
Ocean modelling for coastal management – Case studies with MOHID

M. Mateus and R. Neves (eds.), IST Press, 2013

MOHID AS A TOOL TO EVALUATE THE IMPACT OF WATER DISCHARGE
FROM DAMS ON THE ADVECTION OF ESTUARINE FISH LARVAL STAGES

P. Morais • F. Martins • M. A. Chı́charo • J. Lopes • L. Chı́charo

CHAPTER SYNOPSIS

Background
The impoundment of rivers by dams is the biggest direct anthropogenic impact on the
hydrological cycle. The utility of dams, as providers of water for human consumption,
irrigation and electrical production, is undeniable. However, the price to pay, weighting
benefits versus ecological impacts caused by dams, is enormous and often questionable.
The deleterious ecological impacts caused by dams are detected at the dam’s site are
and at hundreds of kilometers downstream from dams, even in estuaries and coastal
areas.
The uncontrolled water discharge from dams, both high volumes of water and inappro-
priate timing, compromise fish recruitment because eggs are flushed from estuarine
spawning and nursery areas. Thus, our goal was to develop an hydrodynamic mod-
elling approach that evaluates the impact of water discharge from dams on the advection
of fish larval stages off estuaries and into coastal areas. This goal was accomplished by
merging the abundance of anchovy eggs along the Guadiana estuary in MOHID.

Results

MOHID hydrodynamic model for the Guadiana estuary was able to replicate the spawn-
ing and nursery areas of anchovy, as well as the general distribution pattern of younger
anchovy larvae observed in this estuary in June 2002. Seven river discharge scena-
rios, each lasting for 10 days, were tested. Scenarios B ( Qmax = 20 m3s−1) and C2
( Qmax = 50 m3s−1, sudden end at day 5) reduce the abundance of anchovy larval stages
in their spawning and nursery areas by 17% and 47%, respectively.
Theoretically, these two scenarios can solve the eutrophication problem in the upper
Guadiana estuary and, simultaneously, do not flush a significant quantity of fish eggs
to the coast. Scenario C2 is preferable to scenario C1( Qmax = 50 m3s−1 slow end)
because it requires 30% less water.

Conclusions

MOHID was decisive to choose among the river discharge scenarios defined to solve or
mitigate eutrophication problems in the upper Guadiana estuary, and without compro-
mising the nursery function of the estuary. The definitive choice between the two best
scenarios for solving the eutrophication problem will depend on the degree of the eu-
trophication and on the effectiveness of an inexistent monitoring program. This work’s
approach developed an easy-to-use management tool for Guadiana managers, serving
as an example to other basin managers around the world.

1 INTRODUCTION

Estuaries are highly dynamic systems, where complex interactions occur linking the phy-

sical, chemical, geological and biological components [1, 2]. Estuaries undergo anthropogenic

impact along their path, and also from the disturbances occurring in the entire basin [3].

Dams are one of such disturbances that cause meaningful deleterious changes to down-

stream ecosystems [4, 5], forcing estuarine managers to re-act to an upstream-originated

event rather than acting on a problem together with dam managers.
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The achievement of sustainable water management, i.e. to manage water resources

taking into account the needs of present and future users, is being attained with the imple-

mentation of UNESCO International Hydrological Programmes (UNESCO-IHP) [6]. The joint

efforts of UNESCO-IHP and the Man and Biosphere Programme set the concepts and princi-

ples of Ecohydrology, and defined as the study of functional inter-relations between hydrology

and biota [7]. Ecohydrology advocates that sustainable management and development of wa-

ter resources is possible by restoring and maintaining evolutionary established processes of

water and nutrient circulation and energy flow at the basin scale [8].

The ecohydrological approach was initially applied in freshwater ecosystems [9-11], and

then expanded to estuarine and coastal ecosystems [12]. In the Guadiana estuary (SW

Iberian Peninsula) (Figure 1), the ecohydrological approach is pursued since 1996 [13-16].

The ecosystem health of this estuary is regulated by bottom-up and top-down processes [14],

which are threatened by dam’s river flow regulation [16].

