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Hans du Buf, João Rodrigues  

Image Morphology: From Perception to Rendering 
 

Abstract 

A complete image ontology can be obtained by formalising a 
top-down meta-language which must address all possibilities, 
from global message and composition to objects and local sur-
face properties. In computer vision, where one general goal is 
image understanding, one starts with a bunch of pixels. The 
latter is a typical example of bottom-up processing, from pixels 
to objects to layout and gist. Both top-down and bottom-up ap-
proaches are possible, but can these be uni�ed? As it turns out, 
the answer is yes, because our visual system does it all the 
time. This follows from our progress in developing models of 
the visual system, and using the models in re-creating an input 
image in the form of a painting. 
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1 Introduction  

A trained painter is able to look at a scene and almost instantaneously take decisions con-
cerning composition (spatial and semantic relations between objects), abstraction (which 
objects to paint and the level of detail) and techniques (colour palette, brushes and stroke 
types). Painting can be done very fast (wet-in-wet) when mixing colours on the canvas, or 
in different sessions (wet-on-dry) for applying new layers. Most painters who apply tradi-
tional styles will work from background to foreground, even with the possibility to start the 
background with dark colours and �nish by high-lighting important regions using bright col-
ours (clair-obscur or chiaroscuro). If it were possible to take a look into the brain of paint-
ers and unravel all the processes that are going on, we could develop a sound theory. We 
wrote “could” instead of “can” because of complications that can be expected: every 
painter has developed an own style, and it is likely that a speci�c style is related to a 
speci�c way the “input image” has been or is being analysed.  

Unfortunately, we cannot take a look into van Gogh’s head and we do not know the exact 
landscapes that he saw. We can only analyse the paintings that he produced. Functional 
magnetic-resonance imaging (fMRI), which is a relatively new technology for analysing ac-
tivities in brain areas, is not yet mature enough to be applied systematically. Besides, cur-
rent fMRI technology lacks the resolution to analyse brain activity down to the cell level, 
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i.e., only bigger regions and pathways between regions can be obtained. For the moment 
there are different and complementary solutions: (a) study composition and abstraction us-
ing methods employed in empirical aesthetics, (b) study speci�c visual effects such as col-
our and brightness using psychophysics, and (c) study available data concerning cells, 
layers and pathways using neurophysiology, hoping that basic processes in the brains of 
humans and other primates are the same or at least similar.  

Here we will concentrate on visual perception and the visual cortex, without going too 
much into detail. One of the goals of the Vision Laboratory is to develop models of the vis-
ual cortex for explaining brightness effects and illusions, now also object categorisation 
and recognition. A new development is to apply low-level processing to non-photorealistic 
rendering (NPR), i.e., painterly rendering using discrete brush strokes. This combines two 
developments: a standard observer and a standard painter, with a user interface that al-
lows to select, e.g., brush and stroke types for in�uencing the painting process and there-
fore the style of the painting.  

Below we �rst present a general description of the visual system and speci�c processes, 
including layers, pathways and cells, in the cortex. Then we illustrate how the cortical im-
age representation can be used for NPR. We conclude with a Discussion in which we re-
turn to image ontology.  

2 The visual system  

The goal of our visual system, but in combination with the other senses, is to recognise 
objects, to establish a spatial layout of our environment, and to prepare for actions, for ex-
ample looking at a computer monitor and keyboard when typing a text. All this is done 
automatically and very fast. In addition, the image that we perceive looks perfect for those 
without de�ciencies—except for vision scientists familiar with illusions. However, how all 
this is done is still a mystery. Despite the tremendous progress in research during the past 
decades, there still remain many open questions although our view of basic processes has 
become clearer. A few aspects are the following:  

2.1 The retina  

The projected image on the retina is pre-processed there: rods and cones, the basic pho-
toreceptors, are connected by horizontal cells with excitative and inhibitory synapses, a 
�rst indication for spatial (or spatio-temporal) �ltering. They are also connected to bipolar 
cells which connect to amacrine and ganglion cells. Already 12 types of bipolar cells have 
been identi�ed, with at least 4 types of ON and OFF cone-connected cells. Cones play a 
role in daylight colour vision whereas rods are for black-white vision when the light level is 
low. ON and OFF refer to light increments and decrements on a background, for example 
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white and black spots or bars on a grey background. Amacrine cells are inhibitory in-
terneurons of ganglion cells, and as many as 50 morphological types exist. At least 10–15 
types of retinal ganglion cells have been identi�ed. These code ON and OFF signals for 
spatial, temporal, brightness and colour processing, and their outputs, the axons, connect 
to the lateral geniculate nucleus (LGN) and other brain areas (the LGN is a relay station 
between the retina and the visual cortex, input area V1; see below). For further details we 
refer to Wässle (2004).  

