
 

 

UNIVERSIDADE DO ALGARVE 

FACULDADE DE ECONOMIA 

 

 

 

Technological learning in Microalgae Production 

Systems: revisiting the experience curve and the 

learning mechanisms 

 

 

VICTÓRIA DEL PINO ÁLVAREZ 

 

 

Mestrado em Economia da Inovação e do Empreendedorismo 

 

 

 

 

2010 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sapientia

https://core.ac.uk/display/61503481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

UNIVERSIDADE DO ALGARVE 

FACULDADE DE ECONOMIA 

 

 

 

Technological learning in Microalgae Production 

Systems: revisiting the experience curve and the 

learning mechanisms 

 

 

VICTÓRIA DEL PINO ÁLVAREZ 

 

Mestrado em Economia da Inovação e do Empreendedorismo 

 

Dissertação orientada pela Professora Doutora Maria Teresa de Noronha 

da Faculdade de Economia da Universidade do Algarve e pelo 

Professor Doutor Pedro Saraiva do Departamento de Engenharia 

Química da Faculdade de Ciências e Tecnologia da Universidade de 

Coimbra 

2010 
 



 

 i 

TABLE OF CONTENTS 
 
LIST OF ABBREVIATIONS ii 
   

ACKNOWLEDGMENTS iii 
   

RESUMO iv 
   

ABSTRACT  viii 
   

Chapter 1  INTRODUCTION 1 

1.1 Brief theoretical background 8 

1.2 Learning organisation and learning mechanisms 10 

1.3 Learning and experience curves 14 

1.3.1 Applications and misapplications of LC and EC 19 

1.3.1.1 Competitiveness of new and innovative products and processes: forecast of 
costs 

20 

1.3.1.2 Modelling and policy support decision tools: the EC and LR in the case of 
energy sector 

24 

1.3.1.3 Support decision tool at the firm’s level: EC cross-comparisons 27 
   

Chapter 2 MATERIALS AND METHODS 30 

2.1 Case-study selection 32 

2.2 Research questions and working hypotheses 38 

2.3 Data Collection 39 

2.4 Research methodologies 40 

2.4.1 Methodology for experience curve determination 40 

2.4.2  Methodology for learning effects determination 41 
   

Chapter 3 MPS: PERSPECTIVES AND ADVANCES 43 

3.1 General description of microalgae production process 48 

3.2 Technological discontinuities and dominant designs 55 

3.3 Basic requirements for technological development 58 

3.4 Techno-economical comparison between open systems and closed systems 59 

3.5 Future challenges 61 
   

Chapter 4 RESULTS AND DISCUSSION 63 
   

Chapter 5 CONCLUSIONS AND FUTURE STUDIES 81 
   

REFERENCES 89 
  

APPENDIX A 103 

APPENDIX B 107 

APPENDIX C 109 



 

 ii 

LIST OF ABBREVIATIONS 

COP - Communities of Practice 

DWT – Dry Weight 

EC - Experience Curve 

EU – European Union 

FPFT – Flat Panel Flow Through 

GW – GreenWall Technology 

KM – Knowledge Management 

LC – Learning Curve 

LD – Learning-by-doing mechanism 

LI – Learning-by-interacting mechanism 

LR – Learning Rate 

LS – Learning-by-searching mechanism 

LU – Learning-by-using mechanism 

MPS – Microalgae Production System 

NGCC - Natural Gas Combined Cycle 

OECD – Organisation of Economic Cooperation and Development 

PBR – Photobioreactor 

QS - Quorum Sensing 

R&D – Research and Development 

SME – Small and Medium Enterprise 



 

 iii 

ACKNOWLEDGEMENTS 

A dissertation is, undoubtedly, a solitary work. However, in order to complete this 

final document, it required a network of support, and I am indebted to many 

people. 

Le agradezco a mi madre, Eloísa, por sus palabras de apoyo y, por siempre, 

intentar guiarme por el mejor camino. Sin ti, no hubiera sido lo que soy hoy, ni 

seria lo que seré mañana. 

Le agradezco a mi padre, Manuel, por los “empujones” morales y por el 

pragmatismo científico. 

Agradeço ao Ricardo, o amor que me dedicou e me dedica. 

Le agradezco a Manolo, mi primo, por su paciencia. El tiempo que le debería 

haber dedicado a él, “espero” que se encuentre reflejado en algún sitio de esta 

tesis!  

I am especially thankful to Nocas and Nick, for their friendship and “linguistic 

support”. 

Agradeço, especialmente, às pessoas que fazem da Necton, uma organização 

extraordinária! Ao Vítor Verdelho, um especial obrigado por me ter incentivado a 

desenvolver o trabalho nesta área. Agradeço também ao João Navalho, à Teresa 

Lamela, ao Yago del Valle-Inclán, à Célia Cristo e à Inês Póvoa, por tão 

prontamente me terem ajudado. Um reverencial agradecimento, a José Teixeira, 

pelas nossas conversas que me fazem acreditar, cada vez mais, nos valores da 

transparência e da honestidade. 

Finalmente, agradeço aos meus orientadores, Teresa de Noronha e Pedro Saraiva, 

pelo apoio científico, pelo encorajamento e por terem aceite este desafio. 



 

 iv 

A APRENDIZAGEM TECNOLÓGICA NOS SISTEMAS DE 

PRODUÇÃO DE MICROALGAS: A CURVA DA 

EXPERIÊNCIA E OS MECANISMOS DE APRENDIZAGEM 

REVISITADOS 

 

Victória del Pino Álvarez 

 

RESUMO 

No contexto mundial actual, caracterizado por crescentes e constantes mudanças 

nos mercados e nas tecnologias, as empresas para serem competitivas, eficientes e 

lucrativas, devem estar preparadas para acompanhar a rápida metamorfose em 

curso. Os processos de inovação, de aprendizagem e de acumulação de 

experiência, são considerados cruciais para sustentar a sua competitividade. O 

conceito de “curva da experiência” integra, de uma forma simples, estes 

processos, uma vez que à medida que as organizações vão melhorando o seu 

desempenho em determinada tarefa, tornam-se, naturalmente, mais eficientes na 

sua execução. Portanto, quanto mais as organizações “aprendem”, maior 

facilidade detêm para desempenhar as actividades a que se propõem, podendo ter 

estas um cariz inovador. Por outro lado, esta melhoria na eficiência reflecte-se em 

ganhos de produtividade e na redução dos custos de produção. 

Apesar de existir já uma extensa investigação, desenvolvida em vários sectores, 

demonstrando que a acumulação de experiência leva a melhorias nas 

perfomances, o nosso trabalho preenche parte de um vazio, em termos de 

conhecimento, focalizando-se nos aspectos relacionados com a curva da 

experiência e com a aprendizagem de um determinado tipo de biotecnologia, 

designada genericamente por “sistemas de produção de microalgas” (SPM). 
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As microalgas são microorganismos fotossintéticos, que para a sua divisão e 

crescimento necessitam de luz, nutrientes e dióxido de carbono. O potencial 

biotecnológico das microalgas tem crescido rapidamente, nos últimos anos, 

principalmente devido às suas inúmeras aplicações comerciais. As microalgas 

podem ser tanto vendidas como alimento para consumo humano, como utilizadas 

na obtenção de compostos naturais de alto valor introduzidos em formulações de 

produtos cosméticos e nutracêuticos, ou até para a sequestração de carbono, o 

aproveitamento energético em biocombustíveis e o tratamento de efluentes 

líquidos e gasosos. Nesse sentido, os SPM são uma das mais biotecnologias mais 

promissoras da actualidade.  

As particulariedades dos processos de aprendizagem e de acumulação de 

experiência são introduzidos, desde o ponto de vista da gestão do conhecimento, 

na revisão bibliográfica. O nosso estudo define o conceito de curva da 

experiência, relata a sua evolução histórica e apresenta exemplos da sua aplicação. 

Alguns exemplos retratam as aplicações incorrectas das curvas de aprendizagem, 

sobretudo no que respeita à sua capacidade de previsão de custos tecnológicos 

futuros. A curva da experiência deve ser usada com precaução, uma vez que, e por 

exemplo, não possibilita a antevisão de descontinuidades tecnológicas. 

Neste trabalho sintetizaram-se as diferentes perspectivas, os avanços e tendências 

tecnológicas, e os futuros desafios deste sector biotecnológico. Para melhor 

compreensão da complexidade tecnológica dos SPM, estes foram caracterizados 

de uma forma genérica, mas técnica. É ainda apresentada uma comparação 

técnico-económica entre os sistemas abertos e fechados, que integram os SPM. 

Na tentativa de compreender o processo de aprendizagem tecnológica, que está na 

base do desenvolvimento e operação dos diferentes SPM, recorreu-se a um caso 

de estudo, como metodologia central da investigação. O caso de estudo é uma 

empresa pioneira portuguesa, Necton S.A., dedicada, desde 1997, à produção de 

microalgas. A Necton instalou e operou vários tipos de SPM, desde sistemas 

abertos, como é o caso da tecnologia de raceways, a sistemas fechados como os 

fotobioreactores. 
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Os dados secundários da nossa investigação foram extraídos de vários relatórios 

de produção e outros registos e de entrevistas semi-estruturadas com os 

trabalhadores da empresa relacionados com as actividades produtivas. Os dados 

recolhidos foram utilizados em duas metodologias distintas. A primeira 

metodologia permitiu aplicar o modelo da curva da experiência para quantificar a 

evolução da relação dos custos unitários de produção com a quantidade de 

biomassa microalgal produzida. Através da logaritmização destas duas variáveis, 

foi possível calcular o rácio de progresso e a taxa de aprendizagem, que 

caracterizam o processo de aprendizagem tecnológica de cada SPM. A segunda 

metodologia visava a determinação dos efeitos da aprendizagem tecnológica no 

ciclo de vida de cada SPM, fazendo uso dos dados recolhidos durante as 

entrevistas. 

Os resultados obtidos, ao longo desta investigação, confirmaram que: 

i) as condições ambientais, como a amplitude térmica diária, a temperatura média 

mensal, a irradiação e o número de horas de sol a que estão expostas as culturas, 

afectam a produtividade dos SPM. A produção de microalgas está sujeita à 

sazonalidade, da mesma forma que outro tipo de culturas de plantas. As alterações 

tecnológicas necessárias para atenuar os impactos dos factores ambientais na 

produtividade devem ser consideradas para a melhoria do desempenho dos SPM. 

ii) os SPM estudados (fotobioreactores do tipo “flat panel flow through” e 

fotobioreactores tubulares) seguem curvas da experiência com rácios de progresso 

e taxas de aprendizagem diferentes. Os rácios de progresso determinados 

enquadram-se na gama de valores, relativos a tecnologias ambientais e a empresas 

de manufactura, que foram encontrados na literatura. 

iii) os diferentes mecanismos de aprendizagem contribuem, de forma semelhante, 

em cada ciclo de vida das tecnologias estudadas, pese aos diferentes graus de 

complexidade tecnológica dos SPM; 

iv) o contributo do mecanismo de aprendizagem leaning-by-doing é mais 

relevante nos estágios de crescimento, sendo que o mecanismo learning-by-using 
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adquire maior relevância nas fases de maturidade tecnológica dos SPM. O 

mecanismo de aprendizagem learning-by-searching é activado em determinadas 

situações, nas quais seja necessário resolver limitações de ordem técnico-

científica, recorrendo para tal, a actividades de investigação e desenvolvimento. 

A escassez de informação relativa aos sistemas abertos, que estiveram em 

operação na empresa Necton, obrigou a recorrer a dados recolhidos na literatura 

acerca deste mesmo tipo de SPM. Apesar disso, os dados foram insuficientes, para 

chegar a uma conclusão clara quanto à existência de curvas da experiência, de 

comportamento diferente, entre os sistemas abertos e os sistemas fechados. 

Apenas se pôde concluir que existem diferenças entre os dois tipos de sistemas, no 

que se designou por melhoria na produção (production improvement), ou seja, 

cada tipo de sistema apresenta um aumento na produção, relativamente ao ano 

anterior, melhoria essa que parece ser específica a cada sistema. 

No decurso da nossa investigação surgiram novas questões que poderão vir a ser 

desenvolvidas em trabalhos futuros, abrindo novas linhas de investigação na 

interface entre as áreas científica e económica, mas sobretudo no âmbito da gestão 

do conhecimento. Um dos maiores desafios, lançado neste trabalho, é tentar 

compreender se é possível promover os diferentes mecanismos de aprendizagem 

tecnológica, dentro da organização, para que os custos unitários de produção 

mínimos sejam atingidos com maior brevidade, proporcionando uma 

oportunidade para a introdução de inovações e “percorrendo”, desta forma, novas 

curvas da experiência. 

Palavras-chave: curva da experiência, curva de aprendizagem, mecanismos de 

aprendizagem, microalgas. 
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TECHNOLOGICAL LEARNING IN MICROALGAE 

PRODUCTION SYSTEMS: REVISITING THE EXPERIENCE 

CURVE AND THE LEARNING MECHANISMS 

 

Victória del Pino Álvarez 

 

ABSTRACT 

Facing the world scenario, businesses are striving for efficiency and profitability. 

The processes of innovation, learning, and experience accumulation are, indeed, 

thought to be crucial for sustaining competitiveness of businesses. The experience 

curve concept integrates those processes, as it is based on the premise that the 

more often a task is performed, the lower will be the cost of doing it. 

Although extensive research has shown that cumulative experience leads to 

performance improvement, across numerous sectors, our work fills part of the 

existing knowledge gap by focusing on experience curve and learning aspects of 

the modern biotechnology of Microalgae Production Systems (MPS). Microalgae 

are one of the most exciting future-oriented business areas of modern 

biotechnologies, which have turned into an important global industry, with a 

diversified field of applications. 

The particularities of learning and experience accumulation processes were 

introduced in our work. Our study also addressed some of the applications and 

misapplications of the experience curve concept. We also reported on some of the 

perspectives and advances of the MPS, the general technical description of the 

MPS, the technological trends, as well as the future challenges. The research 

methodology is based on the case-study of Necton S.A., a pioneer Portuguese 

firm, dedicated, since 1997, to microalgae cultivation. Therefore, in an attempt to 

understand the technical complexity of microalgal biotechnology, the learning 
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process, underlying the technological development, was studied through different 

research questions. Data was, mainly, collected from production records provided 

and from a set of interviews, conducted with the company workers. The results 

confirm that: i) the different MPS studied follow an experience curve, with 

progress ratios which are in between the ones determined for manufacturing firms 

and energy technologies; ii) the learning mechanisms play a similar role through 

the technologies life-cycle, although the MPS studied are different in 

technological complexity; iii) learning-by-doing is more relevant in early 

technology stages, learning-by-using appears to be fundamental in the maturity 

stage, and learning-by-searching is critical to solve particular technical 

constraints. 

Keywords: experience curve, learning curve, learning mechanisms, microalgae. 
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Chapter 1  Introduction 

 

For the last two hundred years, neoclassical economics has only recognised two 

factors of production: labour and capital. Knowledge, productivity, education, and 

intellectual capital were all regarded as exogenous factors. The New Growth 

Theory, based on the work of economist Paul Romer (Romer, 1986; Romer, 1990) 

and others, have attempted to deal with the causes of long-term growth. 

Knowledge as an endogenous variable became of great concern and one of the 

most driven goals of present economic analysis (Romer, 1990). 

Building upon the research of economists such as Joseph Schumpeter 

(Schumpeter, 1947) Robert Solow (Solow, 1957) and others, Romer proposed a 

major input to the neoclassical model by considering technology as an intrinsic 

part of the economic system and knowledge as the third production factor in 

leading economies (Romer, 1986; Romer, 1990). Other scholars, such as Adam 

Smith and Karl Marx, have also dealt with knowledge creation, division, 

utilisation and appropriation, as major factor of growth (Smith, 1776; Marx, 

1954). 

Important developments in the economics of knowledge received contributions of 

Herbert Simon, Friedrich Hayek, Kenneth Arrow, and Fritz Machlup. Hayek 

(1945) studied the problems resulting from mass dissemination of knowledge and 

the impossibility of transferring knowledge to a central planning agency. Later on, 

Arrow (1962) provided foundational work in many other areas of economics, 

including the endogenous growth theory and the economics of information. In the 

early 80´s, Simon (1982) studied the role of memorisation in the learning process, 

being considered a precursor of the economics of information technology. In 

1984, Machlup researched the mechanisms of skills acquisition, the transfer of 
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knowledge, and the economic theory of choices and expectations in situations of 

uncertainty and incomplete information. 

Literature on knowledge has evolved significantly since the pioneering works of 

Paul Romer, becoming multi-faceted. Theories of knowledge acquisition suggest 

that organizations facing similar changes vary in their capacity to learn due to 

cognitive (Senge, 1990), interpersonal (Argyris and Schon, 1978), structural 

(Duncan and Weiss, 1979), or managerial (Dutton and Thomas, 1984) factors, and 

even fail to learn (Hirsch, 1952). In general terms, researchers have all come to a 

general consensus that, when pursuing a development goal, embodying 

knowledge should be a priority task in modern organisations.  

Thus, it is not surprising that, more recently, management literature has been 

focused on the management of organisational knowledge including the intangible 

dimensions of the organisation (Von Krogh et al., 2001), and has been conducted 

within the frameworks provided by economic theories1. Therefore, there is now a 

clearer understanding of the nature of knowledge (relationships between data, 

information and knowledge; between tacit and explicit knowledge; between 

individual and organization knowledge; between types of thinking), and of the 

dynamics of knowledge (knowledge acquisition and learning mechanisms, 

knowledge conversion, knowledge dissemination and knowledge application) in 

organisational contexts. 

As Lundvall (1995) remarked, contemporary capitalism has reached the stage at 

which knowledge is the most strategic resource, and learning the most important 

process. Firms are characterised by Rothschild (2004) as "organised intelligence", 

and organisational learning, over the course of time, is currently identified as the 

primary catalyst of economic evolution. Moreover, Teece (2000) mentioned that 

                                                 
1 Economics theories such as the resource-based view, the competence-based view, cognitive frameworks 

theory, the capability perspective, or dominant logics.  
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business success depends on the organisation’s ability to create, use, and develop 

its knowledge-based assets. 

Eventually, knowledge accumulation in firms should lead to cost reductions and 

rising revenues, and from a micro-economic perspective, and assuming the 

positive contribution of firms for the dynamics of socio-economic change 

(Schumpeter, 1947), the economic evolution is a process of continuous 

cumulative learning (Rothschild, 2004). 

