
Cite as: 

M Dionísio, A Grenha, 2012. Locust bean gum: exploring its potential for 
biopharmaceutical applications. J Pharm Bioallied Sci.  4 (3), 75-85. 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sapientia

https://core.ac.uk/display/61504875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 
 

 

Locust bean gum: exploring its potential for biopharmaceutical applications 

 

 

Abstract 

Polysaccharides have been finding, in the last decades, very interesting and useful 

applications in the biomedical and, specifically, in the biopharmaceutical field. Locust bean 

gum is a polysaccharide belonging to the group of galactomannans, being extracted from the 

seeds of the carob tree (Ceratonia siliqua). This polymer displays a number of appealing 

characteristics for biopharmaceutical applications, among which its high gelling capacity 

should be highlighted. In this review we describe critical aspects of locust bean gum, 

contributing for its role in biopharmaceutical applications. Physicochemical properties, as 

well as strong and affective synergies with other biomaterials are described. The potential for 

in vivo biodegradation is explored and the specific biopharmaceutical applications are 

discussed. 
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1. Introduction 

Nature provides an impressive array of polymeric materials that have been finding very 

interesting applications in the biomedical field, mainly because they are known to perform a 

diverse set of functions in their native environment. Polysaccharides, for instance, play well-

known functions in membranes and intracellular communication, while proteins function as 

structural materials and catalysts.[1] In addition, the current trend is to mimic nature and there 

are no better candidates to such a task than the proper materials from nature. Natural 

biopolymers illustrate, as an impressive example, how all the properties displayed by 

biological materials and systems are exclusively determined by the physicochemical 

properties of the monomers and their sequence.[2] These natural materials have some 

remarkable merits over synthetic ones, namely improved capacity for cell adhesion and 

mechanical properties similar to natural tissues.[3] Moreover, they are economical, readily 

available, non-toxic, usually biodegradable and, with few exceptions, also biocompatible.[4,5] 

On the other hand, some intrinsic limitations are also to take into account, such as the highest 

possibility of immunogenicity and polymer variability related to both origin and supplier.[3] 

Another relevant aspect contributing for the increasing interest in polysaccharides relies on 

the discovery of new synthetic routes for their chemical modification, which permit the 

promotion of new biological activities and/or the modification of their properties for specific 

purposes.[6,7] Additionally, the biological activity of polysaccharides is being increasingly 

recognised for human applications.[8] Polysaccharides have been marking a strong position in 

the biomedical field, as their different chemical structures and physical properties comprise a 

large source of materials that can be used in different applications, varying from tissue 

engineering and preparation of drug vehicles for controlled release, to imaging techniques and 

associated diagnosis. In a general manner, polysaccharides play leading roles as thickening, 
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gelling, emulsifying, hydrating and suspending agents, finding diverse applications in the 

above mentioned areas.[8]  

The most common basic unit of polysaccharides is the monosaccharide D-glucose, although 

D-fructose, D-galactose, L-galactose, D-mannose, L-arabinose, and D-xylose are also 

frequently present. Some polysaccharides comprise monosaccharide derivatives in their 

structure, like the amino sugars D-glucosamine and D-galactosamine, as well as their 

derivatives N-acetylneuraminic acid and N-acetylmuramic acid, and simple sugar acids 

(glucuronic and iduronic acids). In some cases, polysaccharides are collectively named for the 

sugar unit they contain, so glucose-based polysaccharides are called glucans, while mannose-

based polysaccharides are mannans.[6] 

Locust bean gum (LBG) is a neutral polysaccharide composed of mannose and galactose units 

and, therefore, belongs to the category of galactomannans. This natural polymer has been 

registering increased interest in the biopharmaceutical field, particularly in oral drug delivery. 

In this context, it has been showing its application in the design of drug delivery systems, 

providing the delivery of a defined dose, at a chosen rate, to a targeted biological site. In this 

review, critical aspects of LBG are exposed, with particular emphasis on the properties that 

closely affect its biopharmaceutical application, such as its chemical structure, solubility and 

molecular weight. The most effective synergies with other polysaccharides are described and 

the reported biopharmaceutical applications are explored and discussed. 

 

2. Locust bean gum origin and processing 

LBG is extracted from the seeds of the carob tree (Ceratonia siliqua), which is very abundant 

in the Mediterranean region, although its localisation also extends to different regions of 

North Africa, South America and Asia. The polysaccharide is also referred in the literature by 
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several other synonyms, such as carob bean gum, carob seed gum, carob flour or even 

ceratonia.[9]  

Carob seeds, which represent approximately 10% of the weight of the fruit, are industrially 

processed by hull cracking, sifting and milling operations to isolate and grind the endosperms, 

which are then sold as crude flour.[10,11] The seeds are mainly composed of galactomannan, 

which comprises approximately 80%, the rest corresponding to proteins and impurities.[10,12] 

The protein content of LBG was reported to include approximately 32% albumin and 

globulin, while the remaining 68% correspond to glutelin.[13] Impurities mainly refer to ash 

and acid-insoluble matter.[10] After seed processing, crude galactomannan can be further 

submitted to several processes to eliminate both the protein content and impurities. These 

procedures include enzymatic or alkaline hydrolysis, precipitation with ethanol or 

isopropanol, and purification by methanol, or by copper or barium complexes.[10,12,14] 

