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Abstract—Depth information using the biological Disparity
Energy Model can be obtained by using a population of complex
cells. This model explicitly involves cell parameters like their
spatial frequency, orientation, binocular phase and position
difference. However, this is a mathematical model. Our brain
does not have access to such parameters, it can only exploit
responses. Therefore, we use a new model for encoding disparity
information implicitly by employing a trained binocular neuronal
population. This model allows to decode disparity information in
a way similar to how our visual system could have developed this
ability, during evolution, in order to accurately estimate disparity
of entire scenes.

Keywords—disparity, population coding, learning, biological
model

I. INTRODUCTION

One of the intriguing functions of our visual cortex is to extract
disparity information from the surrounding environment. This
is done after the lateral geniculate nuclei (LGN), where
information from the left and right retinae are relayed to
the primary area V1, in the cortical hypercolumns [1]. This
is the first cortical processing stage, but disparity extracted
there plays an important role in many other areas devoted
to motor control, from walking around to precise eye-hand
coordination, focus-of-attention, and object segregation plus
recognition with partial occlusions. The development of better
models is important to deepen our insights, but also for many
practical applications, like in robotics where the same issues
arise. In computer vision there are numerous approaches for
stereo vision [2], but only few are biologically motivated. As
for one of the most recent biological models [3], most have
one common aspect: they are based on the widely accepted
Disparity Energy Model (DEM). It was first introduced from
research into the cat’s visual pathways and cortex [4].

Recent research into the composition of disparity energy
neurons [3] has lead to different combinations of DEM sub-
units into an energy complex cell, with different weights and
signs. A common goal is to better explain the disparity-tuning
curves of neurons in the rhesus monkey [5]. The use of
windowed cross-correlation between the left and right eye’s
images to measure disparity could explain some biological
limits of stereopsis [6]: the disparity-gradient limit concerns
the inability to perceive depth when the change in disparity
within a region is too big, and stereoresolution is the inability

to perceive spatial variations in disparity that occur at scales
which are too fine. In the case of uniform-disparity random-
dot stereograms, the DEM model was even able to explain that
neurons tuned to horizontal disparities can also discriminate
vertical disparities [7].

There have been many innovations, but the latest biological
models have been applied to real-world scenes only very
recently [8]. The main reason for this lag is that models
are being tested by specific stimuli, such as random-dot
stereograms or bar and grating patterns, in order to evaluate a
model’s theoretical performance [7], or to prepare psychophys-
ical experiments with minimal random noise [5]. Used test
patterns are far away from real-world and complex images.
The latter require massive signal processing and still keep a
good accuracy. To the best of our knowledge, this paper is one
of the few in which a DEM model is applied to real images.

In our DEM implementation we use two neuronal popula-
tions for obtaining disparities: (1) An encoding population
which consists of a set of neurons tuned to a wide range of
parameters such as horizontal disparities, spatial frequencies
and orientations; this is further explained in Section III-A.
(2) A decoding population, with the same range of param-
eters, for estimating the disparity; this is further explained in
Section III-B. We use an encoding method similar to that
of Read [7], which is based on the DEM model [4], with
proper normalization to yield a local correlation value with
neighborhood weighting [6], [9]. The activity of the encoding
population is subsequently decoded by a separate, higher-level
population, using a template-matching process similar to that
of [7], [10].

Our main contributions are the adaptation of the biologically
plausible DEM model to separate encoding and decoding pop-
ulations, the prior training of these populations, the extraction
of disparity values in entire scenes, and the application to real-
world images, with good results.

