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ABSTRACT
In this paper we present an analytical tool for the per-
formance evaluation of nonlinear effects in MC-CDMA
signals. This tool takes advantage of the Gaussian-like
behavior of MC-CDMA signals with a large number of
subcarriers and employs results on memoryless nonlinear
devices with Gaussian inputs so as to characterize statis-
tically the signals at the output of the nonlinear device.
This characterization is then used for an analytical com-
putation of the SIR levels (Signal-to-Interference Ratio)
and the BER performance (Bit Error Rate)1.
A set of numerical results is presented and discussed,
showing the accuracy of the proposed analytical BER per-
formance analysis.
KEYWORDS
MC-CDMA, nonlinear effects, Gaussian processes.

1 Introduction

The MC-CDMA schemes (Multicarrier Code Division
Multiple Access) [1, 2] combine a CDMA scheme with
an OFDM modulation (Orthogonal Frequency Division
Multiplexing) [3], so as to allow high transmission rates
over severe time-dispersive channels without the need of
a complex receiver implementation. Since the spreading
is made in frequency domain, the time synchronization re-
quirements are much lower than with conventional direct
sequence CDMA schemes. Moreover, the diversity effect
inherent to the spreading allows good performances for
high code rates, as well as good uncoded performances.

As with other multicarrier schemes, the MC-CDMA
signals have strong envelope fluctuations and high PMEPR
values (Peak-to-Mean Envelope Power Ratio) which
makes them very prone to nonlinear effects. These non-
linear effects can be both intentional (such as the ones
inherent to a nonlinear signal processing for reducing the
envelope fluctuations, as in [4]-[7]) or not (such as the
ones inherent to a nonlinear power amplification [8, 9]).

The performance evaluation of a nonlinear transmis-
sion usually resorts to Monte-Carlo simulations that re-
quire a long computation time. For this reason, analyt-
ical approaches have been proposed for the performance
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evaluation of nonlinear effects in OFDM transmission [5]-
[7],[10].

In this paper we present an analytical approach for
the performance evaluation of MC-CDMA signals in the
presence of nonlinear effects. For this purpose, we take
advantage of the Gaussian-like behavior of MC-CDMA
signals with a large number of subcarriers and employ re-
sults on memoryless nonlinear devices with Gaussian in-
puts so as to characterize statistically the signals at the
output of the nonlinear device [7, 11]. This character-
ization is then used for an analytical computation of the
SIR levels (Signal-to-Interference Ratio) and the BER per-
formance (Bit Error Rate) of MC-CDMA schemes in the
presence of nonlinear effects.

This paper is organized as follows: the MC-CDMA
schemes considered in this paper are described in sec. 2.
The analytical characterization of the transmitted signals
in the presence of nonlinear effects is made in sec. 3
and used in sec. 4 for analytical performance evaluation
purposes. A set of performance results is presented in sec.
5 and sec. 6 is concerned with the conclusions and final
remarks of this paper.

2 Systems Description

In this paper we consider the downlink transmission (i.e.,
the transmission from the BS (Base Station) to the MT
(Mobile Terminal)) within MC-CDMA systems employing
frequency-domain spreading, although our approach could
also be employed in the uplink transmission. A constant
spreading factor K is assumed for all users (the exten-
sion to VSF schemes (Variable Spreading Factor) [12] is
straightforward). The frequency-domain block to be trans-
mitted by the BS is an interleaved version of the block
fSk; k = 0; 1; : : : ; N ¡ 1g2, where N = KM , with K
denoting the spreading factor and M the number of data
symbols for each user. The frequency-domain symbols are
given by

Sk =

KUX

p=1

»pSk;p; (1)

2Typically, the transmitted frequency-domain block is generated by
submitting the block fSk;k = 0; 1; : : : ;N ¡ 1g to a rectangular inter-
leaver with dimensions K £ M , i.e., the different chips associated to a
different data symbol are uniformly spread within the transmission band.
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where »p is an appropriate weighting coefficient that ac-
counts for the power control in the downlink (the power
associated to the pth user is proportional to j»pj2) and
Sk;p = Ck Mod k;pAbk=Kc;p is the kth chip for the pth
user (bxc denotes ’larger integer not higher that x’), where
fAk;p; k = 0; 1; : : : ;M ¡ 1g is the block of data symbols
associated to the pth user and fCk;p; k = 0; 1; : : : ; K¡1g
is the corresponding spreading sequence. An orthogonal
spreading is assumed throughout this paper, with Ck;p be-
longing to an QPSK constellation (Quadrature Phase Shift
Keying). Without loss of generality, it is assumed that
jCk;pj = 1.