Impurities usually remain insoluble even when heating at temperatures up to 70 ºC.[15] 

Precipitation with isopropanol revealed to be quite efficient in the elimination of proteins. In a 

general manner, purification steps have demonstrated to result in higher mannose/galactose 

(M/G) ratios and in a decrease of protein and impurities.[10]  

As shown in Figure 1, a recent growing interest for LBG has been observed, with an 

increasing number of papers reporting its use in various fields. The strongest application of 

LBG concerns its use as a thickening and stabilizing agent in both food and cosmetic 

industries[16,17] and first references to the study of its properties date to more than 50 years 

ago.[18,19] In food industry it is a food additive, coded as E-410 in the European Union.[20] 

However, recently it has been pointed as a very useful excipient for pharmaceutical 

applications, as detailed in Section 6 of this review. The observed increase of interest is 

mainly due to its ability as controlled release excipient in tablets. However, reports of 
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biodegradability, low toxicity and availability at low cost[16,17,21] also contribute for its 

increasing use.  

Insert Figure 1 

 

3. Chemical structure and physicochemical properties 

Galactomannans are plant reserve carbohydrates present in large quantities in the endosperm 

of the seeds of many leguminosae such as Ceratonia siliqua (locust bean gum), Cyamopsis 

tetragonoloba (guar gum) and Caesalpinia spinosa (tara gum).[22,23] Chemically, they consist 

of a (1-4)-linked β-D-mannose backbone with (1-6)-linked side chains of α-D-galactose,[8,9] 

being thus neutral polymers.[4] The various galactomannans can be differentiated by the 

displayed M/G ratio, the substitution pattern of side-chain units and their molecular weight, 

the latter being influenced by harvesting and manufacturing practices, amongst other 

factors.[24] The M/G ratio varies, therefore, depending on the distribution of the galactose 

units over the mannose backbone, being approximately 4:1 for LBG (Figure 2), 3:1 for tara 

gum and 2:1 for guar gum.[12] These ratios are always referred as approximate, due to their 

dependence upon the varying origins of gum materials and plant growth conditions during 

production.[4] It is important to mention that it is generally recognised that galactose grafts to 

the mannose chain are not spaced regularly, but instead placed randomly on the linear 

backbone.[23] This ratio is the main characteristic affecting galactomannans solubility, as 

higher water solubility is afforded by higher galactose content,[8] an effect that has been 

justified by the introduction of an entropic, and perhaps steric, barrier to the ordered mannose 

chain.[24] This observation makes guar gum the most soluble and also the most widely used of 

the galactomannans, as mentioned in a recently published broad review on applications of 

guar gum.[25]  

Insert Figure 2 [26]   
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One of the most important pros of plant resources is the fact that they are renewable and, if 

cultivated or harvested in a sustainable manner, it is possible to obtain a constant supply of 

raw material. However, plant-based materials also pose potential challenges that include the 

production of small quantities, usually structurally complex, which may differ according to 

the location of the plants. Other variables, such as the collecting season, might affect material 

properties. This may result in a slow and expensive isolation and purification process.[4] In 

this context, several studies have evidenced that the chemical structure and molecular weight 

of LBG vary systematically with the type of cultivar, growth conditions or other unknown 

biological factors.[3,4] This probably justifies, at least in part, why LBG is considered 

polydisperse from a chemical point of view. Polydispersion is, in this case, a direct result of 

three types of structural variation: degree of galactose substitution, patterning of galactose 

side groups and chain length or degree of polymerization; all directly related with 

biosynthesis mechanisms.[3] Importantly, different degrees of substitution of the mannose 

chain will affect the polymer solubility, for instance, amongst different suppliers.[20,22] This is 

possibly one of the major drawbacks hindering a more frequent application of this 

polysaccharide in the biopharmaceutical field, as solubility is one of the major properties to 

be controlled and which should be necessarily stable under defined conditions.  

 

3.1. Solubility and viscosity 

Although galactomannans are hydrophilic molecules, their solubility is in many cases 

reduced. When in solution, these polysaccharides have an extended rod-like conformation and 

occupy a large volume of gyration. These gyrating molecules collide with each other and with 

clusters of solvent molecules to produce solutions of high viscosity, a process that is reported 

to be dependent on the polymer molecular weight.[23] LBG has the capacity to form very 

viscous solutions at relatively low concentrations, which are almost unaffected by pH, salts or 
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temperature.[27] In fact, being a neutral polymer, its viscosity and solubility are little affected 

by pH changes within the range of 3-11.[4] As said before, M/G ratio is the main property 

affecting the solubility of galactomannan polysaccharides, which increases with higher 

galactose substitution. This effect is attributed to the fact that mannose chains are relatively 

hydrophobic and galactose units more hydrophilic. In this manner, displaying an M/G ratio of 

approximately 4:1, LBG presents limited solubility, having propensity to form aggregates in 

cold water, as the long segments of unsubstituted mannose are prone to undergo 

aggregation.[3,24] These unsubstituted blocks of the backbone can be as large as 50 mannose 

units and the mentioned relative hydrophobicity, and consequent low solubility, derives from 

the proximity between these smooth regions of the mannose backbone. These zones permit, 

consequently, the formation of strong intramolecular hydrogen bonds that reduce the 

hydration of the gum.[23] In this context, a gum with higher percentage of galactose has good 

cold water dispersibility and higher viscosity, but poor gelling properties. 