The cumulative learning can be quantitatively captured in a so-called ‘learning 

curve’ (LC). The LC concept is based on the empirical observation that the costs 

of a product fall by a constant proportion with every doubling of cumulative 

production. Nowadays, the dominant stream of literature of the knowledge 

management (KM) science assumes that these cost reductions reflect, not only the 

benefits from learning-by-doing, but also the benefits derived from other types of 

learning mechanisms, such as learning-by-using, learning-by-searching, learning-

by-interacting, and more recently learning-by-learning and learning-by-

expanding. All the learning mechanisms play a different, thus relevant, role in the 

learning organisation, and their effects are collectively reflected in the experience 

accumulation. The concept ‘experience curve’ (EC) is based on the intuitive idea 

that the time required to perform a task decreases as a worker gains experience 

(BCG, 1974). 

Few concepts in management and economics have drawn more empirical attention 

than the EC. Embodying knowledge in workers, or learners, and embodying 

knowledge in assets (services or goods), through technology, or more elaborated 

processes, is costly in time and resources. Therefore, from a managerial 

perspective, benefits arise whenever the two functionalities are fully assumed. The 

most cited example in the management literature is the production of aircrafts 

published in the Journal of Aeronautical Sciences, as part of an article entitled 

"Factors Affecting the Cost of Airplanes" (Wright, 1936). The author’s pioneer 

findings showed that as the number of aircraft produced in sequence increased, 
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the direct labour input per airplane decreased, in a regular pattern, that could be 

estimated mathematically (Wright, 1936).  

Facing the world scenario, businesses are striving for efficiency and profitability. 

Furthermore, when knowledge and experience stocks complement other asset 

stocks, imitation by other firms is more difficult and superior performance can be 

expected (Nelson and Winter, 1982). Additionally, knowledge and experience are 

to be managed as strategic variables, and KM can positively affect the process 

performance by sharing experience and getting better at performing value-creating 

tasks.  

The strategic importance of knowledge stocks, and how to manage them, is 

undeniable. However, if a firm does not have the scale and/or does not rapidly 

learn how to produce with lower costs, it will not be able to produce below market 

price, what may mean, stepping into the market. This will result in the firm having 

to compensate initial losses with posterior returns. Moreover, there is no 

guarantee that the initial price will be valid in the future, bringing up uncertainty 

on the expected returns. 

One could argue that “riding down”2 the EC will bring short-term profits while 

accumulating experience by producing the same old product, but this simplistic 

vision masks the forcefulness of innovation and knowledge accumulation. In fact, 

firms need to be focused on re-enforcing their own competencies, not only to 

embody as much experience and knowledge as possible to achieve a rapid unitary 

cost reduction in the same product, but if possible, transferring this to new 

challenging outputs for the permanent changing consumer preferences. After all, 

the market decides the final form of the production function through an intense 

and interactive process of innovation. The learning associated with innovative 

activities is not a purely individual phenomena, for the increasing complexity of 

innovation it is required a collective and interactive process. Several researchers 

have even looked at consumers as co-creators of products and value (Prahalad, 

                                                 
2 The expression “riding down” was borrowed from Jakob and Madlener (2004). 
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2004), as co-innovators (Von Hippel and Katz, 2002), and as ‘prosumers’3 who 

both produce and consume (Xie et. al, 2007).  

Indeed, innovation is highly influenced by vertical cooperation, not only with 

consumers, but also with suppliers and customers, especially in low-tech firms 

where the development of new products or processes often takes into account new 

demands and market changes (Vaz and Nijkamp, 2009). Companies that are better 

able to utilise information and knowledge can make decisions faster and closer to 

the point of action, overcome internal and external barriers, provide more 

opportunities to innovate, reduce product development time and enhance customer 

relationships (Hackett, 2000). 

Firms learn differently, depending on several endogenous and exogenous factors 

and time-dependent stages, and through distinctive learning mechanisms. 

Theoretically, if knowledge can be managed (Alavi and Leidner, 2001; Chen and 

Chen, 2006), experience and knowledge accumulation could be accelerated via 

KM through differentiated learning mechanisms promotion, improving the pace of 

innovative activities. If innovation is rapidly endogenised, the firm is ready and 

prepared to shorten the innovative lag-phase and launch another innovation. 

But in this complex process, the idea of learning as a driver of cost reduction still 

remains very attractive. Learners (or workers) become better at doing what they 

do over time, leading to efficiency increases and permanent cost reductions, at a 

profit business level. The implications of both “practice makes perfect” and 

“performance improves with experience” effects have held up remarkably well 

over time (Pisano et al., 2001), and are reflected on the EC concept. 

                                                 
3 The term ‘prosumer’ is a late 20th century concept that combines some of the common characteristics of a 

producer and a consumer, and is generally applied to situations where consumers are considered to have 

reached a level of sophistication and such a strong working knowledge, that the consumer can effectively 

dictate the production or re-design of goods and services. More information about the ‘prosumer’ concept can 

be found elsewhere (Prosumer Studies Working Group at 

http://www.bsos.umd.edu/socy/prosumer/about.html). 
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Goals of the study 

Understanding the processes that facilitate organisational learning, and how these 

processes might be better managed, are of central importance for industrial 

managers. The general aim of this work is to comprehend to which extent the EC 

concept can be used as a managerial tool, and how learning takes place in 

technological learning, in order to improve business performance and indirectly 

enhance innovation in firms. 

 

Methodology 

In our work, the case-study approach was chosen as the main research 

methodology. The case-study is related to a particular biotechnology, the 

Microalgae Production Systems (MPS) that have been installed and in operation 

in the company Necton – Companhia Portuguesa de Culturas Marinhas S.A. 

(Necton, hereinafter), a pioneering Portuguese company. 

Several reasons justify this choice: i) microalgae are one of the most exciting 

future-oriented business areas of modern biotechnologies (Richmond, 2000; 

Wijffels, 2007); ii) their steady growth during the past two decades, has turned 

microalgae in an important global industry, with a diversified field of applications 

(Carlsson et. al, 2007); iii) microalgae are not a well-studied group from a 

biotechnological point-of-view (Olaizola, 2003), and even less from the KM 

perspective. 

The present case-study is unique in the sense that it is the first to examine the EC 

of MPS, and provides a promising contribution to what, will hopefully evolve into 

long-term research in a transversal field of linking technological processes to 

economic and management sciences. 
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In an attempt to understand the technical complexity of microalgal biotechnology, 

the learning process, underlying the technology development, was studied through 

different these research questions: 

H1: MPS of the case-study follows an experience curve 

H2: Closed and open MPS follow similar experience curves. 

H2: Learning mechanisms play different roles across the MPS life-cycle. 

In our work, we proposed that secondary data is obtained from two different 

research strands: qualitative, through semi-structured interviews, firm records and 

other research-related documents; quantitative, collecting information from 

different databases and bibliographic references. Two different methodologies 

were presented to study whether the EC concept can be applied to the MPS and 

the role of each learning mechanism in technological development within each 

MPS. 
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1.1 Brief theoretical background 

The object of KM is to analyse knowledge as an economic asset. However, the 

definition and scope of such a discipline is surely not a consensual issue. It 

depends on the conception of knowledge and information, and it is easily mingled 

with other disciplines, such as the economics of knowledge, the economics of 

research, the economics of innovation, and the economics of information. 

Essentially, knowledge empowers its possessors with the capacity for intellectual 

and physical action, providing them with cognitive capability. Information is in 

the mind of individuals and takes the shape of structured and formatted data that 

remains passive and inert, used by those with the knowledge needed to interpret 

and process them (Foray, 2006). The use of both, knowledge and information, 

promotes, even further, the capacity to learn and act. 

The temptation to presuppose a rigid hierarchy from data to information to 

knowledge does not survive scientific scrutiny. Rather, knowledge is 

‘personalised’ information related to facts, procedures, concepts, interpretations, 

ideas, observations, and judgements (Alavi and Leidner, 2001)4.  

Understanding relationships between data, information and knowledge should 

precede the comprehension of how organisations dynamically create knowledge 

and how organisational learning mechanisms usually take place. Some definitions 

should be clarified, before deepening into our work. 

There are two types of knowledge: explicit knowledge and tacit knowledge. 

Nonaka, Toyama and Konno (2000) provided both definitions. “Explicit 

knowledge can be expressed in formal and systematic language and shared in the 

form of data, scientific formulae, specifications, manuals and such like. It is 

possible to be processed, transmitted and stored. Tacit knowledge is highly 

personal, hard to formalise and communicate to others, and is rooted in action, 

                                                 
4 Alavi and Leidner (2001) reviewed conceptual foundations of knowledge related with KM and KM systems. 
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procedures, routines, commitment, ideals, values and emotions, subjective 

insights, intuitions and hunches”. In 1995, Nonaka and Takeuchi proposed a 

learning model in which knowledge creation is a spiralling process of interactions, 

between tacit and explicit knowledge, where new knowledge is created5. Many 

other works have emerged since then, strongly based on this spiral model. Chen 

and Chen (2006) have reviewed the history of knowledge conversion over the past 

decade. In general terms, knowledge is created through interactions, between tacit 

and explicit knowledge, as mentioned above, rather than from tacit or explicit 

knowledge. 

In our work, the acquisition of knowledge is termed learning. There are, however, 

several strands of the learning literature, which highlight different aspects and 

ways of learning in an organisation. For instance, there is a clear distinction 

between a technical and a social strand in the learning literature. On one hand, the 

technical strand takes the view that learning is a matter of processing, interpreting 

and responding to quantitative and qualitative information, which is generally 

explicit and in the public domain (Argyris and Schon, 1978). On the other hand, 

the social strand focuses attention on the importance of cultural and socialisation 

processes (Senge, 1990; Lave and Wenger, 1991; Nonaka and Takeuchi, 1995). 

                                                 
5 Nonaka and Takeuchi’s influential book “The Knowledge-Creating Company”, presented to corporations 

and organisations in 1995, proposed a spiral model and four modes of knowledge conversion, termed SECI 

process by the authors, to understand how an organisation creates knowledge through the interactions 

between explicit knowledge and tacit knowledge in a “knowledge conversion”. The model of knowledge 

creation consisted of three elements: (i) the SECI process, the process of knowledge creation through 

conversion between tacit and explicit knowledge; (ii) “Ba”, the shared context for knowledge creation; and 

(iii) knowledge assets - the inputs, outputs, and moderator of the knowledge-creating process. The three 

elements of knowledge creation have to interact with each other to form the knowledge spiral that creates 

knowledge. 

The SECI process is based in four modes of knowledge conversion: (1) Socialisation (from tacit knowledge 

to tacit knowledge); (2) Externalisation (from tacit knowledge to explicit knowledge); (3) Combination (from 

explicit knowledge to explicit knowledge); and (4) Internalisation (from explicit knowledge to tacit 

knowledge). 
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1.2 Learning organisation and learning mechanisms 

Within this work, the focus will be on all the learning activities in an organisation 

that produce knowledge, not only the formal research activities that are 

traditionally more accounted for in the learning processes. There is little 

consensus among researchers about what learning is, and no theory of learning 

includes all the activities involved in human learning. Recently, Foray (2006) has 

even claimed that economists have created a “comfortable world” in which only 

some agents, institutions, and sectors are specialised in the production of 

knowledge, excluding a large proportion of activities, learning mechanisms and 

agents from the economics of knowledge. 

In fact, particularly in firms, knowledge production has become a vital source of 

sustainable and competitive advantage, which is in the basis of economic growth 

and productivity increase. Therefore, the KM science has lately established a set 

of new organisational practices, which seems to be of wide relevance in the 

economics of knowledge (Foray, 2007), and has turned KM into ‘a must’ from the 

managerial perspective.  

KM deals with any intentionally set of practices designed to optimise the 

production, distribution and use of knowledge. Ramalho and Sarmento (2004) 

evidenced the complexity and importance of managing knowledge and the skills 

and competencies of a knowledge manager. 

Learning, and subsequently knowledge production, is created within a social 

context, where people are the real agents, able to act upon the structures and 

systems of which they are a part (Senge, 1990). According to Senge (1990), 

learning organisations are “organisations where people continually expand their 

capacity to create the results they truly desire, where new and expansive patterns 
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of thinking are nurtured, where collective aspiration is set free, and where people 

are continually learning to see the whole together”6. 

Senge also defines two types of thinking: adaptative and generative. Generative 

thinking cannot be sustained in an organisation where event thinking 

predominates. A conceptual framework of systemic thinking is required to acquire 

the ability of discovering the structural causes of behaviour. For a learning 

organisation, adaptive learning should go together with generative learning to 

promote the “learning that enhances our capacity to create” (Senge, 1990). 

The learning organisation has a basic rationale. In situations of rapid change, only 

those organisations that are flexible, adaptive and productive will excel. For this 

to happen, Senge (1990) argues that organisations need to “discover how to tap 

people’s commitment and capacity to learn at all levels”. 

Adopting, as a point of departure, the anthropological framing of Bateson (1973), 

learning is a multi-level activity. Bateson (1973) structured learning in three 

levels: i) first-order learning is confined learning, in which facts or skills are 

defined by the context; ii) second-order learning takes the learner outside of a 

restricted framework, enabling connections and comparisons to be made, 

encompassing both the objective material and subjective factors; iii) third-order 

learning involves discovering the ability to doubt on the validity of previous 

perceptions, taking a meta-view both of the content process, and being 

constructivist and reflective. 

The distinction between first-order and second-order types of learning is also 

addressed by Dutton and Thomas (1984). No works, or at least almost none, 

                                                 
6 In 1990, Peter Senge wrote the seminal book “The Fifth Discipline: The Art and Practice of The Learning 

Organization”. Briefly summarising the book content, Senge claims that the dimension that distinguishes 

learning from more traditional organisations is the mastery of certain basic disciplines or ‘component 

technologies’. Those basic disciplines are systems thinking, personal mastery, mental models, building shared 

vision, and team learning. 
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besides anthropological, sociological and psychological ones, were found 

regarding third-order learning mechanisms. 

Adler and Clark (1991) argued that the first-order learning is a process based on 

repetition and on an incremental development of expertise. Therefore, via 

learning-by-doing, new knowledge fuels productivity directly. Learning-by-doing 

is a form of learning that takes place at the manufacturing and/or utilisation stage, 

after the product has been designed (Foray, 2006). This learning mechanism is a 

result of a direct involvement in the productive process that will lead to many 

kinds of productivity improvements, often individually small, but cumulatively 

very large (Foray, 2006). 

Some of the learning created by gaining experience can be of second-order, 

transforming the goals of the process, by explicit managerial actions, into 

technological changes that augment capabilities. Besides learning-by-doing, four 

fundamental learning mechanisms were identified: learning-by-using (Rosenberg, 

1982); learning-by-interacting (Lundvall, 1992); learning-by-searching (Boulding, 

1985; Johnson, 1992); and, more recently, learning-by-expanding (Schaeffer, 

2004). Different approaches have been developed to further conceptualise 

knowledge acquisition (see Table 1). 
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Table 1 – Organisational learning mechanisms. 

Learning Mechanism 

> Bibliographic References 
Brief Description 

Learning-by-doing 

> (Arrow, 1962) 

Learning from experience in production processes. Know-how 

produced by experience can be regarded as tacit knowledge, 

residing in individuals, organisational routines and manufacturing 

practices. Also described as first-order learning. 

Learning-by-searching 

> (Boulding, 1985) 

> (Johnson, 1992) 

Knowledge brought forward by R&D. Knowledge more 

concentrated on “know-why”; knowledge development on general 

concepts and principles.  

Learning-by-using 

> (Rosenberg, 1982) 

Solutions are found in practice and optimised according to 

experience. Also described as “know-what”. 

Learning-by-interacting 

> (Foray & Lundval, 1998) 

Knowledge transfer between users, producers, research institutes 

and policy makers. Knowledge transfer is more intense whenever 

relevant information is exchanged. Also described as “know-who” 

knowledge.  

Learning-by-learning 

> (Rotmans and Kemp, 2003) 

Primary learning processes improve over time, and more intensively 

if learning strategies are developed, applied and evaluated. Also 

described as reflexive learning or second-order learning. 

Learning-by- expanding 

> (Schaeffer, 2004) 

If a process/technology is frequently applied, more actors, 

organisational structures and industrial sectors will become involved 

in, focused on, dependent on and adapted to the new technology. 

Also described as “'learning-by-expanding” or “learning-by-network 

growth” or “learning-by-embedding”. 

As summarised in Table 1, organisational knowledge can be acquired in different 

ways, through formal research and work development, or through learning as 

doers or users. But surprisingly, and even though users intensively influence the 

innovation process, the learning-by-using mechanism has not been studied 
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enough. Although Rosenberg (1982) has highlighted the critical role of the ‘user 

learning’ for several technologies, this field has received little empirical attention.  

More recently, the concept of “communities of practice”7 (COP) has become 

increasingly influential within the KM literature. COP are “groups of people who 

share a passion for something that they know how to do and who interact 

regularly to learn how to do it better” (www.ewenger.com). Intentionally created, 

COP are currently being used to facilitate knowledge transfer within firms, as the 

tacit aspects of knowledge are often the most valuable, as they consist of 

embodied expertise (Ramalho and Sarmento, 2004). Furthermore, presently, 

codified knowledge is losing part of its strength as a source of competitive 

advantage, and tacit knowledge is reinforcing its significance as a mean of 

adapting to new requirements and therefore, spatial proximity to sources of 

relevant knowledge creation is becoming central (Vaz and Nijkamp, 2009). 

 

1.3 Learning and experience curves 

Initially, LC models were developed from the basic premise that individuals and 

organisations acquire knowledge by doing work. More recently, it has been 

proposed that organisations learn by using, interacting, searching and expanding. 

Thus, through different learning mechanisms, organisations and individuals 

develop relatively permanent changes in behaviour, accumulating experience. As 

more products are produced by a manufacturer, the cost per unit of the product 

often decreases at a determined rate. This phenomenon is represented by an 

exponential curve, also known as the EC. 

The organization gains a competitive advantage when it converts the cost 

reductions into productivity gains. However, the trickiest attribute of experience 

                                                 
7 The COP concept was originally developed by Lave and Wenger (1991) in a study of situated learning. 



TECHNOLOGICAL LEARNING IN MICROALGAE PRODUCTION SYSTEMS 

REVISITING THE EXPERIENCE CURVE AND THE LEARNING MECHANISMS 

 
Chapter 1 

 

 15 

accumulation is its strategic importance, due to the fact that experience cannot be 

traded. 

The literature on experience curves provides benchmarks for the progress ratio 

from other fields of technology (IEA, 2000). Nevertheless, among the extensive 

body of research on LC, two seminal studies are to be cited, starting with Wright 

(1936). This author introduced a quantitative model to describe the time savings 

(and associated cost reductions) achieved in manufacturing aircraft. Wright found 

that the time required to assemble an aircraft, decreased with increasing 

production levels8. The relationship was well-predicted by an equation of the 

form: 

bxCy −= .                                                                                                              (1) 

where C equals the costs (hours) to manufacture the first unit, x depicts the 

cumulative number of units produced, y is the cost (hours) required to produce 

unit number x, and b gives the slope for the improvement in costs (hours) in 

producing the units. On a log–log scale, equation (1) plots as a straight line with 

slope –b (Figure 1). 