As with conventional OFDM, an appropriate cyclic
extension is appended to each block transmitted by the
BS. At the receiver, the cyclic extension is removed and
the received samples are passed to the frequency domain,
leading to the block is fYk; k = 0; 1; : : : ; N ¡ 1g.

It can be shown that, when the cyclic extension is
longer than the overall channel impulse response, the sam-
ples Yk can be written as

Yk = HkS
0
k +Nk; (2)

where Hk and Nk denote the channel frequency response
and the noise term for the kth frequency, respectively.
Since the orthogonality between users is lost in frequency
selective channels, an FDE (Frequency-Domain Equalizer)
is required before the despreading operation [2, 13].

3 Nonlinear Effects in MC-CDMA Signals

In the previous section an ideal linear transmitter was as-
sumed. However, the MC-CDMA signal has large enve-
lope fluctuations which makes them very prone to non-
linear effects. In this section we present an appropriate
model of the transmitted signals when a nonlinear trans-
mitter is considered. For the sake of simplicity, the trans-
mitter structure depicted in fig. 1 is assumed, where the
nonlinear device is modeled as a bandpass memoryless
nonlinearity [8] operating on an oversampled version of
the MC-CDMA burst. In fact, adding N 0 ¡ N zeros to
the original frequency-domain block (i.e., N 0 ¡ N idle
subcarriers), followed by an IDFT operation is equivalent
to generate a sampled version of the MC-CDMA signal,
with an oversampling factor MTx = N 0=N . An optional
frequency-domain filtering procedure, through the set of
multiplying coefficients Gk; k = 0; 1; : : : ;N 0¡1, can also
be considered so as to reduce the out-of-band radiation lev-
els inherent to the nonlinear operation [5].

The transmitter structure of fig. 1 is similar to the
nonlinear signal processing schemes proposed in [5, 6] for
reducing the PMEPR of OFDM signals while maintaining
the spectral efficiency of conventional OFDM schemes.
This transmitter model could also be employed for evalu-
ating the impact of a nonlinear power amplification: we
just have to consider an oversampling factor large enough

and to omit the frequency-domain filtering subsequent to
the nonlinear operation.
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Figure 1. Transmitter model considered in this paper.

When the number of subcarriers is high (N >> 1)
the time-domain coefficients s00n can be approximately re-
garded as samples of a complex Gaussian process. If
E[Sk] = 0 and E[SkS

¤
k0 ] = 2¾2

S±k;k0 (±k;k0 = 1 for
k = k0 and 0 otherwise), with ¾2

S = 1
2E

£jSkj2
¤

(E[¢]
denotes ”ensemble average”), then it can be easily demon-
strated that E[s00n] = 0 and

E
h
s00ns

00¤
n0

i
= Rs(n¡ n0) =

= 2¾2 sinc ((n¡ n0)N=N 0)

sinc ((n¡ n0)=N 0)
exp

µ
¡ j¼(n¡ n0)

N 0

¶
(3)

(n; n0 = 0; 1; : : : ; N 0 ¡ 1), with ¾2 = N
(N 0)2

¾2
S .

It is well-known that the output of a bandpass memo-
ryless nonlinear device with a Gaussian input can be writ-
ten as the sum of two uncorrelated components [14]: a use-
ful one, proportional to the input, and a self-interference
one, i.e.,

sCn = ®s00n + dn ; (4)
where E[s00nd

¤
n0 ] = 0 and ® = E[sCn s

00¤
n ]=E[js00nj2].