Several studies report the solubilisation pattern of LBG. It is generally considered that the 

polysaccharide is only partially soluble at room temperature, achieving 50% solubilisation 

after 1 hour stirring (initial dispersion of 0.1% w/w), and a maximum of 70-85% 

solubilisation can be obtained upon 30 minutes stirring at 80 ºC.[11,28] This difference of 

stabilisation as a function of temperature has been attributed to the fact that, at high 

temperature, some molecules, such as high molecular weight components and galactomannan 

with lower galactose substitution, are dissolved, which does not occur at low temperature, 

reinforcing the idea of locust bean gum polydispersity.[11,29] 

In order to overcome the solubility limitations exhibited by galactomannans, carboxyl, 

hydroxyl and phosphate derivatives of these polymers have been proposed.[29] In our group, 

we have also synthesised several LBG derivatives (sulfate, carboxylate and aminate). 

However, although in some cases a strong improvement of solubility was observed (for 
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instance, for sulfated LBG), our main goal was to produce charged derivatives for application 

in the production of drug delivery systems by polyelectrolyte complexation with other 

polymers.[30] 

 

3.2. Molecular weight and industrial depolymerisation 

In a general manner, the reported molecular weight of LBG situates between 50 and 1000 

kDa.[11] Over recent years there has been an increasing interest in LBG and the need to explore 

specific industrial applications has demanded the development of strategies that provide the 

hydrolysis of high molecular weight molecules. Acid hydrolysis[31,32] and enzymatic 

hydrolysis have been described, but owing to the fact that LBG, and in a general manner 

galactomannans, display β-(1,4)-linked mannose residues, the enzyme β-mannanase has been 

widely explored to provide this effect.[33] The referred enzyme is mainly extracted and 

purified from bacteria and fungi, which have demonstrated to be excellent producers of 

extracellular β-mannanase.[33-36] Importantly, the fungus Aspergillus niger is reported as 

GRAS organism and, thus, the products of this strain are authorised for food applications,[33] 

converting it in the main source of the enzyme.  

Nevertheless, the conversion of any polysaccharide into its basic oligosaccharides involves 

the breaking of all its units and, in the case of LBG, both the mannose and the galactose units 

need to be decomposed. Figure 3 displays a schematic representation of the pathways of LBG 

enzymatic degradation. β-mannanase catalyses the random cleavage of β-(1,4)-D-

mannopyranosyl linkages within the main chain of galactomannans,[37,38] thus providing only 

a partial depolymerisation of LBG.[23] When acting on this polysaccharide, β-mannanase 

originates mannobiose, mannotriose and galactomannobiose.[39,40] The affinity of β-

mannanase by LBG decreases with the increasing substitution of the mannose chain[37,40] 
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because galactose units cause steric hindrance to the enzyme and, therefore, it only attacks 

galactose-unsubstituted mannose blocks.[41]  

 

Insert Figure 3 

 

The complete conversion of galactomannan into the oligosaccharides D-mannose and D-

galactose requires the action of two other enzymes, β-mannosidase and α-galactosidase, 

which can be also obtained from fungi, such as Aspergillus niger[40,42] or bacteria.[34] These 

enzymes catalyse the cleavage of β-(1,4)-linked D-mannopyranosyl and terminal α-(1,6)-

linked D-galactosyl residues, respectively.[42] 

Considering the difficulty in depolymerising LBG, due to the steric effect of galactose 

residues over β-mannanase, it is usual to start the depolymerisation reaction with α-

galactosidase, removing some galactose grafts and exposing the mannose chain to the attack 

of β-mannanase.[23] Industrial depolymerisation is mainly performed with α-galactosidase of 

plant, bacterial and fungal origin,[43] although that of fungal origin is reported as more suitable 

for technological applications, mainly due to its acidic optimal pH and broad stability 

profile.[44] 

 

4. Synergistic interaction of locust bean gum with other polysaccharides 

The study of synergistic effects between polysaccharides has a potential industrial interest, as 

many products involve the formulation of mixed polysaccharide systems. In addition, 

synergies provide the potential to modulate the rheology of products, which is very important 

in pharmaceutical formulation.[45] These systems provide a wide variety of structural 

conditions, which result inevitably in the absence of linearity in their macroscopic properties. 
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When two macromolecules (with gelling capacity or not) are mixed, it is possible that a 

synergic interaction takes place, so that it results in the formation of a gel. This gelation 

process occurs when the polymeric chains of both substances establish a more specific 

interaction, leading to an increased capacity for water absorption, compared with the sum of 

the absorption of each substance separately. It can also happen that adding a small amount of 

a non-gelling polymer to a gelling one induces a strengthening of the resulting gel or, even, 

some polymers that are individually non-gelling can yield gels upon mixing. This non-

additive behaviour is termed synergism. Several mechanisms might assist synergistic gel 

formation. A chemical gel network is formed when covalent bonds are established between 

the polymer chains. On the other side, physical gels are mediated by the formation of mixed 

junction zones between segments of the different polymers, or by electrostatic interactions 

occurring between different polymeric chains.[5]  