II. DISPARITY ENERGY MODEL

In cortical area V1 there are simple, complex and end-stopped
cells (the latter we do not employ here). Monocular receptive
fields (RFs) of simple cells can be modeled by Gabor wavelets
[11], [12]. Their parameters specify the preferred orientation
θ, spatial frequency f , receptive field size σ and spatial phase
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φ. Binocular cells can be based on pairs of simple cells with
different RFs, such that they can signal disparity if a same
but shifted pattern is present in the RFs. However, binocular
simple cells do not reliably signal disparity because they are
also sensitive to the contrast and position of the pattern within
their fields: disparity-tuning curves of simple cells as measured
with bright and dark bars, which have different Fourier phases,
are very different [4]. The problem is that such tuning curves
strongly depend on the Fourier phase of the pattern [11]: any
change to a pattern other than an amplitude scaling (average
brightness and contrast) alters the Fourier phase φ, which in
turn affects disparity tuning. According to [11], if RS is the
response of a pair of simple cells with maximum amplitude
ρ, ∆x is a spatial shift and ∆φ = φL − φR, then

RS ≈ 2ρ cos

(
φ+

∆φ

2
− πf∆x

)
cos

(
∆φ

2
+ πf∆x

)
.

(1)
By contrast, complex cells do not have separate excitatory and
inhibitory subregions within their receptive fields, so they are
not sensitive to local phase (but still to position, orientation
and size of a pattern). A phase-independent binocular complex
cell can be made from two simple cells s1 and s2 provided
that their phase difference |φs1 − φs2| = π/2, i.e., they are
in quadrature. The response of a complex cell is obtained
by summing the squared responses of the two simple cells.
According to [11] this yields the complex cell’s response

RC ≈ 4ρ2 cos2
(

∆φ

2
+ πf∆x

)
. (2)

Complex cells are insensitive to contrast polarity within their
RF and only broadly selective to stimulus position [4]. They
have also been found to be sensitive to fine binocular disparity,
and only complex cells respond to dynamic random-dot stere-
ograms [13]. This class of stereograms maintains a constant
disparity over time but the actual arrangement of the dots,
and hence the Fourier phase, changes randomly from frame
to frame. As simple cells are sensitive to the phase, they lose
their disparity tuning as a result of averaging over the random
phases of the dot patterns. Complex cells also have a much
finer disparity selectivity than what would be predicted by the
size of their RFs [4]. An important advantage of binocular
complex cells is that they respond differently to inverted local
pattern polarities at their preferred disparity, in contrast to
monocular complex cells [4]. For this reason we first employ
binocular simple cells and their responses are then combined
by binocular complex cells.

We could estimate the preferred disparity Dpref of a binoc-
ular complex cell from its RF properties [11]: the phase
difference ∆φ, spatial frequency f , orientation θ and the RF’s
position difference ∆x. This yields

Dpref ≈
∆φ

2πf sin θ
+ ∆x, (3)

which means that the cell’s response is maximal when the
RF is stimulated by the preferred disparity. Unfortunately the

brain cannot explicitly obtain Dpref, as it has no access to such
intrinsic cell parameters, only cell responses.

III. METHODS

A. Disparity encoding population

Similar to real binocular simple cells with both position and
phase disparity [5], these cells are modeled by using two
monocular RFs with the same size, orientation and spatial
frequency, but with different phases φ and positions on the
retinae ∆x; see Eqns 4 and 5 and the detailed explanation
in the next paragraph. During the training phase, all cells are
located at the center of the fovea, i.e., the center of the RFs
is at position (0, 0)). Since we use cells tuned to different
orientations, the non-vertical ones will have horizontal and
vertical phase disparity components. This problem is solved by
introducing, for each cell orientation, a vertical position shift
which compensates the phase component: ∆xpos = ∆xenc −
∆φ · (cos(θ)/2πf) and ∆ypos = ∆yenc −∆φ · (sin(θ)/2πf),
with ∆xenc and ∆yenc being the preferred horizontal and
vertical disparities and subscript “enc” meaning encoding. We
note that ∆yenc = 0 for all cells, as the vertical disparity of
the cells in the fovea is expected to be zero, although it can
be non-zero at other retinotopic positions [14].