The average power of the useful component is
PS
NL = j®j2¾2, and the average power of the self-

interference component is given by P I
NL = PNL ¡ PS

NL,
where PNL denotes the average power of the signal at the
nonlinearity output, given by

PNL =
1

2
E[jsCn j2] =

1

2
E[jgC(R)j2] =

=
1

2

Z +1

0

jgC(R)j2 R
¾2

exp

µ
¡ R2

2¾2

¶
dR: (5)

It can be shown [11] that

E[sCn s
C¤
n0 ] = RC

s (n¡ n0) =

=

+1X
°=0

2P2°+1
(Rs(n¡ n0))

°+1
(R¤

s(n¡ n0))
°

(Rs(0))
2°+1 ; (6)

where the coefficient P2°+1 denotes the total power as-
sociated to the IMP (Inter-Modulation Product) of order
2° + 1, which can be obtained as described in [7, 11].

Since RC
s (n¡ n0) = j®j2Rs(n¡ n0) + E[dnd

¤
n0 ], it

can be easily recognized that P1 = j®j2¾2 and E[dnd
¤
n0 ] =

Rd(n¡ n0) is obtained by using
P+1

°=1 instead of
P+1

°=0

in the right-hand side of (6). The total self-interference
power is

P I
NL =

1

2
Rd(0) =

+1X
°=1

P2°+1 = PNL ¡ PS
NL: (7)



Having in mind (4) and the signal processing chain in
fig. 1, the frequency-domain block fSCF

k = SC
k Gk; k =

0; 1; : : : ;N 0¡1g can obviously be decomposed into useful
and self-interference components:

SCF
k = ®S00

kGk +DkGk; (8)

where fDk; k = 0; 1; : : : ; N 0¡1g is the DFT of fdn;n =
0; 1; : : : ;N 0 ¡ 1g. Clearly, E[Dk] = 0 and

E [DkD
¤
k0 ] =

½
N 0Gd(k); k = k0

0; otherwise (9)

(k; k0 = 0; 1; : : : ;N 0 ¡ 1), where fGd(k); k =
0; 1; : : : ;N 0 ¡ 1g denotes the DFT of the block
fRd(n);n = 0; 1; : : : ; N 0 ¡ 1g (Rd(n¡ n0) = E[dnd

¤
n0 ]);

Moreover, Dk exhibits quasi-Gaussian characteristics for
any k, provided that the number of subcarriers is high
enough. Clearly, E[SC

k SC¤
k0 ] = 0 for k 6= k0 and

E[jSC
k j2] = N 0GC

s (k), where fGC
s (k) = j®j2Gs(k) +

Gd(k); k = 0; 1; : : : ; N 0 ¡ 1g denotes the DFT of
fRC

s (n); k = 0; 1; : : : ; N 0 ¡ 1g (given by (6)), with
fGs(k); k = 0; 1; : : : ; N 0 ¡ 1g = DFT fRs(n);n =
0; 1; : : : ;N 0 ¡ 1g. Therefore, E[SCF

k SCF¤
k0 ] = 0 for k 6=

k0, and E[jSCF
k j2] = jGkj2E[jSC

k j2] = N 0jGkj2GC
s (k).

Clearly, the total power of the useful and self-
interference components of the transmitted signals are
PS
Tx =

P
k E[j®S00

kGkj2] and P I
Tx =

P
k E[jDkGkj2],

respectively. We can also define the power of the self-
interference component in the in-band region as

P I
Tx;IB =

X
k in-band

E[jDkGkj2] (10)

When Gk = 1 for the N in-band subcarriers, PS
Tx = PS

NL.
If we also have Gk = 0 for the N 0 ¡ N out-of-band
subcarriers then P I

Tx;IB = P I
Tx.

