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ABSTRACT  

 

In this thesis several studies were conducted with four carnivorous plant species which 

occur on Portuguese territory: Pinguicula lusitanica, Pinguicula vulgaris, Drosera 

intermedia and Drosera rotundifolia. Most habitats of these plants are threatened and 

natural populations are scarce, therefore micropropagation protocols were developed to 

produce biomass for the subsequent studies. Efficient micropropagation protocols were 

developed for P. lusitanica and D. intermedia enabling large scale biomass production, 

while protocols for the other two species have still to be optimized (in Chapter 2). The 

in vitro established cultures represent active germplasm collections of Portuguese 

natural populations and contribute therefore for their conservation. In Chapter 3 extracts 

prepared from micropropagated plant material were analyzed using state of the art 

HPLC-ESI-MS and HPLC-SPE-NMR equipment which enabled the identification of 

the major secondary metabolites produced by P. lusitanica and D. intermedia, directly 

from essentially crude extracts. The metabolites identified in P. lusitanica belong to the 

iridoid glucosides and caffeoyl phenylethanoid glycosides and D. intermedia was shown 

to produce mainly flavonoid glucosides, ellagic acid derivatives and the naphthoquinone 

plumbagin. The evaluation of the biological activities of these extracts, compiled in 

Chapter 4, showed that the methanol extract of P. lusitanica has considerable 

antioxidant activity and that the n-hexane extract of D. intermedia has high 

antimicrobial potential. In Chapter 5 a method for the extraction of plumbagin from 

micropropagated D. intermedia plants was optimized and its potential as an alternative 

for bioprospection evaluated. It was shown that the commercial exploitation of 

plumbagin from D. intermedia cultures might be viable and that UAE with n-hexane 

followed by an SPE purification step is an efficient procedure for obtaining large 

quantities of high purity plumbagin. It is hoped that this study represents an enrichment 

of the knowledge on these plants and contributes to their conservation and valorisation. 

 

Keywords: Pinguicula; Drosera; micropropagation; conservation; hyphenated 

analytical techniques; antioxidant activity; antimicrobial activity; bioprospection; 

plumbagin.
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RESUMO  

 

Nesta tese apresentam-se resultados de diversos estudos realizados em quatro espécies 

de plantas carnívoras que ocorrem naturalmente em Portugal continental: Pinguicula 

vulgaris, Pinguicula lusitanica, Drosera rotundifolia e Drosera intermedia. As plantas 

carnívoras mantêm todas as características de qualquer outro ser vivo do reino vegetal: 

são plantas verdes onde ocorre fotossíntese, contudo estas plantas desenvolveram a 

capacidade única de capturar e digerir pequenas presas, pertencentes essencialmente ao 

grupo dos artrópodes. A maior parte das plantas carnívoras terrestres ocorre em turfeiras 

ou pântanos, onde persistem condições desfavoráveis constantes. Nestes habitats os 

solos encontram-se frequentemente submersos ou saturados em água e são de natureza 

ácida e relativamente pobres em relação ao teor de nutrientes disponíveis. Tendo em 

conta que o hábito carnívoro nas plantas surgiu em várias famílias distintas de forma 

independente, crê-se que representa uma adaptação aos factores de stress típicos destes 

habitats.  

 

As plantas carnívoras despertaram o interesse dos biólogos desde longa data, devido à 

sua morfologia peculiar e aos seus hábitos carnívoros, no entanto, poucas espécies têm 

sido estudadas em relação aos metabolitos secundários que produzem e às suas 

potenciais aplicações farmacológicas. As plantas são organismos sésseis desprovidos de 

sistema imunitário e portanto desenvolveram estratégias alternativas que envolvem a 

produção de compostos orgânicos bioactivos capazes de dissuadir ataques de herbívoros 

ou infecções por parte de microorganismos. Milhares de anos de evolução resultaram na 

imensa diversidade de metabolitos secundários produzida actualmente pelas plantas. 

Apesar do desenvolvimento das técnicas de modelação molecular e síntese química, as 

plantas continuam a ser uma fonte importante de novas drogas e estruturas químicas, 

fornecendo pistas importantes para o tratamento de varias doenças. Estima-se que 

aproximadamente um quarto das drogas actualmente em uso clínico tenham sido 

isoladas directamente ou derivadas de fitoquímicos. É de salientar que as estruturas 

químicas provenientes de plantas para além de serem usadas directamente podem servir 

de precursores para novos medicamentos por processos de modelação química. Deste 

modo, o estudo da composição química de extractos preparados a partir de plantas, 
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aliado à avaliação das suas propriedades biológicas, torna-se muito importante no 

âmbito da identificação de substâncias bioactivas com interesse farmacológico. 

 

O estado de conservação dos habitats das espécies estudadas neste trabalho é precário e 

as populações naturais não suportam a colheita de exemplares para a realização de um 

trabalho de investigação deste âmbito. Desta forma, no Capítulo 2 descrevem-se os 

protocolos de micropropagação desenvolvidos para as espécies em estudo, garantindo a 

produção de biomassa para os estudos subsequentes. A aplicação de técnicas de cultura 

in vitro é muito importante para alcançar os objectivos deste trabalho porque permite a 

obtenção, de forma rápida, de grandes quantidades de material a partir de quantidades 

reduzidas de tecido vegetal inicial. As culturas das quatro espécies foram iniciadas a 

partir de rebentos provenientes de germinantes produzidos in vitro de forma a evitar a 

recolha de exemplares do campo, reduzir a probabilidade de contaminações e manter 

uma diversidade genética elevada nas culturas estabelecidas. Em geral obtiveram-se 

percentagens de germinação relativamente baixas, pelo que poderá ser interessante 

testar o efeito de algumas técnicas de estratificação. No entanto, os germinantes obtidos 

demonstraram elevada capacidade de proliferação e permitiram avaliar os parâmetros de 

crescimento das espécies em vários meios de cultura.  