Most important here is that receptive �elds of ON and OFF retinal ganglion cells can be 
seen as isotropic spatial bandpass �lters, i.e., without a preferred orientation and therefore 
with a circularly-symmetric point spread function, often modelled by means of a “Mexican 
hat” function with a positive centre and a negative surround. Such �lters only respond to 
transitions like dark-bright edges, and responses in homogeneous regions are zero or very 
small. The size of the receptive �elds is a function of the retinal eccentricity: the �elds are 
small in the centre (fovea) and they are increasingly bigger towards the periphery. Accord-
ing to another theory (!), big �elds exist over the entire retina, medium �elds inside a circu-
lar region around the fovea, and the smallest �elds are only found in the centre of the fo-
vea. Related to the �eld size is the notion of scale representation: at the point that we 
�xate �ne-scale information is available, for example for resolving printed characters of a 
text we are reading, whereas the surround is blurred because only medium- and coarse-
scale information is available there. The notion of scale analysis or scale representation 
will become clearer in Section 3.  

Also important is the fact that one very speci�c type of retinal ganglion cell is not con-
nected, directly nor indirectly, to rods and cones (Berson 2003); their own dendrites act as 
photoreceptors, they have very big receptive �elds, and they connect to central brain areas 
for controlling the circadian clock (day-night rhythm) and, via a feedback loop, the eye’s iris 
(pupil size). These special cells also connect to at least the ventral area of the LGN 
(LGNv); hence, in principle they can play a role in brightness perception, for obtaining a 
global background brightness on which lines and edges etc. are projected. This is still 
speculative and far from trivial, but we need to keep in mind that (a) pure bandpass �lters, 
both retinal ganglion cells and cortical simple cells (see below), cannot convey a global 
(lowpass) background brightness level, (b) colour information is related to brightness and 
processed in the cytochrome-oxidase (CO) blobs embedded in the cortical hypercolumns, 
colour being more related to homogeneous image (object) regions instead of to lines and 
edges extracted on the basis of simple cells etc. in the hypercolumns and not in the CO 
blobs, (c) colour constancy, an effect that leads to the same perception of object colours 
when the colour of the light source (illumination spectrum) changes, is intrinsically related 
to brightness, i.e., in a more global sense rather than object edges etc., and (d) very �ne 
dot patterns, for example a random pattern composed of tiny black dots on a white kitchen 
table, are dif�cult to code with normal retinal ganglion cells or cortical simple cells (Zucker 
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& Hummel 1986; Allman & Zucker 1990). Colour and dot-pattern processing suggest that 
there are more “pathways” from the retina to the visual cortex, although the availability of a 
cone-sampled image in the cortex is speculative (blindsight, the ability of a blind person to 
sense the presence of a light source or even a moving object, points at pathways that do 
not lead, at least directly, to area V1 in the cortex). Most of these aspects are subject to 
research. An amazing fact is that, in each eye, the information of 125 million rods and 
cones is coded by means of about one million retinal ganglion cells. The compression rate 
of 0.8% is impossible to achieve by current image and video compression standards like 
JPEG and MPEG if image quality may not deteriorate.  

2.2 The LGN  

The traditional view of the LGN is a passive relay station between the retina and V1, the 
cortical input layer that connects to higher areas V2, V4 etc. The more recent view is that 
the LGN plays an active role in visual attention: perhaps only 10% of its input stems from 
the retina and all other input it receives by means of feedback loops from inferior-temporal 
(IT) and prefrontal (PF) cortex, where short-term memory is thought to reside, via V4, V2 
and V1. This implies that the magno and parvo subsystems, also called the ‘what’ and 
‘where’ systems or pathways in ventral and dorsal areas throughout the visual cortex, al-
ready exist at LGN level: LGNv and LGNd (Kastner et al. 2006). The names ‘what’ and 
‘where’ stem from the functionality of the system in testing hypotheses in the interpretation 
of the coded input information, i.e., what there is (object categorisation and recognition) 
and where it is (Focus-of-Attention and eye �xations). However, it should be stressed that 
the LGN is not involved in object recognition. Feedback from the visual cortex only modu-
lates information passing through the LGN.  