Successful estuarine and coastal management demands an Ecohydrology-based and

basin-wide management, focused on how to adapt, mitigate and restore the functioning of

estuaries and coastal areas impacted by dams [15]. For example, controlling eutrophication

and preventing harmful algal blooms may occur when the magnitude and periodicity of dams’

hydraulic flushing and nutrient loading are large [17]. In the Guadiana basin, water discharged

from dams might be a useful tool to prevent or mitigate eutrophication in the upper estuary [18,

19]. However, unsuitable management practices may cause ecological impacts in the estuary

[20], particularly when frequency and intensity of hydraulic flushing are neglected. The pres-

cription of flow pulses should also consider the impact on estuarine fish recruitment, because

estuaries are the spawning and nursery areas of many coastal and estuarine fishes [21].

High flow pulses increase the advection of fish eggs off an estuary [16] and compromise

fish recruitment, mainly of species with reduced reproductive periods and non-competent lar-

vae (i.e. larvae are unable to regulate their position in the water column) [22]. As an example,

the overall abundance of anchovy eggs decreased 99.9% in the Guadiana estuary after an in-

tense river discharge from the Alqueva dam [16]. Thus, our goal was to develop an easy-to-use

approach in MOHID to allow dam managers to evaluate the impact of water discharge from

dams on fish larval stages advection off estuaries. Fish eggs are excellent natural lagrangian

tracers and for validating lagrangian models. In return, these models allow the definition of

spawning [23] and nursery areas [24] and infer on larval transport mechanisms [25]. However,

finding an appropriate model species and incorporate data on their abundance and distribution

in a lagrangian transport model is difficult (consult the next chapter).

In the Guadiana estuary, the most appropriate species to use in lagrangian modelling

is the European anchovy (Pisces: Engraulidae - Engraulis encrasicolus (Linnaeus, 1758))

(anchovy hereafter). The eggs and larvae of anchovy are identified unambiguously and are an

excellent indicator of river flow impacts in the Guadiana estuary [16]. Moreover, anchovy is the

most abundant planktivorous fish in this estuary [26], it has a wide reproductive period (March

to November) [27], a central position in Guadiana’s trophic web [28] and was designated as a

potential key species in detecting ecosystem changes [29, 30].
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1.1 Requisites that fish larval stages have to comply to be used in lagrangian

modelling

Not all larval stages can be used for lagrangian modelling. Field surveys ought to aim

to collect data on fish larval stages with pelagic eggs and larvae, undoubtedly identified to

species level, abundant and broadly distributed along the study site.

Fish eggs must be pelagic because data on its abundance and distribution has to be

used in a lagrangian model. It is also relevant to determine how egg’s buoyancy change with

salinity, particularly if the study site is deep, if halocline or picnocline exist [31] and if a 3D

model is to be implemented. Any species with non-pelagic eggs (e.g. eggs laid on rocks,

shells, algae, marine plants) are unsuitable for lagrangian modelling. Recently hatched non-

competent larvae are passive tracers, as they only perform micro-adjustments in their position

[32, 33]. Larvae’s buoyancy change as the yolk sac is absorbed, and larvae might then tend

to sink. Larvae become fully competent, i.e. larvae are able to regulate their position in the

water column, when the gas bladder and the fin rays are formed. The time until larvae become

competent varies within the same population due to temperature-dependent development [34-

36]. Competent larvae are unsuited for lagrangian modelling because they exhibit migratory

strategies to counter-act currents and tides [37, 38], or because they settle and remain in their

preferred habitat [39].

The identification of fish larval stages until species level is difficult and often impossible;

particularly the identification of fish eggs [40]. The incorrect identification of fish larval stages

compromises the success of the project for disabling correct calibration and interpretation of

impacts on a species or population.

The abundance of fish larval stages have to be high enough and with a broad distribution

to allow accurate model predictions. Otherwise, the model will not capture the small and

abrupt variations observed in nature. Ideally, the species’ reproduction period should occur

along a broad range of river discharges to allow better model calibration.

Finding a species fulfilling all these requisites is difficult. The European anchovy E. en-

crasicolus is the most suited species to use in the lagrangian models of Portuguese estuaries.

This species has pelagic eggs, both eggs and larvae are easily identifiable, larval stages are

abundant and present for at least six consecutive months in many Portuguese estuaries [27,

41, 42], therefore comprising distinct river inflow regimes. Other European anchovy popula-

tions [43, 44] and other anchovy species are abundant in many European and world estuaries

and respective offshore ecosystems [45-49].