 

O efeito da concentração do meio MS sem reguladores de crescimento foi testado em 

todas as espécies tendo-se verificado, de uma forma geral, que as culturas têm uma 

preferência para meios de cultura com baixas concentrações de macronutrientes, o que 

vai de encontro com as condições naturais em que as plantas carnívoras prosperam. No 

caso da espécie P. lusitanica testaram-se meios de cultura com três concentrações de 

meio basal (MS total, ½MS e ¼MS) suplementados com citocininas (BA, Kin e Zea) ou 

auxinas (NAA, IBA, IAA) a duas concentrações (0.2 e 0.5 mg/mL) e verificou-se que 

na grande maioria dos casos as culturas produziam simultaneamente novos rebentos e 

raízes, independentemente da composição do meio em reguladores de crescimento. 

Desta forma determinou-se que o protocolo de micropropagação para esta espécie 

dispensa uma fase de enraizamento adicional e que plântulas enraizadas podem ser 

produzidas num único passo. As culturas de P. lusitanica responderam melhor em meio 

MS suplementado com citocininas na concentração mais alta (0.5 mg/mL), obtendo-se 

cerca de 26 novos rebentos por explantado inicial e percentagens de enraizamento 

superiores a 90 % em todos os casos. O facto de se terem registado percentagens de 
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enraizamento superiores em meios suplementados com citocininas do que com auxinas 

é pouco comum e deve ser investigado. No entanto, as culturas também mostraram 

capacidade de proliferação e enraizamento elevadas em meios sem reguladores de 

crescimento, o que pode indicar níveis endógenos elevados de citocininas e auxinas. 

Meios de cultura suplementados simultaneamente com citocininas e auxinas não 

promoveram a proliferação de rebentos. 

 

O desenvolvimento de um protocolo de micropropagação para a espécie P. vulgaris foi 

uma tarefa mais complicada devido à fragilidade e pouca viabilidade dos rebentos 

produzidos in vitro. Os rebentos mostraram-se muito susceptíveis ao passo de 

individualização no início de cada ensaio e portanto a quantidade de meios testada para 

esta espécie foi inferior. Em primeiro lugar foi testado o efeito da concentração de meio 

basal na capacidade de resposta das culturas usando as concentrações de MS total e 

¼MS e posteriormente testou-se o efeito da adição de 0.1 mg/mL das citocininas BA e 

Zea individualmente, ou em combinação com a auxina IBA a 0.01 mg/mL, ao meio 

basal mais adequado. Os resultados demonstraram que o meio MS total influenciou 

negativamente o crescimento das culturas de P. vulgaris e que não se verificaram 

diferenças entre o controlo e meio de cultura suplementado com citocininas, em termos 

de rebentos produzidos ou percentagens de enraizamento. No entanto, do ponto de vista 

morfológico, os rebentos produzidos em meio de cultura sem reguladores de 

crescimento eram mais vigorosos enquanto os rebentos produzidos em meios 

suplementados com BA ou Zea mostraram por vezes sinais de necrose e reduzido 

desenvolvimento. Tal como no caso de P. lusitanica, a combinação de citocininas e 

auxinas não promoveu a proliferação das culturas de P. vulgaris. Desta forma, dos 

meios de cultura testados, o mais indicado para a micropropagação de P. vulgaris é o 

meio ¼MS sem reguladores de crescimento. No entanto, este protocolo deverá ser 

optimizado uma vez que a baixa viabilidade das culturas produzidas não permite 

produção de biomassa em larga escala.  

 

Ao contrário das outras espécies estudadas, as percentagens de germinação de 

D. intermedia foram bastante elevadas. Curiosamente, registaram-se percentagens de 

germinação superiores no ensaio controlo do que no tratamento de estratificação a frio, 

ao contrário do que tinha sido observado para outras plantas do mesmo género. Na 

espécie D. intermedia foram testados meios com as concentrações de meio basal ¼MS, 
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½MS e MS total sem reguladores de crescimento ou suplementados com Kin 0.1 mg/L. 

A resposta de D. intermedia foi semelhante à de P. vulgaris na medida em que a 

redução da concentração de macronutrientes melhorou a proliferação dos rebentos e que 

a adição de Kin não induziu diferenças significativas na resposta das culturas. Quando 

cultivadas em meio ¼MS sem reguladores de crescimento, as culturas de D. intermedia 

produziram em media 15.8 rebentos ao fim de 8 semanas e em todos os casos os 

explantados iniciais formaram raízes, bem como mais de 80% dos novos rebentos 

formados. Como seria difícil melhorar qualquer um dos parâmetros de crescimento não 

foram testados outros meios. Enquanto os protocolos de micropropagação de 

P. lusitanica, P. vulgaris e D. intermedia foram desenvolvidos pela primeira vez neste 

trabalho, a cultura in vitro da espécie D. rotundifolia já tinha sido descrita previamente. 

No entanto, nestes estudos em vez de sementes, foram usados explantados recolhidos de 

exemplares de campo como material de partida. Para esta espécie testaram-se apenas 

dois meios, nomeadamente ¼MS e MS total. Apesar de se ter obtido um número de 

rebentos razoável nos dois meios testados, os rebentos eram de tamanho reduzido, 

muitas vezes difíceis de contabilizar e demasiado pequenos para iniciar novas culturas. 

Esta dificuldade foi também referida por outros autores, pelo que deve ser considerada 

uma fase de alongamento e uma fase de indução de raízes de forma a desenvolver um 

protocolo eficiente.  

 

As plântulas micropropagadas de P. lusitanica, P. vulgaris e D. intermedia com 

sistemas radiculares bem desenvolvidos foram aclimatizadas com sucesso às condições 

ex vitro apresentando um desenvolvimento normal, sem aparentes anomalias 

morfológicas e com folhas funcionais capazes de capturar insectos, podendo ser usadas 

em programas de reintrodução em populações naturais. Em suma, foram desenvolvidos 

protocolos de micropropagação eficientes para P. lusitanica e D. intermedia, que 

permitiram a produção de material suficiente para as fases subsequentes deste trabalho. 

Os protocolos de micropropagação de P. vulgaris e D. rotundifolia têm que ser 

optimizados, no entanto, as culturas estabelecidas in vitro representam uma colecção 

activa de germoplasma que se pode tornar valiosa na eventualidade de extinção das 

populações. 