 

Figure 1 – A LC on (a) linear and (b) log-log scale (Neij et al., 2003). 

                                                 
8 Even before Wright´s work, in the nineteenth century, the German psychologist Hermann Ebbinghaus, 

described a phenomenon similar to LC, but focused on the time required to memorize nonsense syllables. 
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The Progress Ratio (PR) is defined in Eq. (2). Wright coined the term ‘‘progress 

ratio’’ to describe the ratio of current cost to initial cost after a doubling of 

production. For example, a PR of 0,80 meant that costs decreased by 20% for 

each doubling of cumulative production. 

bPR −= 2                                                                                                              (2) 

The current theory and practice, surrounding LC, are based upon three 

conclusions: 1. the time required to perform a task decreases as the task is 

repeated; 2. the amount of improvement decreases as more units are produced; 3. 

the rate of improvement has sufficient consistency to allow its use as a prediction 

tool. In this study, Wright concluded that consistency in improvement has been 

found to exist in the form of a constant percentage reduction in time required over 

successively doubled quantities of units produced. The constant percentage, by 

which the costs of doubled quantities decrease, is called the rate of learning. The 

Learning Rate (LR) represents the proportional cost savings made for a doubling 

of cumulative output as presented in Eq. (3). 

PRLR −=1                                                                                                            (3) 

Wright’s work was related to learning within a factory and his curves for inputs to 

the factory process became known as LC (IEA, 2000). Wright’s LC equation was 

subsequently found to describe the decline in production costs for a wide range of 

manufacturing activities remarkably well (e.g., Dutton and Thomas, 1984). 

Almost 3 decades after, Kenneth Arrow published, in 1962, another relevant work 

with the same framework of Wright´s LC. Arrow proposed a model based on the 

concept of “learning-by-doing”, with conceptual foundations on the psychological 

meaning of learning, and formalised an endogenous growth theory of the changes 
                                                 
10 The booklet deals with the EC techniques and value engineering problems to state a problem in terms of 

specific figures and give a sample solution using these figures. The solutions are directed toward obtaining 

the total savings and the average savings per unit for some given quantity as the result of a value engineering 

change made at some point in production. 
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in knowledge. Arrow formalised the LC model that explained technical change as 

a function of learning derived from the accumulation of experiences in 

production. As learning was only due to experience, learning could only take 

place through the attempt to solve a problem, and during the activity itself. As a 

consequence, Arrow concluded that learning associated with repetition was 

subjected to sharply diminishing returns. More recently, other learning 

mechanisms were studied, in order to comprehend the increasing performances 

and support the argument that learners have to be stimulated by situations that 

steadily evolve, rather than repeating activities. 

In the late 1960s, Bruce Henderson, of the Boston Consulting Group (BCG), 

extended the LC and began to emphasise the implications of the EC for firm 

strategy. It was applied to the total cost of a product, thereby including other 

learning mechanisms, such as research, development and demonstration and 

economies of scale, and other cost factors (e.g., cost of capital, marketing, 

overhead) (Van Sark, 2008). Based on empirical observations, the BCG´s study 

found that the “costs appear to go down on value added at about 20 to 30% every 

time total product experience doubles for the industry as a whole, as well as for 

individual producers” (BCG, 1974). 

The term EC was first applied in 1966 and was selected to distinguish the 

phenomenon from the LC effect. The development of this concept was furthered 

in the 1970's by BCG, which marketed it as a strategic marketing instrument. 

Statements such as “The EC effect can be observed and measured in any business, 

any industry, any cost element, anywhere. Most of the history of insight into the 

EC effect and its significance is still to be written”, as can be read on a reprinted 

version (BCG, 1973). 

Since Wright, LC have been applied to monitor and evaluate worker 

performances. Different models of univariate and multivariate curves have been 

developed. These models are constituted by different mathematical functions and 

the complexity of shapes of the curves, which represent the models, are closely 
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related with the intricacy of the production process. Among the univariate LC, the 

best-diffused models are the potential (see Figure 2), exponential and hyperbolic 

(Anzanello and Fogliatto, 2007). 

Model of Wright 

bxCy −= .  

Model of “Plateau” 

bxCBy −+= .  

Model of Stanford-B 

bBxCy −+= )(  

Model of Dejong 

⎥⎦
⎤

⎢⎣
⎡ −−+= bxMMCy ).1(  

Model “S-curve” 

⎥⎦
⎤

⎢⎣
⎡ −+−+= bBxMMCy ))(1(  

Figure 2 - Potential models of EC in linear scale, adapted from Anzanello and Fogliatto, 2007. 

 

As learning is often equated with experience, the terms LC, EC, “progress curve”, 

and “learning-by-doing curve” are frequently used interchangeably. Generally, the 

term EC is more of a macro-concept, while the term LC is a micro-concept. The 

term LC refers to the phenomenon that unit production costs typically decrease 

over time, and the LC effects are considered restricted to learning effects of the 

workers (learners). In contrast, the EC effects comprise learning effects of the 

whole firms and entire industries, such as learning trough research and learning 

trough scale-production and up-scaling of individual products (IEA, 2000). On the 

other hand, the term EC relates to the total production, or the total output of any 

function, such as manufacturing (Conley, 1970), marketing, distribution, or even 

aggregating entire industries, rather than single plants (Dutton and Thomas, 
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1984). Essentially, the EC generalises the labour productivity LC, to include all 

the costs necessary to research, develop, produce and market a given product, and 

according to BCG´s work it may be more influenced by technological inputs. 

The popularity of the EC reached a peak in the mid 1970s (Papineau, 2006), with 

BCG´s strategic marketing tool based on EC effects. By that time, firms were 

recommended to expand in order to avoid competitor’s entrance and maintain 

advantage. Some of these strategies failed because firms did not consider the 

effect of knowledge diffusion (Lieberman, 1987). Following this, the EC concept 

underwent a decrease in credibility. 

 

1.3.1 Applications and misapplications of LC and EC 

An extensive number of empirical studies have documented the link between 

cumulative experience (e.g., cumulative production volume, cumulative 

production time) and some measure of operational performance improvement 

(e.g., cost reduction, yield improvement, productivity improvement) in a variety 

of industrial settings, providing an empirical basis for the concept of learning-by-

doing. 

The LC model has been studied in many industries: airframes (Wright, 1936; 

Alchian, 1963), machine tools (Hirsch, 1952), metal products (Dudley, 1972), 

power plants (Zimmerman, 1982; Joskow and Rozanski, 1979), chemical 

processing (Lieberman, 1984), shipbuilding (Argote et al., 1990), semiconductors 

(Webbink, 1977), photovoltaics (Harmon, 2000), combined cycle gas turbine 

(Claeson Colpier and Cornland, 2002), fuel cells (Tsuchiya and Kobayashi, 2002), 

ethanol production (Goldemberg, 1996), or carbon sequestration technologies 

(Riahi et al., 2002; Rubin, 2006). 

The document entitled “Value Engineering and experience curve predictions” is a 

curious booklet produced by the Procurement and Production Directorate of the 
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United States Army Missile Command (Kelley, 1965) with general procedure 

guidelines. The booklet illustrates situations in which EC techniques may be 

applied as an aid in analysing a “Value Engineering Change Proposal”10. 

There is no natural law requiring production costs to follow an EC (Junginger, 

2005). However, this phenomenon has been observed empirically numerous 

times. Dutton and Thomas (1984) have analysed over 100 EC for manufacturing 

firms and found PR ranging between 0,6 and 1,0, with a mean of 0,8. McDonald 

and Schrattenholzer (2001) have collected data for energy technologies (26 data 

sets) and found a distribution of PR also ranging between 0,6 and 1,0, but with a 

slightly higher mean, of 0,84. 

 

1.3.1.1 Competitiveness of new and innovative products and 

processes: forecast of costs 

Schumpeter (1947) identified patterns in the ways that technologies are invented, 

improved, and diffused into society. Other studies have described the complexity 

of the innovation process in which uncertainty is inherent, knowledge flows 

across sectors are important, and lags can be long (Nemet, 2006). Possibly, 

because of such characteristics, theoretical work on innovation provides only a 

limited set of methods with which to predict changes in technology, therefore the 

LC appears to be an exception (Nemet, 2006). 

Several definitions of innovation can be found in the literature (e.g. Utterback, 

1994; Frascati Manual, 2002; Oslo Manual, 2005). Nevertheless, almost all 

definitions include the concepts of novelty, commercialisation and/or 

implementation. In other words, if an idea has not been developed and 

transformed into a product, process or service, or it has not been commercialised, 

it should be classified as an innovation. 
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The Oslo Manual (2005) refers to innovation as “the implementation of a new or 

significantly improved product (good or service), or process, a new marketing 

method, or a new organizational method in business practices, workplace 

organization or external relations”. This definition is well suited to the scope of 

this work. Moreover, the national Portuguese Standard NP 4456:2007, regarding 

the Management of Research, Development and Innovation, has adopted this 

definition (IPQ, 2007).  

The way innovative technologies develop and diffuse is characterised by various 

stages, from invention to widespread implementation (Hettinga et al., 2009). 

Different learning mechanisms play a role in each of these stages. The learning 

process will lead to technological change and to cost reductions (Neij et al., 2003; 

Junginger, 2005). Therefore, the EC approach can help to measure and quantify 

the aggregated effect of technological development and should not be neglected. 

A technological discontinuity, also called radical innovation, marks the onset of a 

new technology. It is “based on a different set of engineering and scientific 

principles and often opens up whole new markets and potential applications” 

(Henderson and Clark, 1990). In consequence of the occurrence of a technological 

discontinuity, the EC can come to an abrupt stop (see Figure 3). This event is 

represented graphically by a curve truncation. Whenever such a phenomenon is 

identified, a red alert should be displayed in the ‘competition monitoring device’ 

of the firm, which means that existing processes become obsolete and the firm 

should upgrade to remain competitive. The upgrading will mean that the old EC 

will be replaced by a new one. 

An important implication of the EC, related with technological discontinuity, is 

that increasing accumulated experience in the early stages of a technology will 

create the possibility of developing a ‘dominant design’ (BCG, 1972). A 

‘dominant design’ is a technology management concept that identifies key 

technological designs that become the standard in their market place. Firms will 

introduce alternative designs until some combination becomes clearly preferred 
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by end-users and widely accepted as an industry standard (Anderson and 

Tushman, 1990). Eventhough, the EC offers no method to predict discontinuities 

in the learning rate or the eventual occurrence of a dominant design, it may help at 

least to identify future barriers that could lead to technological discontinuities, and 

point out critical R&D areas (Nemet, 2006). A technological discontinuity appears 

in the form of a double knee. Figure 3 illustrates a step in the EC, indicating a 

change in the entry point and possibly also in the progress ratio before and after 

the change (IEA, 2000). 

 

Figure 3 – Technological discontinuity (IEA, 2000). 

 

The ‘technology variant A’ is deployed, but during the transition period investors 

realise the advantages of ‘technology variant B’. As the two technology variants 

are assumed to be similar, in the transition period for ‘technology variant B’, there 

is experience accumulation from the learning process that occurred during 

‘technology variant A’ deployment (IEA, 2000). 

Emerging technologies pass through several stages before they mature, 

encompassed by different learning mechanisms. Among the different 

organisational learning mechanisms, in order to achieve an increased market 
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penetration of a technology, learning-by-searching is the most dominant 

mechanism in the early phase of technology development (Van Sark, 2008). It 

also often plays an important role at later stages, as well, as the effect of R&D on 

an industry’s capacity to decrease cost is analogous to experience, because it 

brings dynamism to economies or downward shifts in the cost curve (Papineau, 

2006). 

In the case of niche-market applications, for instance of new technologies, the 

learning-by-doing mechanism will ultimately promote innovation in the form of 

continuous improvement. Foray (2006) claims that, at the micro-economic level, 

learning-by-doing can be related to innovation and knowledge production. The 

researcher also points out the fact that learning-by-doing should not be confused 

with incremental innovation, because while learning-by-doing generates only 

technological or organisational increments, most incremental innovations are 

produced only through learning-by-doing mechanisms. After, the initial 

development phase, whenever technology diffusion takes place it leads to 

learning-by-interacting, and, from that point on, to the last stage of mass 

production. 

The learning process is a result of the development of increasing skill in 

production, being therefore a source of innovation that is recognised as a 

component of the R&D process and receives no direct expenditures (Foray, 2006). 

As the process of innovation is inherently uncertain, prospects for future learning 

with existing technologies do not consider breakthroughs (i.e., through R&D 

investments) and market developments. One has to be cautious when using EC for 

innovation forecasting purposes. The simplistic use of industry-wide EC can 

easily mask the underlying dynamics of the process of innovation. It would be 

wise only to use EC whenever incremental innovations are inferred as 

simplification and improvement activities, and avoid using EC for domains where 

radical innovations may take place. 
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Another drawback of EC, indirectly pointed out by Peter Senge (1990), is the 

“core learning dilemma” that confronts organisations – organisations learn best 

from experience but never directly experience the consequences of many of the 

organisational strategic decisions. 

 

1.3.1.2 Modelling and policy support decision tools: the EC and 

LR in the case of energy sector 

Newfound interest in EC has arisen in recent years, not only as before, as a 

production planning or strategic management tool, but more recently with a focus 

on achieving reliable estimates of technological learning rates as inputs in 

technology forecasting models used for decision-making for government policies 

(IEA, 2000; Hettinga et al., 2009; Van den Wall Bake et al., 2009, Weiss et al., 

2010). For instance, figure 4 illustrates the use of learning opportunities in the 

power sector in the European Union (EU). 

 

Figure 4 – Cost of electricity, electricity produced and PR from selected electric technologies 
installed in the EU, from the year 1980 to the year 1995 (IEA, 2000) (NGCC stands for Natural 
Gas Combined Cycle). 
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Eventhough, several national energy policies face controversy as electricity 

customers are paying more for subsidise wind farms, surprisingly, according to 

IEA (2000), electricity from wind produced at the sites, with best performance, 

can today compete with electricity produced in coal-fired power plants; 

photovoltaics and biomass technology require considerable improvements in 

performance before electricity from these technologies can compete with 

electricity from fossil fuel technology. 

Technological policy decisions should always be supported by reliable estimation 

and technology cost forecasts. It is no longer plausible to use the EC methodology 

to estimate cost patterns on the basis of a price proxy. It is obvious that new 

approaches are needed to attenuate or solve the EC methodology limitations. 

Several works have used LC as important tools for technical change modeling and 

policy making support. Duke and Kammen (1999) provided a method for 

evaluating the cost effectiveness of public policies to support new technologies. 

Van der Zwaan and Rabl (2004) have weighted public technology investment 

against environmental damage costs. 

More recently, other works have pointed to the significant uncertainties of key 

parameters (Wene, 2000). LC must be used with caution, when inadequately 

applied, as they may lead to inappropriate public policies (Papineau, 2006). 

Nemet (2006) even stressed the importance of caution when applying EC in early 

stages of market dynamics for photovoltaic, fuel cell, carbon capture and 

sequestration technologies. Nevertheless, it is important to keep in mind that LC 

are a heuristic measure, without a solid theoretical basis. 

Other studies indicate that learning from experience only weakly explains 

reductions in technology costs. For example, Nemet (2006) quantified the sources 

of cost reductions in photovoltaic technology and concludes that plant size, 

module efficiency and silicon cost are the most important factors of cost, being 

minimally affected by experience. 
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EC provides an useful analytical tool for assessing the historical and expected 

future performance of technologies in markets. However, for public policies 

development is still widely under-utilised, even though it could help to shape 

energy, environmental, climate change, and other policies (Jakob and Madlener, 

2003). A good example of this application is the Green Econometrics Research 

(Davies, 2007) which attempted to develop a ‘what-if’ scenario for the solar 

energy market by comparing energy costs for different EC and market growth 

rates, using data from the Department of Energy of the USA (see Figure 5). 

 

Figure 5 – Energy costs for different EC and market growth rates, adapted from Davies, 2007. 

Figure 5 depicts that the most optimistic scenario of market growth of 60% and 

EC of 30%, suggests that it would take until 2014 before solar energy price equals 

to the price of electric energy. Davies (2007) also claims that increased funding 

into solar energy research and higher energy prices would shorten the time to 

reach price parity between energies. 

Another EC application, rarely addressed, consists of promoting learning 

spillovers as a diffusion policy, learning gains and first mover advantage 

(Schwoon, 2006). In a working paper on fuel cells vehicles, Schwoon (2006) 

shows that high LR, long planning horizons of the producers and high learning 

spillovers have a positive impact on the technology diffusion. In addition, Clark 
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and co-workers (2006) identified three sources of technological change, such as 

research and development (R&D), learning-by-doing, and spillovers, that are 

particularly relevant to the process of technological change. Moreover, Nemet 

(2006) concludes, in a study where sources of cost reduction in photovoltaics are 

quantified, that learning derived from experience is small compared to those of 

expected future demand, risk management, R&D, and knowledge spillovers. 

 

1.3.1.3 Support decision tool at the firm’s level: EC cross-

comparisons 

Despite an extensive body of research, especially on the effects of EC on business 

strategy, few studies have paid attention to firm-level and organisational-level 

differences in slopes of LC. Therefore, unstudied comparisons between LC across 

independent organizations in the same industry remain to be conducted (Pisano et 

al., 2001). 

An interesting exception is the work on early U.S. rayon production (Jarmin, 

1994), where a different relationship was identified between cumulative 

experience and performance improvement across producers, having found 

differences in the abilities of rayon producers to benefit from their own 

cumulative production experience. 

Only few studies have established the possibility that LC can vary across plants or 

organisational sub-units within the same company. Hayes and Clark (1986) have 

concluded that these differences were not explained by product or technology 

differences. There is the underlying suggestion that organisational learning effect, 

in addition to experience effects, contributes to performance improvement. 

Considering BCG´s perspective (1968), the cycle for a viable product has four 

phases (Figure 6): 
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• “Development phase”, where the initial producer sets prices below cost to 

establish the market. 

• “Price Umbrella phase”, where the producer as market leader may maintain 

prices over the higher cost producers that are entering the market. In effect, the 

producer is already cashing in on his development by trading future market 

share for current profits. Under the Price Umbrella, the new producers will 

learn and thereby reduce their cost, and the typical PR for this phase is 90% or 

more. 

• “Shakeout phase” inevitably occurs when producers become low-cost 

producers and the difference between the price and the cost for these 

producers becomes larger and larger. PR typically will be around 60% for this 

phase, but there are considerable variations around this value. 

• “Stability phase”, where prices stabilise around an EC with the same PR as 

the cost curve, leading to a fixed cost/price ratio. 

 

Figure 6 - Price-cost cycle for the market introduction of a new product based on BCG, 1968. 