1.2 Characteristics of European anchovy larval stages

Anchovy eggs are slightly positive buoyant [50] and its development is temperature de-

pendent [34]. The time elapsed from spawning to hatching vary between 24 h and 67 h in the

Guadiana estuary [27].

Anchovy larvae hatch from pelagic eggs and recently hatched larvae (∼3.5 mm) tend to

have neutral floatability, due to its huge yolk sac. The yolk sac causes drag and any movement

is highly expensive in terms of energy. At this stage, larvae just perform regular short bursts

to adjust their position and search for microhabitats with oxygen saturation higher than 60%,
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since oxygen is exchanged by cutaneous diffusion until the gills are developed. Anchovy

larvae move by active swimming when smaller than 5 mm, because viscosity and drag will

force them to stop when they beat-and-glide. Larvae tend to have negative floatability as the

yolk sac is consumed. The yolk sac is fully absorbed at day 5 (∼5 mm) and intermittent motion

becomes the more efficient way of swimming [32, 33]. The development of the dorsal fin and

the gas bladder occurs at days 11 and 13, respectively. The gas bladder is completely formed

at day 20 (10 mm), allowing larvae to control their position and perform diel rhythms of vertical

migration [51]. Thus, lagrangian tracers released in a hydrodynamic model and set to run

for 10 days would correspond to anchovy larvae with ages ranging from 7.2 to 9 days, i.e.

before larvae develop the morphological characteristics that allow them to regulate actively

their position in the water column [51].

2 STUDY AREA

The Guadiana estuary (SE-Portugal/SW-Spain) (Figure 1) is approximately 76 km long,

with an area of 22 km2 and an average depth of 6.5 m. It is a mesotidal estuary, tide am-

plitudes range from 1.3 to 3.5 m, and partially stratified at the entrance of the estuary [27],

where an average river flow of 150 m3s−1 and tidal prism (∼3 x 107 m3) are observed [52].

The estuary is not stratified, both at high and low tides, during periods of low river inflow [27].

River flow has a striking variability between and within years, since the majority of the basin

is under the influence of a climate with Mediterranean characteristics. The annual average

temperature varies from 14 oC to 18 oC. Rainfall is irregular among seasons, ∼80% occurs

during autumn and winter, while summers are very dry. The annual average rainfall fluctuates

from 561 mm to 600 mm in the Portuguese basin, however higher variations are expected

among years. Climate variability imposes a similar trend to river flow; thus, the average river

flows are as follows: dry years, 8 – 63 m3s−1; average years, 170 – 190 m3s−1; humid years,

412 – 463 m3s−1 [53].

The main ecological constraints observed in the Guadiana basin are damming, water

abstraction from aquifers and water pollution. Even so, the estuary is one of the best preserved

estuaries of the Iberian Peninsula. Nevertheless, nowadays it has to deal with i) the impact

caused by one of the major European dams, the Alqueva dam, ii) the creation of 110,000 ha

of irrigation areas in the surroundings of this dam and iii) the destruction of vast natural areas

along the estuary margins to build tourist resorts [3].

The Alqueva dam was inaugurated in 8 February 2002, it is located approximately at

150 km from the river mouth. The Alqueva reservoir is one of the biggest in Europe, with a

maximum area of 250 km2, a perimeter of more than 1000 km and a total capacity of 4150

hm3 [54]. A proper water management is undoubtedly a challenging task to accomplish in this

reservoir, due to the multiple uses that water has, e.g. hydroelectric production and river flow

regularization. The major concern that dam managers must have regarding water discharge

is to comply with the international political agreement made between Portugal and Spain.

This agreement states that the average daily flow in Badajoz (Spain) and Pomarão (Portugal)

cannot be lower than 2 m3s−1 and the minimum annual inflow in Badajoz has to vary from 300
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Figure 1. Location of the Guadiana basin in the Iberian Peninsula (Europe).

hm3 year−1 to 600 hm3 year−1 (except during drought years), but depending on the volume of

water stored in dams and precipitation [55]. From the ecological point of view, this agreement

does not have into account the dynamics of biota, which depends on the natural variability of

river inflow [56].