 

No Capítulo 3 deste trabalho procedeu-se à caracterização química de extractos 

preparados a partir de material micropropagado de P. lusitanica e D. intermedia. Neste 
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capítulo discutiu-se também a possível relevância ecológica dos metabolitos 

secundários identificados bem como a sua significância taxonómica. Em projectos de 

descoberta de produtos naturais bioactivos é vantajoso realizar uma caracterização 

química numa fase precoce do trabalho para evitar o estudo alargado de compostos já 

conhecidos e caracterizados. Para o efeito recorreu-se às técnicas hifenadas HPLC-ESI-

MS e HPLC-SPE-NMR. A espectroscopia de massa é uma ferramenta extremamente 

útil na identificação de compostos em amostras naturais, que para além da sua elevada 

sensibilidade, permite obter a massa molecular com grande precisão e portanto inferir a 

fórmula molecular, e em alguns casos até informação estrutural por análise do padrão de 

fragmentação. Em termos de informação estrutural a técnica de NMR é a mais valiosa, 

dando informações sobre distâncias intramoleculares entre átomos e grupos funcionais e 

acerca da orientação espacial de substituintes em torno de centros quirais, permitindo 

assim determinar a estrutura completa de uma molécula bem como relações de 

estereoisomerismo. O maior impedimento para o uso mais alargado da técnica de NMR, 

para além do custo elevado, está relacionado com a relativa baixa sensibilidade. No 

entanto, para além da miniaturização das células de fluxo, bobinas arrefecidas a 

temperaturas criogénicas e campos magnéticos cada vez mais potentes, o acoplamento 

de uma unidade automatizada entre o HPLC e o equipamento de NMR capaz de extrair 

e concentrar picos cromatográficos em cartuchos de SPE, tem contribuído muito para o 

ganho de sensibilidade. Desta forma, a utilização destas técnicas avançadas permitiram 

identificar os compostos maioritários directamente a partir de extractos sem ter que 

recorrer ao isolamento por técnicas de cromatografia preparativa para obter informação 

estrutural. 

 

A espécie P. lusitanica não foi previamente estudada do ponto de vista bioquímico, 

tornando impossível a utilização de padrões. No entanto, explorando as potencialidades 

destas técnicas hifenadas foi possível a identificação dos seus metabolitos maioritários 

que pertencem a dois grupos de compostos naturais: iridóides e feniletanóides 

glicosídicos. A partir do extracto metanólico de P. lusitanica identificaram-se os 

iridóides ácido mussaenosídico, globularina e scutellarioside II e os feniletanóides 

acteoside, R/S campneoside I e R/S campeneoside II. Por análise das intensidades dos 

sinais dos protões anoméricos, determinou-se de forma aproximada que os compostos 

presentes em maior quantidade são o ácido mussaenosídico e acteoside. O extracto 

metanólico continha também um composto cuja estrutura foi impossível de determinar 
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conclusivamente, porque foi co-extraído juntamente com scutellarioside II e alguns dos 

seus sinais encontravam-se sobrepostos no espectro de NMR. No entanto, os dados 

preliminares indicam que o composto poderá não ter sido identificado previamente, 

podendo revelar-se interessante proceder ao seu isolamento.  

 

No caso da espécie D. intermedia identificaram-se vários flavonóides glicosídicos 

(quercetina-3-O-galactopiranosídeo, quercetina-3-O-glucopiranosídeo, quercetina-3-O-

(2’’-O-galoil)-galactopiranosídeo), miricetina-3-O-glucopiranosídeo e miricetina-3-O-

(2’’-O-galoil)-galactopiranosídeo) e derivativos de ácido elágico (ácido elágico, 3-O- 

acido metil-elágico, ácido 3,3'-di-O-metil-elágico e ácido 3,3'-di-O-metil-elágico 4-O-

glucopiranosídeo), para além de uma naftoquinona que poderá possivelmente ser 

hidroplumbagina di-1,4-O-glucopiranosídeo. O extracto aquoso de D. intermedia não 

foi investigado e o extracto hexânico era constituído exclusivamente por um composto, 

que foi analisado directamente por NMR e identificado como a naftoquinona 

plumbagina. Grande parte dos metabolitos secundários identificados foram atribuídos 

pela primeira vez a D. intermedia, fazendo com que este trabalho represente também 

uma contribuição para a melhor compreensão da bioquímica desta espécie. Do posto de 

vista taxonómico, o perfil de metabolitos secundários obtido para P. lusitanica e 

D. intermedia corroboram estudos realizados previamente noutras espécies das famílias 

Lentibulariaceae e Droseraceae, respectivamente.  

 

Sendo impraticável testar um grande número de actividades biológicas em simultâneo 

neste trabalho, como ponto de partida decidiu-se avaliar a actividade antioxidante e 

antimicrobiana dos extractos preparados a partir de P. lusitanica e D. intermedia. A 

determinação da actividade antioxidante de um extracto é um dado importante na 

medida em que pode indicar potenciais actividades contra outros alvos biológicos. A 

avaliação da actividade antimicrobiana é igualmente importante devido à necessidade 

urgente de encontrar novas fontes de agentes anti-sépticos em resposta ao 

desenvolvimento de resistências múltiplas aos antibióticos em uso clínico. Quando 

possível, tentaram estabelecer-se relações de estrutura-actividade entre os compostos 

identificados previamente nos extractos e os resultados obtidos nos ensaios. Os 

resultados mostraram que o extracto com maior actividade antioxidante foi o extracto 

metanólico de P. lusitanica, possivelmente devido a um dos seus compostos 

maioritários, acteoside. Os dois grupos catecol desta molécula conferem uma elevada 
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predisposição para reagir com e estabilizar radicais livres, e evitar a propagação de 

reacções em cadeia. O facto de terem sido comprovadas actividades contra vários alvos 

biológicos e ser considerada não tóxica, torna esta molécula interessante para estudos 

posteriores. O extracto metanólico de D. intermedia também apresentou actividade 

antioxidante considerável, que pode ser explicada pela combinação de flavonóides e 

derivativos de ácido elágico presente no extracto. 