 

a) 
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More recently, Morrison (2008) went one step further with the EC applications, 

arguing that the “anticipation of future cost reduction that accrues as production 

experience is gained, suggests setting prices aggressively, even below cost of 

manufacturing, early in a product life cycle in order to build market share” (see a) 

in Figure 6). 

The BCG´s four-phase cycle, and related models, should be used with caution in 

our globalised economical framework, and imperfect economy, due to different 

phenomena. On one hand, the technological structural change, which can be 

depicted in the cost EC, is difficult to measure, thus tempting the analyst to use 

the price curve as an indicator for technology structural change. On the other 

hand, innovative processes that occur and rapidly diffuse worldwide can easily 

affect technological structural change. Therefore, the cost EC modelling should 

include a ‘calm down factor’, in order to avoid excessive optimistic scenarios. 

Finally, the market structural change, which can be observed in the price EC, will 

have no effect over the cost curve (IEA, 2000), so that the behaviour of the cost 

curves will never accurately be predicted by the price EC. 
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Chapter 2 Materials and methods 

 

It has generally been assumed that the EC concept can be used with prudence as a 

managerial tool to improve business performance and enhance innovation in 

firms. Even though the EC is based on data of past performances, if the 

underlying learning mechanisms present in experience accumulation are 

identified, KM can be put in practice for future improvements. In this context, the 

present work is a preliminary attempt to understand to which extent EC may be 

used for KM purposes, through the case study of the technology of microalgae 

production. 

A research strategy was developed, aiming towards a better appreciation of the 

interrelated aspects of learning and experience build-up in a technology-based 

firm. In this work, the case-study approach was chosen as the main methodology 

of research, as it provides an in-depth investigation of underlying principles of 

learning and experience accumulation during the technology instalment and 

development in a business environment. 

In our work, secondary data are obtained from two different research strands:  

• Qualitative data, trough semi-structured interviews, firm records and other 

research-related documents; 

• Quantitative data collected from databases and bibliographic references. 

Following data collection, the information gathered was processed with two 

different methodologies, one regarding EC and the other focused on the learning 

mechanisms involved in the technology development. Table 2 summarises the 

sources for secondary data collection, and the generalised scheme of our research 

strategy is shown in Figure 7. 
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Figure 7 – Research Strategy. 

 

 

Table 2 – Sources of secondary data. 

Sources of secondary data 

Semi-structured interviews with technical staff related with 
production and laboratory activities Learning Mechanisms 

Necton’s ‘Annual Production Reports’ 2000 - 2008 
Production per month 

Productivity per month 

‘Boletim do Trabalho e Emprego’ (http://bte.gep.mtss.gov.pt/) Wages of Technical Staff 

Meteored (http://clima.meteored.com) Max., Min. & Average 
Temperatures 

Meteored (http://clima.meteored.com) Rainy Days 

Tu tiempo Network (www.tutiempo.net) Sun hours 

European Solar Irradiation Database 
(http://re.jrc.ec.europa.eu/pvgis/solres/solres.htm) Irradiation 
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2.1 Case-study selection 

Projections for 2009 estimated that products and services developed worldwide by 

blue biotechnologies11 account for 2,6 billion Euros per year, with a market 

growth rate of 3,8% (SAER, 2009)12. Marine biotechnology falls within the scope 

of blue biotechnology, and aims to develop methods for producing novel products 

extracted from or originating within marine organisms. These products can 

contribute to human healthcare, food and feed industries, and to the energy 

industry. 

Among the marine organisms, microalgae are an untapped resource. Even though 

processes that use microalgae are not novel, surprisingly few microalgae are 

produced for commercial purposes. There is currently a niche market for several 

microalgal products, such as carotenoids and omega-3 fatty acids. Microalgae are 

                                                 
11 The influential Organisation of Economic Cooperation and Development (OECD) provided, in 2001, a 

working definition for biotechnology: “biotechnology is the application of scientific and engineering 

principles to the processing of materials by biological agents to provide goods and services” (OECD, 2001). 

There are four main subfields of biotech that can be represented by colours: white, green, red, and blue. White 

(or grey) biotech is a metonym for health application. Red biotech is for industrial application. Green stands 

for agriculture and environmental uses, and the blue subfield is for aquatic uses. 

12 There are four main subfields of biotech that can be represented by colours: white, green, red, and blue. 

White (or grey) biotech is a metonym for industrial application. Red biotech is for industrial application. 

Green stands for agriculture and environmental uses, and blue subfield is for aquatic uses. 

The blue biotechnology market is expected to grow rapidly for several reasons, but specially due to the fact 

that 80% of living organisms are to be found in aquatic ecosystems (SAER, 2009). Therefore, the pace of 

discovery of new species and products through marine bioprospecting, potentially useful to pharmacology, is 

thought to be higher for marine organisms than for terrestrial organisms. Traditionally only 1 out of 10.000 to 

20.000 molecules extracted from terrestrial microorganisms, plants or animals finally reached the market 

(EU, 2006). However, marine organisms present a better opportunity for encountering successful candidates 

in view of the large biodiversity, lack of current knowledge and extreme environments (EU, 2006). 

Approximately 15.000 natural marine products have been screened, and out of these, currently there are 45 

marine derived natural products tested to be used as medical drugs in preclinical and clinical trials; and two of 

them have been developed into registered drugs (Wijffels, 2007). 
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now also receiving renewed attention because of their potential as a source of 

biofuels (Stephens et al., 2010). 

The success of commercial large-scale production of microalgae depends on many 

factors, and one of these is the development of cost effective large-scale culture 

systems for the microalgae. The development of such systems has been, and 

continues to be, a gradual process (Borowitzka, 1999). 

Almost all the industrial processes are designed to produce large amounts of 

products, moving towards mass production. For larger scale production of 

microalgal products, such as those required for the production of bulk chemicals 

or biofuels, major developments in science and technology will have to be 

achieved. However, the commercial success of microalgal bioproducts and 

processes not only depends on relevant scientific and technological development, 

but also on a supportive regulatory framework. Recently, a few countries, such as 

the U.S.A., United Kingdom and Japan, have made a strong effort in R&D 

activities regarding blue biotech. Over the last few years, the Portuguese 

biotechnology sector has experienced an important and significant increase in the 

number of companies created. Presently, there are over 40 biotechnology start-up 

companies in Portugal, most of which were created between 2001 and 2006 

(APBIO, 2006). While all four subfields have contributed with a number of 

valuable processes, green biotech is probably the most widely used, while blue 

biotech is still relatively rare. This generalisation is confirmed by recent statistics 

relating to Portuguese biotech companies (APBIO, 2006). Even though Portugal 

has a vast ocean shoreline, surprisingly few companies have emerged dedicated to 

marine biotechnology, and only one company in Portugal produces microalgae 

(Necton). 
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Besides the required R&D efforts, there is also a significant need in the techno-

economical domain to study, comprehend and try to reduce production costs. The 

reduction of production costs may, in this case, as well as in others, expand the 

potential industrial use of microalgae. Thus, the EC is tool potentially worthy of 

application to the MPS. 

Necton is based in the Ria Formosa Natural Park, in the Southern Portuguese 

Algarve region. Established in 1997, the microalgae production unit began to 

operate as a pilot plant settled in the saltpans. 

In general terms, microalgae cultivation implies a succession of dilution and 

concentration processes. A good quality of inocula is accomplished in the 

laboratory under very controlled conditions, to avoid contaminations and optimise 

biochemical composition of microalgae. After growing the inocula indoors, it is 

possible to scale-up to photobioreactors (PBR), and slowly adapt the microalgae to 

outdoors conditions. Necton uses a semi-continuous cultivation system with an ‘on-

line set point’ of pH and temperature control, which regulates carbon dioxide 

supply and the refrigeration of cultures, respectively. This automated control allows 

the maintenance of excellent growing conditions according to the microalgae 

species. Biomass is harvested daily through a controlled centrifugation process, 

which promotes an optimal microalgae culture growth. Microalgal cultures are 

controlled daily for nutrients, growth parameters, contaminations and biochemical 

quality. 

The microalgal biomass is sold primarily to the aquaculture market, but also for the 

cosmetic industry. Aiming to solve hatchery managers constraints related to in-

house microalgae production crashes, Necton developed a set of specialised 

microalgae concentrates. The company commercialises the ‘PhytoBloom’ product 

range, based on an improved strain of Nannochloropsis oculata and is presented as 

a frozen paste, a liquid formula or a freeze-dried powder (see Figure 8). This 

product range mainly targets aquaculture fish hatcheries, R&D institutions and fish 

feed producers. 
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 a) b) c) 

Figure 8 – Products commercialised by Necton for the aquaculture market: a) PhytoBloom ice - 
microalgal biomass in frozen state; b) Phytobloom Green Formula – live microalgae in a liquid 
formulation; c) PhytoBloom prof – freeze-dried microalgal biomass. 

 

At present, Necton is using the 4th generation of MPS. The first technology to be 

designed and implemented in Necton´s facilities, even before the company was 

established, was an open raceway to produce Dunaliella salina, a microalgal strain 

that produces natural betacarotene. At that moment, the market constraints and the 

low productivity of this type of system dictated a slow abandonment of the 

technology, being replaced by a closed system technology, designated as “flat 

panel flow through” PBR (FPFT - PBR). 

Since the year 2000, the company has been operating 5 FPFT – PBR, with a total 

cultivation volume of 13.000 litres. In 2006 the 3rd generation of PBR was built, 

which consisted of a tubular PBR with a cultivation volume of 3.200 litres. The 

design of the tubular PBR was aimed at solving one important restraint of the 

FPFT-PBR technology related to cleaning and maintenance. Both types of PBR are 

strategically positioned and designed to favour optimal sun-light exposure, in order 

to guarantee maximum productivity. 

The technological portfolio of Necton was enlarged in 2007 with the installation of 

‘GreenWall’ technology (GW). The GW is a closed system that consists of a 700 

litre plastic bag where the culture is grown; mixing is accomplished by bubbling air 

into the culture. 

After more than a decade of microalgae production experience know-how, several 

technologies were tested in Necton´s production site, such as raceways, closed 

PBR, and even 700 litre GW. 
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Necton is perhaps the only company in the world that has tested so many 

different MPS, ranging from closed to open systems (see Figure 9), and 

produces a wide range of microalgal species14. 
 

                                                 
14 A collection of more than 15 strains, both marine and freshwater species, are maintained and ready to be 

scaled up. In Necton´s MPS it is possible to grow Nannochloropsis, Tetraselmis, Phaeodactylum, 

Porphyridium, Chlorella, Haematococcus pluvialis and Porphyridium cruentum, among others. 
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The technical details and extended description of MPS will be introduced in 

Chapter 3. 

 

2.2 Research questions and working hypotheses 

In the present study, the term ‘technology performance’ corresponds to the total 

biomass produced, due to the fact that this is the main result arising of the 

company’s activity. In order to understand the evolutionary process of 

technological learning within the firm´s context, it was fundamental to understand 

how the firm has learnt year over year to produce biomass. Consequently, two 

research questions immediately arose. The first focused on the EC phenomenon, 

and on how it occurred in the case-study, as the outcome of integration of all the 

learning processes. The second question aimed to explore the variation between 

different types of technologies for MPS, and if technological differences globally 

influenced the EC. 

Companies that have the capability to learn will lead the market. Currently, it is 

not enough to have learning-by-doing capabilities, and therefore the third question 

brought up more specific uncertainties, related with what learning mechanisms, 

besides learning-by-doing, have taken place along technological experiencing, and 

to what extent they have affected the organisational learning and technological 

performance. 

From the main research questions, three working hypotheses were therefore 

addressed: 

H1: MPS of the case-study follows an experience curve 

H2: Closed and open MPS follow similar experience curves. 

H2: Learning mechanisms play different roles across the MPS life-cycle. 
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2.3 Data Collection 

The company Necton provided several documents, such as ‘Annual Production 

Reports’ and other records, that gathered information about daily production, 

monthly production and productivity accomplished, since the year of 2000, when 

the several FPFT PBR were installed. During the year 2006, the tubular PBR was 

installed and started to be in operation, which entailed, for the purpose of this 

study, the detachment of data, in a daily basis, from the year 2006 to the year 

2008, from the records of total biomass produced within total installed capacity 

biomass into two different data sets, regarding each type of technology. Data 

regarding biomass produced per year could then be used in the ‘Methodology for 

experience curve determination’ for both MPS. 

The MPS of the case-study are installed outdoors, and use sun-light as source of 

energy. Therefore, there are several parameters related with environmental 

conditions that can alter microalgae growth rates, with subsequent implications in 

technology performance. Even though they are difficult to control, for an accurate 

analysis those parameters must be known. A set of environmental data was 

collected and processed, including minimum temperature and maximum 

temperature, sun-hours, rainy days and irradiation (see Appendix A). 

Environmental data, especially those related with photobiology, largely affect 

technology performance, and have been reviewed in detail elsewhere (Pulz, 1992; 

Pulz and Scheibenbogen, 1998; Tredici and Zitelli, 1998; Molina Grima, et al., 

1999; Tredici, 2010). 

First-hand data was extracted from semi-structured interviews conducted with 

technical staff from Necton. The set of interviews was conducted with direct 

personnel, namely those workers that were directly involved with technology 

design and redesign, technology on-site implementation, and production activities. 

The size of the sample was 5 workers. Each interview lasted approximately for 2 

hours, allowing questions to be brought up during the interview. A framework of 

themes was explored, all related with how each collaborator had experienced 
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technological discontinuities, organisational changes and which learning activities 

were more present in each phase of the different technologies implementation. 

The final semi-structured interview guideline is presented in Appendix B. 

Because the interview script was semi-structured, the number of questions asked 

was not constant along the interviews, and discussions varied depending on 

responses from workers. In addition, as interviewees had to make use of memory, 

some graphical representations and diagrams were shown to grant an event 

contextualisation. Qualitative analysis was used to estimate the contribution of 

each learning mechanism in the technology life-cycle, and how workers 

experienced performance increase. The data obtained in the interviews were 

applied in our ‘Methodology for learning effects determination’. 

 

2.4 Research methodologies 

In order to test the working hypotheses, two methodologies were combined 

together. 

 

2.4.1 Methodology for EC determination 

The EC model, expressed in equation (1), in a natural log-log scale, can be 

presented as: 

)ln(.ln xbC(y) +=                                                                                               (4) 

Considering that x stands for cumulative units produced (CUP), and that y 

corresponds to the unitary cost (UC): 

∑==
n

TB
PCUCy

1
                                                                                               (5) 
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where PC is the production cost (approximated by labour) in the year n, and TB is 

the total amount of biomass produced in the year n. Therefore, equation (4) can be 

expressed as follows: 

∑ +=
n CUPbC
TB
PC

1
)ln(.)ln(                                                                                 (6) 

Labour costs were determined considering a technical team of 4 workers, with 

different time allocations to production activities, herein expressed in percentage 

of time: business unit manager (20%); plant manager (100%); maintenance 

technician (100%); laboratory technician (100%). Wages used in this study are 

referred in (BTE, 2007) as a minimum wage of each worker category. The 

information regarding TB was extracted from the ‘Annual Production Reports’ 

provided by Necton. 

A regression analysis was performed over equation (6), providing the EC and the 

quantification of PR and LR for each type of technology (FPFT PBR and tubular 

PBR). 

Production data, regarding open systems, was taken from the literature (Vonshak, 

1997; Sánchez et. al, 2003), but unitary production costs were not found. 

Regardless of this fact, production improvement was determined for closed and 

open systems. 

 

2.4.2 Methodology for learning effects determination 

Based on Adler and Clark´s work (1991), the present methodology aims to 

understand which learning mechanisms were, or were not at all, experienced by 

workers, and at what point they took place in each MPS life-cycle. The 

technologies to be studied are the ones that were installed in the past, or are 

currently still in operation in Necton: raceways, FPFT PBR, tubular PBR, and 

GW. To pursue with our research purpose, four variables were measured: 
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• Learning-by-doing (LD) is the contribution of learning-by-doing mechanism to 

the MPS performance experienced by workers, measured as percentage of time 

dedicated by workers to production activities, such as every-day production 

routines and practices. 

• Learning-by-using (LU) is the contribution of learning-by-using mechanism to 

the MPS performance experienced by workers, measured as percentage of time 

dedicated by workers to production and product design changes, production 

optimisation, either running experiments or learning new specifications, and 

process evaluation and reengineering. 

• Learning-by-searching (LS) is the contribution of learning-by-searching 

mechanism to the MPS performance experienced by workers, measured as 

percentage of time dedicated by workers to researching, searching and lab 

activities.  

• Learning-by-interacting (LI) is the contribution of learning-by-interacting 

mechanism to the MPS performance experienced by workers, measured as 

percentage of time dedicated to knowledge transfer with suppliers, clients, R&D 

and commercial partners. 

During the interview, workers were asked to contextualise each learning 

mechanism along each MPS life-cycle, with some facts observed in the 

production records and other documents provided by Necton.  

Although there are two other learning mechanisms identified, as summarised in 

Chapter 1, ‘learning-by-learning’ and ‘learning-by-expanding’. These were not 

included in our study, due to their complexity and difficulty to be measured. 
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Chapter 3 MPS: perspectives and advances 

 

Microalgae are microscopic organisms found in both marine and freshwater 

environments. They are classified into divisions based on various properties, such 

as pigmentation, chemical nature of photosynthetic storage product, organisation 

of photosynthetic membranes, and other morphological features. The three most 

important classes of microalgae, in terms of abundance, are diatoms 

(Bacillariophyceae), green algae (Chlorophyceae), and golden algae 

(Chrysophyceae). The cyanobacteria (Cyanophyceae) are also referred to as 

microalgae. 

Microalgae reproduce mainly by cell division, so that they can exponentially 

multiply if optimal conditions are provided. Microalgae grow very quickly 

compared to terrestrial crops. They commonly double in size every 24 hours. 

During the peak growth phase, some microalgae can double every 3,5 hours 

(Chisti, 2007). 

Blue-green microalgae, such as Nostoc, Spirulina, and Aphanizomenon, are edible 

and have been used as a nutrient for many centuries in Asia, Africa and Mexico 

(Olaizola, 2003). The first traceable use of microalgae by humans dates back 2000 

years to the Chinese, who used Nostoc to survive during famine (Spolaore et al. 

2006). From 1890 to 1990, most microalgae were grown for human consumption, 

and Spirulina was even believed to offer a solution to world hunger and 

malnutrition. Table 3 summarises historic data from algal biotechnology. 
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Table 3 - Algal biotechnology historical data, adapted from Borowitzka, 1995, and Borowitzka, 
1999. 

1860s Alfred Nobel invented dynamite, using diatomaceous earth (diatomite), which consists of 
the fossil silica cell walls of diatoms, to stabilise and absorb nitroglycerine into a portable 
stick. 