3 METHODS

Anchovy larval stages were collected monthly in the Guadiana estuary from March 2002

to February 2003, during new moon spring tides at low and high tides. Nine sampling stations

were sampled, seven inside the estuary and two in the coastal area. Sampling started at

the beginning of the flood in station 1 and continued upstream, towards station 9. Station 1

was re-sampled at the beginning of the ebb; the remaining stations were sampled afterwards

(Figure 2). Sub-superficial zooplankton trawls were made with a 250 µm net mesh, equipped

with a flowmeter (General Oceanics). Samples were preserved with buffered formaldehyde

(4% final concentration) until processing. In each station, vertical profiles of temperature and

salinity were recorded with an YSI 6600 probe. In the laboratory, anchovy eggs and larvae

were sorted from the zooplankton samples to estimate their abundance.

Data on anchovy eggs abundance and distribution determined in June 2002, when the

highest abundance of anchovy eggs was registered, were incorporated in MOHID’s lagrangian

module.
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Figure 2. Grid used in MOHID hydrodynamic model for hydrodynamic simulation of the Guadiana estuary.

Legend: Black dots: discharge points and sampling stations; Thick lines: release and monitor boxes used

in simulation 1; Thin lines: monitor boxes used in simulation 2.

3.1 MOHID hydrodynamic model for the Guadiana estuary and simulations’ setup

The grid defined to model the hydrodynamic processes in the Guadiana estuary begins

in the coast at 5 km from the estuary mouth, ending few kilometers downstream of Alcoutim

(station 9). This grid holds ∼45% of the estuary and comprises the area where anchovy

eggs were collected (Figure 2). The domain of calculus is made by 205 x 53 cells with a

spatial step of 180 x 180 m. The bathymetry was crafted on the grid and one sigma layer

was used for the vertical discrimination; thus the model behaves as a 2D depth integrated

model. Field measurements of hydrodynamic parameters (water level, velocity and direction)

and water properties (salinity and cohesive sediments) were used for calibration purposes

[57]. River discharge was determined at 16 km above the tidal limit of the estuary, in Pulo do

Lobo hydrometric station (code: 27L/01) [54], where ∼90% of the water going to the estuary

passes [58].

A constant river discharge of 5 m3s−1 (average Guadiana river discharge between the

samplings of April and June 2002) was used to stabilize hydrodynamics and salt transport.

Then, two simulation setups were set (Figure 3) and tested in seven river discharge scenarios

(scenarios A, B, C1, C2, D, E and F) (Figure 4) and two tidal situations, during the weaker neap

tides and strongest spring tides of late May and early June 2002, respectively. Scenario A has
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Figure 3. Summary of the two simulation setups.

a constant river discharge of 5 m3s−1, while the remaining six scenarios have maximum river

discharges of 20 m3s−1 (scenario B), 50 m3s−1 (scenarios C1 and C2), 100 m3s−1 (scenario

D), 250 m3s−1 (scenario E) and 500 m3s−1 (scenario F). In scenarios B to F, the discharge

increases steadily during 4 days until reaching the maximum discharge, remains constant for

2 days and then decreases progressively until reaching 5 m3s−1 at day 10, except for scenario

C2. This scenario has an abrupt decrease at day 6, from 50 m3s−1 to 5 m3s−1 (Figure 4). Two

simulations were set to: Simulation 1) determine the percentage of particles released from the

upper, middle and lower Guadiana estuary remaining in the estuary along 10 days and for

seven river discharge scenarios; Simulation 2) select the discharge scenario(s) that do not

compromise the presence of anchovy eggs and non-competent larvae inside the Guadiana

estuary, by merging the abundance of anchovy eggs in the hydrodynamic model.

3.2 Simulation 1 – Percentage of particles remaining in the estuary

Three release and monitor boxes were set, corresponding to the upper, middle and lower

estuary (Figure 2). This subdivision was made according to the hydrology, sedimentology

and biology of the estuary [13, 40, 59]. The number of particles released in each box was

proportional to its volume; thus, 1140, 1110 and 1610 particles were released in the upper,

middle and low estuary, respectively. The duration of each simulation was 10 days (Figures 3

and 4). The effect of tides on the number of particles in the estuary at day 10, for each river

discharge scenario, was evaluated with a t-test. This analysis compares the means of two

groups. Mann-Whitney rank sum test will be used when the Kolmogorov-Smirnov test (with

Lilliesfors’ correction) reveals that data has not a normal distribution [60].
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Figure 4. River discharge scenarios applied in MOHID hydrodynamic model for the Guadiana estuary.