LBG exhibits a significant capacity to form synergistic interactions with other 

polysaccharides, mainly because of the numerous OH groups present in the molecule 

structure.[46] This synergy increases the flexibility of the polymer and, in many cases, permits 

the production of gelling structures with important biopharmaceutical applications. The most 

important synergies of LBG are observed in contact with xanthan gum and carrageenan.[8,47-49] 

These interactions will be described in detail below. Interactions between LBG and guar gum 

have also been reported, although they only result in increased viscosity of the solution and 

not in the formation of a true gel.[50] 

 

4.1. Synergy with xanthan gum 

Xanthan gum produces high viscosity solutions at low concentration, but it does not naturally 

gel at any concentration, being insensitive to a broad range of pH, temperature and electrolyte 

concentration.[51] These weak gel properties are known to be enhanced by the presence of 
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certain β-(1,4) linked polysaccharides, namely those which normally exist in water solution as 

random coils and in the condensed phase as stiff, extended ribbons, like the galactomannans. 

The synergy between LBG and xanthan gum is the most effective and results in a firm, 

thermoreversible gel.[5] A synergic behaviour was observed even in dilute gum solution.[52] 

Rocks was the first to report the synergistic interaction between the two polysaccharides, 

observing the formation of a thermally reversible gel.[53] Subsequent studies indicated that the 

interaction occurs between the side chains of xanthan and the backbone of LBG as in a lock-

and-key model, in which one xanthan chain could associate with one, two or more locust bean 

gum molecules.[14,54,55] A study using X-ray diffraction suggested the need to denature 

xanthan at temperatures exceeding the helix–coil transition temperature for binding between 

both polymers to occur, leading to strong elastic gels.[56] Furthermore, it was reported that 

stronger gels, in terms of hardness and elastic modulus, were obtained when the two polymers 

were mixed in the same weight ratio. The same research group also suggested that the 

association between xanthan and LBG occurred because of disordered xanthan chains.[57] In 

contrast, a work with calorimetry and rheological methods revealed that the association 

between the polysaccharides was triggered by xanthan conformational changes.[58]. The 

interaction between the polymers was later reported to be mediated by two distinct 

mechanisms. One takes place at room temperature, results in weak gels and presents little 

dependence upon the galactose content. In turn, the second mechanism requires significant 

heating of the polymeric mixture and results in stronger gels, which formation is highly 

dependent upon the specific galactomannan composition.[59] There are reports on the 

dependence of gelation upon the temperature of reaction and the specific M/G ratio of 

galactomannan. For low galactose contents, such as that of LBG, interactions have been 

described at temperatures usually higher than 45 ºC. In addition, these interactions do not 

depend on the ionic concentration of the solutions and are suggested to involve xanthan 
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chains in their ordered as well as disordered conformation. As the number of disordered 

xanthan chains depends on the total ionic concentration, the occurrence of interactions is 

strongly affected by the external salt concentration and also by ionic impurities present in the 

solution or in galactomannan samples, such as proteins.[14]  

Another study demonstrated that the stability of xanthan helical structure or xanthan chain 

flexibility played a critical role in the interaction with LBG. It was shown that the 

destabilisation of xanthan helical structure by deacetylation and heating facilitated the 

intermolecular binding between xanthan and LBG.[60] However, a study in dilute solution 

conditions suggested that the synergy is a result of a conformational change of the complex 

xanthan-LBG, in which LBG should play a significant role.[52] 

A more recent work studied the possibility of modulating the gel mechanical properties 

varying the polymeric ratios and the temperature of reaction, the latter being known to affect 

xanthan chain conformation. It was observed that a LBG/xanthan ratio of 1:1 always produces 

a gel, while a ratio of 1:3 results in a weak gel at 75 ºC and a ratio of 1:9 never results in the 

formation of a real gel.[61] These results indicated that the properties of the complex 

polysaccharide gel might be tuned by varying the preparation temperature and/or the weight 

ratio between the two polymers. 

As can be seen, information on LBG/xanthan gum synergy and gelling mechanism is varied 

and somewhat contradictory. In fact, although many efforts continue to elucidate the 

interaction, with some recent works providing new evidences, a wide debate is still open in 

the subject. 

The synergy between both polymers is so effective that gels have been proposed in 

pharmaceutical applications for slow release purposes and tablet formulations already exist 

comprising of these polysaccharides.[62,63] The specific approaches will be detailed in Section 

6. 
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4.2. Synergy with k-carrageenan 

The gelation of k-carrageenan is preceded by a coil-helix transition followed by aggregation 

and network formation. The coil-helix transition is known to be influenced by the presence of 

electrolytes, salt concentration, temperature and polymer length.[54,64,65] In addition, it has 

been reported that k-carrageenan gels are prone to syneresis.[66] 