 

Os extractos de D. intermedia foram mais eficazes nos ensaios de actividade 

antimicrobiana, especialmente o extracto hexânico, que inibiu o crescimento de todas as 

estirpes incluídas no painel de microorganismos seleccionados, à excepção de 

P. aureginosa. Esta actividade foi atribuída ao composto maioritário do extracto, 

plumbagina, para o qual já tinha sido comprovado elevada actividade antimicrobiana. A 

actividade desta naftoquinona parece estar relacionada com a sua capacidade de se ligar 

covalentemente a biomoléculas tornando-as inactivas, mas também com a sua 

capacidade de produzir radicais livres em sistemas biológicos. Porém, a possível 

pequena margem de segurança da plumbagina tornam a sua aplicação farmacológica 

incerta. O extracto metanólico de D. intermedia também inibiu o crescimento de grande 

parte dos microorganismos testados incluindo, curiosamente, a estirpe multirresistente 

P. aeruginosa. Como os antibióticos activos contra esta estirpe são escassos seria 

interessante estudar em maior detalhe o mecanismo subadjacente. Por sua vez, o 

extracto de P. lusitanica mostrou possuir reduzida actividade antimicrobiana. Apesar 

deste estudo não ter identificado potenciais candidatos para o desenvolvimento de novos 

fármacos é importante a continuação de programas com o intuito de escrutinar 

aplicações de extractos vegetais contra alvos biológicos, tendo em conta o enorme 

contributo que o Reino das plantas tem dado à medicina moderna. 

 

As análises efectuadas no Capítulo 3 demonstraram que era possível obter, de uma 

forma relativamente simples, quantidades significativas de plumbagina de elevada 

pureza a partir de material micropropagado de D. intermedia. Desta forma, aliado ao 

valor comercial desta naftoquinona, decidiu-se avaliar o potencial de prospecção de 

plumbagina a partir de culturas in vitro de D. intermedia. A produção de biomassa foi 

monitorizada ao longo do tempo para determinar o período de crescimento máximo e o 

material micropropagado foi extraído por várias metodologias: maceração com agitação, 

extracção Soxhlet, extracção assistida por ultrasons (UAE) e extracção com fluidos 
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supercríticos (SFE). Os resultados demonstraram que, para além da taxa de produção de 

biomassa ser bastante elevada, as quantidades de plumbagina produzidas por D. 

intermedia são superiores em relação à actual fonte de prospecção de plumbagina, as 

plantas do género Plumbago. A comparação dos métodos de extracção levou a concluir 

que a melhor alternativa para a extracção de plumbagina é aplicar ultrasons à matriz 

vegetal colocada no solvente de extracção (n-hexano). Este procedimento traz vantagens 

em relação ao tempo de operação e permite obter rendimentos de extracção superiores, 

assim como maiores concentrações de produto, um factor importante para os passos 

subsequentes de purificação. Em alternativa, o material vegetal pode também ser 

extraído com fluidos supercríticos. Apesar de esta metodologia ter produzido resultados 

inferiores à técnica de UAE, os rendimentos foram consideráveis para uma primeira 

abordagem. A possibilidade de evitar o uso de solventes orgânicos nocivos é uma 

grande vantagem do ponto de vista ambiental. Na segunda parte do desenvolvimento do 

processo de extracção de plumbagina avaliou-se a potencialidade de usar colunas de 

SPE para concentrar e purificar os extractos. Os resultados demonstraram que usando 

esta abordagem é possível remover grande parte das impurezas co-extraídas num único 

passo com pequenas perdas de produto. Aplicando a purificação por SPE ao extracto 

obtido por UAE é possível produzir plumbagina em grandes quantidades com uma 

pureza final próxima dos 100%. 

 

Neste trabalho pretendeu-se estudar a composição química e avaliar as propriedades 

biológicas de extactos preparados a partir de algumas espécies de plantas carnívoras que 

existem em Portugal. Para tal foi imperativo o desenvolvimento de técnicas de 

micropropagação que permitiram também optimizar um processo de bioprospecção de 

um metabolito secundário de valor. Espera-se que este trabalho tenha, de forma geral, 

contribuído para a conservação e valorização das espécies estudadas. 

 

Palavras-chave: Pinguicula; Drosera; micropropagação; conservação; técnicas 

analíticas hifenadas; actividade antioxidante; actividade antimicrobiana; bioprospecção; 

plumbagina. 
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General Introduction 

1.1. Current status of drug discovery from natural products 

 

Although the modern pharmaceutical industry was born from natural product research, 

synthetic approaches to drug discovery have become standard. The role of natural 

products in drug discovery has recently been diminished by the advent of structure 

activity-guided organic synthesis, combinatorial chemistry, and computational (in 

silico) drug design (Schmidt et al., 2008). This trend is in great part due to the increased 

compatibility of these synthetic approaches with high throughput screening (HTS) 

methods, whereby a large number of samples (up to 100000 in 24 h) can be screened for 

a single activity using molecular targets (Bindseil et al., 2001; Gurib-Fakim, 2006; 

Schmidt et al., 2008). Natural extracts, being comprised of a complex mixture of 

compounds are difficult to implement in HTS platforms (Bindseil, 2001). However, this 

modern approach has led to a decline in new drug development in the past two decades 

(Butler, 2004; Rishton, 2008).  

 

Comparative analysis of structural diversity in natural product mixtures and 

combinatorial libraries suggests that nature still has an edge over synthetic chemistry. 