1890 The first unialgal cultures with Chlorella vulgaris were developed by the Dutch 
microbiologist Martinus Beijerinck. 

1919 Cultures of Chlorella vulgaris used for studying plant physiology. 

1940s Microalgae started to become more important as live feeds in aquaculture (shellfish or 
fish farming), along with the zootechnical development of aquaculture techniques. 

R&D mass culture of microalgae began at Stanford (U.S.A.), Essen (Germany) and 
Tokyo. Applied algology developed rapidly, extending into Israel and Italy, aiming to 
produce protein and fat as a nutrition source. 

1948 

At that time, the idea of using microalgae for wastewater treatment was launched and the 
systematic examination of algae for biologically active substances, particularly 
antibiotics, began. 

1953 First edition of the “Algae Culture from Laboratory to Pilot Plant”, written by John 
Burlew, from the Carnegie Institution of Washington. 

Commercial large-scale culture of Chlorella in Japan and Taiwan as a novel health food 
commodity. 

Early 
1960s 

In the U.S.A., the interest to use microalgae as photosynthetic gas exchangers for long 
term space travel emerged. 

Early 
1970s 

The first large-scale commercial harvesting and culturing facility of Spirulina was 
established in Mexico, at Lake Texcoco, by Sosa Texcoco S.A.  

1977 Establishment of commercial Spirulina plant in Thailand, by Dai Nippon Ink and 
Chemicals Inc.. 

1978 The energy crises triggered considerations about using microalgal biomass as renewable 
fuels and fertilizers. An environmental technology from the USA aimed at improving the 
quality of wastewater through microalgae and the subsequent fermentation of the resulting 
biomass to methane was developed (Pulz and Scheibenbogen, 1998; Spolaore et al. 2006). 
Furthermore, a $25 million USD program (Aquatic Species Program, ASP) was set up by 
Jimmy Carter´s Administration to investigate high-oil types of algae that could be grown 
for biodiesel production. 

Early 
1980s 

Kawaguchi (1980) reports 46 large-scale factories in Asia, producing more than 1.000 kg 
of microalgae (mainly Chlorella) per month. 

Establishment of commercial production of Dunaliella salina as a source of β-carotene by 
Western Biotechnology Ltd and Betatene Ltd. in Australia. At this point, the production 
of Dunaliella salina became the third major microalgae industry. 

Establishment of other commercial Dunaliella salina plants in Israel and U.S.A.. 

Mid 
1980s 

Establishment of large-scale production of cyanobacteria in India. 
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In the 1990s, several developments were made in the microalgae field. Mass 

production was achieved for the new microalgae Haematococcus pluvialis, as 

several plants began large-scale production in the U.S.A. and India. The already 

commercialised species, such as Chlorella and Spirulina, reached consumption 

and production peaks. Indeed, Lee (1997) reports that 2.000 tons of Chlorella 

were traded in Japan alone and Pulz and Gross (2004) estimate that in 1999, about 

3.500 tons of Spirulina biomass were produced. 

But even today the microalgal market is dominated by Spirulina15 (Pulz and 

Gross, 2004). This has been confirmed by extensive research conducted within 

this work, using different information sources such as on-line company and 

product directories. From the 194 microalgae producing companies, 65% produce 

Spirulina. 

Microalgae are an untapped resource, with more than 100.000 species (Carlsson et 

al., 2007), of which fewer than 15 are in commercial production. From an 

extensive search in the EUR-Lex database (http://eur-lex.europa.eu), we found 

that besides the most common microalgae, such as Spirulina and Chlorella, 

presently only Odontella aurita can be used as a food ingredient in the EU. Other 

microalgal extracts have also been approved as novel food ingredients, like 

extracts from Schizochytrium sp., Haematococcus pluvialis, and Ulkenia sp. 

                                                 
15 There are several reasons for this commercial success. Spirulina is well-know due to its high protein 

content, nutritive value, and not the least, because it is easy to grow! 
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Microalgae are one of nature’s richest raw materials in vitamins, proteins and 

other nutrients (see Table 4). 

 
Table 4 – Products from microalgae (Barbosa, 2003). 

Product Applications 

Biomass Biomass 
Health & Functional Food, 
Feed Additive, Aquaculture, 
Soil conditioner 

Colouring substances 
& antioxidants 

Xantophyls (astaxanthin and 
canthaxanthin), Lutein, β – carotene, 
Vitamins C & E 

Food Additive, Feed Additive, 
Cosmetics 

Fatty acids 
Arachidonic acid, Eicosapenatenoic 
acid, Docosahexaenoic acid, γ-
linolenic acid, Linolenic acid 

Food Additive 

Enzymes 
Superoxidade dismutase, 
Phosphoglycerate kinase, Luciferase 
and Luciferin, Restriction Enzymes 

Health Food, Research, 
Medicine 

Polymers Polysaccharides, Starch, Poly-β-
hydroxybutyric acid 

Food Additive, Cosmetics, 
Medicine 

Special Products Peptides, Toxins & Isotopes, 
Aminoacids, Sterols Research, Medicine 

 

Current commercial applications are limited to processes for high added value 

compounds or algae used in food and cosmetics. It is estimated that 5.000 tons of 

algal biomass are produced per year (Pulz and Gross, 2004). Over the years, the 

algal biotechnology companies have brought a number of products to market, 

ranging from aquaculture feed to specialty chemicals. The commercial value of 

products synthesised by microalgae can vary significantly, from 50 to 15.000 

Euros per quilogram (Rosenberg, 2008). 

Currently, the development of biofuels is a priority of the industry, as microalgae 

contain the right kind of oil for producing biodiesel. Microalgal biomass contains 

three main components: carbohydrates, proteins, and lipids/natural oils. The bulk 
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of the natural oil made by microalgae is, mostly, in the form of tricylglycerols. 

The oil content of microalgae usually ranges between 20 percent and 50 percent 

(dry weight), while some strains can reach as high as 80 percent (Spolaore et al., 

2006). 

Pursuing to obtain the ‘green gold’, in the last 10 years, many new commercial 

companies, and consequently new production technologies, have been created, to 

exploit microalgae for biofuel production and/or carbon dioxide sequestration. 

The idea of using microalgae as a source of fuel is not new, but has been given 

greater credibility recently because of the escalating price of petroleum and, more 

significantly, the emerging concern about global warming (Chisti, 2007). 

Inclusively, some existing microalgae companies have identified a business 

opportunity in the bioenergy field and shifted their business models to 

consultancy services, technology design or to join big R&D projects related with 

renewable energies and biorefinery concepts (see Table 5). 

 

Table 5 - R&D projects focusing on biofuels from microalgae, adapted from Beneman, 2008. 

R&D Project Description 

Aquatic Species Program (ASP), 
USA 

1980  1996 

- Biodiesel from algae grown in ponds and PBR. 

- Run by the National Renewable Energy Laboratory. 

- Funded by Jimmy Carter´s Administration with $25 
million U.S. dollars. 

- Achievements: PBRs too costly. 

U.C. Berkeley, USA 

50s – 60s 
- Methane from algae grown in ponds. 

NEDO-RITE, Japan 

1990 -2000 

- CO2 abatement with PBR. 

- Funded with 250 million U.S. dollars. 

- Achievements: total failure. 

Some small projects, Worldwide 

2000 – Present 

- Explosion in R&D teams. 

- More than 100 projects or companies dedicated to 
producing biofuels from microalgae, mostly in PBR.  
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3.1 General description of microalgae production process 

Most microalgae are obligate photoautotrophs, depending strictly on the 

generation of photosynthetically derived energy. Other microalgae are 

heterotrophs, and therefore rely on glucose or other carbon sources for carbon 

metabolism and energy. Some algae can also grow mixotrophically, being able to 

switch from photoautotrophic to heterotrophic growth.  

Cultivating heterotroph microalgae involves the production in the dark using 

organic substrates as the source of energy and carbon. Such a fermentation is 

performed in closed tanks, very similar to fermentors, in which the conditions can 

be controlled. Chrypthecodinium sp. and Schizochytrium sp. are heterotrophic 

microalgae, and both are known for their capacity to produce docosahexaenoic 

acid (DHA). Tthe study of this type of MPS is out of the scope of the present 

work. 

The photosynthetic mechanism of microalgae is similar to plants, but, due to a 

simple cellular structure and the fact that microalgae are submerged in an aqueous 

environment, where they have efficient access to water, carbon dioxide and other 

nutrients, they are generally more efficient in converting solar energy into 

biomass (see Figure 10). 

 

Figure 10 – Representation of MPS for photoautotrophic and heterotrophic microalgae. 
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Microalgae Production Systems 

Photoautotrophic microalgae grow very quickly under optimal conditions 

compared to terrestrial crops. MPS are often operated in a continuous mode, i.e. 

fresh feed (containing nutrients that include nitrogen, phosphorus and inorganic 

salts) is added, carbon dioxide is injected or bubbled, while the biomass from the 

culture broth is harvested and oxygen released to the atmosphere. 

Photoautotrophic microalgae can be cultivated in either open or closed systems.  

Open systems can be divided into natural waters (lakes, lagoons, ponds) and 

artificial ponds or containers, built in different ways (see Table 6). 
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Table 6 – Open microalgae production systems. 

Examples of running facilities Microalgae 
Productions 
Systems 

Type of MPS 
Microalgae Company / 

Organisation Country 

> Třeboň-type 
cascade 

Chlorella Lab. of Algal 
Research 

Czech 
Republic 

  
Source: www.youtube.com 

> Circular Chlorella Sun Chlorella Japan 

  
Source: www.sunchlorella.com 

> Raceways Dunaliella and Haematococcus Cyanotech U.S.A. 

Open ponds 

  
Source: www.cyanotech.com 

Dunaliella salina Cognis Germany Australia 

Lakes & 
lagoons 

  
Source: www.cognis.com 
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Despite a great deal of variability in shape, the most common technical designs 

for open pond systems are raceways cultivators driven by paddle wheels, typically 

operating at water depths of 15–20 cm (Pulz, 2001). Eventhough raceways are the 

most generalised configuration, it is worth noting that the biggest microalgae 

production farms are lakes, with over 250 hectares, and are located at the Hutt 

Lagoon, in Australia. 

Pulz (2001) classified closed systems for microalgal mass culture in three 

configurations: (1) tubular systems, (2) flattened, plate-type systems, and (3) 

ultrathin immobilized systems (see Table 7). 
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Table 7 – Closed microalgae productions systems. 
Microalgae 
Production 
Systems 

Type of MPS Examples of 
running facilities 

Microalgae 
Production 
Systems 

Type 
of 
MPS 

> Tubular 
Production of 

Haematococcus 
Algatech Israel 

  
Source: www.algatech.com 

> Flattened, plate-type 
Production of several 

microalgae 
Necton S.A. Portugal 

  
Source: Necton S.A. 

> Ultrathin immobilized 

system 

Device for wastewater 

treatment using 

microalgae 

Hong Kong 

University 
China 

Photobioreactor 

Source: www.ust.hk 
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Harvesting, drying and packaging 

The broad phylogenic microalgae diversity is a source of wide chemical varieties 

with different applications and trading goods. The majority of the microalgae-

derived products (extracts) currently produced are used for health foods and 

pharmaceutics manufacturing, as well as for the aquaculture sector and animal 

feed industry. After microalgae cultivation, biomass is harvested, processed 

and/or dried (Figure 11). The microalgal biomass and extracts are usually 

marketed as tablets, capsules, and liquids. 
 

 

Figure 11 – The microalgae production process, from cultivation to product packaging. 

 

In most MPS we have found a relatively low biomass concentration, due to 

limited light penetration and the small size of microalgal cells. Inevitably, costs 

and energy consumption for biomass harvesting are a significant concern, that 

needs to be properly addressed. 

There are different harvesting (or separation) technologies, including chemical 

flocculation, biological flocculation, filtration, centrifugation, and ultrasonic 

aggregation, that have been used for microalgal biomass harvesting.  

Chemical and biological flocculation are processes known for their low operating 

costs, but at the same time require long processing periods, with an eminent risk 

of bioreactive product decomposition. On the other hand, filtration, centrifugation, 

and ultrasonic flocculation are more efficient, but also have a higher cost (Li et 

al., 2008). 
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The selection of an appropriate drying technology depends on the species of 

microalgae, the final product desired, the value of the target product, and the 

biomass concentration (Uduman et. al, 2010). Algal properties, such as a large 

cell size and the capability of the microalgae to autoflocculate, can simplify the 

dewatering process. Microalgae for whole-cell aquaculture feed or whole-cell 

dietary supplements applications can be sold as a bulk powder. Drying is 

accomplished using either freeze-drying or spray-drying. 

Generally speaking, microalgae typically grown in open systems, such as 

Spirulina and Chlorella, have lower market prices. Both microalgae are used as 

whole-cell dietary supplements, and marketed in tablets or capsules. Prior to final 

compression or encapsulation, microalgae are spray-dried. 

Other microalgae, with higher market prices, are normally sold as a freeze-dried 

bulk powder. Freeze-drying of biological biomasses produces stable powders, 

almost without biochemical degradation and cell disintegration. The majority of 

these products are freeze-dried from simple aqueous solutions. As freeze-drying is 

still an expensive process, when compared to spray-drying, for that reason freeze-

dried bulk powders are sold at higher prices. 

Biomass drying for further processing (lipid or bioactive extraction; 

thermochemical processing) is another step that needs to be taken into 

consideration. Sun drying is an ancient and probably the cheapest drying method. 

However, this method takes a long time, requires large drying surfaces, and risks 

the loss of some bioreactive products (Li et al., 2008). 

Another low-cost drying technology is low-pressure shelf drying. However, it is 

also very inefficient. More effective but costly drying technologies have been 

investigated for drying microalgae: drum drying, spray-drying, fluidized bed 

drying, freeze drying, and refractance window dehydration technologies. 

Molina Grima and co-workers (2003) discussed the economics and options for 

microalgal biomass recovery, and concluded that for commercial recovery of 
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high-value products, centrifugation appears to be the preferred method for 

recovering biomass from broth. In the case of fragile microalgae, microfiltration 

stands as a suitable alternative. 

More recently, Uduman et al. (2010) claim that microalgae dewatering is a major 

obstruction to industrial-scale processing of microalgae, as the dilute nature of 

harvested microalgal cultures creates a significant operational cost during 

dewatering, and there is no superior method of dewatering microalgae. Efficient 

techniques, that may result in a greater algal biomass, may have drawbacks, such 

as a high capital cost or high energy consumption.  

 

3.2 Technological discontinuities and dominant designs 

The technological evolution of open ponds or raceways has not been characterised 

by noticeable design changes. The innovations have been in an incremental way, 

and focused on small technical details such as pumping, paddle configurations or 

isolation materials. 

Open systems present a low technological complexity, in contrast with closed 

systems. Apart from the previously mentioned closed systems, commercial 

companies for microalgal products have developed many new technical systems 

for biomass production, which might be considered as technological 

discontinuities, as all technologies disrupted the concept behind the open systems 

technologies. 

The concepts of technological discontinuity and dominant design were introduced 

in Chapter 1. In Figure 12, it is possible to find a technological track record of 

radical innovations in MPS during the last two decades. Some technologies are 

quite original, such as biocoil and dome, and present a different set of engineering 

and scientific principles that characterise a technological discontinuity. 
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If attention is paid to the technological discontinuities shown in Figure 12, it is 

clear that technological innovation in MPS has not followed a clear pattern, 

possibly because biotechnology has a higher degree of complexity than other 

types of MPS. 

The last two decades were quite active from an innovation point-of-view. The 

technological developments have been, and still are, driven by a clear objective of 

better controlling cultivation conditions. Nowadays, many of these technologies 

have been abandoned. In fact, tubular PBR is now the dominant design for closed 

systems, as almost all microalgae producing companies use this type of 

technology. Vertical arrangements of horizontal running tubes or plates seem to 

be preferred for reasons of light distribution and appropriate flow (Pulz, 2001). 

The potential of microalgal biotechnology with the existing MPS is tremendous, 

but to date applications have fallen short of expectations, and many commercial 

companies, with significant investments, have failed. The large ponds and PBR, 

that should demonstrate such cost reductions, have not yet been constructed, or 

have failed commercially and technically soon after start-up (Tredici, 1998). More 

recently, Beneman (2008) described four commercial failures. In 1989, the 1 ha 

PBR production unit in Spain was shut down, after two weeks of operation. 

Another example is the company Algatech, in Israel, which installed 1 ha of 

Haematococcus pluvialis growth for astaxanthin production, and is only 

sporadically in operation. The third example is a commercial photobioreactor unit 

in Germany for Chlorella production, that also went broke. The last example of 

non-viable systems was a commercial covered greenhouse pond system for 

Spirulina production in China. 

Most of these cases failed due to errors in process design and over-estimations for 

both closed and open system, predominantly due to many of the assumptions on 

yield and costs being extremely optimistic (Beneman, 2008). Therefore, learning 

from the mistakes of others is a starting point for more advanced KM strategies. It 

is of great utility for future newcomers and policy development in marine 
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biotechnology to take into consideration the basic requirements for further 

technology development. 

 

3.3 Basic requirements for technological development 

In order to improve the future economies of microalgal cultivation, regardless of 

the type of application, some issues should be taken into consideration with plant 

design. General factors to be considered include the biology of the microalga, the 

cost of land, labour, energy, water, nutrients, climate (if the culture is outdoors) 

and the type of final product (Borowitzka, 1992). 

Nevertheless, selecting a suitable geographic region for project unit construction 

is a significant decision step to be taken before process design. Therefore, prior to 

any techno-economical analysis, there are basic requirements that should be 

included in the analysis to avoid unnecessary costs after the installation is 

running, or at worst a complete project failure: 

• An abundant source of fresh and/or marine water will reduce costs with 

culture medium production; 

• Microalgae are photoautrophic and light is a limiting growth factor. 

Microalgae absorb light differently and light absorption is a wavelength 

dependent phenomena. The culture should be exposed to a sufficient amount of 

light energy for efficient biomass production. The magnitude of solar radiation is 

dependent on the geographical position on Earth and the climatological conditions 

at that position (Janssen, 2002);  

• For open-culture systems, one should choose areas with low pluviosity and 

temperate weather, as these systems take advantage of natural sunlight and are 

totally subject to the vagaries of weather, unless some form of shading system is 

utilised; 
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• Refrigeration systems, such as spraying water on PBR or immersing tubes in 

cooling baths, functioning as heat exchangers, are required to control temperature 

in tubular PBR; 

• In PBR a degasification reservoir should be included, as oxygen must be 

removed to prevent inhibition of photosynthesis and photo-oxidative damage; 

• Biofouling causes light intensity reduction and increases contamination 

crashes, but cleaning procedures may cause abrasion and limit PBR life-time; 

• The number of species that can be grown in open ponds and raceways is 

limited, thus reducing plant production flexibility. 