The left (ρL) and right (ρR) RFs of the binocular simple
cell are defined by

ρL(x, y; θ, f, φ,∆φ,∆xenc) =

exp

(
−x
′2
L + y′2L
2σ2

)
cos

(
2πfx′L + φ+

∆φ

2

)
(4)

ρR(x, y; θ, f, φ,∆φ,∆xenc) =

exp

(
−x
′2
R + y′2R
2σ2

)
cos

(
2πfx′R + φ− ∆φ

2

)
, (5)

where x′ and y′ are the offset coordinates relative to the center
(0, 0) and rotated to the cell’s preferred orientation:

x′L,R = +

(
x±

∆xpos

2

)
cos θ +

(
y ±

∆ypos

2

)
sin θ (6)

y′L,R = −
(
x±

∆xpos

2

)
sin θ +

(
y ±

∆ypos

2

)
cos θ, (7)

with + signs for x′L and y′L, and − signs for x′R and y′R, i.e.,
for crossed offsets.

For the encoding simple cells we selected a population set
similar to [7], i.e.
• Horizontal position disparity ∆xenc: 60 values {0, ..., 59}

in steps of 1 pixel.
• Orientation θ: 8 values {−67.5◦, −45◦, −22.5◦, 0◦,

22.5◦, 45◦, 67.5◦, 90◦}, where 90◦ is horizontal and 0◦

is vertical. Instead of applying only a few orientations,
empirical tests showed that using more orientations yields
better disparity estimates.

• Receptive field size σ: 3 values {2.8284, 2.0, 1.4142}.
These are scaled by a factor of

√
2, as for the frequency

(see below). Empirical results showed that bigger sizes
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lead to too much blur at border regions, and smaller sizes
introduce too much error in the case of the tested images.

• Spatial frequency f : 3 values {0.1768, 0.250, 0.3536}
cycles per pixel. These values are related to RF size by
ωσ = π or f = 1/2σ. The frequency bandwidth at all
scales was 1.14 octaves.

• Phase φ: 2 values {0, π/2}. Only two values are needed,
π/2 apart, to build a phase-invariant complex cell from
two simple cells in quadrature [4].

• Phase disparity ∆φ: 1 value {0}, implying no additional
phase difference between the left and right RFs. Empirical
tests showed that the use of phase differences (odd-
symmetric disparity tuning curves) did not add significant
information and sometimes even degraded the quality of
disparity estimates; see also [3] and [5].

In total this selection yields a population of 60× 8× 3× 1 =
1440 binocular complex cells (2880 simple cells).

1) Stereo energy model: The DEM model employs pairs
of binocular simple cells in quadrature in order to construct
phase-invariant complex cells. The responses of simple cells
are obtained by the inner product (correlation instead of
convolution) of each RF, left and right, and the corresponding
image, left or right:

vL,R(θ, f, φ,∆φ,∆xenc) =∫∫
ρL,R(x, y; θ, f, φ,∆φ,∆xenc) · IL,R(x, y) dxdy, (8)

where I(x, y) is the input image with the average of all pixel
values normalized to zero. In the standard energy model [4],
the response of a binocular simple cell is S = v2L+v2R+2vLvR,
which can be split into the monocular term M = v2L+v2R and
the binocular term B = 2vLvR.

For retrieving the local stereo energy E of a DEM complex
cell which is invariant to the phases of local patterns in the
input, it is necessary to sum the responses of binocular simple
cells tuned to different phases,

E(θ, f,∆φ,∆xenc) =∑
φ1→n

[
M(θ, f, φ,∆φ,∆xenc) +B(θ, f, φ,∆φ,∆xenc)

]
. (9)

This stereo energy E represents something similar to the
cross-correlation between the filtered and windowed images
[6]. However, the value of E cannot be used directly as a
disparity estimate, since its value not only reflects binocular
energy (stimulus disparity between the left and right RFs), but
also monocular energy (stimulus contrast inside each RF). This
problem is solved by spatial pooling and effective binocular
correlation as described next.

2) Spatial pooling: The RFs of real complex cells are
larger than the modeled ones [11]. We exploit this property by
averaging both terms (M and B), individually, over neighbor-
ing complex cells with overlapping RFs by using a Gaussian
weighting function,

Gsp = k exp
(
−(x2 + y2)/2σ2

)
, (10)

with k a normalizing constant and σ the RF size. This yields
Msp and Bsp. This pooling operation involves simple grouping
cells with dendritic field size defined by σ. This step stabilizes
both values in case of real-world images with noise and non-
uniform disparity ranges.