The first studies on the polymeric interaction between LBG and k-carrageenan suggested that 

k-carrageenan helix interacted with unsubstituted regions of LBG,[67] but several contradictory 

studies were published after that. Nevertheless, it seems now to be accepted that the enhanced 

gel properties observed when the two polysaccharides are mixed, are a consequence of 

particular interactions occurring between the macromolecules. Specific junction zones 

between the chains of both polymers were reported to be established, resulting in increased 

gel strength and elasticity and reduced tendency to syneresis.[65,68,69] However, it was 

suggested that above a total polysaccharide concentration of 8-10 g/L, self-association of 

LBG chains could also take place.[68] 

By comparison with gels formed only with k-carrageenan, it was suggested that LBG 

interferes with the gel structure by the formation of a secondary network.[70] The synergic 

effect has been shown to be affected by the polymers molecular weight, as well as by LBG 

degree of substitution, where the lowest degree of galactose substitution is reported to be 

more effective in gel formation.[71]  

A study based on dynamic viscoelastic measurements and compression tests suggests that 

LBG adheres non-specifically to k-carrageenan network.[66] 

Although less applied than the previous mixture of xanthan gum and LBG, this synergy of 

carrageenan and LBG served as the basis for the formulation of gel beads for encapsulation 

and stabilization of lactic acid bacteria[72] and microparticles for sustained release of 

gentamicin.[73] 
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5. Potential for locust bean gum in vivo biodegradation 

When the main goal is to develop polymeric-based materials for biopharmaceutical 

applications, the in vivo biodegradability of the used polymers is of utmost importance, since 

their elimination by the organism upon administration is required without the need for 

additional interventions. Biodegradation of natural polymers is known to be carried out by the 

action of enzymes, microorganisms and pH action, entailing complex biological, physical and 

chemical processes. These processes result in the breakdown of polymer chains, leading to the 

modification of properties such as molecular weight and solubility. 

In which concerns LBG, its biodegradation is expected to be mainly driven by enzymatic 

activity, as several enzymes exist in the organism that might cleave LBG macromolecule. 

Oral administration is perhaps the route that most easily ensures an effective degradation of 

the polysaccharide. This is due to the presence of β-mannanase in the human colonic 

region[38,74] thus serving as the basis for the development of several strategies of colonic drug 

delivery that include LBG, as will be detailed in Section 6.3 of this review. As explained 

before in section 3.2, this enzyme acts on β-(1,4)-D links of mannose chains, converting these 

units into mannobiose, mannotriose and galactomannobiose.[39,40] As observed in Figure 3, the 

complete degradation of LBG involves two other enzymes, β-mannosidase and α-

galactosidase, which act, respectively, on mannose and galactose residues, producing D-

mannose and D-galactose. These enzymes were also detected in human faecal contents,[75] 

reinforcing the potential of this polysaccharide in colonic delivery applications, but also 

ensuring its degradation upon any modality of oral administration. Actually, there are reports 

on the in vivo degradation of LBG mediated by colonic bacteria,[76] an effect that has been 

specifically attributed to bacteroides and ruminococci.[75] 
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6. Biopharmaceutical applications of locust bean gum 

Many natural polymers have already demonstrated effectiveness in food, cosmetic and 

pharmaceutical applications. The natural origin, as well as some specific individual 

characteristics, is an asset to make products more appealing to consumers. In the field of drug 

delivery many efforts have been devoted, in the last decades, to the development of 

appropriate delivery systems that avoid or minimise side effects, while improving the 

therapeutic efficacy. The application of natural polymers in pharmaceutical formulations is 

extremely varied, comprising the production of solid monolithic matrix systems, implants, 

films, beads, microparticles, nanoparticles, inhalable and injectable systems, as well as 

viscous liquid and gel formulations. Within these dosage forms, polymeric materials have 

different functions such as binders, matrix formers, drug release modifiers, coatings, 

thickeners or viscosity enhancers, stabilisers, disintegrators, solubilisers, emulsifiers, 

suspending agents, gelling agents and bioadhesives.[4] 

Owing to particular features of LBG specifically related with its gelling capacity and 

synergies with other polysaccharides, a growing interest is being observed regarding its 

biopharmaceutical use. Our group tested the effect of LBG on Caco-2 cell viability by the 

thiazolyl blue tetrazolium bromide (MTT) assay, finding very acceptable levels of cell 

viability between 73% and 81% for LBG concentrations varying between 0.1 and 1 mg/mL 

(data not shown), which are considered quite realistic for drug delivery applications. These 

observations were rather expected, as no detrimental effects are known to be obtained from 

compounds that are composed of basic sugar units. 

The most usual biopharmaceutical application of LBG is in the formulation of oral delivery 

systems, although some works report its use in topical, ocular, buccal and colonic delivery, as 

will be described in the following sections. In this manner, the almost total of formulations is 
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based on tablets, although in a few cases hydrogels and multiparticulate systems are 

described. 