2.3 The visual cortex  

The ‘what’ and ‘where’ pathways lead to V1 and via V2 and V4 to higher areas IT and PP 
(posterior-parietal). In the computational model by Deco and Rolls (2004), information in 
the ventral ‘what’ system propagates, bottom-up, from V1 via V2 and V4 to IT cortex. The 
dorsal ‘where’ system connects V1 and V2 through MT (medial-temporal) to PP. Both sys-
tems are controlled, top-down, by attention and short-term memory with object representa-
tions in PF cortex, i.e., a ‘what’ component from PF46v to IT and a ‘where’ component 
from PF46d to PP. Deco and Rolls showed that the bottom-up (visual input code) and top-
down (expected object and position) data streams are necessary for obtaining size, rota-
tion and translation invariance in object detection and recognition: object templates in 
memory are thought to represent a few canonical object views, probably normalised (if we 
close our eyes and imagine a few objects like a cup, a bottle, a cat and a house, one after 
the other, they all have more or less the same size). Invariance is obtained by dynamic 
routing in V2 and V4 etc., such that cells at higher levels (a) have bigger receptive �elds 
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until they cover the entire visual �eld, (b) perform more complex tasks, for example a face 
detector at a high level can combine outputs of eye and mouth detectors at a lower level, 
the eye and mouth detectors combining feature detectors at yet lower levels, and (c) can 
control attention and adapt/optimise local detection processes at the lower levels. Although 
Deco and Rolls (2004) explored attention and invariance, they did not apply any functional 
feature extractions, i.e., they only used simple cells in V1 instead of line, edge, keypoint 
and grating cells (see Section 3, which focuses on processing in area V1). A nice example 
of feature extraction is the multi-scale keypoint representation in V1 and beyond for face 
detection: the use of keypoints (singularities like line and edge crossings and end points) 
for detecting eyes etc. until a face is detected, see Rodrigues & du Buf (2006c). Such a 
hierarchical architecture can explain the well-known Thatcher illusion: the vertically mir-
rored picture with normal mouth and eye regions looks �ne but when it is rotated it looks 
terrible. Explanation: mouth and eye detectors have no problem with the friendly facial ex-
pression and a face detector groups outputs of mouth and eye detectors; the mouth can 
be above or beneath the eyes, for the face detector this is the same when it only groups 
outputs of the other detectors.  

2.4 Information propagation  

Although we can detect and recognise objects very fast, almost instantaneously as it 
seems, processing in the different cortical areas and the information propagation, both bot-
tom-up and top-down, take time. When seeing an image for a split second, we are able to 
extract the gist and detect speci�c objects. What happens is that the �ashed image enters 
the system and, after the computer screen goes blank again, the information propagates 
through the different levels (the same occurs between �xations, during saccadic eye 
movements when the image is not stable and the input is inhibited). Typically, objects are 
recognised within 150–200 ms, and �rst category-speci�c activation of PF cortex starts af-
ter about 100 ms (Bar 2004). In addition, instead of all information propagating at the same 
time, or in parallel, it is known that coarse-scale information propagates faster than �ne-
scale information to IT cortex (Bar et al. 2006). This suggests that object segregation, 
categorisation and recognition are sequential but probably overlapping processes: the sys-
tem starts with coarse scales for a �rst test to select possible object templates, then em-
ploys medium scales in order to re�ne the categorisation, until �nest scales are available 
for �nal con�rmation of the recognition result. For another view of the cortical architecture 
we refer to Rensink (2000). Rensink explains the fact that the “bandwidth” of the visual 
system is limited: only one object can be attended at any time, although the presence of 
multiple objects must be stored in what he calls layout and gist subsystems. He also ex-
plains that our brain does not need to store a complete map of our entire environment; the 
(normally) stable environment we are looking at can be seen as external memory. Indeed, 
when we close our eyes we are very poor in naming colours and other aspects of objects 



    103 

that are on the table in front of us. In vision science a related effect is called change blind-
ness: when looking sequentially at two images of a house, the one with a chimney to the 
left and the other with the same chimney but moved to the right, only few people will notice 
the difference. Apparently, the house looks normal (gist), the position of the chimney is ir-
relevant (layout), and the system can spend its limited “bandwidth” on more important 
tasks, until we are told to look for differences and we start screening consciously different 
parts of the two images.  