The ”signal-to-interference ratio” (SIR) for the trans-
mitted signals is

SIRTx =
PS
Tx

P I
Tx

· SIRNL =
PS
NL

P I
NL

; (11)

where SIRNL denotes the SIR at the output of the non-
linear device; the SIR for the in-band region is

SIRTx;IB =
PS
Tx

P I
Tx;IB

: (12)

We can also define a SIR for each subcarrier, given by

SIRk =
E
£j®S00

k j2
¤

E [jDkj2] : (13)

Without oversampling, (3) leads to Rs(n¡n0) = 2¾2±n;n0 .
From (6), RC

s (n ¡ n0) = 2
P+1

°=0 P2°+1 = 2P1 +

2
P+1

°=1 P2°+1 for n = n0 and RC
s (n¡n0) = 0 for n0 6= n;

therefore,

SIRk =
P1P+1

°=1 P2°+1

= SIRNL = SIRTx = SIRTx;IB ;

(14)

which is independent of k, when MTx = 1. For MTx > 1
(i.e., when N 0 > N ), Rs(n ¡ n0) 6= 2¾2±n;n0 and SIRk

is a function of k, since E[jDkj2] depends also on k.

4 Analytical Performance Evaluation

4.1 SIR Levels and BER Performance

From (2), the frequency-domain samples at the receiver
are given by Yk = STx

k Hk +Nk, provided that the guard
interval is long enough.

For an ideal Gaussian channel, the detection of the
kth symbol transmitted by the pth user is based on the
”despreaded” samples

~Ak;p =
X

k02ªk

Yk0C¤
k0;p = ®»pKAk;p +Deq

k;p +Neq
k;p; (15)

with ªk denoting the set of frequencies used to transmit
the kth data symbol. As referred above, for a frequency-
selective channel we need to perform an FDE previous to
the ”despreading” operation. In (15),

Deq
k;p =

X
k02ªk

Dk0C¤
k0;p (16)

and
Neq

k;p =
X

k02ªk

Nk0;pC
¤
k0;p (17)

denote the equivalent self-interference and noise terms for
detection purposes, respectively.

Clearly, the power of the self-interference term, Deq
k;p,

is

P I;eq
k;p =

X
k02ªk

E[jDk0 j2] = 2P I
Tx;IB

M
³k; (18)

with

³k =
M

P
k02ªk

E[jDk0 j2]P
k0in-band E[jDk0 j2] (19)

(it is assumed that jCk;pj = 1). Since we are employing
orthogonal spreading sequences, the ”useful” component
for detection purposes of the pth user is

®
X

k02ªk

Sk0C¤
k0;p = ®»pAk;p

X
k02ªk

jCk0;pj2 = ®»pKAk;p: (20)

By assuming E[jAk;pj2] = 1, the power of the ”use-
ful” component for detection purposes when detecting the
pth user is

PS;eq
k;p = jK®»pj2 =

Kj®»pj2P
p0 »2p0

X
k02ªk

E[jSk0 j2] =

=
K j®»pj2
KU »2

X
k02ªk

E[jSk0 j2] = K

KU
´»;p

2PS
Tx

M
; (21)



with

»2 =
1

KU

X
p0

»2p0 (22)

and

´»;p =
»2p

»2p
: (23)

Therefore, the corresponding signal-to-self-
interference ratio for detection purposes is

SIReq
k;p =

PS;eq
k;p

P I;eq
k;p

=
K

KU
´»;pSIRTx;IB³

¡1
k : (24)

From (24), it is clear that the equivalent SIR for de-
tection purposes increases when we decrease the number
of users, for a given spreading factor K. This is a conse-
quence of the samples of the self-interference component,
DkC

¤
k;p, being uncorrelated, contrarily to the useful com-

ponents. We can also note that the equivalent SIR for
detection purposes is not the same for the different users:
the users with smaller attributed powers (i.e., the users
that are closer to the BS and/or have better propagation
conditions) have worse SIReq

k;p levels, and, consequently,
a larger performance degradation due to the nonlinear ef-
fects.