3.3 Simulation 2 – Selection of river discharge scenarios

The seven river discharge scenarios were tested to select those that do not compromise

the presence of anchovy larval stages inside the estuary. The number of particles released

in each releasing point was proportional to the abundance of anchovy eggs registered in the

survey made during the high tide of June 2002 [27]. Thus, 1, 111, 175, 614, 21064, 6202, 2782

and 13 lagrangian tracers were released in releasing points 1 to 8, respectively. Simulation

started at the high tide of the sampling day and lasted for 10 days. The number of particles

was calculated in nine monitor boxes, at the high tide of days 5 and 10. Boxes boundaries

were set at the half way between stations (boxes 3 to 8) or comprising a particular area (boxes

1, 2 and 9). No particles were released in box 9, but the number of particles entering the box

was monitored (Figure 2). The median was calculated because it is less sensitive to extreme

scores than the mean, thus providing a better measure of highly skewed distributions [60].

4 RESULTS

4.1 Anchovy eggs and larvae

In June 2002, anchovy eggs were distributed from stations 2 to 7 and were more abundant

in the low estuary (stations 3 and 4) during the low tide. At the high tide, the distribution ranged

from stations 2 to 8 and were more abundant in the middle estuary (stations 5 to 7). The

maximum abundance of anchovy eggs was registered in station 4 at the low tide (1883 eggs

100 m−3) and in station 5 at the high tide (2106 eggs 100 m−3) (Figure 5A). Maximum larvae

abundance was registered in station 5 during the low tide (218 larvae 100 m−3) and in station

6 during the high tide (151 larvae 100 m−3). Anchovy larvae were collected from stations 4

to 9, but were more abundant in the middle estuary at both tides (Figure 5B). Younger larvae

(8.2 ± 0.5 days) were collected in the middle estuary, while older larvae (15.1 ± 4.7 days)

were in the upper estuary at station 9 (data not shown) [27].

4.2 Percentage of particles remaining in the estuary (Simulation 1)

The median percentages of particles inside the estuary for each scenario and tide, along

10 days, are summarized in table 1. The number of particles remaining in the estuary after 10
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Figure 5. Abundance of anchovy eggs (A) and larvae (B), in each sampling station, at the low and high

tides of June 2002.

days was significantly lower during spring tides, except for scenario F ( Qmax = 500 m3s−1) (for

all comparisons, P ≤ 0.001). Hereafter, the analyzed scenarios correspond only to the spring

tide. Thus, in scenario A ( Qk = 5 m3s−1), 53.3% of the particles remained in the estuary after

10 days. The number of particles in the estuary decreased, as maximum river discharge in-

creased, down to 3.7% in scenario F ( Qmax = 500 m3s−1), corresponding to a water residence

time of 3.7 days. Scenarios C1 ( Qmax = 50 m3s−1slow end) and C2 ( Qmax = 50 m3s−1 sudden

end) are significantly different (P ≤ 0.001), for the period when river discharge pattern started

to differ. The median values were 39.2% (scenario C1) and 39.7% (scenario C2) (Figure 6).

The water residence time of the low estuary was 9.5 days in scenario A, decreasing to 1.6

days in scenario F (Figure 7). Also for scenario F, the middle and upper estuary had residence

times of 3.8 days and 4.7 days, respectively (Figure 7). For scenarios D, E and F, the particles

in the estuary after 10 days correspond to 28.7%, 5.8% and 1.5% of those in the estuary for

scenario A, respectively (Figure 6).