 

6.1. LBG bioactivity 

Several works describe the potential of LBG as a bioactive material. In 1983, LBG was 

referred for the first time as having a hypolipidemic effect, decreasing low density lipoprotein 

(LDL) cholesterol[77] as a consequence of the high content of insoluble fibre. Several 

subsequent studies confirmed that ability,[78-80] demonstrating the beneficial effects of LBG in 

the control of hypercholesterolemia. This potential benefit has inclusive led some authors to 

propose a daily consumption of food products enriched with the fibre.[80] In addition, it was 

also demonstrated that the polymer could reduce the rate of hepatic synthesis of cholesterol, 

although other galactomannans were more efficient in that task.[78] LBG has also been 

proposed for the treatment of diabetes.[81,82]  

Furthermore, due to the high gelling ability and the fact that the formed gel is not assimilated 

by the gastrointestinal tract, ingestion causes a sensation of satiety resulting in decreased 

absorption of nutrients, thus rendering LBG adequate for inclusion in dietary products.[20,49] 

Indeed, a formulation of LBG-based capsules is available in the market for appetite 

suppression (Carob gum - Arkopharma Arkocápsulas®).  

 

6.2. LBG application in oral drug delivery 

Among the various routes of administration, the oral has been the most convenient and 

commonly used in drug delivery. The application of LBG in oral delivery systems is mainly 

focused on its use as matrix forming material in tablets, benefiting from the fact that 

polysaccharides are generally considered to play an important role in drug release 

mechanisms from matrixes.[83] In these systems, usually intended to provide systemic drug 
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absorption, LBG contributes with its swelling ability to afford a controlled release of the drug. 

Moreover, in most cases it is observed that the association of LBG with a second polymer 

affords an improved effect, benefiting from specific interactions occurring between the 

polymers. 

To our knowledge, the first work reporting LBG application in tablet formulation as single 

polysaccharide excipient dates to 1998, when Sujja-areevath et al. reported the production of 

sodium diclofenac mini-matrixes containing 49.5% LBG. Optimised tablets had a 

drug/polymer ratio of 1/1, as higher ratios led to loss of matrix integrity. The formulation 

containing LBG evidenced lower swelling (50% in 6 h) than those containing xanthan (250% 

in 6 h) or karaya gum (150% in 6 h) and the swelling rate was observed to approximately 

follow Fick’s diffusion law. However, drug release kinetics and polymer erosion were non-

Fickian and, as compared with the other gums, tablets based on LBG displayed the fastest 

erosion in a phosphate buffer pH 7.0 (65% versus 45% and 25% for xanthan and karaya gum, 

respectively).[84] Another work consisted in the design of an LBG matrix tablet for the 

incorporation and release of theophylline and myoglobin. The tablet was further cross-linked 

with glutaraldehyde in an attempt to provide the network with the potential for an effective 

controlled release. However, that effect was not observed as release rate is similar in the 

presence and absence of the cross-linker (80% in 8 h). This observation is justified by the fact 

that LBG has only a few side chains and only a reduced number of cross-linkages take place 

within the polymer network which is not enough to affect the drug release mechanism. In 

contrast, tablets composed of guar gum, which has a higher number of side chains and thus 

allows stronger cross-linking, evidence a strong difference in drug release profile between 

cross-linked and non-cross-linked matrixes.[26]  In a different approach, but still in the ambit 

of using LBG as single polysaccharide in the formulations, two very recent works revealed 

the ability of LBG to act as superdisintegrant in orodispersible tablets. One formulation 
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consisted in nimesulide tablets, in which the incorporation of 10% LBG resulted in a 

disintegration time of 13 seconds. This time doubled if a standard superdisintegrant, cross-

carmellose sodium, was used instead of LBG.[21] The other formulation comprised ofloxacin-

loaded Eudragit® microspheres which were later used to prepare orodispersible tablets using 

LBG. The polysaccharide was used in a concentration varying between 2.5 and 10% and the 

observed disintegration time varied between 12 and 20 seconds, decreasing with the increase 

of LBG concentration. Ofloxacin was first encapsulated in microspheres in order to mask its 

bitter taste.[85] 

Even before being used as single polysaccharide excipient, a tablet formulation called 

TIMERx®  was designed using a combination of LBG and xanthan gum, being presented as a 

novel polysaccharide-based controlled release matrix technology, although this first work was 

just a preliminary exploration, providing the system characterisation but without associating a 

drug to the system.[86] Later on, TIMERx® was demonstrated to have controlled release 

potential both in vitro and in vivo, which was attributed to the high synergy between the 

polymers. At a LBG/xanthan gum ratio of 1/1 and at 50% polymer concentration, with 

cumulative presence of 50% glucose, a strong gel is obtained in contact with water.[87] The 

technology is nowadays commercially available, as a product from Penwest Pharmaceuticals, 

and was first developed for twice-a-day dosing of oxymorphone in patients with moderate to 

severe pain. A very complete review on TIMERx technology and its applications is available 

on Staniforth and Baichwal [87] and a very recent general review on chronotherapeutics is 

offered by Sunil et al.[88] 

The combination of LBG with other polysaccharides is a frequent approach in the design of 

systems, in many cases benefiting from material synergies, as in the previous example. In this 

context, LBG/xanthan gum hydrogels were loaded with myoglobin, being then freeze-dried 

and compressed to produce tablets. Release behavior was mainly governed by LBG, which 
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inhibits drug diffusion from the matrix. Even when a LBG/xanthan gum ratio of 1/9 was used, 

only 44% of the drug was released in water in 24 h.[63] In another study, LBG by itself was 

reported to not control the release of diltiazem hydrochloride from tablets, but the controlled 

release effect was observed upon the addition of karaya gum to the matrix (KBG/karaya gum 

ratio of 1/1). However, this effect demanded the presence of the polymeric mixture in a 

concentration which doubles that of the drug (drug/polymer ratio = 1/2).[89]  