 

3.4 Techno-economical comparison between open systems and 

closed systems 

From a technological point-of-view, there are major drawbacks to open systems, 

that in the end cause low productivity rates, such as significant evaporative losses, 

diffusion of CO2 to the atmosphere, contaminations, light limitation, and the need 

for large production areas. In opposition to open systems, closed systems present 

some fundamental technological benefits, such as, reduced contamination risks, 

no CO2 losses, reproducible cultivation conditions, controllable hydrodynamics 

and temperature, and flexible technical design (Pulz, 1992). 

From the economical perspective, the most cost-effective way to farm microalgae 

is in open systems that present lower biomass production, investment and 

operational costs (Table 8), but higher harvesting costs than closed systems, due 

to low biomass concentration and better control over species and conditions. 

Literature review revealed different orders of magnitude for production costs: i) 

Tredici and co-workers (1998) claimed a “relatively low cost” of 50 US$.m-2 for a 

PBR system; ii) estimates for the production costs of algal biomass in PBR ranged 
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from 30 to 70 US$.kg-1(Moore, 2001; Molina Grima et al., 2003; Olaizola, 2003); 

iii) Chisti (2007) projects a cost of 2.85 US$.kg-1 for PBRs, based on the 

assumption that economies of scale will reduce costs significantly. 

 
Table 8 – Techno-economical comparison between open systems and closed systems, adapted 
from several authors (Vonshak, 1997; Moore, 2001; Pulz, 2001; Olaizola, 2003; Molina Grima et 
al., 2003; Chisti, 2007). Chisti (2007) used for estimation a 100 ton raceways biomass production 
facility with 8 units of 978 m2/pond (pond dimension: 12 m wide, 82 m long, 0,30 m depth) and a 
100 ton PBR biomass production facility with 6 units of 132 parallel tubes/unit (tube dimension: 
80 m long, 0,06 m of diameter). 

Parameters or issues Open systems Closed systems 
Temperature Highly variable Cooling often required 

pH 
Hardly controlled 
/specie specific 

Controlled and specie specific 

Oxygen concentration Low Gas exchange devices required 
Biomass conc. broth [g.l-1] 0.1 - 0.5              (low) 2 - 8                                    (high) 
CO2 consumption [ton] 183,33 183,33 
Shear Low High 

Required space [m2] 7.828                 (high)  
5.681                          
(low) 

Production flexibility Low High 
Cleaning No issue Required 
Water losses Very high Low 
CO2 losses High Low 
Process control and 
reproducibility  

Limited Possible 

Technical 

Startup [weeks] 6 – 8 2 – 4 
Contamination risk High Low Quality-

related Biomass quality  Variable Reproducible 

Others Weather dependence  
High (light intensity, 
temperature, rainfall) 

Medium (light intensity, cooling 
required) 

 

Parameters or issues Open systems Closed systems 

Biomass production cost [$.kg-1] 3,80 – 11,00  2,85 – 70,00  

Capital costs  High Very high 

Operating costs  
Low (paddle wheel, 

CO2 addition) 

Very high (CO2 addition, pH-
control, oxygen removal, cooling, 

cleaning, maintenance) 
Harvesting cost  High, species dependent Low 
 
Among closed systems, the dominant design is the tubular configuration, but the 

scalability of this MPS has generated some contradictory positions: i) Molina 

Grima and co-workers (1999) claimed that “of the many types of PBR proposed 

for closed monoculture, tubular devices are amongst the more scaleable and suited 
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to large-scale production”; ii) Ogbonna and Tanaka (1997) find that tubular PBR 

do not work well in large-scale production, as dissolved oxygen levels easily 

increase, leading to oxygen poisoning, since photoinhibition results from the 

excess light exposure, because the surface-to-volume ratio is lower, causing poor 

light absorption. Length of tubes is another matter of concern for tubular PBR. As 

the length of the tubes gets larger, the time for microalgae exposure to light 

increases. Hence, increasing the absorption of available carbon dioxide and 

increasing photosynthesis rates. 

 

3.5 Future challenges 

Microalgal biotechnology has evolved as a significant manufacturing tool for 

products like pigments, fatty acids and polymers, but most of these items are still 

products for specific applications and sectors. Current development projects, 

including those focused on biofuels, indicate that microalgal biotechnological 

processes and products may soon approach the market place in a radical different 

way. The recent, and hopefully future, achievements in different fields will boost 

microalgae to compete with other raw materials of chemical or agricultural 

origins. 

Besides the basic requirements for MPS development, the different operating 

strategies (Enes and Saraiva, 1996), and the techno-economical limitations of each 

type of technology, the technological progress is continuously challenged. Table 9 

summarises our perspective about future challenges of the microalgal 

biotechnology sector. An example of an interesting challenge would be to 

accomplish the extraction of compounds from microalgae without cell 

disintegration. Hejazi and Wijffels (2004) have actually proposed and tested the 

process “milking of microalgae” for the microalgae Dunaliella salina, to achieve 

a selective extraction of β-carotene from microalgae. Another example would be 

to use the concepts of cell-to-cell communication, discovered and described over 

30 years ago for two marine bacterial species. Quorum sensing (QS) is a 
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phenomenon where microorganisms communicate and coordinate their behaviour 

by the accumulation of signalling molecules, and quorum quenching can be 

considered the opposite mechanism, where inhibition of QS signalling molecules 

occurs by degradation enzymes. A similar process probably exists in microalgae, 

as for example in Necton it was observed that in the case of microalgae 

Nannochloropsis, when it reaches a certain cellular concentration, no 

contaminations seem to occur. 

 
Table 9 – Future challenges in microalgal biotechnology sector. 
Technological and knowledge challenges in 
Materials • Development of materials with selective porosity (for instance, to inlet 

of CO2 and to outlet of O2). 
Separations 
techniques 

• Usage of nanoparticles to separate cells from culture medium. 

Extraction 
techniques 

• Milking the microalgae for high value compounds extraction. 
• Development of more economic and ecological solvents than the ones 

currently used in industry. 
Energy exploitation • Development of photons capture processes. The photobiology of 

microalgae is quite complex: on one hand, excess of light damages 
cells, but on the other hand, loosing photons can be considered an 
energy waste. 

• Reduction of energy used to created turbulent hydrodynamics. 
Cultivation systems • Development of new production systems (for instance, offshore 

cultivation of microalgae). 
Species selection 
and genetic 
modification 

• Enhancement of biomass productivity and/or of a particular product, 
without loosing stability. 

• Inducing heterotrophy in microalgae. 
• Nucleic acids reduction, as high nucleic acid content is an important 

factor limiting the nutritional and toxicological value of microalgae. 
Policultures • Mixed cultures of microalgae. 
Quorum sensing 
and quorum 
quenching 

• Control communication between cells to synchronize multiplication 
and fight contaminations. 

Market and business models challenges 
Feed market • Acceptance of microalgal biomass as feed for animals.  
Health food market • Acceptance of microalgae as edible biomass, no longer needing 

application to “Novel food ingredient”. 
Strategic shifts • Specialisation of companies, that once produced components for other 

industries, in MPS application. 
Biorefinery concept • Integration of biomass conversion processes and equipments to produce 

fuels, power, and chemicals from biomass. 
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Chapter 4 Results and discussion 

 

Learning from microalgae 

Observing, analysing and reengineering the MPS, in order to apply knowledge 

and experience accumulation in technological adaptations, is constantly required 

for microalgal growth optimisation. Therefore, the deeper the knowledge is, and 

the broader the experience, the better technologies will work out. For that reason, 

Necton is an interesting case-study, as it has been producing microalgae, in a 

large-scale, since the year 2000. 

For the purpose of the present study, only one biotechnological perspective was 

explored, regarding the fact that MPS technological performances are largely 

affected by environmental parameters. In order to understand how environmental 

factors may have affected the biomass productivity, some parameters were 

studied. The environmental parameters analysed, from the year 2003 to the year 

2008, were pluviosity (measured in mm), total number of hours that cultures are 

exposed to sunlight, irradiation of the production site (measured in Wh.m-2.day-1), 

the quantity of rainy days, thermic amplitude (measured in ºC), average monthly 

temperature, average maximum and minimum temperatures (measured in ºC). 

Data, regarding environmental parameters, is compiled in Appendix A. In Table 

10 are summarised the minimum and maximum values observed of each 

parameter, as well as the month and year of the observation. 
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Table 10 – Ranges of the different environmental parameters. 

 Parameter Range 

Environmental 
parameter 

Minimum  
Value Month / Year Maximum 

Value Month / Year 

Pluviosity (mm) 0,0 several 193,8 Nov / 2006 

Sun-hour (#)s 8,0 Dec / 2004 14,7 Jun / 2007 

Rainy days  (#)s 0,0 several 18,0 Oct / 2003 

Irradiation (Wh.m-2.day-1) 2.124,0 January 7.507,0 July 

Thermic amplitude (ºC) 6,9 Oct / 2006 11,1 Jul /2007 and  
Jul / 2008 

Average Monthly 
Temperature (ºC) 10,5 Jan / 2005 and 

Feb /2005 25,6 Aug / 2005 

Average Maximum 
Temperature (ºC) 14,6 Jan / 2006 31,1 Jul / 2006 

Average Minimum 
Temperature (ºC) 5,5 Feb / 2005 21,0 Aug / 2003 

Monthly biomass productivities per year and average productivity per month of 

operation of the FPFT PBR16 are represented in Figures 13 and 14. 
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Figure 13 – Representation of monthly evolution of biomass productivity on FPFT PBR (2000-
2008). DWT stands for dry weight. 

                                                 
16 Eventhough a similar treatment was applied to data regarding tubular PBR, and as results are identical to 

the ones obtained from the operation of FPFT PBR, for that reason they were deliberately excluded from our 

work. 
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The graphical representation of the monthly productivity, along each production 

year, shows that, from March to September, biomass productivities are higher, 

and that, from October to February, they appear to be lower. From Table 10, it is 

possible to identify that the months with more irradiation, more sun-hours, less 

thermic amplitude, and higher minimum and maximum temperatures, are those 

that provided better conditions for growing microalgae. Once again, this general 

behaviour may be an evidence of the contribution of several environmental factors 

for the biomass productivity.  

The best productivity, achieved during the analysed data, was in the year of 2008, 

during the month of March, with 0,34 g DWT.L-1.d-1. On the other hand, the worst 

productivity was found to have occurred in the month of January of the year 2006, 

with a monthly productivity of 0,10 g DWT.L-1.d-1.  

If we pay attention to Figure 14, we may conclude something similar, the month 

that presents lower productivities is January, and the months with higher 

productivities are March and May. 
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Figure 14 - Representation of average biomass productivity per month on FPFT PBR (2000-
2008). DWT stands for dry weight. 
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This analysis would not be complete, without understanding which environmental 

factors contribute more to the biomass productivity. A multivariate regression was 

applied to environmental data, using the Least Square Regression Model available 

as a curve fitting routine of Excel Program 2003, in order to understand how the 

environmental factors are correlated with biomass productivity. The equation that 

returned the best fit, from several combinations tested, was found to be the one 

that correlated four explanatory variables (thermic amplitude, average monthly 

temperature, irradiation and number of sun-hours) with productivity. The resulting 

equation is expressed in (7): 

TAAverTIrraSunBP .0463,0.0001,0.0063,0.0235,007215,0 −+−−=               (7) 

Where BP corresponds to biomass productivity, Sun to number of sun-hours, 

AverT is the average monthly temperature, Irra is the irradiation of the production 

site, and TA is the thermic amplitude registered. The curve fit has a reasonable 

coefficient of determination (R2) of 0,78. Therefore, it is possible to conclude that 

the biomass productivity depends of those environmental factors. The regression 

model application is compiled in Appendix E. 

In general terms, microalgae grow better when temperatures are around their 

optimal temperature (25ºC), when the thermic amplitude between night and day is 

as low as possible, and when cells are optimally exposed to light, without being 

affected by photoinhibition or scarceness of light. Some authors have claimed 

that, in all cases, the key issue for success in biotechnological solutions for 

optimum growth, besides the creation of turbulent regimes in cultures, is light 

(Tredici, 1999; Tredici, 2010). Therefore, and eventhough the correlation between 

environmental parameters with the variable BP was expected, it would be worth 

exploring another mathematical tools. The purpose of this approach is to 

determine whether it is possible to predict more accurately the biomass 

productivity, including not only the environmental factors, but, if possible, to 

estimate the contribution to the productivity of the daily operation procedures, 

optimised trough learning and knowledge accumulation. 
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If we consider again the example of the month of March, that provided the 

conditions to achieve the best productivity registered. The most relevant 

environmental conditions do not significantly vary from one year to the other on 

the month of March. As a matter a fact, the number of sun-hours vary from 11,9 

to 12,0, the irradiation is practically the same, the thermic amplitude ranges from 

7,3 to 10,3, and the average month temperature vary from 14,3 to 15,3 ºC. 

Therefore, it is possible to assume that the learning effects, embodied in the 

everyday production routines, result in productivity gains (Figure 15). 
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Figure 15 - Representation of biomass productivity per year on the month of March in the MPS 
FPFT PBR (2000-2008). DWT stands for dry weight. 

The MPS configuration of Necton allows us to establish a set-point for controlling 

the temperature, activating coolers (water sprinklers) whenever temperature 

increases over 25ºC, and inactivating them when the culture temperature is bellow 

25ºC. The results obtained demonstrate that just as cultures are cooled down, 

whenever temperature rises above 25ºC, one might in the future consider the 

possibility of having a heating system that warms culture in wintertime, in order 

to maximise technology performance, thus producing more biomass. Another 

technological improvement would aim to increase the numbers of hours of 
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exposure to light, using artificial lamps during winter, or even during the night, to 

enhance the photosynthetic processes. 

For closed PBR placed outdoors, controlling the environmental conditions may be 

technologically difficult. Indeed, microalgae production managers are farmers, 

and microalgae cultivation is affected by environmental parameters as much as 

crop cultivation is. 

The biomass produced highly depends of market demand. As Necton mainly 

provides biomass for the aquaculture sector, it is possible to see that the demand 

cycle is overlapped with the microalgae production cycle (Figure 16). Hatcheries 

need microalgal biomass for growing their fish, from the month of October to the 

month of May; therefore, the production of microalgae decreases after May, and 

slowly increases again to supply the customers, around October. 
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Figure 16 - Representation of total biomass produced per month on FPFT PBR (2000-2008).  

 
Learning from producing 

From the literature review, many different positions stand against EC, claiming 

that costs, if not managed, will obviously tend to rise. In our case-study, it was 

evident that experience effects have been achieved in the daily operation of the 
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different MPS in Necton´s production site, resulting from a concerted effort by all 

those involved in production activities, and experience gained by workers. 

From our data analysis, regarding total biomass produced along the operation of 

FPFT, a production shortfall was detected in the year of 2005, pointing out an 

interruption in the learning process. The MPS performance severely decreased, 

around 60%, from performance achieved on the year of 2004 (Figure 17).
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Figure 17 – Biomass production in FPFT (2000-2008). DWT stands for dry weight. 

The reason for this event was not clear in production records, and consequently 

was brought up along the interviews. Apparently, the production manager was on 

a leave for several months, and therefore production routines and practices were 

significantly altered. Therefore, the experience gained through years of production 

seems to be somewhat retained by key staff people. Moreover, knowledge and 

experience accumulation seems to rely in individuals, and not really possessed by 

the organisation. Obviously, that this issue would be worth to studying from a KM 

point-of-view, as modern organisations should embody knowledge, in order to 

promote inner knowledge fluxes between workers within the organisation, never 

depending so much on knowledge of individuals. 
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Experience curve of Microalgae Production Systems 

Data regarding biomass produced in FPFT and tubular PBR were applied for the 

EC determination. The curve of ‘unitary cost vs cumulative units produced’ for 

the technology FPFT PBR clearly follows an EC. As cumulative units produced 

increase, the unitary cost of producing them declines. As a result, the experience 

accumulated over 8 years of industrial production in the technology FPFT is 

reflected in Figure 18. 

Experience Curve

MPS: FPFT PBR

Time frame: 2000 - 2008

0,0

200,0

400,0

600,0

800,0

1.000,0

1.200,0

1.400,0

1.600,0

1.800,0

0,00 600,00 1.200,00 1.800,00 2.400,00 3.000,00 3.600,00

Cumulative Units Produced (kg DWT)

U
ni

ta
ry

 C
os

t 
(E

ur
. k

g 
D

W
T-1

)

 

Figure 18 – Experience curve of FPFT PBR (2000-2008). DWT stands for dry weight. 

From Figure 18, it is possible to observe that unitary costs appear be at their 

minimum, and the production capacity of the production plant appears to have 

reached its maximum. 

Since the operation period is shorter for the case of the tubular PBR, was only in 

operation from year 2006 to the year 2008 the curve does not show the same 

behaviour of the observed in the EC of the FPFT PBR (Figure 19).
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Experience Curve
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Figure 19 – Experience curve of tubular PBR (2006 - 2008). DWT stands for dry weight. 

All data regarding the FPFT (Figure 20) and tubular PBR (Figure 21) were 

logarithmised and they are represented in a log-log scale graph. 
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Figure 20 – Experience curve in a log-log scale of FPFT PBR (2000-2008). DWT stands for dry 
weight. 

As data provided from Necton were obtained in a real-context situation, and EC 

should be a representation of the real behaviours, no data were considered as 

outliers, what caused a reasonable coefficient of determination (R2) of 0,83.  
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The overall PR value is 65,6 %, while LR is 34,4%. This PR means that costs 

decreased by 34,4% for each doubling of cumulative production. Considering that 

MPS is a biotechnological system that naturally embodies biological and 

environmental factors that are difficult to control, PR score lies in between the 

ones determined for manufacturing firms (Dutton and Thomas, 1984) and energy 

technologies (McDonald and Schrattenholzer, 2001) that range from 60% to 

100%. 

A trend may be identified in the operation period [2000 – 2004] is selected: the 

PR is much higher in the initial technology life-cycle, showing a PR of 94,3%, 

with very good curve fit (R2 = 0,98). These results show a very important fact that 

is that the initial difficulty of learning something and, to an extent, how much 

there is to learn after the initial familiarity, and that experience accumulation is 

still in its beginning. The reasons for the early phase of commercial deployment 

presenting relatively low learning rates are typically linked to shortfalls in 

performance and or reliability that result from insufficient experience for scale-up 

and from new problems that arise during full-scale and operation. This 

observation was also identified elsewhere (Yeh et al., 2009). 
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Figure 21 – Experience curve in a log-log scale of tubular PBR (2006-2008). DWT stands for dry 
weight. 
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The overall PR of the tubular PBR value is 85,6 %, while LR is 14,4%. This PR 

means that costs decreased by 85,6% for each doubling of cumulative production. 