4.3 Selection of river discharge scenarios (Simulation 2)

For scenario A ( Qk = 5 m3s−1), 76.2% and 63.2% of the particles released in each station

remained in the estuary after 5 and 10 days, respectively. Particles remained largely in the

middle estuary. The distribution pattern of particles along the estuary observed in scenarios B

( Qmax = 20 m3s−1), C1 ( Qmax = 50 m3s−1 slow end) and C2 ( Qmax = 50 m3s−1 sudden end)

was similar to that of scenario A, despite their reduction in the estuary. For scenarios C1

and C2, 67.8% of particles were in the estuary after 5 days, decreasing to 42.6% and 47.6%
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after 10 days, respectively. In scenario D ( Qmax = 100 m3s−1), 22.5% of particles were in

the estuary after 10 days, but their distribution pattern was more even than for the previous

scenarios. For scenarios E ( Qmax = 250 m3s−1) and F ( Qmax = 500 m3s−1), only 5.0% and

4.8% of the particles remained in the low estuary after 10 days, respectively (Figure 8).

Table 1. Median percentage of particles in the estuary for each tidal condition, throughout the 10 days of

simulation.
 

Scenarios Neap Spring 

A 5 m
3
s

-1
 57.8% 53.3% 

B 20 m
3
 s

-1
 56.5% 50.4% 

C1 50 m
3
 s

-1 
(slow end) 53.1% 47.0% 

C2 50 m
3
 s

-1 
(sudden end) 52.3% 47.5% 

D 100 m
3
 s

-1
 45.3% 39.9% 

E 250 m
3
 s

-1
 17.4% 14.6% 

F 500 m
3
 s

-1
 2.6% 3.7% 

Figure 6. Percentage of particles remaining in the estuary for each discharge scenarios, throughout the

10 days during the spring tide simulation (Simulation 1).

5 MANAGING RIVER FLOW IN THE LOWER GUADIANA BASIN

Water and ecosystem management policies are often based on economic decisions, with

little concern towards fish conservation [61]. In the Guadiana basin, the political treaties be-

tween Portugal and Spain on minimum river flow and annual inflow have also to be considered

during management [55]. The ecosystem services provided by the Guadiana to humans are

broad and management programs, based on the preservation of these services, require a full
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Figure 7. Percentage of particles in each estuarine section for each discharge scenario, throughout the

10 days of simulation (Simulation 1).

knowledge of the complexity in which they benefit humans [62]. However, the inexistence of

long term monitoring programs in the Guadiana basin, as well as in many worldwide aquatic

ecosystems, difficults the proposal of scientific based management policies [63] and the evalu-

ation of how these measures protect nature and benefit humans [62].

The prescription of flushing flows is one of the most important river management tools [64,

65]. Thus, a wise prescription of flushing flows can be made with the approach we developed

with MOHID, which take into account the locations of fish spawning and nursery areas. Field

observations showed that anchovy was the most abundant pelagic fish in the Guadiana es-

tuary, with one spawning area located in the transition between the low and middle estuary

[27]. The approach we applied with MOHID corroborated field observations, since particles

released in station 5 (in the transition between the low and middle estuary) were those that

better reproduced the distribution pattern of anchovy eggs in the estuary (data not shown)
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Figure 8. Number of particles, in each monitor box, at the high tide of days 0, 5 and 10, for each river

discharge scenario (Simulation 2).

[27]. The transition between the low and middle estuary seems to be the best spawning area

for anchovy, since circulation patterns and residence times of this area allow larval stages to

fulfill their need for exogenous food and develop their capability to actively control their dis-

tribution [23, 66]. In this transition zone, the estuary has pronounced S shape morphology,

forming secondary flows that enable the retention of particles [77]. This hypothesis explains

the marked difference between the number of particles remaining in the low and middle es-

tuary, after 5 and 10 days at Q = 5 m3s−1. Moreover, there is an upstream residual transport

of particles, because the length of the ebb is longer than the flood, even if water velocity is

higher during the flood and in periods of low river flow [68, 69].
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The distribution pattern of particles obtained with a Q = 5 m3s−1 after 10 days of simula-

tion is comparable with the one observed for anchovy larvae [27], which had an average age

of 8 days and without active swimming abilities [51]. A more analogous pattern could have

been obtained if egg and larvae mortality were integrated in the model and if more samples

were collected along the estuary. The elder anchovy larvae were found in the upper estuary

[27], indicating that they used active retention strategies, other than passive retention mecha-

nisms, to reach this area and remain there [37, 38]. The active retention mechanisms used

by anchovy could be: (a) selective tidal stream transport and residual bottom inflow, which

might be synchronized with vertical migrations of larvae with formed gas bladder [51]; and (b)

lateral migrations to the margins, where the river flow is lower, or to take advantage of the

residual up-estuary flow near the margins of the low Guadiana estuary [70]. On the other

hand, passive retention mechanisms are exemplified by tidal and wind advection; however in

narrow estuaries, as the Guadiana estuary, inert particles seem to be under little effect by

these agents [71].