Above we did not address other issues like motion and disparity. In the next section we will 
focus on feature extractions in V1, by means of specialised cells. But some general ques-
tions remain: if things are quite complicated, with still many gaps in our knowledge, how is 
the image created that we perceive? Where in our brain is it created? Well, nobody knows 
exactly, but researchers who are developing, e.g., computational brightness models 
should have an idea. If we require that a brightness model should at least be able to pre-
dict Mach bands, the bright and dark bands that are seen at ramp edges (see Fig. 1), the 
number of published models is surprisingly small (Pessoa 1996).  

If, in addition, we require that a model that can predict Mach bands should also be able to 
predict most of all known brightness illusions like brightness induction, with the two oppo-
site effects of simultaneous brightness contrast and assimilation (see Fig. 2), the number 
of models is even smaller. Our own model was �rst tested on 1D patterns (du Buf 1994; du 
Buf & Fischer 1995), but a 2D version has already been tested and will soon be submitted 
for publication. It is based on a speci�c philosophy that answers the two questions posed 
above.  

 

Figure 1: Both narrow and broad but linear transitions between dark and bright regions 
lead to the perception of Mach bands, a dark band to the left and a bright one to the 

right in both images. This illusion is explained in the text and in Figure 4 
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3 Feature extractions in V1 and brightness perception  

V1 is the input layer of the visual cortex in both left and right hemispheres of the brain. It is 
organised in so-called cortical hypercolumns, with neighbouring left-right regions which re-
ceive input—via the optic chiasm and one of the two LGNs—from the left and right eyes, 
with small “islands,” the CO blobs. In the hypercolumns there are simple, complex and 
end-stopped cells. Simple and complex cells are thought to serve line and edge extraction, 
whereas end-stopped cells respond to singularities (line/edge crossings, vertices, end 
points). There are many cells tuned to different scales, i.e., with receptive �elds that range 
from very small to very big. If we penetrate the surface of the cortex perpendicularly, we 
�nd cells tuned to different orientations. Many cells are also disparity-tuned, which indi-
cates that stereo processing starts in V1, if not already in the LGN. It is likely that stereo 
processing involves simple cells with non-zero phase characteristics (Ohzawa et al. 1997; 
Read & Cumming 2006).  

 

Figure 2: Top: two examples of brightness induction, simultaneous brightness con-
trast (left) and assimilation (right). In both images the grey squares and the bars 

are of the same intensity physically, but there is a big difference in our brightness 
interpretation. Bottom: model predictions show correct effects 
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V1 is composed of at least nine major layers, but the processing in those layers is not yet 
well understood. For nice overviews see Hubel (1995) and Schmolesky (2000).1 Apart 
from simple, complex and end-stopped cells there also are bar and grating cells. These 
are specialised for extracting aperiodic bars and periodic gratings. In contrast to simple 
and complex cells, which can be seen as linear �lters because they respond to all pat-
terns, bar and grating cells are highly nonlinear: a bar cell does not respond to bright or 
dark bars in a periodic grating and a grating cell does not respond to isolated bars; see du 
Buf (2006) for a computational model of these cells and texture coding. There also are 
cells that respond to illusory contours, e.g., gaps in edges, for example caused by occlud-
ing objects like tree branches in front of other branches (von der Heydt et al. 1992; Heitger 
et al. 1998). Without doubt, there remain cells with other speci�c functions that will be dis-
covered in the near future.  

The tuning of cells to different frequencies (scales), orientations and disparities, together 
with the existence of, e.g., bar cells, points at a multi-scale image representation: lines, 
edges, keypoints, gratings etc. It is even possible that disparity is attributed to extracted 
lines and edges, i.e., in principle it is possible to construct a 3D “wireframe” model of ob-
jects, like the solid models used in computer graphics, but this is still speculative. How-
ever, it is likely that there are at least three (interconnected) data streams within the ‘what’ 
and ‘where’ streams:  

(1) The multi-scale line/edge representation serves object segregation, categorisation and 
recognition, with coarse-to-�ne-scale processing, the latter also being applied to disparity 
in order to solve the correspondence problem. We may assume that this stream is respon-
sible for line/edge-related brightness perception (see below).  