As the tubular PBR was installed few years after the FPFT PBR, the technological 

learning happened faster, benefitting from the past learning and experience 

accumulated. 

Both EC of MPS were determined using the labour costs for calculating unitary 

production costs. The resulting curves could be termed as pseudo-EC as they 

reflect only the costs that mainly contributed to production costs. Based on the 

interviews and some records, it was possible to detect that, and in the case of 

MPS: a) the major variable cost is the supply of carbon dioxide to the culture; b) 

major fixed costs are labour costs, approximately 80% of all fixed costs. If all the 

costs, both fixed and variable, were provided, the behaviour of the curve would be 

identical, but plotted in the y-axis with higher unitary costs. As PR are calculated 

using the slope of the log-log curve, the slope would be the same if unitary costs 

were higher.  

Eventhough there is no natural law requiring production costs to follow an EC 

(Junjinger, 2005), it has been observed with experimental data that the 

performance of MPS increased substantially as producer gained experience with 

technology. Moreover, when new production technologies are implemented in the 

same production site, as the tubular PBR was built 6 years after the FPFT begun 

to be operated, the PR value is higher, revealing a process of experience 

accumulation that provided an improvement of performance when the subsequent 

technology was implemented (Table 11). In other words, the MPS of the case 

study do follow an EC. 
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Table 11 – PR and LR of FPFT and tubular PBRs. 

Closed System 

FPFT PBR Tubular PBR 

Progress ratio (%) 65,6 Progress ratio (%) 85,6 

Learning rate (%) 34,4 Learning rate (%) 14,4 

A drawback pointed out by several authors (IEA, 2000; Van Saark, 2008) is 

related to the fact that the effects of learning and scale are often overlapped in the 

EC, which complicates the analysis of technology development and the 

determination of the advantages of the experience accumulation. Luckily, in the 

case-study presented, scale-up has not taken place. Therefore, the EC is the result 

of the combined effect of different learning mechanisms in the integral learning 

process. 

 

Experience curve: open and closed MPS 

As pointed out in Chapter 3, within the multitude of technical solutions for 

microalgal cultivation, one can basically distinguish between open systems and 

closed systems. Even though both types of technology aim to produce microalgae, 

the techno-economical framework of each technology is so different that one 

inevitably raises the question if the EC of each type of system can be similar. 

The production available data (Vonshak, 1997; Sánchez et al., 2003), regarding 

open systems, and data extracted from Necton´s production reports, reveal 

different rates of learning. Data was plotted in a linear scale graph, showing 

temporal evolution of the total biomass production per installed capacity (TP) of 

open systems and closed systems (Figure 22). 
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Figure 22 – Production improvement of open systems and closed systems. 

Despite data scarceness, a learning process underlies all curves. In all cases, 

companies managed to increase production along time with the same installed 

capacity. Besides this fact, the production improvement (
Δt
ΔTP ) was found to be 

the same among technologies belonging to the same production system, and 

higher in the case of ‘open systems’ (Table 12). 

Table 12 – Production improvement of open systems and closed systems. 

Production Improvement 
Open System Closed System 

Earthrise 
Farms 
Ponds 

0003,0
Δt
ΔTP

=  

Equation: TP = 0,0003 x t – 0,5961 
R2 = 0,9959 

Necton 
FPFT 

0001,0
Δt
ΔTP

=  

Equation: TP = 0,0001 x t – 0,2566 
R2 = 0,9962 

Nan Pao 
Ponds 

0003,0
Δt
ΔTP

=  

Equation: TP = 0,0003 x t – 0,6542 
R2 = 0,9944 

Necton 
Tubular 

0001,0
Δt
ΔTP

=  

Equation: TP = 0,0001 x t – 0,2116 
R2 = 0,9989 
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One fact may have conditioned these results. Pond production is a closed 

production system that has been used extensively since the 70´s. Therefore, pond 

production is a more mature technology, in comparison with closed systems, 

showing production improvements greater than those belonging to the closed 

systems. Another possible explanation would be that open systems are generally 

simpler in terms of configuration, operability and maintenance, and learning with 

the technology might be easier in the initial phase than with we closed systems. 

Nevertheless, more data regarding intermediate technology phases would be 

needed to support both reasonings. 

Advances in installed technology, measuring methods and process redesign might 

have contributed to sustained improvements in biomass production. If only 

production costs were known, an EC could be drawn, and it would be possible to 

confirm what appears to happen, i.e. open and closed MPS do not follow similar 

curves, as production improvements are different.  

 

Learning effects in MPS 

Technology development is characterised by various stages, from invention to 

implementation. In each of these stages, different learning mechanisms play a role 

that lead to technological change and result in cost reductions described elsewhere 

(Neij et al., 2003; Junginger, 2005). Necton is an unique case, in terms of 

industrial knowledge, as it has undergone different technologies, such as 

raceways, GW, FPFT and tubular PBR. 

The learning effects were considered to be those that led to: increased labour 

efficiency, work specialization and improvements of production methods, through 

learning-by-doing and learning-by-using; the use of new materials or the 

introduction of new, more effective production processes, through learning-by-

searching mechanism; the improvement of the network interactions between 

providers, customers, research institutes, industry, end users, policy makers, etc., 
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allowing for the better diffusion of knowledge, through a learning-by-interacting 

mechanism. Technical staff from Necton was questioned about whether they 

acknowledged the role of the learning mechanisms in the different life-cycle 

phases of technologies (growth, maturity, decline). 
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Figure 23 – Role of learning mechanisms in the MPS Raceways. 

In the case of the raceways technology (Figure 23), there was an abandonment of 

the technology for market reasons, more than for technological restraints. The 

interviewees did not consider that the technology life-cycle was closed. The 

growth phase lasted for 8 months, and the learning mechanism with higher 

contributions to the learning process was learning-by-doing (70%), followed by 

learning-by-searching (15 %). The maturity phase had 12 months of duration. The 

role of learning-by-doing was considered relevant (65%), but the role of learning-

by-using substituted learning-by-searching, with 20%, at this stage. 
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Learning Mechanisms in MPS GreenWall
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Figure 24 – Role of learning mechanisms in the MPS GreenWall. 

In the case of GW technology, it was clear to all technical staff of Necton that this 

technology is not yet dominated, and is still in its growth phase (Figure 24). The 

learning mechanisms that were identified as being more relevant to the learning 

process, were learning-by-interacting (36%), learning-by-doing (33%), and 

learning-by-searching (23%), so that acquiring “know-what”, trough the learning-

by-using mechanism, played a minor role in its technological development. 
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Figure 25 – Role of learning mechanisms in the MPS FPFT PBR. 
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Figure 25 depicts the overall life-cycle of FPFT PBR MPS. From phase to phase, 

while the role of learning-by-doing diminishes, starting in 68% and ending in 8%, 

the role of learning-by-using increases in importance, from 20% to 82%. The 

growth phase lasted for one year, followed by a long maturity phase of almost 

eight years. Interviewees acknowledged that technology utilisation is now 

declining. In the interviewees’ opinion, the reasons for this decline are related 

with an important aspect of technology: cleaning and maintenance are 

complicated, diminishing the time that PBR are in operation, and, as a result, 

yearly productivity decreases. This technology will be replaced by tubular PBR, 

that does not evidence those kinds of operation constraints. This event will 

generate not only a technology discontinuity in the firm´s technical progress, but 

also it is clear that a dominant design will arise within the firm’s context. This fact 

is in accordance with the present worldwide trend to use tubular PBR in 

microalgae cultivation. 
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Figure 26 – Role of learning mechanisms in the MPS tubular PBR. 
 

The tubular PBR is the most recently installed technology. The technological 

development has profited from many years of experience in microalgae 

production, a fact that is observed in a short life-cycle phase of growth (Figure 

26). In less than a year, the technology was considered by interviewees as being 

dominated. Another consequence of knowledge and experience accumulation is 



TECHNOLOGICAL LEARNING IN MICROALGAE PRODUCTION SYSTEMS 

REVISITING THE EXPERIENCE CURVE AND THE LEARNING MECHANISMS 

 
Chapter 4 

 

 80 

that the learning-by-searching role is residual, showing that the learning 

mechanisms related with more practical aspects of learning, the learning-by-doing 

and the learning-by-using mechanisms, have played a relevant role in this 

technology development. 

 

Learning Mechanisms in MPS

0%

20%

40%

60%

80%

100%

Growth Maturity Decline

Ro
le

 o
f 

M
ec

ha
ni

sm
 (

%
)

Learning-by-doing Learning-by-using

Learning-by-searching Learning-by-interacting
 

Figure 27 – Role of learning mechanisms in the MPS tubular PBR. 

 

If the contributions of the learning mechanisms, during each technology life-

cycle, are integrated in one graphical representation (Figure 27), it is possible to 

conclude that: i) in the initial growth phase, the most important learning 

mechanism is learning-by-doing; ii) when the technology reaches maturity, the 

contribution of the role the learning-by-using surpasses the importance of the 

learning-by-doing mechanism; iii) in the decline phase, the learning-by-using 

mechanism is still the most active one. 
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Chapter 5 Conclusions and future studies 

 

Microalgae are, perhaps, the largest remaining biological resource for the 

biotechnology industrial sector in the years ahead, but the high cost of microalgae 

production remains an obstacle for scientific, technical and commercial viability 

progress. Therefore, the cost-effectiveness of industrial size MPS should deserve 

full attention by researchers, in a genuine effort to contribute to one of the most 

important themes for the future of microalgal biotechnology. 

Within our work, a case-study research strategy was proposed in order to 

understand the effects of learning and experience accumulation in technology 

development. The case-study corresponds to a firm dedicated to microalgae 

production. Since the year of 1997, Necton has installed, developed and operated 

several MPS, both open and closed systems with different designs. 

Microalgal biotechnology is a complex field with potential outcomes already 

identified herein, such as pigments, fatty acids, enzymes, or polymers. Through 

several decades of research, it is clear that the economic viability of microalgal 

biotechnology depends on being able to take advantage of low-cost, or even free, 

raw-material sources. For example, CO2 sequestration from industrial gaseous 

effluents has been the leitmotiv of several R&D projects that aim to integrate this 

biotechnology on the waste treatment in heavy industries. Another example would 

be choosing a place for plant installation with nearby marine or freshwater 

sources. One more example is taking the most of environmental conditions of site 

location, and because of this, the complexity of this biotechnology also arises 

from the fact that performance of MPS is highly affected by environmental 

factors. 

The techno-economical comparison between open and closed systems, presented 

in our work, has not pointed out one preferable technology to cultivate 
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microalgae. The most cost-effective way to cultivate microalgae is in open 

systems, but only few microalgae may grow in these systems. A better control 

over microalgae species and growth conditions are reached in closed systems. The 

dominant design of closed MPS appears to the tubular PBR. The process of 

finding this design has left behind some interesting technological configurations, 

such as the biocoil PBR or the dome system, and has been the result of the 

interplay between technical and market choices. 

The Algarve region, at the South of Portugal, where the company is located, 

provides the highest level of irradiation in Europe, and from the environmental 

data analysis carried out, the month of May was found to be the one that provided 

better conditions to cultivate microalgae, with an average productivity of 0,25 g.L-

1.d-1. On the other hand, January was the worst month for microalgae cultivation, 

with an average yearly productivity of 0,15 g.L-1.d-1. Therefore, and eventhough 

the control of environmental conditions of closed PBR, that run outdoors, is 

possible but complex, microalgae production resembles crop cultivation, very 

much depending on environmental conditions and on farmer’s capacity to “learn 

from microalgae”. 

In the present work, the underlying definition of technology performance is the 

quantity of biomass produced. Therefore, whenever a particular situation caused a 

decrease of biomass produced, it was considered that technology performance was 

affected. The MPS performance was affected by other factors that are exogenous 

to technology. Those factors are quite interesting from the KM point-of-view. 

First, MPS performance was found to be deeply dependent upon the practices and 

procedures of the production manager. Therefore, knowledge and experience is 

somehow rooted in individuals, and not in the organisation. The KM challenge for 

a modern organisation, even for SME, is endeavouring to endogeneise knowledge, 

trough the codification of tacit unwritten knowledge, as much as possible. Second, 

MPS performance is clearly affected by market instability, as product demand 

decreases, production management attempts to lower biomass produced, in order 

to avoid excessive stocks. 
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Along the interviews it was possible to confirm that the actual worldwide trend to 

use tubular PBR in microalgae cultivation is evident. Therefore, the tubular 

system is also a rising dominant design within the firm context, supported by 

strong techno-economical foundations, following the worldwide biotechnological 

trend. 

In an attempt to understand technical complexity of microalgal biotechnology, the 

learning process, underlying technology development, was studied through 

different research questions: 1. Do the MPS of the case-study follow an 

experience curve? 2. Do closed and open MPS follow similar experience curves? 

3. Do learning mechanisms play different roles across the MPS life-cycle? 

In order to answer these questions, two methodologies were applied to the case-

study. The first methodology was based on the EC concept, and its application 

aimed to answer whether or not the MPS followed an EC. The results showed an 

overall PR of the FPFT PBR of 65,6% and of the tubular PBR of 85,6%. A PR of 

34,4% means that costs decreased by 34,4% for each doubling of cumulative 

production. Both PR obtained are in between the determined PR values for 

manufacturing firms (Dutton and Thomas, 1984) and for energy technologies 

(McDonald and Schrattenholzer, 2001), that range from 60 % to 100%. The 

answer to the first research question is that indeed the MPS follow an EC. 

Therefore, several conclusions arise from this finding: a “regular” learning 

process occurred along technology instalment and operation; the EC found 

exclusively resulted from the learning effects experienced, as no scale effects 

occurred during firm’s activity; the learning and experience accumulation from 

previous technologies installation and daily operation (FPFT PBR) resulted in 

higher learning in subsequent technologies (tubular PBR). Eventhough the 

methodology was successfully applied, as progress ratios were determined, in the 

case of the tubular PBR, the longer the technology is producing, the better the 

curve fits the EC, and the overall learning process is better understood. Therefore, 

a technological surveillance should be set and more data from future production 

records should be incorporated in further studies.  
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For future research in this field, it would be interesting to know what is the goal, 

in terms of techno-economic performance of each type of MPS, or in other words, 

what is the maximum production that managers can aspire, and what is the best 

PR, and what scenarios may lead to it. These calculations could be pursued using 

the EC methodology as a cost-forecasting tool. For further work, there are some 

relevant guidelines that could support safe cost projections. For example, in order 

to compare costs from the past with current costs, the data has to be corrected for 

inflation (Junginger, 2005). Another example is related with the sources of data. If 

production costs are kept confidential, and often only prices are publicly 

available, prices can be used as a proxy for production costs under the condition 

that profit margins may assume to represent a fairly constant share of total prices 

(Junginger, 2005). Alberth (2007) also contributed some relevant considerations 

about cost analysis: researchers should only consider data from the best 

commercially viable plants; researchers should use as much data as possible, as 

the ability to forecast technology costs improves as more data are added; and, 

finally, researchers should include in the methodology a way of weighting data in 

such a way that recent data have stronger influence in forecasts. 

The MPS were extensively herein described, in terms of technical aspects, 

operation and harvesting procedures, and even in terms of costs. Generally, MPS 

are separated in two different technology categories: open systems and closed 

systems. An effort to comprehend how experience accumulation affected 

performances was made, despite data scarceness. The production improvement 

was higher in the case ‘open system’ technologies, perhaps due to the low 

complexity of open MPS results on a faster learning process and better technology 

performance. Obviously, this interpretation is an educated guess that should be 

confirmed. Any attempt to validate this interpretation should consider that data 

from production records of firms that produce the same microalgae. In the case of 

open system, the microalgae was Spirulina sp., and in the case of closed system 

the microalgae was Nannochloropsis sp.. The comparison of different MPS 

producing different microalgae species largely contributes to an error, a 

‘biological error’, as growing rates of microalgae are different. The analysis 
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should be conducted in a different manner, for example using the microalgae 

Haematococcus pluvialis, which can be produced in open systems and closed 

systems, or at least comparing microalgae with similar growing rates, which is not 

the case of the microorganisms used. 

As a result, the answer to the second research question is that is not clear whether 

the EC of open systems and closed systems are similar, but what is observable is 

that a different learning process underlies both types of MPS, as similar 

production improvements are observed in technologies of the same category. 

The second methodology was set to understand the role of learning mechanisms in 

the life-cycle of several MPS technologies. Necton has installed and run four 

types of technologies: raceways, GreenWall, FPFT PBR and tubular PBR. The 

technical staff of the company was asked whether they have experienced or not 

the different learning mechanisms (learning-by-doing, learning-by-searching, 

learning-by-using, learning-by-interacting) during each life-cycle. Therefore, in 

the end, the results show that the answer to the third research question is that the 

learning mechanisms played different roles in each life-cycle: 

• A general trend that can be identified is that learning-by-doing is more 

relevant in the phase ‘growth’ and learning-by-using role has more weight in the 

‘maturity’ and ‘decline’ phases of technology. These findings are in accordance 

with literature. First, the learning-by-doing mechanism originates as a by-product 

of economic activity in general, Kamp et al. (2004) claim that this learning 

mechanism always exists and that producing is sufficient to trigger it. Second, 

learning-by-using can only be assessed after intensive or prolonged use of the 

technology, while tasks related with technological optimisation take place 

(Rosenberg, 1982). 

• As learning-by-searching is related to the systematic and organised search 

for new knowledge, the role of this mechanism became particularly relevant in the 

‘growth’ phase of the raceways and GW technologies, due to the fact that both 

technologies were the state-of-art when installed. During the interviews, another 

fact that was mentioned about this type of learning is that whenever new solutions 
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to improve technology performance were based on R&D activities, playing a 

decisive role. 

• The mechanism of learning-by-interacting was fundamental in the case of 

GW, as Necton closely collaborated with the technology developer. The 

information required to dominate the technology was tacit and learning occurred 

during direct face-to-face contacts. Moreover, during the interviews it was also 

mentioned that the communication between microalgae producers has always 

been scarce, as there were only few players in the market. Therefore, the role of 

learning-by-interacting was less noticeable. 

It was also possible to conclude that learning-by-doing may not be the only factor 

underlying the learning process with the firm, and technology development is a 

reflection of all effects, including the effects of other learning mechanisms, such 

as learning-by-searching, learning-by-using and learning-by-interacting. In 

general terms, the role of learning-by-doing is more relevant in initial phases of 

technology life-cycle, learning-by-using appears in the maturity and decline 

phases, as it requires a longer utilisation of technology. Learning-by-searching 

was found to be only relevant when learning-by-doing does not have an 

immediate and positive effect in the technology performance, in an attempt to find 

technical and scientific solutions. Learning-by-interacting was quite important in 

the GW operation, especially with the technology developer. It was also 

mentioned, during interviews, that as there are few microalgae producers in the 

market; learning from interacting with other market players is residual. These 

findings should be confirmed using other commercial plants as additional case-

studies. In the future a KM tool could be developed with this sort of information, 

that could help managers to orientate learning processes towards the acceleration 

of the rate of learning. 

