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EXTENDED ABSTRACT

The domain of thermal therapies applications can be
improved with the development of accurate non-invasive time-
spatial temperature models. These models should represent the
non-linear tissue thermal behaviour and be capable of tracking
temperature at both time-instant and spatial position. If such
estimators exist then efficient controllers for the therapeutic
instrumentation could be developed, and the desired safety and
effectiveness reached.

In the past, several methodologies for non-invasive tempera-
ture estimation, based on electrical impedance tomography [1],
microwave radiometry [2], magnetic resonance imaging (MRI)
[3], and backscattered ultrasound (BSU) [4] were published.
The sole methodologies that achieve the precision required for
hyperthermia/diathermia (maximum absolute error inferior to
0.5 oC in 1 cm3) are the ones based on MRI [4]. However,
MRI is expensive and inadequate to use in some therapies.
On the other hand, BSU brings some advantages: non-ionising
behaviour, low cost, simple signal processing requirements, and
the possibility of using the same form of energy for heating
and for temperature estimation, if therapeutic ultrasound is
used. Methods which use BSU, based on tracking parameters
like temporal echo-shifts [5] and frequency-shifts [6] due to
physical phenomena as medium expansion, and change in speed
of sound, in wave attenuation [7], and on backscattered energy
were published [4] with some limited success.

In this poster, the application of a soft-computing methodol-
ogy for non-invasive temperature estimation by means of BSU
is presented. The soft-computing approach involves radial basis
functions neural networks (RBFNN) and multi-objective genetic
algorithm (MOGA) [8]. MOGA is used to select the best-
fitted RBFNN structures, trained with the Levenberg-Marquardt
algorithm. Data were collected from a tissue-mimic phantom,
heated by a therapeutic ultrasound (TUS) device working in
continuous mode. Three different TUS intensities were applied

(1.0, 1.5, and 2 W/cm2). Backscattered ultrasound signals
(RF-lines) were collected by an imaging ultrasound (IUS)
transducer working in pulse-echo mode, placed perpendicularly
to the TUS transducer. Temperature was collected in the
points under study by three thermocouples, which were aligned
along the IUS transducer axial direction and across the TUS
transducer radial direction (1 cm spaced). At each 10 s, a
RF-line and three temperature values were collect from the
medium and transferred to personal computer via a GPIB bus.
The TUS device heated the phantom during the first 15 min,
then was turned off and the medium allowed to cool down
to the surrounding room temperature in the next 15 min.The
application of backscattered ultrasound (BSU) for temperature
estimation depends on the extraction of at least one temperature-
dependent feature from the RF-lines. In this work, the temporal
echo-shifts were computed, showing a direct proportionality
to the temperature, following the temperature increases and
decreases in the medium. As three thermocouples were placed,
then three echoes appear in each RF-line. Given that the study
of the temperature evolution is to be performed independently at
the points defined by each thermocouple location, then each echo
was isolated using a rectangular window, and the temporal echo-
shift computed for each one. The temporal echo-shifts were
computed using an algorithm that directly evaluates continuous
time-shift from sample data. This method constructs a spline-
based, piecewise continuous representation of a reference signal
(in this case the echoes in the first RF-line), then finds the
minimum of the sum of the squared errors between the reference
and the delayed signals to determine their relative time-shift
[9]. Afterwards, the computed temporal echo-shifts and the
measured temperature values were filtered and normalised to
values between -0.5 and 0.5, and applied as neural network
inputs.

After the MOGA execution, a set of 11 good individuals were
obtained. These preferable individuals are the ones that fulfil or
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almost fulfil the a-priory defined goals. The preferable RBFNN
temperature models were evaluated with data never used in the
models, neither at the training or structural selection phases. In
order to precisely evaluate the model generalisation performance
these data included the nine possible operating situations, i.e.
data collected at the three different intensities and from the
three points. The best model presents a maximum absolute
error less than 0.5 degrees Celsius (gold-standard value for
hyperthermia/diathermia applications). It is worth mentioning
that the best model presents low computational complexity
enabling future real-time implementations.

Concluding, this work presents a soft-computing framework
based on radial basis functions neural networks, for non-invasive
spatial-temporal temperature estimation in a tissue mimic
phantom. The best model presents a maximum absolute error
inferior to the gold-standard value for hyperthermia/diathermia
applications, showing a high generalisation capacity. Despite
the attained precision, one of the important achievements of
the proposed methodology is that both the models structure and
parameters were extracted from the data, discarding mathemati-
cal simplifications and physical constant determination, usually
employed in empirical modelling frameworks. For the near
future it is planned to develop two and three dimensional models
using the same approach, and include them in control models to
supervise the therapeutic instrumentation activity.
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