(2) The multi-scale keypoint representation serves Focus-of-Attention (FoA), a process 
that directs our eyes—and mental attention—to points with a certain complexity: it does 
not make much sense to �xate points in homogeneous image regions where there are no 
structures to be analysed. In combination with motion and other cues, like colour contrast, 
this stream could be the basic cornerstone of the ‘where’ stream (Itti & Koch 2001; Rodri-
gues & du Buf 2006c).  

(3) Colour and texture are surface properties of objects, normally in homogeneous regions 
but also with global modulations like shading due to light sources (shape-from-shading) 
and/or the shape of 3D objects (shape-from-texture). This shape information complements 
disparity information. Since lines and edges are 1D transitions (1D singularities; keypoints 
are 2D singularities) without colour, colour is supposed to be “sampled” and represented in 
the CO blobs (but see below!).  

                                                 
1 cf. http://webvision.med.utah.edu/VisualCortex.html . 
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This is an over-simpli�cation of course, because FoA in textured regions can direct atten-
tion for scrutinising detail, i.e., a conscious action that may complement an unconscious 
process like automatic texture segregation, and global modulations (shape-from-X) can 
invoke different analyses. It is therefore important to stay focused on the main themes: ba-
sic processing serves (a) object structure, (b) surface structure, and (c) scene structure. 
Coming back to brightness processing, our model was conceived from three rather sim-
ple—not trivial—observations that are not so easy to explain to non-specialists:  

(1) Simple cells are often modelled by complex Gabor (wavelet) functions, or quadrature 
�lters with a real cosine and an imaginary sine component, both with a Gaussian envelope 
(see Fig. 3 (left), and du Buf (1993)). Such �lters have a bandpass characteristic: the inte-
gral over the sine component is zero and the integral over the cosine component is very 
small or residual. Wavelets are also being used in image coding: the use of a complete set 
of bandpass �lters tuned to all frequencies and orientations, plus one isotropic lowpass 
�lter, which sum up to an allpass �lter (a linear �lter that passes all frequency compo-
nents), allows to reconstruct the input image. Therefore, in principle the brain could use 
the same strategy: sum the activities of all simple cells plus one “lowpass channel,” for ex-
ample from the special retinal ganglion cells with photoreceptive dendritic �elds, if avail-
able in the CO blobs, into a retinotopic projection map in some neural layer. However, this 
leads to a paradox: it would be necessary to construct “yet another observer” of this map 
in our brain. Therefore, we assume that brightness is related to the multi-scale line/edge 
representation, which is necessary for object recognition.  

(2) Basic line and edge detection involves simple cells in phase quadrature: positive and 
negative lines and edges (1D cross sections) can be detected and classi�ed by combining 
detectors of zero-crossings and extrema (positive or negative) of the sine and cosine com-
ponents, in combination with (positive) extrema of activities of complex cells. Our previous 
(van Deemter & du Buf 2000) and recent (Rodrigues & du Buf 2006a) models are based 
on simple and complex cells and are multi-scale, since many spatial patterns cannot be 
described using only one or few scales. However, there is one complication: at ramp 
edges, where a linear ramp meets a plateau, for example in trapezoidal bars or gratings 

Figure 3: 1D cross sections of Gabor wavelets with sine and cosine components (left) and 
line and edge symbolic representations (right). A Gaussian window can truncate the error 

function at the far right. 
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(Fig. 4), the system will detect positive and negative lines. Responses of �lters in quadra-
ture do not allow distinguishing between lines and ramp edges, which explains Mach 
bands at ramp edges (du Buf 1994).  