Since the self-interference components Dk are ap-
proximately Gaussian-distributed at the subcarrier level
[7], Deq

k is also approximately Gaussian-distributed, even
when the number of users is small. Therefore, if the data
symbols are selected from a QPSK constellation under a
Gray mapping rule (the extension to other constellations is
straightforward), the BER for an ideal Gaussian channel
is approximately given by

BERk;p = Q
³q

SNReq
k;p

´
; (25)

where Q(¢) denotes the well-known Gaussian error func-
tion and SNReq

k;p denotes an equivalent signal-to-noise ra-
tio for the detection of the kth data symbol, for the pth user.
This ratio is given by

SNReq
k;p =

PS;eq
k;p

P I;eq
k;p + PN;eq

; (26)

where PN;eq = E[jNeq
k j2] = KE[jNkj2] = 2KN0, with

N0 denoting the PSD of the channel noise. It can be shown
that

SNReq
k;p = 2´S´

I
k;p

Eb;p

N0
; (27)

where

Eb;p =
PS
Tx + P I

Tx

2KUM
´»;p (28)

denotes the average bit energy for the pth user,

´S =
PS
Tx

PS
Tx + P I

Tx

(29)

and

´Dk;p =

Ã
1 + 2

KU

K´»;p
¢ P I

Tx;IB³k

PS
Tx + P I

Tx

¢ Eb

N0

!¡1

: (30)

Clearly, the degradation factor ´S is associated to the
useless power spent in the transmitted self-interference; the
degradation factor ´Dk;p is due to the fact that the equiva-
lent, quasi-Gaussian self-interference Deq

k is added to the
Gaussian channel noise.

4.2 Especial Cases and Simplified Formulas

For most cases of interest, the analytical approach for ob-
taining the SIR levels and the BER performances described
above can be simplified with only a very slight decrease
in its accuracy.

As it was referred in the previous section, if there
is no oversampling before the nonlinear operation (i.e.,
for MTx = N 0=N = 1), then P I

Tx;IB = P I
Tx = P I

NL,
PS
Tx=P

I
Tx = SIRTx = SIRNL and ³k = 1. Therefore,

´S =
SIRNL

1 + SIRNL
(31)

and ´Dk;p, which becomes independent of k, is given by

´Dk;p =

µ
1 + 2

KU

K´»;p
¢ 1

1 + SIRNL
¢ Eb

N0

¶¡1

: (32)

It can easily be verified that when the ”chips” asso-
ciated to a given data block are uniformly spread in the
transmission band (i.e., for a rectangular interleaver with
size K £ M ) then ³k ¼ 1, provided that the spreading
factor is not too low.

Let us assume now that MTx > 1. To obtain an
approximate formulas for the SIR levels that does not re-
quire the computation of all IMPs, we will assume that
the total self-interference power is associated to the IMP
of order 3, i.e., P3 = P I

NL and P2°+1 = 0, ° > 1 (this is
a slightly pessimistic assumption relatively to the in-band
self-interference levels). In that case, it can be shown that
the average power of the self-interference component for
the N in-band subcarriers is

1

N

X
k in-band

E[jDkj2] ¼

¼ ·(MTx)

N

X
k

E[jDkj2] = ·(MTx)

N
2P I

NL; (33)

with

·(MTx) =

=

½
1
3 (¡M3

Tx + 6M2
Tx ¡ 12MTx + 10); 1 · MTx < 2

2
3 ; MTx ¸ 2:



This means that, for Gk = 1 for the N in-band subcarriers
and 0 for the N 0 ¡N out-of-band subcarriers,

´S ¼ SIRNL=·(MTx)

1 + SIRNL=·(MTx)
(34)

and ´Dk;p is almost independent of k and given by

´Dk;p =

µ
1 + 2

KU

K´»;p
¢ 1

1 + SIRNL=·(MTx)
¢ Eb

N0

¶¡1

(35)

For MTx ¸ 2, ·(MTx) = 2=3 and we have a gain
of 3=2 (i.e., approximately 1.8dB) in the equivalent SIR
levels relatively to the case where there is no oversampling
(MTx = 1).