3) Effective binocular correlation: Our template matching
is based on [7], using normalized correlation detectors [6],
[9]. Based on the DEM, these detectors are normalized such
that their response ranges between +1, when the left and
right images are identical, and −1, when the left image is an
inverted-contrast version of the right one. This is achieved by
dividing the pooled binocular terms by the pooled monocular
terms, after which C is also subjected to spatial pooling,
similar as in 10, for robustness:

C(θ, f,∆φ,∆xenc) =

∑
φ1→n

Bsp(θ, f, φ,∆φ,∆xenc)∑
φ1→n

Msp(θ, f, φ,∆φ,∆xenc)
.

(11)
This yields Csp(θ, f,∆φ,∆xenc).

Physiologically, this can be computed by combining the
outputs of two energy neurons with phase disparities π apart.
If such neurons are identical except for their phase disparities,
then the first one computes (M+B) and the second (M−B).
Both M and B are then available from the sum and difference
of the two responses.

The quantity C relates to the correlation between local
and filtered regions of the left and right eye’s images [15],
and takes values in the range of [−1, 1]. The population of
binocular correlation detectors C(θ, f,∆φ,∆xenc) is used for
the initial encoding of disparity within the model. Recall that
there are 10 different orientations, 6 different frequencies, and
60 different horizontal disparities, so the population consists
of 1440 different correlation detectors.

Normalizing the stereo energy E to obtain the effective
binocular correlation C removes the confounding effect of
monocular contrast. This allows to extract stimulus disparity
from peaks in the population’s activity code. C has the useful
property that it exactly equals 1 when the stimulus disparity
matches the cell’s preferred disparity. This holds for any pair
of stereo images, irrespective of their spectral content etc., pro-
vided that the left eye’s image is related to the right eye’s one
by exactly the same offset as that of the left and right receptive
fields. If so, vL(θ, f, φ,∆φ,∆xenc) = vR(θ, f, φ,∆φ,∆xenc)
for all θ, f, φ,∆φ and ∆xenc. Consequently, 2vLvR is the same
as v2L + v2R, and thus C = 1.

4) Model training: In this step we generate many examples
of the population code to stimuli with known disparity. For this
purpose we use random-dot stereograms with uniform dispar-
ity, generated by random values with a Gaussian distribution
with zero mean and unit s.d., for a horizontal offset (∆x)
between the left and right images. The gaps are filled by using
randomly drawn pixels; see Fig. 1.

We trained the model to horizontal stimulation disparities
∆xstim ranging from 0 to 59 pixels with a stepsize of 1
pixel. For each disparity we generated 1000 random-dot pairs.
Hence, training involved 60,000 stereograms.
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Fig. 1. Example of a 15×15 random-dot stereogram used in the training
phase, with a uniform 2-pixel shift and thus horizontal disparity ∆x = 2.

For each stereogram, the effective binocular correlation as
described by Eq. (11) was computed. This parameter was then
converted to a mean spike count, and averaged over the 1000
different stereograms. Averaging over random images serves
to eliminate stimulus-dependent noise. This yields

W (θ, f,∆φ,∆xenc; ∆xstim) =

〈U [1 + Csp(θ, f,∆φ,∆xenc; ∆xstim)]〉 . (12)

Hence, W is the number of spikes produced by neurons tuned
to orientation θ, frequency f , phase disparity ∆φ and hori-
zontal position disparity ∆xenc, averaged over all 1000 stimuli
with the same disparity ∆xstim. In total, the trained population
code consists of 1440 responses times 60 disparities. This
training process, which is the core of the method, can be seen
as a replication of visual learning in early childhood, assuming
that basic neural circuitry is the result of evolution. Instead of
training the population code at only one position, the center
of the retina, it could be applied at all retinal positions with
similar results.