Significant differences in the number of particles remaining in the estuary were calculated

between neap tides and spring tides. This means that setting one of the chosen river discharge

scenarios should occur during neap tide, because the chances of anchovy larval stages to re-

main inside the estuary are higher. Scenarios D ( Qmax = 100 m3s−1), E ( Qmax = 250 m3s−1)

and F ( Qmax = 500 m3s−1) flush anchovy larval stages from their spawning and nursery areas.

In contrast, scenario A ( Q = 5 m3s−1), the low and continuous inflow provides a stationary

state of the different biological compartments unlikely to trigger the mitigation/prevention of eu-

trophication [20]. Thus, depending on the magnitude of the eutrophication in the upper estuary,

scenarios B ( Qmax = 20 m3s−1), C1 ( Qmax = 50 m3s−1 slow end) or C2 ( Qmax = 50 m3s−1 sud-

den end), could be set during the neap tides. The two similar scenarios, scenarios C1 and

C2 ( Qmax = 50 m3s−1), imply the loss of ∼50% of the anchovy larval stages from the estuary,

therefore the timing of the pulse (i.e. if it coincides or not with anchovy spawning) and the

benefits resulting from this action have to be ecologically and economically evaluated [62, 64].

Scenario C2 is more conservative, i.e. the number of particles remaining inside the estuary

is greater, and requires 30% less water. This is a crucial aspect to consider in a region with

reduced water resources and highly variable supply [54]. A final choice between scenarios

has also to rely on conclusions obtained with plankton experiments [17].

The management tool we developed with MOHID has fish and fisheries conservation into

account, it is easy and fast to implement and is a step-forward in modelling the dispersion of

fish eggs in estuarine ecosystems. This tool can be applied in estuaries of different structures,

circulation patterns and climatic regions, as long as the hydrodynamic model is calibrated and

the requisites assigned for fish larval stages to be used in lagrangian models are fulfilled.

The prescription of flow pulses is not restricted to mitigate/prevent eutrophication. The

utility of our approach using MOHID can be adapted to test the impact of flow pulses and

the simulation of natural flow regimes in refraining the invasion success of non-indigenous

species, since invasiveness success is facilitated by the alteration of flow regimes [56]. In

the Guadiana estuary, flow pulses or setting natural flow regimes could be useful to refrain
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the invasiveness success of the hydromedusae Blackfordia virginica (Cnidaria, Hydrozoa),

the oriental shrimp Palaemon macrodactylus (Crustacea, Decapoda) [72] and the asian clam

Corbicula fluminea (Bivalvia, Corbiculidae) [73]. Regarding non-indigenous fish, it was shown

that natural flow regime per se is unlikely to ensure persistence of native fish assemblages, be-

ing necessary a combination of active management of natural flow regimes with concurrently

suppressing or excluding the non-indigenous fishes from the fish population [74].

In conclusion, the work we developed with MOHID is an important contribution for the

ecohydrological knowledge on the Guadiana estuary. With MOHID, we set river discharge

scenarios that would not jeopardize the presence of fish larval stages inside the estuary,

in order to solve or mitigate eutrophication in the upper estuary. The results obtained with

MOHID are encouraging us to develop a new MOHID module, specifically designed to study

the lagrangian transport of fish eggs. The ultimate ecohydrological model has to compulsory

merge physical, chemical, biological and hydrological processes in one dynamic model, which

ought to be social and economical contextualized. Thus, MOHID has also an important role to

play in the ecohydrological management of the Guadiana estuary. The current management

paradigm of the Guadiana river flow is primarily based on economical and political premises.

However, just a management program guided by robust ecological studies and adequate so-

ciological framework will ensure conservation of the Guadiana estuary and the maintenance

of ecosystem services.
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