Despite the fact that combinatorial libraries use superior elemental diversity, this does 

not compensate for the overall molecular complexity, scaffold variety, stereochemical 

richness, ring system diversity, and carbohydrate constituents of natural product 

libraries (Lee and Schneider, 2001; Feher and Schmidt, 2003; Newman, 2008). It is 

generally believed that the complexity of plant-produced secondary metabolites and the 

vast number of natural products will constitute a resource beyond the capacity of current 

synthetic chemistry for a long time (Koch et al., 2005). In addition, natural products, 

characterized as small-molecule secondary metabolites that originate from terrestrial 

and marine plants, microorganisms and animals, tend to present more structurally 

diverse ‘‘drug-like’’ and ‘‘biologically friendly’’ molecular qualities than pure synthetic 

compounds at random, and are an important source of novel lead structures for the 

synthetic and combinatorial chemistry aspects of drug discovery (Bindseil et al., 2001; 

Vuorelaa et al., 2004; Pan et al., 2010). This is because the importance of natural 

product molecules to medicine lies not only in their pharmacological effects but also in 

their role as template molecules for the production of new drug substances. Morphine 

from the opium poppy, for example, which continues to be used as a highly effective 

analgesic for the relief of terminal pain, has also served as a template molecule for the 

3 



Phytochemical studies and biological activity of carnivorous plants 

design of numerous drugs including analgesics such as pethidine and pentazocine and 

the cough suppressant dextromethorphan (Philipson, 1994). An organic chemist 

considering the structure of morphine would be quick to point out that such a molecule 

would never have been conceived of by medicinal chemists engaged in a rational drug 

design program for pain. Without morphine as a small molecule tool for pharmacology 

and without its unique chemical structure for inspiration, drug discovery scientists 

might never have developed an analogously effective therapy for pain (Rishton, 2008).  

 

Industrial funding for natural product-based drug discovery has been declining (Bindseil 

et al., 2001), yet the percentage of natural product-derived small molecule patents has 

remained relatively unchanged and there has also been a steady introduction of new 

natural product and natural product-derived drugs (Butler, 2004; Koehn and Carter, 

2005). Between 2000 and 2003 a total of 15 drugs were launched which included new 

drug types such as the antimalarial arteether (Graul, 2001), the antifungal caspofungin 

(Graul, 2002), the anti-Alzheimer’s drug galantamine (Heinrich and Teoh, 2004) and 

the antibacterial lipopeptide daptomycin (Frantz, 2004). On the contrary, while the 

investment in R&D and clinical development using current drug discovery approaches 

has skyrocketed, the output of newly launched drugs has fallen (Butler, 2004). 

Surprisingly, to date, there has been only one drug approved by the US Food and Drug 

Administration (sorafenib for renal carcinoma in 2005) resulting from high-throughput 

screening of combinatorial chemistry libraries followed by the optimization of hits 

(Newman, 2008). This way, it can be stated that the major achievements of natural 

product research of the past decades have clearly demonstrated that natural products 

represent an unparalleled reservoir of molecular diversity to drug discovery and 

development, and are complementary to combinatorial libraries (Pieters and Vlietink, 

2005). 

 

1.2. Drug discovery from plants 

 

Plants continue to serve as a valuable source of therapeutic compounds because of their 

vast biosynthetic capacity. It is estimated that plant-derived natural products represent 

more than 25% of all drugs in clinical use in the world (Rates, 2000; Gurib-Fakim, 

2006). Examples of important drugs obtained from plants are digoxin from Digitalis 

spp., quinine and quinidine from Cinchona spp., vincristrine and vinblastine from 
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Catharanthus roseus, atropine from Atropa belladonna and morphine and codeine from 

Papaver somniferum (Rates, 2000). However, the potential of higher plants as a source 

for new drugs is still largely unexplored. Among the estimated 250000-500000 plant 

species, only a small percentage has been investigated phytochemically and the fraction 

submitted to biological or pharmacological screening is even smaller (Hamburger and 

Hostettmann, 1991). 

 

The wide molecular diversity of metabolites throughout the plant kingdom represents an 

extremely rich biogenic resource for the discovery of novel drugs and for developing 

innovative drugs. Not only do plant species yield raw material for useful compounds but 

knowledge on their biochemistry also provides pointers for rational drug development 

(Phillipson, 2007). Plant constituents have a key position in the advancement of 

knowledge on biological activity because bioactive plant compounds are themselves 

products of metabolism, and hence function in life processes in a similar way to 

compounds that operate in humans and animals (Gurib-Fakim, 2006). Most of the plant 

compounds that have been found to be medicinally useful and interesting tend to be 

secondary metabolites.  

 

1.2.1. The biogenetic significance of secondary metabolites 

 

A typical character of plants is the production and storage of usually complex mixtures 

of secondary metabolites. Although the function of most is unknown, and only limited 

numbers of secondary metabolites have been studied in detail in terms of physiology, 

biochemistry and ecology, it is safe to assume that secondary metabolites are not 

functionless waste products (as suggested earlier in the 20th century), but important for 

the plants in an ecological context (Wink, 2008). 

 

Despite the uses that mankind may have for secondary metabolites, they are compounds 

that have important functions in the organism that produces them (Macías et al., 2007). 

Ever since their existence, plants had to cope with infectious diseases and animals 

which tried to feed on them, and although being obvious, it is important to note that 

plants cannot run away when challenged by a herbivore nor do they have an elaborate 

immune system to fight off a microbial infection. As a common defence measure, plants 

and other sessile organisms evolved bioactive natural products, which repel, deter or 
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poison herbivores and which can inhibit growth and development of bacteria, fungi and 

even viruses (Wink, 2008). Some of the defense compounds are constitutive 

(phytoanticipins) while others can be induced under stress conditions (phytoalexins) and 

are synthesized de novo when a plant is challenged by bacteria, fungi or viruses (Macías 

et al., 2007). Because plants have to compete with other plants for light, water and 

nutrients, secondary metabolites often also serve as mediators in plant-plant 

interactions, termed as allelopathy. During evolution, secondary metabolites were 

apparently optimized in such a way that they did not only exhibit defensive but also 

additional non-defence functions: some have additional physiological and ecological 

functions (for example, as nitrogen storage compounds or UV protectants) or serve as 

signal compounds to attract pollinating or seed dispersing animals and can mediate the 

interactions between symbiotic bacteria and their plant hosts (Wink, 2008). 