B. Disparity decoding population

After training the encoding population, it is then applied to all
pixel positions (neighborhoods) of real stereograms, excluding
the border region. The disparity at each position is estimated
by comparing the population code at that position with the
learned codes. The disparity assigned to the position is the
disparity of the best matching code [10]. Local disparity
estimation is a simple matching process [10]: the input code
of 1440 responses is matched or correlated with the 60
sets of 1440 trained codes. This is achieved by a hierarchy
of subtraction and summation cells, the final output being
selected by the winner-takes-all strategy. In reality this must be
very fast, probably involving associative memory which can
also be based on a training process [16].

Let Rtest(θ, f,∆φ,∆xenc;x, y) be the number of spikes
fired by the encoding population at pixel position (x, y)
of the test image. Remember that the population includes
cells tuned to 8 orientations, 3 frequencies, 1 phase dispar-
ity and 60 horizontal disparities, so Rtest is a set of 1440
spike counts at each image position. The local disparity is
estimated by comparing Rtest(θ, f,∆φ,∆xenc;x, y) with the
average spike counts W after training to the 60 stimulus
disparities. For each possible disparity (∆xdec;x, y), where
subscript “dec” means decoding, the correlation coefficient is
calculated: r(∆xdec;x, y) is the correlation between the 1440

spike counts at position (x, y), Rtest(θ, f,∆φ,∆xenc;x, y), and
the 1440 × 60 spike counts of W (θ, f,∆φ,∆xenc; ∆xdec),
so r(∆xdec;x, y) = Corr [(Rtest(ξ;x, y),W (ξ; ∆xdec)], where
ξ = {θ, f,∆φ,∆xenc}.

Mathematically, in the implemented matching process, the
function Corr(a, b) resembles the Pearson product-moment
correlation coefficient between a and b:

r(∆xdec;x, y) =

∑[〈
R

(x,y)
test W

〉
−
〈
R

(x,y)
test

〉
〈W 〉

]
σ
R

(x,y)
test
· σW

, (13)

where the sum, averages 〈〉 and standard deviations σ are taken
over all ξ for each ∆xdec and (x, y). To avoid the problem
of disparity in anti-correlated stereograms [17], we set any
negative correlations to zero,

P (∆xdec;x, y) = br(∆xdec;x, y)c (14)

using halfwave rectification: bxc = x for x > 0 and zero
otherwise. Finally, the disparity assigned to position (x, y) is
the value of ∆xdec with the maximum P (∆xdec;x, y).

We emphasize that no further processing is applied, i.e., the
pixels’ disparity values are not corrected using any continuity
constraints in homogenious regions in combination with the
detection of region boundaries.

IV. RESULTS

We tested our method on various datasets, including the widely
used stereograms tsukuba, venus, teddy and cones of the
Middlebury stereo evaluation set [18], [19], also aloe and
cloth3 of the 2006 dataset, and dolls, moebius and reindeer
of the 2005 dataset [20]. Fig. 2 shows all image pairs along
with their groundtruth and our result.

The algorithm obtained good results in the Middlebury
evaluation test (see Fig. 3) [18], [19]. Best results were
obtained for images without many small details. This is related
to the size of the RFs in the cell population; smaller RFs are
required to resolve smallest details.

Fig. 3 shows our result in part of the ranked results of other
methods (which can include sophisticated postprocessing).
This table was copied from the Middlebury online evaluation
webpage. We applied the smallest available error threshold to
emphasize that a biologically-inspired algorithm can achieve
competitive results. Overall, we achieved a good position in the
ranking table: rank 77.2 between 7.8 (best) and 108.1 (worst).
Almost all methods ranked are from computer vision, most
including postprocessing, which is not (yet) applied in our
method.