(3) The implicit, multi-scale line and edge representation must provide information for 
brightness construction by means of an interpretation. In other words, instead of a re-
construction the system builds a virtual impression on the basis of a learned interpretation 
of responding line and edge cells, perhaps much like a trained neural network. We “simply” 
assume that a responding line cell (at a certain position, tuned to a scale and orientation) 
is interpreted as having a Gaussian cross-pro�le there, with a certain amplitude (the re-
sponse of the complex cell) and width (the scale of the underlying simple and complex 

 

Figure 4: Mach bands at a trapezoidal luminance bar (A) can be explained by the multi-scale 
line/edge representation. At a very coarse scale a wide bar is detected (not shown here). At 
medium scales the two edges are represented by scaled error functions (B,C) which, when 
summed, also form a wide bar (D). At fine scales the four ramp edges are represented by 

positive and negative lines (E), which when summed (F) and combined with signal D create 
the typical overshoots (G). 
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cells). The same way responding edge cells are interpreted, but with a bipolar (positive-
negative) cross-pro�le and modelled by a Gaussian-windowed errorfunction (see also Fig. 
10 in du Buf (1994)). Figure 4 illustrates the process in the case of a trapezoidal bar: the 
entire bar is represented by a very broad vertical line at coarse scales, by positive and 
negative edges at the ramps at medium scales, and positive and negative lines at the 
ramp edges at �ne scales. If all is combined, the detected lines at �ne scales cause Mach 
bands.  

This model provides a completely new way for image (re)construction, not like coding 
based on wavelets or simple cells. An additional observation is that there is a lot of neural 
noise in the system and we do not know whether there exist simple and complex cells etc. 
at all retinotopic positions and tuned to all scales and all orientations (representation noise 
and completeness). Stained maps of hypercolumns and dendritic/axonal �elds of most if 
not all cells look rather random (Hubel 1995). Nevertheless, the image that we perceive 
looks rather stable and complete. It is very simple to simulate what happens when we 
suppress information, both in the brightness model as described above and in wavelet 
coding, the latter being modelled by considering the summation of responses of simple 
cells. For example, we can suppress one entire scale channel, or 50% of all information by 
a random selection. Figure 5 shows what happens: the result is a very graceful degrada-
tion in the case of the brightness model, but a very disturbing rippling in the case of wave-
let coding. This rippling in image coding requires sophisticated post-processing to reduce 
the effect, see for example Ye et al. (2004).  

In the meantime the two questions at the end of Section 2.4 have been addressed: (a) The 
image that we perceive is a virtual construction by a symbolic line and edge interpretation, 
i.e., it is not a re-construction with no need for “yet another observer” in our brain who must 
analyse the reconstructed image for object recognition etc. In fact, object recognition and 
brightness perception have been combined into a single process: indeed, our simulations 
showed that object categorisation and recognition can be obtained by using different multi-
scale image representations, i.e., either line/edge maps with event positions and types, or 
by the unimodal line and bimodal edge representations (Rodrigues & du Buf 2006a,b). (b) 
There is no precise region in our brain where the image that we perceive is created. Our 
model is limited to feature extractions in V1 and beyond, but this information must propa-
gate to higher brain regions, eventually leading to consciousness, at the least being aware 
of our position in our actual environment. In other words, we may say that our perceived 
image, and therefore also at least part of our consciousness, are constructed by the entire 
brain, perhaps with an emphasis on the visual cortex. This is a holistic view, but it should 
be mentioned that the local-global discussion about consciousness might be a hornets’ 
nest (Koch 2004; Bauer 2004).  
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Above we wrote that colour is represented in the CO blobs in V1, possibly in the form of 
sampled values that represent homogeneous object regions. However, recently it was 
found that many colour cells in V1 are orientation tuned (Friedman et al. 2003). This 
probably means that such oriented edge (contour) cells also contribute to colour percep-
tion and not only to achromatic brightness as exploited in our brightness model. In addi-
tion, contour processing may play an important role in colour constancy, with different 
weights of near and far (local and global) contour components in the normalisation proc-
ess, in addition to near and far colour samples; for a computational model see for example 
Rizzi et al. (2003). It should also be added that part of all neural connections may be more 
static and a result of evolution, i.e., brightness as an ecological interpretation of learned 
patterns in natural images (Yang & Purves 2004). All such complications, including long- 
and short-term adaptation effects and input-output amplitude nonlinearities, which have 
not even been mentioned until here, make us realise that we are far away from a uni�ed 
framework.  