A different approach consists in the production of multi-layered matrix tablets, which also 

provide modified release behaviour. These dosage forms are drug delivery devices comprising 

of a matrix core containing the active solute and one or more modulating layers, which are 

incorporated during tableting process. The modulating layers enable controlling the rate of 

hydration of the matrix core, thereby restricting the surface area available for diffusion of the 

drug and at the same time controlling solvent penetration rate.[90,91] In this context, sodium 

diclofenac tablets with matrix based on LBG, xanthan gum or a 1:1 mixture of both polymers 

were produced. These matrix tablets released more than 90% of the drug in 12 h, the system 

containing LBG evidencing the fastest release. The addition of a triple external layer of 

carboxymethyl cellulose, which acted as release retardant for the hydrophilic matrix core, 

controlled diclofenac release, which was of approximately 70% for LBG core tablets in the 

same period of time.[92] 

Considering the set of works available in the ambit of LBG tablet formulation for oral drug 

delivery, some contradictory results are found, mainly related with the capacity of LBG to 

provide a controlled release effect. This could be either related with differences in the used 

LBG molecules, considering different providers, or with the fact that secondary and tertiary 

components are also included in some formulations, affecting their behavior and making 

direct comparisons a difficult task. 



21 
 

Notwithstanding the prevalence of tablet formulations, other different approaches have been 

described. Solid dispersions of LBG and lovastatin were formulated to increase drug 

solubility. LBG was previously submitted to a thermal treatment to decrease its viscosity, 

which was reported to not affect its swelling capacity. This treatment had, by itself, a clear 

effect on lovastatin solubility, which was tested for 2 h in pH 7. Lovastatin released 

approximately 53% from native LBG solid dispersion and 65% from solid dispersions 

formulated with treated LBG. The solubility improvement is remarkable, taking into account 

that unformulated lovastatin only released 35% in the same period. Different methods of solid 

dispersion preparation were also tested, and the method of modified solvent evaporation 

demonstrated the better results, followed by spray-drying. Solid dispersions tested in vivo also 

demonstrated better therapeutic results as compared to unformulated lovastatin.[93] In another 

study, hydrogels prepared with LBG and xanthan gum were formulated to control the release 

of prednisolone. An increase in gum concentration resulted in decreased drug release rate 

from the hydrogels, suggesting that the drug diffusion was mainly controlled by the density of 

the three-dimensional network structure of the matrix. Glycerin and sucrose were tested as 

hydrogel additives, demonstrating to provide a significant decrease in drug release rate.[94] 

A rather different approach concerns the use of multiparticulate systems, namely 

microspheres. LBG/alginate[95] and LBG-xanthan gum/alginate[96] microspheres loaded with 

sodium diclofenac were prepared by ionic cross-linking mediated by calcium. Drug 

association efficiency was above 90% and demonstrated to increase with increasing amounts 

of LBG or the mixture of gums. In both cases microspheres displayed a controlled release 

profile for 12 h in simulated gastric (pH 1.2; 2 h) and intestinal (pH 7.2; 10 h) fluids. 

Unfortunately, both articles are very scarce in details and discussion, and it was not possible 

to conclude on the more adequate formulation for diclofenac delivery and release.  
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6.3. LBG application in buccal drug delivery 

The administration of drugs through the buccal mucosa offers two major advantages, which 

include avoiding pre-systemic elimination within the gastrointestinal tract and first-pass 

hepatic effect.[97,98] Therefore, buccal drug delivery mainly envisages improving the 

bioavailability of poorly absorbable drugs in the intestinal area.[99] One of the most important 

features to be exhibited by buccal delivery systems is a strong mucoadhesiveness, which is 

usually obtained using mucoadhesive polymers.[98,100] LBG has been reported to have 

mucoadhesive profile,[98] although not as strong as other polysaccharides like chitosan. 

Only two works deal with the application of LBG in the design of buccal delivery systems, in 

both cases involving a combination with a second polysaccharide. Tablets containing LBG or 

a mixture of LBG and xanthan gum as matrix materials were produced in order to improve the 

bioavailability of metoprolol, by avoiding an extensive first-pass effect of the drug. 

Formulations containing only LBG resulted in progressive release of the drug, with 7.5% of 

polymer leading to 98% release in 45 minutes. An increase to 15% LBG resulted in decreased 

release rate, registering approximately 45% in the same period. Combinations of xanthan gum 

and locust bean gum revealed more effective for tablet formulation, considering physical 

integrity, hardness and mucoadhesion strength. Tablets with LBG/xanthan gum ratio of 2:1 

exhibited complete drug release in 45 minutes, as desired, but also poor drug permeation. To 

overcome this limitation, 1% sodium lauryl sulphate was incorporated in the formulation, 

resulting in improved drug permeation across porcine buccal mucosa.[101]  

