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We derive a formal description of local light-ray rotation in terms of complex refractive indices. We show that
Fermat’s principle holds, and we derive an extended Snell’s law. The change in the angle of a light ray with
respect to the normal of a refractive index interface is described by the modulus of the refractive index ratio;
the rotation around the interface normal is described by the argument of the refractive index ratio. © 2009

Optical Society of America
OCIS codes: 080.2720, 160.1245, 240.3990.

We recently started to investigate ray-optical analogs
of metamaterials. Like metamaterials [1,2], these so-
called metamaterials for rays (METATOYs) [3] are
capable of performing positive and negative refrac-
tion [4,5]. In addition, METATOYSs can perform local
light-ray rotation around the interface normal [6].

Here we describe local light-ray rotation around
the interface normal in terms of Fermat’s principle.
Fermat’s principle can be treated as a basic theorem
of geometrical optics, but “is itself only understand-
able in terms of a wave theory” [7]. On the other
hand, local light-ray rotation around the interface
normal has no wave-optical analog in the sense that
it is not always possible to construct a wave in which
the phase-front normal—the geometrical-optics light-
ray direction—has been rotated as required [3].
What, then, happens if we attempt to describe local
light-ray rotation around the interface normal in
terms of Fermat’s principle? Here we do just that. We
find a “natural” formulation of Fermat’s principle in
which ray rotation is described by an interface be-
tween homogeneous media with a complex refractive
index ratio. This leads to an extended form of Snell’s
law that uses complex refractive indices. It is impor-
tant to note that the meaning of the imaginary part
of the complex refractive index we introduce here is
different from that commonly used in optics [8]; in
the former it is associated with ray rotation, in the
latter with attenuation.

Fermat’s principle [9] states that a light ray trav-
eling between two points takes a path with a station-
ary optical path length; that is, for small variations
in the path taken the optical path length stays the
same. The whole path can be calculated using the cal-
culus of variations, but simplified calculations can be
performed using ordinary calculus.

Figure 1(a) shows a planar interface between two
media with different refractive indices, n; and n,.
When light travels between two fixed points A and B
on either side of the interface, via a point P on the
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interface, but not otherwise fixed, it covers an optical
path length

A=n1d1+n2d2 (1)

3. .2, .2 3. .2, .2
=n1\/x1+y1+z1+n2\/x2+y2+22, (2)

where (x1,y1,21) and (x9,y4,29) are the components of
the vector AP (that is, the vector from A to P) and
PB, respectively, in a Cartesian coordinate system
whose (x,y) plane coincides with the plane of the in-

terface. We can use the equations
X=x1+x5, Y=y1+ys, (3)

which describe the constant separations between the
fixed points A and B in the x and the y directions to

Fig. 1. (Color online) Geometry of refraction at a planar
interface between two media with different refractive indi-
ces, n1 and n,. (a) Light ray travels from a point A in front
of the interface to a point P on the interface and then to a
point B behind the interface. The geometrical distance be-
tween A and P is d; and that between P and B is ds. (b)
Light-ray direction can be represented by two angles, # and
¢, which, respectively, represent the angle with respect to
the interface normal (the z axis) and the angle of the pro-
jection into the interface plane with respect to the x axis.
Alternatively, the light-ray direction can be described by
the projection of the normalized direction vector into the in-
terface plane. With a complex plane in the interface plane
as shown, this projection can then be described by a single
complex number, c.
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eliminate xo and y, from the expression for the path
difference [Eq. (2)]. This gives

A= nlx/x? +y? +z% + nz\/(X—x1)2 + (Y—yl)2 +z§.
(4)

We now find the values x; and y; for which the
function A is stationary. According to Fermat’s prin-
ciple, these values then correspond to the point P
through which the light ray would actually travel.
These values x; and y; have to satisfy the equations

AN AN
—=0. (5)

Substitution of the expression for A into these equa-
tions gives

X1 X2 Y1 Y2
ni—-ng—=0, ng;—-ny—=0, (6)
m ry r ry

where rj=(xJ2 +yJ2+zJ2)1/2 (with j=1,2). The terms can
be translated into spherical coordinates ¢ (the azi-
muthal angle) and 6 [the angle with the z axis, see
Fig. 1(b)] using the equations

Xji . Yi . .
— =sin i cos ¢;, — =sin §;sin ¢,. (7)
rj rj

In spherical coordinates, Eqs. (6) are therefore the
real and the imaginary parts, respectively, of the
equation

nq sin 6; exp(i ) = ny sin Oy exp(igsy). (8)

This equation is the basis of the remainder of this
Letter. Like in Snell’s law, it is not the individual re-
fractive indices that matter but their ratio. As Eq. (8)
is a complex equation, it is natural to allow the re-
fractive indices (and their ratio) to be complex num-
bers. Equation (8) is then an extension of Snell’s law;
for real refractive index ratios, it describes ordinary
refraction according to Snell’s law, expressing (unlike
the Snell’s law formula) the fact that the refracted
ray lies in the same plane as the incident ray and the
interface normal, and it leads to local light-ray rota-
tion as a natural extension of refraction with complex
refractive index ratios. We discuss these properties
below.