V. DISCUSSION AND CONCLUSIONS

We presented an algorithm for disparity estimation based on
the Disparity Energy Model. Unlike other models, it does
not rely on filter parameters, it only employs filter responses.
Therefore, the model must be trained, but only once. First, a
population of binocular complex cells based on simple cells
is defined. This population is trained by using random-dot
stereograms. It is then applied at all image positions in order to
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compare its activation code with the learned activation code,
resulting in local disparity estimates. Results obtained with
the Middlebury evaluation database are quite good, taking into
account that no sophisticated postprocessing has been applied.
Our results are already better than those obtained by other

promising bio-inspired algorithms [8].
The number of filters involved is rather large: 2880 simple

cells on the basis of which 1440 complex cells are constructed,
all this at every retinotopic (image) position. In reality, our
visual cortex counts many more cells in area V1. However, our

(1) Tsukuba – Left Img (2) Tsukuba – Right Img (3) Groundtruth (0-15px) (4) Our result (5) Bad pixels – absolute
disparity error > 0.5

(6) Signed disparity error

(7) Venus – LI (8) Venus – RI (9) Gnd (0-19) (10) Result (11) Teddy – LI (12) Teddy – RI (13) Groundtruth (14) Result

(15) Cones – LI (16) Cones – RI (17) Groundtruth (18) Result (19) Aloe – LI (20) Aloe – RI (21) Groundtruth (22) Result

(23) Cloth3 – LI (24) Cloth3 – RI (25) Groundtruth (26) Result (27) Dolls – LI (28) Dolls – RI (29) Groundtruth (30) Result

(31) Moebius – LI (32) Moebius – RI (33) Groundtruth (34) Result (35) Reindeer – LI (36) Reindeer – RI (37) Groundtruth (38) Result

Fig. 2. Results obtained with the Middlebury stereo dataset [18], [19]. The groundtruth images mention in parenthesis the complete range of disparity values
if it differs from the default of 0-59 pixels.

Fig. 3. Middlebury evaluation dataset results [18], [19], with the smallest error threshold (0.5), ordered by average ranking. The table was extracted from
the online evaluation webpage [21]. Obviously, the line “your method” should read “our method.”
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model does not introduce any new filters or many other cells,
it only exploits the cells which are already available: pairs
of simple cells at different positions are only wired together,
and they also serve other purposes, like multi-scale line and
edge coding, necessary for object recognition and brightness
perception [12]. In addition, disparity, as for optical flow, is
very important for object segregation, supplementing surface
features like color and texture.

Interestingly, the fact that disparity is extracted in the
hypercolumns of V1, where left and right projections are close
together and where also lines and edges are coded, suggests
that our visual system may attribute depth to detected lines and
edges already at that level. Hence, our brain could use a sort
of wireframe representation as used in computer graphics to
model solid objects, and employ this for 3D object recognition.
Furthermore, postprocessing of local disparity estimates can
be based on edge information: edges between homogeneous
regions are often caused by occlusions, exactly where disparity
is not continuous and detail is visible in one projection but
not in the other. Therefore, disparity estimation astride edges
can be steered by detected edges, using phase tuning, and in
homogeneous regions it can be smoothed.

Disparity training is applied to the encoding population
in order to prepare the matching process, but the decoding
population is a fixed neural network. It involves subtractive
and divisive normalization in combination with halfwave rec-
tification, for which plausible neuronal mechanisms have been
proposed [7]. However, the decoding population could also
be trained, even dynamically adapting itself to local image
content by neural plasticity.

Recent research into the composition of disparity energy
neurons [3], [5] suggests the use of a different combination
of DEM subunits in an energy complex cell, with different
weight and sign. This better explains disparity tuning curves
of neurons in rhesus monkeys. It has been shown that the
use of color information can enhance disparity maps, but
with little biological background [22]. It would be interesting
to train our model to color stereograms and test if results
improve, especially in regions without textures where often
wrong disparity estimates are generated because binocular RFs
may have similar responses to a wide range of disparities; see
e.g. the tsukuba image in Fig. 2 (4, the top-right corner). Also,
disparity could be combined with color conspicuity around
border regions [23] to better define disparity transitions.

Finally, coarse-to-fine-scale disparity estimation is a pro-
cess which also deserves further attention, as its application
has shown good results [11], with a very strong biological
foundation [12].
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