficiency of
the system.

4.3 Comparison of algorithms

In this paper, ISSA, SSA, PSO and GWO are used to analyze the
investment cost of the two typical days of the wind-solar-storage model.
The algorithm parameters are set as shown in Table 4, the population
size is uniformly set to 100, and the number of iterations is uniformly set
to 150. The simulation experiment is run under the Matlab 2023a
simulation platform. The comparison of the four algorithms is shown in
Table 5, and the iterative optimization curve is shown in Figure 9.

It can be seen fromTable 5 that the ISSA algorithmhas achieved the
minimum investment cost in two different typical days. Compared with
the other three algorithms (SSA, PSO and GWO), ISSA decreased by
2.36%, 9.66% and 4.16% on typical day I, and decreased by 2.96%,
9.34% and 4.81% on typical day II, respectively. This shows that the
ISSA algorithm has a lower cost than other algorithms in the wind-
solar-storage investment cost allocation model. Further analysis of
Figure 9 shows that the ISSA adopts the Logistic-Tent composite
chaotic mapping strategy, which makes it have a faster convergence
speed at the initial stage of iteration. In contrast, the other three
algorithms (SSA, GWO, PSO) fall into the local optimal solution.
This shows that the ISSA has better global search ability in
optimizing the objective function, and can more effectively avoid
falling into the local optimal solution. The improvement of this
global search ability makes the ISSA algorithm better find the
optimal solution for investment cost.

FIGURE 9
Comparison of iterative optimization curves of four optimization algorithms (A) Comparison of iterative optimization curves of typical day I. (B)
Comparison of iterative optimization curves of typical day II.

TABLE 4 Algorithm parameter settings.

Algorithms Parameter setting

ISSA PD � 0.2*n, SD � 0.2*n, ST � 0.8, r � 0.1, α � 250

SSA PD � 0.2*n, SD � 0.2*n, ST � 0.8

PSO ωmax � 0.8, ωmin � 0.2, c1 � c2 � 2.5

GWO a ∈ [0, 2], b � 1.5, p is a random number of [0, 1]

TABLE 5 Comparison of capacity configuration results of four algorithms.

Algorithms Investment cost (million yuan)

Typical day I Typical day II

ISSA 122.46 166.61

SSA 125.35 171.54

PSO 134.29 182.18

GWO 127.55 174.62

Frontiers in Energy Research frontiersin.org11

Zhu et al. 10.3389/fenrg.2024.1383332

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1383332


In summary, ISSA not only achieves better results in the cost
allocation model of wind-solar-energy storage investment but also
shows faster convergence speed and better global search ability in
the optimization process.

5 Conclusion

In this paper, aiming at the premature convergence of SSA to
local optimal solution in the later stage of iteration, ISSA is
adopted, including three improved strategies: Logistic-Tent
composite chaotic map, adaptive t-distribution mutation and
mixed decreasing. Compared with the standard SSA, PSO and
WGO, ISSA not only achieves better results in the configuration
model but also shows faster convergence speed and better global
search ability in the optimization process. It is proved that ISSA
effectively improves the global optimization performance of the
algorithm. Based on the establishment of the microgrid capacity
configuration model for green storage, the shortest payback period
is proposed as the objective function, and the influence of time-of-
use electricity price and different weather conditions on the system
is fully considered. For the problem of optimal configuration of
microgrid capacity for green storage, ISSA provides an important
reference value for the optimal configuration of the model.
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