 

The metabolic system of a plant may be regarded as being constituted of regulated 

processes within which biochemical conversions and mass transfer take place. The 

metabolic performance of living organisms can be distinguished into primary 

metabolism and secondary metabolism. Primary metabolism is associated with 

fundamental life processes common to all plants. It comprises processes such as 

photosynthesis, pentose cycle, glycolysis, the citric acid cycle, electron transport, 

phosphorylation and energy regulation and management. Secondary metabolites are 

therefore termed as group of compounds that are not directly involved in the normal 

growth, development or reproduction of organisms. Primary and secondary metabolisms 

are interconnected in the sense that the biosynthesis of accumulating secondary 

metabolites can be traced back to ubiquitous primary metabolites. However, in contrast 

to primary metabolites, secondary metabolites represent features that can be expressed 

in terms of ecological, taxonomic and biochemical differentiation and diversity (Gurib-

Fakim, 2006). Secondary metabolites are often restricted to a narrow set of species 

within a phylogenetic group and can therefore provide a basis for chemosystematics. 

 

1.2.2. The importance of biotechnological approaches 

 

Many higher plants which are used as sources of pharmaceuticals and are of value in 

drug discovery are rare or threatened with extinction (Phillipson, 1994). In addition, 

drug discovery programs require large quantities of material which cannot be simply 
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harvested from nature. Quantitative considerations regarding the average yield of active 

compounds and the amount of starting crude plant material required for the discovery, 

development and launch of a new drug on the market emphasize the urgency of using 

alternative procedures by which it can be obtained: 50 kg of raw material are necessary 

to provide 500 mg of pure compound for bioassays, toxicology, and in vivo evaluation; 

and full pre-clinical and clinical studies can require 2 kg of pure compounds obtained 

from 200 ton of raw material (Rates, 2000). 

 

Placlitaxel is a good example of the application of biotechnological strategies to this 

field. Placlitaxel is one of the most important natural product-derived antitumor agents 

found in the recent past and was initially isolated from Taxus brevifolia. However, the 

biggest obstacle to its clinical use was obtaining the material, considering that in order 

to produce 2.5 kg of taxol, 27000 tons of T. brevifolia bark were required and 12000 

trees had to be cut down. Due to the high demand, this species of Taxus would soon be 

extinct if no alternative source could be developed (Hamburger and Hostettmann, 

1991). The antitumour agent contains 11 chiral centres with 2048 possible 

diastereoisomeric forms so its synthesis de novo on a commercial scale appears to be 

unlikely (Phillipson, 1994). Currently the drug is produced by plant cell fermentation 

and Taxus trees are no longer used in the process. Plant biotechnology offers the 

possibility of improved production methods of cultivated medicinal plants as well as 

alternative approaches to the production of natural products for the preparation of 

pharmaceuticals (For further details see Sections 2.1.2 and 5.1.1.). 

 

1.2.3. Strategies for drug discovery 

 

Different approaches to drug discovery using higher plants can be distinguished; 

however, all have the final goal of isolating new bioactive products or lead structures 

with novel structures and novel mechanisms of action. In all cases plants can be either 

selected randomly or as a follow-up of bioactivity reports or ethnomedical uses (Cos et 

al., 2006). The most common approach and the one accessible to most laboratories 

consists on performing biological assays using essentially crude extracts and selecting 

the most promising extracts for chemical analysis with the intent of trying to identify 

the active compounds. The entire extract can be chemically characterized and the active 

components can be identified by confirming the activity with commercial standards of 
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the identified compounds. However, following this approach the generated new 

knowledge is limited as only the activity of known compounds is determined, although 

possibly in a new bioactivity context. Alternatively, following the approach of 

bioactivity-guided fractionation, the plant extracts can be sequentially fractionated and 

the active components can be identified by subjecting each fraction to bioassay 

(Verpoorte, 1989). The compound or compounds of the active fraction can then be 

purified by chromatographic methods and structurally characterized by spectroscopic 

methods. However, this approach also presents some limitations. Bioactivity-guided 

fractionation may exclude compounds with relevant pharmacological activities when 

the effect is not caused by a single compound, but rather by a combination of 

compounds, as a result of pharmacodynamic synergism. A good example of this is 

Panax ginseng in which the whole plant or its saponin fractions are more active than the 

isolated compounds (Hamburger and Hostettmann, 1991). In addition, when only one 

activity is considered in pharmacological screens the possibility exists of missing out 

compounds with interesting activities for which the assay does not test for. 

Catharanthus roseus was initially studied for its anti-diabetic activity described in folk 

medicine, but was then shown to produce the powerful anti-tumour compounds, 

vincristine and vinblastine (Rates, 2000). Another issue concerns the possibility of 

isolating already known and characterized compounds after the laborious and time 

consuming efforts to isolate and determine the structure of the active compound. 

 

Another strategy consists on performing a chemical screening prior to biological assays 

and submitting only new or structurally interesting compounds to bioassays. The 

process of rapidly indentifying known compounds is known as dereplication and 

ensures that novelty is brought into the isolation process and that no time is wasted on 

re-investigating existing and known molecules (Sprogøe et al., 2007). The high 

sensitivity and efficiency of current hyphenated techniques such as HPLC-UV, HPLC-

MS and HPLC-NMR allow for the rapid identification of known compounds in an early 

stage of the procedure, and identification of enough of an unknown structure to 

prioritise or conduct an isolation (Wolfender et al.; 2003, Butler, 2004). This can mean 

either a full identification of a natural product after only partial purification, or partial 

identification to the level of a family of known compounds after which the most 

promising lead-structures are selected for further investigation. 
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A more radical approach consists on generating libraries of pure natural products which 

are compatible with HTS and can be tested against a large number of molecular targets 

in a reduced time (Bindseil et al., 2001). Based on the principle that natural products 

offer structural diversity that is not rivalled by the creativity or synthetic ingenuity of 

synthetic chemists, it is suggested that the most important paradigm shift for natural 

product chemistry is the general change from activity-guided extract screening to pure-

compound screening, which implies activity-independent compound isolation and 

characterization. Despite being obvious that pure compound isolation includes 

significant investments before screening, the overall process from screening to a 

validated lead is much faster, as well as significantly less expensive, when pure natural-

compound libraries are used as basic raw materials, and not crude extracts. Resulting 

from a collaboration between the pharmaceutical companies Aventis Pharma AG (Vitry 

sur Seine, France) and AnalytiCon Discovery (Berlin, Germany), a library of 4000 pure 

natural products was generated and in most cases, the natural product libraries showed 

superior hits to in-house combinatorial libraries (Bindseil et al., 2001). This confirms 

the potential of natural products in modern drug discovery and it is believed that this 

strategy will be responsible for the revival of natural product research. 