The computation of ´S and ´Dk;p involves only two
integrals inherent to ® and PNL. If the nonlinearity cor-
responds to an ideal envelope clipping, i.e., when

gC(R) =

½
R; R · sM
sM ; R > sM ;

(36)

with sM denoting the clipping level, which is a very com-
mon situation, these two integrals can be written in a
closed form:

® = 1¡ exp

µ
¡ s2M
2¾2

¶
+

p
2¼sM
2¾

Q
³sM

¾

´
(37)

and

PNL = ¾2

µ
1¡ exp

µ
¡ s2M
2¾2

¶¶
: (38)

5 Performance Results

In this paper we present a set of performance results con-
cerning the performance evaluation of nonlinear effects in
MC-CDMA signals. It is assumed that the MC-CDMA
signals have a spreading factor K = 64 and each user
has M = 16 data symbols per block, corresponding to
MC-CDMA blocks with length N = KM = 1024, plus
an appropriate cyclic extension. The same power is at-
tributed to each user (i.e., »p = 1 for all users). We con-
sider the transmitter structure depicted in fig. 1, where
an ideal envelope clipping, operating on a sampled ver-
sion of the MC-CDMA signal, is adopted for reducing
the envelope fluctuations of the transmitted signals (un-
less otherwise stated, an oversampling factor MTx = 2 is
assumed). However, as it was already referred, our analyt-
ical approach could easily be extended for other nonlinear
devices, namely those associated to a nonlinear power am-
plification (in fact, since we have almost the same SIR lev-
els regardless of the oversampling factor MTx, provided
that MTx ¸ 2, our performance results are still valid of a
perfectly linearized power amplifier, modeled as an ideal
envelope clipping.

Fig. 2 shows the impact of the normalized clipping
level SIRTx;IB when MTx = 1 or 2. We also include the

approximate SIRTx;IB formula that is obtained by using
(33), with MTx ¸ 2. From this figure, it is clear that
our approximate formula for SIRTx;IB is very accurate,
especially for moderate clipping levels.
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Figure 2. SIRTx;IB when MTx = 1 (dotted line) or 2
(solid line) and 3SIRNL=2 (dashed line).

Let us consider an ideal AWGN channel. The theo-
retical BER performances, together with the corresponding
simulated results, are depicted in figs. 3 and 4. The num-
ber of users is KU = K in fig. 3 (i.e., a fully loaded
system) and K=2 in fig. 4. Clearly, our analytical ap-
proach is very accurate. The approximate BER formulas
are slightly pessimistic for low clipping levels; for mod-
erate and high clipping levels they are very accurate (this
is in accordance with fig. 2). It should be noted that the
increase in the robustness against nonlinear effects when
KU < K (implicit in the formulas of sec. 4) was con-
firmed by the simulations.

6 Conclusions and Final Remarks

In this paper we presented an analytical tool for the perfor-
mance evaluation of nonlinear effects in MC-CDMA sig-
nals. For this purpose, we took advantage of the Gaussian-
like behavior of MC-CDMA signals with a large number
of subcarriers and employed well-known results on mem-
oryless nonlinear devices with Gaussian inputs so as to
characterize statistically the signals at the output of the
nonlinear device.

We also included analytical, exact formulas for the
BER computation, as well as low complexity, approxi-
mate formulas which require only the evaluation of two
integrals (if the nonlinear device corresponds to an ideal
envelope clipping, these two integrals can be written in a
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Figure 3. Exact (solid line) and approximate (dashed line)
BER formulas when KU = K (the (o) denote the simu-
lated results).

closed form). Since the OFDM signals can be regarded as
MC-CDMA signals with K = 1 and M = N , our low-
complexity SIR and BER expressions can also be used for
evaluating the nonlinear effects in OFDM schemes.

It was shown that the ratio between the number of
used channels and the spreading factor has a key influ-
ence on the robustness of a given MC-CDMA scheme to
nonlinear effects since. The higher this ratio the lower the
robustness to nonlinear effects. The spreading provides a
diversity effect over the nonlinear interference.

It should be noted that, by using our statistical char-
acterization of the signals at the output of the nonlinear
device we can simplify Monte-Carlo simulations: due to
the Gaussian nature of the self-interference component,
we do not need to simulate the nonlinear operation (we
just need to modify the noise variance to include both the
channel noise and the self-interference component).
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