The second study also uses LBG in association with another polymer, comparing the 

bioavailability of propranolol hydrochloride formulated in LBG/chitosan tablets of different 

ratios (2/3, 3/2 and 4/1) administered to human volunteers. All buccal formulations improved 

drug bioavailability (1.3, 2.1 and 2.3 fold, respectively) as compared to the oral administration 

of a similar formulation. Naturally, tablets of ratio 2/3 were those exhibiting higher 
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mucoadhesion, because of the highest chitosan content, and were also those evidencing the 

more complete release (98% in 10 h, as compared to 92% and 90% of formulations 3/2 and 

4/1, respectively), although differences are not very relevant.[102] 

 

6.4. LBG application in colonic drug delivery 

The rationale for the use of polysaccharides in the production of delivery systems aimed at 

colonic delivery of drugs mainly relies on the presence of large amounts of polysaccharidases 

in the human colon. This is a consequence of the fact that this region is particularly colonised 

by a great number of bacteria, which produce many enzymes.[75,103]  

Apart from the obvious application in providing a local therapeutic effect, for instance in 

inflammatory colonic diseases, systemic colonic delivery of drugs is also an option, especially 

for those drugs observing difficult absorption from the upper gastrointestinal tract. This 

possibility derives from the fact that the colon lacks various digestive enzymes present in the 

upper regions, mainly proteinases, thus possessing a less hostile environment in comparison 

with the stomach and small intestine.[104,105] As mentioned in Section 5, it is known that β-

mannanase and other relevant enzymes are present in the human colon, ensuring the in vivo 

degradation of LBG.[38,74,75] In this context, bacterial species reported to be involved in LBG 

degradation are bacteroides and ruminococci.[75,106] 

A first study on LBG application in colonic drug delivery systems consisted in the production 

of butanediol diglycidylether cross-linked LBG films, used as coating in theophylline tablets. 

The films evidenced very high swelling ability (300 - 500%) and were shown to undergo 

degradation by colonic microflora, potentiating an application in colonic delivery. However, 

mechanical instability of the films was observed, especially at higher coating quantities, 

thereby suggesting their non-suitability for application in colonic carrier production.[107] 
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Another study investigated the potential of LBG/chitosan mixtures to be used as coating 

materials, in order to provide protection from the physiological environment of stomach and 

small intestine, while permitting degradation by colonic bacterial enzymes, enabling drug 

release. Different LBG/chitosan ratios were studied and applied as coating over mesalazine 

core tablets. LBG capacity to hydrate and form a viscous gel layer was intended to provide a 

slower dissolution towards the core tablet. The ratio 4/1 demonstrated the most adequate 

behaviour, showing cumulative release of 98% after 26 h incubation, which corresponded to 2 

h HCl, 3 h in pH 7.4 buffer and 21 h in pH 6.8 PBS containing 4% (w/v) rat caecal contents. 

In vivo studies conducted in humans showed that drug release only initiated after 5 h, which 

corresponds to the transit time of the small intestine.[103]  

 

6.5. LBG application in ocular drug delivery 

A unique work reports the use of LBG in the formulation of a drug delivery system to the eye. 

LBG/i-carrageenan microparticles encapsulating gentamicin were prepared by emulsification, 

to be further incorporated in a polyvinyl alcohol gel that is applied on the ocular surface. 

Formulations without LBG showed an initial burst release within the first 6 h, which 

decreased by more than 50% by the addition of 10% LBG.[73] Unfortunately, no further 

studies were reported on this system to allow a larger vision on its potential. 

 

6.6. LBG application in topical drug delivery 

The use of LBG was also described in a formulation for topical application. The authors 

prepared a hydrogel with a LBG/xanthan gum ratio of 1/1, which was used to incorporate 

niosomes.[108] These are non-ionic surfactant vesicles, which offer several advantages over 

conventional liposomes, including higher chemical stability, lower costs and greater 

availability of materials.[109,110] Niosomes were loaded with several distinct drugs, such as 

calcein, ibuprofen and caffeine. The subsequent incorporation of niosomes on the hydrogel 
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provided a protective effect on vesicle integrity and a slow release of the drugs from the 

polysaccharide system up to 50 h.[108] 

 

7. Conclusions 

Excipients have traditionally been included in drug formulations as inert substances whose 

role mainly relies on aiding the manufacturing process. Nevertheless, in the last decades they 

have been increasingly included in dosage forms to fulfill specialized functions aimed at 

improving drug delivery. LBG is being used in biopharmaceutical applications with several 

distinct functions, varying from controlled release excipient to tablet disintegrant. In most 

cases, the polysaccharide is associated with a second material, benefiting from strong 

synergies, and fields of application are varied, comprising oral, buccal and colonic delivery, 

but also ocular and topical applications have been described. A substantial amount of research 

remains to be conducted to unveil the real potential the polysaccharide might possess. 

Considering the available works, it seems to be particularly interesting in the case of 

synergies established with other polysaccharides, namely xanthan gum and carrageenan. 
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Figure captions 

Figure 1. Number of scientific publications published on the topic of “Locust bean gum” as a 

function of publication years. Taken from ISI Web of Knowledge. 

 

Figure 2. Structure of locust bean gum showing a linear polysaccharide (1-4)-β-linked 

backbone of mannose units with single (1-6)-α-D-galactose units attached. Adapted with 

permission from Coviello et al.[26]   

 

Figure 3. Schematic representation of locust bean gum enzymatic degradation. 
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