The same can be said about object categorisation and recognition. Change blindness, the 
fact that we do not notice things at positions where we are not looking, points at an inter-
pretational �lling-in process. Even the �lling in of the blind spots in the retinas, where the 

 

Figure 5: Image coding based on wavelets (left) and the brightness model (right). In 
both cases a limited number of scales has been used (top), which leads to severe rip-

pling in the case of coding. If from all information only half is randomly selected, the cod-
ing result further deteriorates (bottom-left) but not the brightness result (bottom-right) 
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two optical nerves leave the eyes and there are no photoreceptors, is not noticed under 
normal viewing conditions. The latter effect could at least be explained by the fact that in-
put from the other eye might be used there, but not change blindness. If we do not per-
ceive a speci�c object, we do not perceive that object’s brightness and colour. In such a 
case our brain may be guessing what the most obvious solution might be, probably on the 
basis of prior experience with similar images.  

4 Painterly rendering  

It is relatively straightforward to develop a painterly-rendering scheme on the basis of our 
brightness model, i.e., human vision, as is the case in similar approaches using algorithms 
from computer vision (Gooch et al. 2002; Kovács & Szirányi 2004; Shiraishi & Yamaguchi 
2000). In our case, the scale of simple and complex cells is translated into the width of dis-
crete brush strokes: single strokes in the case of detected lines and two parallel strokes in 
the case of detected edges, simulating coarse-to-�ne painting using increasingly smaller 
brushes. Detected line and edge positions are stored in coordinate lists and these can be 
processed, for example smoothed, broken up into smaller lists, and/or linearised. For each 
coordinate list the stroke(s) is (are) rendered by means of triangle lists and texture map-
ping, for which colours are picked in the input image: one colour at the centre of line 
strokes and two colours at the centres of edge strokes. Texture mapping allows to simu-
late real brush strokes, composed of random selections of heads, bodies and tails of digi-
tised strokes that were painted with a �at brush and, e.g., oil paint.  

In homogeneous regions, where no lines and edges have been detected, we can prepare 
a background by applying strokes randomly or by in�uencing orientations for diagonal (or 
rotated) criss-crossing. In fact, we always start with painting a complete background, like 
most painters do, because our interface allows to select line/edge-related foreground 
strokes with certain brush sizes. The use of all scales and therefore brush sizes will result 
in a very realistic painting; when some scales are skipped the result will be more abstract. 
In addition, when introducing an orientation bias, i.e., for example rotating brush strokes 
towards horizontal, vertical and diagonal orientations, the result will become more cubistic 
with increasing bias.  

The user interface which is being developed has very few menu lists and a structure that 
resembles the procedure that a painter uses: �rst select a surface structure (canvas or pa-
per) and background colour, then apply a background with random or biased strokes, 
which can be incomplete because the user can stop the painting process at any time, for 
example to adjust parameters. To this end the user can set the speed of the painting proc-
ess, can stop, resume or re-start the entire process or only the back- or foreground proc-
ess. The interface allows to apply palette effects, for example to apply a model of colour 
constancy—a sort of normalisation of the dynamic ranges of the R, G and B channels—
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which normally makes a painting more vivid, and/or to apply a red-orange or blue-green 
shift for introducing a warm or cold emotion. The interface also allows to apply a model of 
Focus-of-Attention based on end-stopped cells, in order to apply brush strokes only in and 
around regions with some complexity. Figures 6 and 7 show a few examples. For further 
details we refer to du Buf et al. (2006) and Nunes et al. (2006). Future research goals are 
to study the in�uence of colour shifts, not only for colour emotions, and the level of image 
abstraction, in simulated paintings. Such aspects are closely related to painting styles and 
studied in a research area called empirical aesthetics. Image and painting composition is 
much harder to address in terms of the visual cortex, although simple manipulations of ex-
isting paintings have been applied in some studies, see Nodine et al. (2003) and Locher 
(2003).  

5 Discussion  

In the Introduction we wrote that we cannot take a look into van Gogh’s head and we do 
not know the exact landscapes that he saw. Well, after reading the subsequent sections 
the reader should be able to assume that we are on the way to simulate a standard ob-
server in conjunction with a standard painter. In other words, we start being able to explore 
basic processes in the visual system and to combine these into an increasingly complete 
architecture, thereby implicitly looking into a “generic head” with the possibility to simulate 
speci�c painters in the future.  