From the KM point-of-view, it would be also important to know how to profit 

from knowledge diffusion. Not including experience gained outside the 

investigated system may lead to serious distortions of results (Junginger, 2004). 

Therefore, learning-by-expanding and learning-by-interacting mechanisms present 
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themselves as important variables, which appear to be quite difficult to introduce 

in studies. In the same research strand, another useful application of EC, rarely 

addressed, would be to promote the learning spillovers of marine biotechnology as 

a diffusion policy, resulting in learning gains that could favour first mover 

advantages. A long-range strategic framework is needed for microalgal 

biotechnology and the Mediterranean countries are currently well placed to 

develop good products for the market, building on its suitable geographic and 

weather conditions. Portugal is also well positioned to be a successful developer 

and user of marine biotechnologies. 

Our research has raised many questions in need of further investigation regarding 

the MPS. If a similar study could have been performed on another company that 

uses similar technologies, would the determined EC and PR of the FPFT and the 

tubular PBR be alike? The learning mechanisms, which contributed more for the 

technological progress of each MPS, are different from one technology to the 

other. The reasons for this finding are not clear: is it because the technologies 

have different degrees of technological complexity? Or, is it due to the fact that 

experience accumulation empowers the workers with a capacity to approach, in a 

different way, the operation of each technology, thus using different learning 

mechanisms? Or, is it both? Therefore, it is suggested that the association of these 

factors is investigated in future studies.  

Inevitably, the information assorted in so many production reports and other kind 

of records, provided by Necton, is dense, and consequently a handful of industrial 

knowledge, regarding microalgal biotechnology, remains to be studied. Despite 

the interest of these matters for the industrial biotechnology, there are other 

studies to be conducted, in the KM field, to understand if it is possible to calculate 

and disaggregate the EC gains in order to create better conditions for increasing 

EC gains. The possibility to accelerate the technological learning trough KM 

would mean that the EC would be shortened and the EC gains would be sooner 

achieved. In a competitive globalised world scenario, the real learning 

organisations would be flexible enough to ‘ride down’ faster the EC and be ready 
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to shift from one technology to the other. In addition, the hypothesis that the 

innovative pace of such learning organisations would be faster, should be tested. 

The EC is a concept where management, learning and technological development 

fuse and collide. How should such areas better combine during the development 

of a technology in an organisation? Moreover, if there is a difference between 

smaller and bigger organisations, how is this differentiation reflected in such 

interactions? 
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Appendix A – Environmental data 

Table A.1 – Pluviosity data. 

 Pluviosity per year (mm) 

Months 2003 2004 2005 2006 2007 2008 Average 

January 38,8 20,8 0,0 77,7 4,5 38,1 30,0 

February 56,3 106,1 8,3 46,9 24,6 64,5 51,1 

March 55,6 38,8 14,4 38,3 14,9 19,5 30,3 

April 76,4 10,4 0,7 39,6 11,1 110,7 41,5 

May 4,3 24,8 14,9 0,0 12,9 38,6 15,9 

June 2,0 0,0 0,7 16,5 2,0 0,0 3,5 

July 0,0 0,0 7,8 0,5 0,0 0,0 1,4 

August 0,0 2,0 0,0 12,9 58,9 0,0 12,3 

September 4,0 2,0 0,5 12,1 19,8 92,4 21,8 

October 118,1 36,0 74,6 87,6 56,1 32,2 67,4 

November 82 28,1 155,7 193,8 53,0 23,8 89,4 

December 75,9 36,8 39,3 34,7 87,1 39,6 52,2 

Total 513,4 305,8 316,9 560,6 344,9 459,4  
 
 
 

Table A.2 – Rainy days. 

 Rainy days per year (#) 

Months 2003 2004 2005 2006 2007 2008 Total Average 

January 12,0 7,0 0,0 11,0 6,0 10,0 46,0 7,7 

February 10,0 9,0 5,0 7,0 14,0 9,0 54,0 9,0 

March 11,0 8,0 8,0 8,0 6,0 5,0 46,0 7,7 

April 11,0 4,0 1,0 7,0 8,0 8,0 39,0 6,5 

May 2,0 10,0 6,0 0,0 2,0 6,0 26,0 4,3 

June 3,0 2,0 1,0 5,0 4,0 0,0 15,0 2,5 

July 0,0 0,0 1,0 2,0 0,0 0,0 3,0 0,5 

August 1,0 2,0 1,0 1,0 2,0 0,0 7,0 1,2 

September 2,0 1,0 3,0 3,0 4,0 7,0 20,0 3,3 

October 18,0 10,0 9,0 11,0 5,0 10,0 63,0 10,5 

November 11,0 5,0 13,0 12,0 5,0 3,0 49,0 8,2 

December 10,0 7,0 10,0 6,0 7,0 13,0 53,0 8,8 

Total 91,0 65,0 58,0 73,0 63,0 71,0  
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Table A.3 – Average irradiation and total number of sun-hours. 

 Sun-hours (#) 

Months 

Average 
Irradiation 

(Wh/m2/day) 2003 2004 2005 2006 2007 2008 Average 

January 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 

February 10,8 10,8 10,8 10,8 10,8 10,8 10,8 10,8 

March 11,9 11,9 12,0 11,9 11,9 11,9 12,0 11,9 

April 13,1 13,1 13,2 12,9 13,3 13,1 13,1 13,1 

May 14,0 14,0 14,2 13,8 14,1 14,1 14,2 14,1 

June 14,6 14,6 14,7 14,3 14,6 14,7 14,7 14,6 

July 14,4 14,4 14,4 14,1 14,5 14,4 14,4 14,4 

August 13,5 13,5 13,6 13,2 13,6 13,6 13,6 13,5 

September 12,4 12,4 12,5 12,1 12,5 12,5 12,4 12,4 

October 11,2 11,2 10,3 11,0 11,3 11,3 11,2 11,1 

November 10,2 10,2 8,6 10,0 10,2 9,8 10,2 9,8 

December 9,6 9,6 8,0 9,5 9,7 9,5 9,7 9,3 

Total 145,6 142,3 143,6 146,4 145,7 146,2  
 
 
 
 

Table A.4 – Maximum (M) and minimum (m) temperatures and thermic amplitude (A) per month. 

 Temperature (ºC) 

 2003 2004 2005 2006 2007 2008 

Months M m A M m A M m A M m A M m A M m A 

Jan 16,4 7,8 8,6 17,4 8,8 8,6 15,5 5,7 9,8 14,6 6,8 7,9 16,7 6,7 9,9 17,9 9,3 8,7 

Feb 16,7 7,8 8,9 16,8 9,1 7,6 16,0 5,5 10,5 15,7 7,3 8,4 17,5 10,0 7,5 18,1 11,3 6,8 

Mar 18,5 11,2 7,3 18,4 9,5 8,9 17,5 10,3 7,3 18,1 10,5 7,6 18,6 9,5 9,1 20,2 9,9 10,3

Apr 19,3 11,8 7,5 20,5 10,8 9,7 21,0 12,7 8,4 20,6 12,1 8,5 20,5 11,7 8,8 21,3 12,5 8,8 

May 24,8 15,7 9,1 21,3 13,7 7,7 23,8 15,3 8,4 24,8 15,6 9,2 23,6 14,3 9,3 21,1 13,5 7,6 

Jun 27,7 18,7 9,0 28,4 19,5 8,9 27,8 18,9 8,9 25,7 17,8 8,0 25,1 16,9 8,1 27,5 17,7 9,8 

Jul 29,7 19,0 10,8 31,1 20,5 10,6 28,2 19,2 9,0 31,1 20,0 11,1 30,0 18,9 11,1 29,1 19,0 10,1

Aug 31,5 21,0 10,6 29,3 20,0 9,3 28,2 20,1 8,2 29,5 20,6 9,0 27,1 18,3 8,9 28,5 18,1 10,4

Sep 27,1 18,2 8,9 26,2 16,4 9,8 26,3 17,6 8,7 29,9 19,0 10,9 25,8 18,7 7,1 25,0 17,3 7,7 

Oct 22,5 15,8 6,7 22,4 15,0 7,4 22,6 15,5 7,1 24,1 17,2 6,9 24,4 15,6 8,9 23,3 14,8 8,4 

Nov 19,1 11,1 8,0 19,2 10,9 8,3 18,6 10,2 8,4 20,7 13,4 7,3 20,5 11,0 9,5 18,7 8,9 9,8 

Dec 16,4 8,8 7,6 16,9 8,2 8,7 16,7 9,3 7,4 16,7 8,1 8,6 17,5 8,6 8,9 16,3 7,7 8,6 



TECHNOLOGICAL LEARNING IN MICROALGAE PRODUCTION SYSTEMS 

REVISITING THE EXPERIENCE CURVE AND THE LEARNING MECHANISMS 

 
Appendix A 

 

 105 

Table A.5 – Average maximum (M) and minimum (m) temperatures and thermic amplitude (A), 
from the year 2003 to the year 2008. 

 Average Temperature (ºC) 

Months M m A 

January 16,4 7,5 8,9 

February 16,8 8,5 8,3 

March 18,5 10,1 8,4 

April 20,5 11,9 8,6 

May 23,2 14,7 8,5 

June 27,0 18,2 8,8 

July 29,9 19,4 10,4 

August 29,0 19,7 9,4 

September 26,7 17,9 8,8 

October 23,2 15,7 7,6 

November 19,5 10,9 8,5 

December 16,8 8,5 8,3 
 
 
 
 
 
 
 

Table A.6 – Average temperature per month. 

 Average Temperature (ºC)  

Months 2003 2004 2005 2006 2007 2008 Average

January 12,3 13,2 10,5 10,9 11,5 13,7 12,0

February 12,2 13,1 10,5 11,6 14,0 15,0 12,7

March 14,9 14,3 14,3 14,7 14,4 15,3 14,7

April 15,9 16,1 17,0 16,9 16,1 17,3 16,6

May 20,6 17,7 19,9 20,4 19,1 17,7 19,2

June 23,3 24,0 23,5 22,1 21,2 23,1 22,9

July 24,2 25,9 23,9 25,3 24,4 24,2 24,7

August 25,6 24,6 24,5 25,2 23,6 23,9 24,6

September 22,7 22,1 22,1 23,3 22,6 21,6 22,4

October 19,3 19,3 19,5 20,8 20,2 19,1 19,7

November 15,4 14,9 14,5 17,5 15,7 13,8 15,3

December 12,6 12,6 13,1 12,2 13,1 12,5 12,7

Average 18,3 18,2 17,8 18,4 18,0 18,1 
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Table A.7 – Application of Least Square Regression Model to environmental data. 

 

Month 

Biomass 
Productivity 

(g DWT.L-1.d-

1) 

Thermic 
Amplitude 

(ºC) 

Average 
Temperature

(ºC) 

Irradiation 
(Wh.m-2.day-

1) 

Sun-hours 
(#) 

January 0,15 8,90 12,02 2.555,00 10,01 
February 0,17 8,27 12,73 3.091,00 10,79 

March 0,24 8,40 14,65 4.650,00 11,93 
April 0,19 8,61 16,55 5.574,00 13,11 
May 0,25 8,54 19,23 6.877,00 14,06 
June 0,22 8,76 22,87 7.194,00 14,58 
July 0,19 10,44 24,65 7.507,00 14,37 

August 0,20 9,37 24,57 6.756,00 13,52 
September 0,21 8,84 22,40 5.377,00 12,39 

October 0,18 7,56 19,70 4.040,00 11,06 
November 0,17 8,55 15,30 2.596,00 9,83 
December 0,16 8,30 12,68 2.124,00 9,33 

 

 

Biomass 
Productivity 

(g DWT.L-1.d-

1) 

Thermic 
Amplitude 

(ºC) 

Average 
Temperature

(ºC) 

Irradiation 
(Wh.m-2.day-

1) 

Sun-hours 
(#) 

Variables Y X1 X2 X3 X4 
Type of 
variable dependent independent independent independent independent 

Coefficients C1 C2 C3 C4 
  

Interception C1 C2 C3 C4 
0,7215 -0,0235 -0,0063 0,0001 -0,0463 

 

C1 C2 C3 C4 Standard 
Deviation Error  0,0353 0,0000 0,0035 0,0100 

 

Coefficient of 
determination 

(r2) 

Standard 
Deviation 
Error of 
Estimate 

F ratio Degrees of 
freedom 

Error 
sum of 
square

s 

Regression 
sum of 
squares 

0,7792 0,0184 6,1750 7,0000 0,0083 0,0024 
 

 
Y = 0,7215 - 0,0235 X1- 0,0063 X2 + 0,0001X3 - 0,0463 X4 
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Appendix B - Semi-structured interview script 

 

Introdução: No âmbito da Dissertação do Mestrado de Economia de Inovação e do 

Empreeendedorismo, a Necton SA foi escolhida como estudo de caso para a determinação da 

curva da experiência e para a avaliação do processo de aprendizagem relativos às tecnologias de 

produção de microalgas. 

 

Data: ____/____/______ 

Nome: 
_______________________________________________________________ 

Função:______________________________________________________________

1. Quando iniciou a sua actividade na Necton?  

 

2. Durante quanto tempo desempenhou essa função na Necton? 

 

3. Com quais das seguintes tecnologias teve oportunidade de trabalhar? 
Tecnologia 1 - Raceways ____ 

Tecnologia 2 - PBR FPFT ____ 

Tecnologia 3 - GreenWall ___ 

Tecnologia 4 - PBR tubular____ 

 

4. Como experienciou a instalação e a operação de cada tecnologia? 

Por exemplo, em termos de produtividade, operatividade, flexibilidade produtiva, manutenção, etc. 
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Tecnologia 1 Tecnologia 2 

Comentários 
 
 
 
 
 
 
 
 
 

Comentários 
 
 
 
 
 
 
 
 
 

 
Tecnologia 3 Tecnologia 4 

Comentários 
 
 
 
 
 
 
 
 
 
 

Comentários 
 
 
 
 
 
 
 
 

 
 

 

5. Se possível, defina temporalmente o início e a duração das fases do ciclo de 
vida das tecnologias 1, 2, 3 e 4: 

 
Crescimento      <->      Maturidade     <->      Declínio     <->     Revigoramento 

 

tendo em conta o desempenho tecnológico (quantidade de biomassa 
produzida, domínio das técnicas de produção, etc). 

 

6. Se possível, identifique e quantifique (em % de tempo) qual dos 
mecanismos de aprendizagem esteve presente em numa, ou mais de uma, fase 
do ciclo de vida das tecnologias 1, 2, 3 e 4. 
Nota: Antes de realizar a pergunta, descrever os tipos de mecanismos de aprendizagem: Learning-
by-doing (LD); Learning-by-using (LU); Learning-by-searching (LS); Learning-by-interacting 
(LI) 

 

 

7. Porquê é que se abandonou a tecnologia de produção 1? Porquê é que se 
transitou de uma tecnologia 2 para a tecnologia 4? 

 

Obrigada por participar! 
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Appendix C – Data extracted from interviews 

Table C.1 - Data extracted from interviews regarding the learning mechanisms experienced in the 
MPS Raceways. 

 Learning Mechanism 

Worker Duration 
(months) LD (%) LU (%) LS (%) LI (%) 

Growth 
1 12 40 20 30 10 
2 3 100 0 0 0 

Average 8 70 10 15 5 
Maturity 

1 12 30 40 15 15 
2 7 100 0 0 0 

Average 10 65 20 8 8 
      
  Learning Mechanism 

Life-cycle Duration 
(months) LD (%) LU (%) LS (%) LI (%) 

Growth 8 70 10 15 5 
Maturity 10 65 20 8 8 

 

 

 

 
Table C.2 - Data extracted from interviews regarding the learning mechanisms experienced in the 
MPS GreenWall. 

 Learning Mechanism 

Worker Duration 
(months) LD (%) LU (%) LS (%) LI (%) 

Growth 
1 36 20 10 50 20 
2 36 92 3 3 3 
3 36 20 10 50 20 
4 36 0 0 0 100 

Average 36 33 6 26 36 
      
  Learning Mechanism 

Life-cycle Duration 
(months) LD (%) LU (%) LS (%) LI (%) 

Growth 36 33 6 26 36 
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Table C.3 - Data extracted from interviews regarding the learning mechanisms experienced in the 
MPS FPFT PBR. 

 Learning Mechanism 
Worker Duration (months) LD (%) LU (%) LS (%) LI (%) 

Growth 
1 10 50 10 40 0 
2 12 92 3 3 3 
3 10 40 50 5 5 
4 20 60 35 5 0 
5 6 100 0 0 0 

Average 12 68 20 11 2
Maturity 

1 75 20 30 20 30 
2 73 0 100 0 0 
3 96 20 60 10 10 
4 73 100 0 0 0 
5 86 0 100 0 0 

Average 81 28 58 6 8
Decline 

1 24 20 55 20 5 
2 12 0 100 0 0 
3 40 0 100 0 0 
4 24 20 55 20 5 
5 12 0 100 0 0 

Average 22 8 82 8 2
      
  Learning Mechanism 

Life-cycle Duration (months) LD (%) LU (%) LS (%) LI (%) 
Growth 12 68 20 11 2 

Maturity 81 30 48 16 6 
Decline 22 8 82 8 2 
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Table C.4 - Data extracted from interviews regarding the learning mechanisms experienced in the 
MPS tubular PBR. 

 Learning Mechanism 
Worker Duration (months) LD (%) LU (%) LS (%) LI (%) 

Growth 
1 12 40 20 20 20 
2 2 92 3 3 3 
3 6 40 50 5 5 
4 12 60 35 5 0 
5 7 50 50 0 0 

Average 8 56 32 7 6
Maturity 

1 12 20 30 20 30 
2 12 0 100 0 0 
3 14 20 60 10 10 
4 12 100 0 0 0 
5 12 0 100 0 0 

Average 12 28 58 6 8
      
  Learning Mechanism 

Life-cycle Duration (months) LD (%) LU (%) LS (%) LI (%) 
Growth 8 56 32 7 6 

Maturity 12 28 58 6 8 

 

 

 
Table C.5 - Data extracted from interviews regarding learning mechanisms experienced, in 
average, in MPS. 

 Life-Cycle Phase 
 Growth Maturity Decline 

Learning Mechanism Role (%) 
MPS 

LD LU LS LI LD LU LS LI LD LU LS LI 
Raceways 70 10 15 5 65 20 8 8     
GreenWall 33 6 26 36         
FPFT PBR 68 20 11 2 30 48 16 6 8 82 8 2 

Tubular 
PBR 56 32 7 6 28 58 6 8     

Average 57 17 14 12 41 42 10 7 8 82 8 2
 