For the following discussion it is useful to visualize
the extended Snell’s law as follows. We interpret the
plane of the refractive index interface as a complex
plane, centered at the point P where the light ray in-
tersects the plane, and with the real axis in the x di-
rection and the imaginary axis in the y direction; z’ is
the normal to the interface at P. Figure 1(b) shows
this coordinate system.

We now consider a unit vector in the direction of
the incident light ray, starting at the origin. We de-
fine the complex number ¢ as the orthographic pro-
jection of this unit vector into the complex plane. If
we assume that light travels in the positive z’ direc-
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tion, then this projection uniquely defines the ray di-
rection. For a unit vector with spherical-coordinate
angles 0 and ¢, c is

c=sin fexp(i¢). 9)

The extended Snell’s law, Eq. (8), can then be writ-
ten in the form

niCi=ngyCy, (10)
where ¢; and ¢, are the complex numbers correspond-
ing to the incident and the refracted ray directions,
respectively. In other words, the product of refractive
index and the complex number representing the ray
direction remains constant. We can emphasize the
dependence on the refractive index ratio by writing
Eq. (10) in the form

ny Co (11)
ng - C1'

According to Eq. (11), the ratio cs/c; is the same as
the refractive index ratio n;/ny. Therefore, if the re-
fractive index ratio is real then so is the ratio of the
direction projections.

This has a simple interpretation. The argument of
ci—the spherical-coordinates angle ¢;—defines the
plane of incidence. Specifically, it describes the angle
between the plane of incidence and the x axis. This,
together with the fact that the plane of incidence also
contains the z axis, completely determines the plane
of incidence. A real ratio cy/c; means that ¢y lies on
the same line through the origin as ¢; [Figs. 2(a) and
2(b)], and therefore the refracted ray is also in the
plane of incidence.

Mathematically, it means that ¢;=¢,. This means
that the exp(i¢;) terms (j=1,2) can be cancelled in
Eq. (8), which reduces to Snell’s law

nqsin 6; = ngy sin 6y, (12)

Perhaps the most simple examples of complex re-
fractive index ratios are those of the form

n
— =exp(ia)
ny

(13)

(where «a is a real number). According to Eq. (11), this
implies that
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Fig. 2. (Color online) Plots of the complex numbers ¢; and
¢y representing various types of refraction. (a) and (b)
Examples of standard refraction (n/ny real and positive).
In (a) ny/ny>1, and in (b) n1/n9<1. (¢) Complex refractive
index ratio n{/ng=exp(ia) leads to local light-ray rotation
through an angle « (here @=90°). (d) Light-ray rotation
through 180° is equivalent to negative refraction with a
refractive index ratio ny/ny=-1.
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Ca
—=exp(ia).
C1

(14)

This means that ¢y, which characterizes the projec-
tion of the refracted ray into the interface plane, is
rotated with respect to ¢; through an angle « around
the point P [Fig. 2(c)]. In three dimensions, it means
that the direction of the refracted ray is that of the
incident ray, rotated around the z’' axis through an
angle «. This is precisely the local light-ray rotation
that can be achieved with METATOYs [3,6].

The case of general complex refractive index ratios
n1/ny can be approached by writing the left-hand side
of Eq. (11) in terms of the modulus and argument of
this ratio, namely,

ni ni ni
— = | —|exp|iarg| — (15)
ng ng ng
and the right-hand side in the form
sin 6, exp(icpy) sin O expli(¢; + @)] sin 6,
; — = ; = ——exp(ia),
sin 6; exp(i¢y) sin 6; exp(i¢,) sin 6;
(16)

which expresses the direction of the refracted light
ray’s projection as that of the incident light ray, ro-
tated through an angle a around P. A comparison of
the moduli of Eqgs. (15) and (16) reveals that the
change of the angle between the ray and the z’ axis is
then given by the absolute value of the refractive-
index ratio according to the equation

ni

ny

sin 02

(17)

B sin 01 ’
which, for real and positive refractive index ratios, is
the same as Snell’s law [Eq. (12)]. A comparison of the

arguments reveals that the rotation angle « is given
by the argument of the refractive index ratio

ni
arg| — | = a.
ng

Now we discuss briefly the case of negative refrac-
tion [10] for which the refractive index ratio n{/ny is

(18)

real and negative. Negative refraction is fully de-
scribed by Snell’s law (and indeed the extended
Snell’s law) from which it then follows that the angle
of the ray with the z’ axis 0 has to change sign. It can
alternatively be described by a change of the angle 6
without a sign change in combination with a ray ro-
tation around the z’ axis through 180°. Mathemati-
cally, the equivalence between negative refraction
and ray rotation through 180° can be expressed as

¢ = sin(- f)exp(ip) = sin fexp[i(p+180°)]. (19)

The case n{/ny=-1 is shown in Fig. 2(d). In fact, a
Dove-prism-array structure that is ray-optically
equivalent to a refractive index interface with ni/nq
=-1 [4] is a special case of a Dove-prism-array ray-
rotator [6] for rotation angle a=180°.

Ray rotation is a concept that has no wave-optical
analog. It is curious that it is possible to describe
it—in such a natural manner—by using Fermat’s
principle, albeit with a complex refractive index ra-
tio. More work may lead to a deeper understanding.
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