 

1.3. Plant description, taxonomy and biology 

 

1.3.1. The trait of carnivory in plants 

 

Carnivorous plants have acquired the unique ability to capture prey and to absorb 

nutrients from the captured animals. The majority of terrestrial carnivorous plants grow 

in bog and fen soils, where they endure persistent unfavourable conditions, i.e., the soils 

are usually wet or waterlogged, mostly acidic, and poor in available mineral nutrients 

(Adamec et al., 2005). The multiple, independent evolution of carnivory in diverse plant 

families suggests that it is an adaptation to the stress factors typical of these habitats 

(Givnish et al., 1984; Ellison and Gotelli, 2001; Adlassnig et al., 2005). Givnish et al. 

(1984) proposed a cost-benefit model that predicts that carnivory is adaptive only in 

nutrient-poor environments that are well lit and moist, because the photosynthetic costs 

to carnivory are thought to exceed the benefits in either shady or dry habitats. Thus, in 

these habitats carnivory confers an important competitive advantage in the ability to 
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obtain nutrients without an overwhelming cost to photosynthesis (Ellison and Gotelli, 

2001). 

 

The prey of carnivorous plants range from unicellular organisms to small mammals, 

although the most common prey are insects (Darnowski et al., 2006), and therefore 

these plants are often referred as insectivorous plants. In order to be carnivorous, a plant 

must attract, trap and digest prey, followed by nutrient absorption. To attract prey the 

plants secret nectar or exhale a sweet odor or exhibit bright colors (Adlassnig et al. 

2005). A variety of active and passive mechanisms exist for trapping prey. A well-

known example of an active mechanim is that of the Venus flytrap, Dionaea muscipula 

(Droseraceae), which possesses modified leaves, the lobes of which close on prey when 

trigger hairs are touched. A passive example is found in the pitcher-plants (Sarracenia 

spp. and Heliamphora spp; Sarraceniaceae) which present pitfall traps filled with water 

or digestive fluid.  

 

Drosera spp. (Droseraceae) use traps generically termed as fly-paper traps, which are 

partly passive in their action, consisting of highly specialized leaves bearing two types 

of glands, stalked glands which attract insects by their distinctive red coloured head and 

by their mucilage secretions rich in carbohydrates, and sessile glands which produce 

digestive enzymes (Figure 1.1.1). Rost and Schauer (1977) found that the mucilage of 

Drosera capensis is composed of a 4% aqueous solution of a complex polysaccharide 

containing xylose, mannose, galactose, and glucoronic acid with no protein and a pH 

around 5, at which value the viscosity is maximal. When prey adheres to a tentacle and 

struggles, there is an initial rapid movement of the individual tentacle, followed by the 

slower inflection of the leaf lamina itself ensuring that the prey is held. Leaves are 

induced by the presence of trapped insects to secrete enzymes for digestion of the prey 

(Matusikova et al., 2005). One to two weeks after prey has been caught, the leaf opens 

and the blackened remains, mostly chitinous pieces of legs and wings, fall off or blow 

away, allowing for the leaf to make repeated captures (Crowder et al., 1990). Other 

genera of carnivorous plants that use the same basic mechanism include Byblis 

(Bylidaceae), Drosophyllum (Drosophyllaceae), Pinguicula (Lentibulariaceae) and 

Triphyophyllum (Dioncophyllaceae) (Darnowski et al., 2006). 
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A B C 

Figure 1.1.1 - Example of specialized glands of a carnivorous plant using the fly-paper mechanism 

(Drosophyllum lusitanicum): leaf extremity bearing distinctive red coloured stalked glands (A); Scanning 

electron microscopy of leaf (B) and detail of stalked (blue arrow) and sessile gland (green arrow) (C).  

(Photographs by S Gonçalves, used with permission). 

 

A considerable number of these carnivorous plant species are included in the 

pharmacopeias (Blumenthal et al., 1998), however, very few have been studied from a 

chemical and pharmacological perspective. In Portugal, three genera of terrestrial 

carnivorous plants are represented, the genus Drosera (D. rotundifolia and D. 

intermedia), Pinguicula (P. vulgaris and P. lusitanica) and Drosophyllum 

(D. lusitanicum). D. lusitanicum has been previously studied at the Plant Biotechnology 

Lab and besides the development of a micropropagation protocol (Gonçalves and 

Romano, 2005), extracts prepared from this species were investigated for their 

biological activities (Gonçalves et al., 2009) and chemical composition (Grevenstuk et 

al., 2008), and the encouraging results obtained incentivized the study of other 

carnivorous plant species. The distribution in Portugal of the plant species under study 

in this thesis are depicted in Figure 1.1.2. 

 

1.3.2. The genus Pinguicula 

 

1.3.2.1. Taxonomy and geographical distribution 

 

Pinguicula is one of the three genera that together with Genlisea and Utricularia 

compose the Lentibulariaceae family. The genus Pinguicula consists of some 85 

currently accepted species (Cieslak et al., 2005) which are present on all continents 

except Australia and in Africa is limited to the extreme north-west of the continent 

(Heslop-Harrison, 2004). The greatest concentration of Pinguicula spp. is in the humid 

mountainous regions of Central America and South America, where they probably 

originated as it is the centre of diversity. In Europe, 12 species were described by 
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Casper (1962) and nine species occur on the Iberian Peninsula, of which five are 

endemics (Blanca et al., 1999). The representatives of the genus in the Iberian Peninsula 

belong to the three subgenera into which it has been subdivided: subgenus Pinguicula, 

Isoloba and Micranthus. The Lentibulariaceae family is placed in the Lamiales order 

which has been supported by cladistic analysis (APG, 1998). 

 

◦
▪

▪

•

P. lusitanica

P. vulgaris

D. rotundifolia

D. intermedia•

◦
▪

▪

•

P. lusitanica

P. vulgaris

D. rotundifolia

D. intermedia•

 
 

Figure 1.1.2 - Distribution of P. lusitanica, P. vulgaris (Blanca et al., 1999), D. rotundifolia and D. 

intermedia (Crowder et al., 1990) in continental Portugal. 