The visual system is able to construct on the basis of a brief glance a complete im-
age/scene representation in our brain: from local syntax to objects to gist and layout of ob-
jects, including semantic interpretations and even emotions. More advanced models will 
therefore lead to a complete morphology, as if someone is asked to write a complete de-
scription of an image, from global aspects to local detail. Unfortunately, the development of 
a complete arti�cial visual system—or computational model—is a very long-term goal. 
However, the image interpretation, description, annotation etc. are expected to foster novel 
solutions for image and video synthesis, coding and art work for illustration purposes. The 
development will depend on results of ongoing and future research projects, both in visual 
perception and in NPR. Since even relatively simple models of the visual system require 
tremendous amounts of storage capacity and associated CPU times for the number 
crunching, new generations of more powerful computers are required. As for now, we do 
not know whether parallel processing in a distributed Grid environment will be bene�cial 
because of necessary communication times, but the tremendous storage capacity that is 
required is no surprise: the entire brain counts 1012 (one million million) cells with 1014 to 
1015 interconnections, and a signi�cant part is devoted to vision. Today, in 2007, it is al-
ready possible to achieve 1 TFLOPS (one tera or one million million of �oating point opera-
tions per second) on a normal PC using graphics boards with GPUs that are optimised for 
vectorised MADD (multiply-add) operations. This is not a supercomputer, but on compara-
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ble systems it will soon be able to simulate the dynamics of 1012 cells at a speed which will 
come close to realtime, provided that enough of fast memory is available. Storage capacity 
being the bottleneck, future hard disks with a capacity of more than 1 TBYTE will not pro-
vide a solution because of slow access times.  

 

 

    

 
 

Figure 6: Rendering: the input image (top-left) is first used to paint a background with a big 
brush (shown on the third row at left), on which foreground strokes can be painted using 

increasingly smaller brushes. Not all scales need to be painted 
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Although not discussed explicitly, it should be clear that our models provide a morphologi-
cal image description in terms of multi-scale features on the basis of cortical cells: lines 
and edges for brush strokes and keypoints for Focus-of-Attention. Future extensions will 
cope with abstraction and composition, even with meaning or gist. All these features can 
be extracted by data-driven or bottom-up processes. So why could we write in the abstract 
that bottom-up and top-down processing can be combined?  

 

 

    

 
 

Figure 7: Top two rows: input image and the background process with random strokes of 
a flat brush. Third row: foreground strokes with a round brush, a flat one 

and spray. Bottom row: changing brightness and saturation 
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The answer is rather straightforward: one might say that our visual system has two modes 
of operation. When looking at an image for a split second, long before we consciously 
know what objects there are, our brain already knows what the image is about. This is the 
fast gist and layout vision, probably implemented by feed-forward neural networks that ex-
ploit texture, colour, disparity and motion. Such features also allow for separating (segre-
gating) entire objects, for example a tree with differently coloured and textured trunk and 
crown in front of a background, where trunk and crown should belong to the same object. 
Hence, in addition to global gist there may exist local gist, which hints at specific objects 
and their spatial relations (layout). This first and rapid mode of operation can be thought to 
“bootstrap” the second mode: select subsets of normalised templates in memory in order 
to scrutinise objects in the input image. The latter objects are not normalised, which im-
plies that multi-scale line/edge and keypoint representations of input objects and normal-
ised templates in memory must be compared. This comparison must be done sequentially, 
object after object, and the two feature maps must be projected such that they converge. 
This is the dynamic linking between neural layers at low and high levels as explored by 
Deco & Rolls (2004), and the fact that a big part of the visual cortex is involved in the dy-
namic linking limits the “bandwidth” of the system (Rensink 2000).  

So, why is our visual system so fast and efficient? Because bottom-up and top-down proc-
essing are done in parallel. We do not think in terms of object edges or textures, we think 
in terms of gist, and gist limits the enormous amount of possible object templates in mem-
ory that must be checked. This explains why we have difficulties in recognising objects that 
are completely out of their normal context. In conclusion, the good news is that bottom-up 
and top-down image morphologies can or even must be combined. The bad news is that 
we are much more advanced in bottom-up processing, i.e., top-down processing is an al-
most completely new research area. However, in one or a few decades from now, when a 
lot of research effort has been put into top-down processing, this bad news will turn into 
good news for image morphology!  
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