 

1.3.2.2. Biology, morphology and ecology 

 

The Pinguicula spp., commonly known as butterworts, are herbaceous, relatively short-

lived perennials (although occasionally behaving as annuals) and of rosette habit in 

active growth, while some overwinter as resting buds (hibernacula). As well as sexual 

reproduction by seed, many reproduce vegetatively by means of bulbils or buds which 

later take root. Unlike members of the other two genera in the family (Genlisea and 

Utricularia), all species of Pinguicula bear true roots, which are generally fibrous, 

tufted, and ephemeral. The leaves, which in most species lie appressed to the ground, 

are occasionally heterophyllous and the later formed ones may be larger and semi-erect 

(whereby the plant can tolerate more shaded conditions). The leaves are adapted for 

insectivory and bear stalked and sessile glands on the upper surfaces. The stalked glands 

carry permanent mucilaginous droplets giving the characteristic greasy feel and its 

generic name which is derived from the Latin pinguis - fatty or greasy to the touch. 
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However, unlike the Drosera spp., the leaves of most Pinguicula spp. are sessile and 

therefore the capture system is entirely passive (Blanca et al., 1999). As with almost all 

carnivorous plants, the flowers of the butterworts are held far above the rest of the plant 

by a long stalk, in order to reduce the probability of trapping potential pollinators.  

 

Pinguicula plants are restricted to nutrient-poor habitats, such as bogs and swamps, 

which remain sunny and moist at least during the growing season (Blanca et al., 1999). 

Despite the rarity of such sites in the Mediterranean ecosystems, many Pinguicula 

species are known from the Mediterranean basin (Casper, 1962). In these regions, where 

plant growth is greatly limited by water availability, suitable habitats for the Pinguicula 

species are scattered. Populations of the same species are often separated from one 

another by large distances and the isolation of the populations might have played an 

important role in the speciation processes. Since the current aridity of the Mediterranean 

basin has made small, isolated populations vulnerable to extinction, there is an urgent 

need to ensure the conservation of these species (Zamora et al., 1996). 

 

1.3.2.3. P. vulgaris 

 

Pinguicula vulgaris (L.) Linneaus, or the common butterwort, is a perennial plant 

consisting of a rosette of 4-7 leaves lying close to the ground, shallowly anchored by a 

tuft of fine, fibrous roots and overwinters as a hibernaculum (Figure 1.1.3 A). The 

leaves are bright, yellowish-green, and fleshy in texture with the margin somewhat 

involute and the upper surface covered with stalked glands. Each plant can produce 1-8 

scapes in succession in the growing season which increases in length as the fruit 

develops (Figure 1.1.3 B). P. vulgaris produces violet, solitary, bisexual and 

zygomorphic flowers (Figure 1.1.3 C). Normally the flower assumes a horizontal 

posture at anthesis, but is occasionally held more or less erect (Heslop-Harrison, 2005). 

Besides seed formation, P. vulgaris also reproduces vegetatively by means of buds 

formed in the axils of the last foliage leaves of the season (Blanca et al., 1999). Plants 

produce flowers, after being grown from seed or bulbils, usually in their third year, i.e. 

after their second season of vegetative growth. Flowering and subsequent seed set are 

usually then of annual occurrence, if conditions are favourable. Seedling establishment 

in the wild is precarious because the tiny seed size provides negligible food reserves, 

and suitable wet sites free from competition by other species are rare. Although small in 
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number, the axillary buds probably provide an effective method of reproduction because 

these can draw on relatively large starch reserves stored in the bud scales (Heslop-

Harrison, 2005). 

 

P. vulgaris has a northern circumpolar distribution. The species is widespread in the 

northern and upland parts of Europe, extending into Corsica, Italy and Macedonia and 

across Siberia into north Asia but it thins out eastwards to Ukraine. Its most northerly 

limit is on the east coast of Greenland and southwards into central Spain and north 

Portugal. In North America it extends from Alaska in the north, as far south in the USA 

as northern New York State, the southern limit being roughly equivalent to that in 

Europe (Heslop-Harrison, 2005). It occurs mainly in seepage channels in the less acid 

parts of bogs, mires, calcareous fens and flushes, wet heaths and on wet rocks and 

seems to be indifferent to soil type (Blanca et al., 1999). A high humidity requirement 

during the growing season limits the number of suitable habitats available for the 

species, and it can survive only some degree of desiccation as a hibernaculum. Leaf 

extracts of Pinguicula spp. were found by early herbalists to be effective in giving 

spasmodic relief in cases of whooping cough, asthma, tuberculosis and spasms of 

intestinal pain (Christen, 1961; Hegnauer, 1966; in Heslop-Harrison, 2005). 

Biochemical data indicates that P. vulgaris produces iridoid glucosides (Damtoft et al., 

1985; 1994; Marco et al., 1985; Section 3.1.2). 

 

1.3.2.4. P. lusitanica 

 

Pinguicula lusitanica (L.) is a small herbaceous plant consisting of a horizontal rosette 

of 5-12 leaves, lying close to the ground, shallowly anchored by a tuft of fine, fibrous 

roots (Figure 1.1.3 D). Unlike most species of Pinguicula in Europe, P. lusitanica 

belongs to the subgenus Isoloba and its morphological, vegetative and floral 

characteristics are closer to the species centred in the Gulf of Mexico, rather than to the 

other European ones (Casper, 1962). The leaves are oval or oblong-oval and sometimes 

the margins are inrolled exposing little of the lamina which is pale green with dark red 

veins and covered with stalked red-headed glands on the upper surface (Heslop-

Harrison, 2005). In general, P. lusitanica plants flower successively over a period of 

months from May until August, but it can vary significantly according to climate as 

variations, as they are able to flower as early as April in temperate climates, until as late



General Introduction 

 

A B C 

D E F 

G H I 

J K L 

Figure 1.1.3 - Illustrations of the carnivorous plant species under study. P. vulgaris: rosette detail (A), 

flowering plants (B), flower detail (C); P. lusitanica: rosette detail (D), individual plant and reproductive 

structure at early stage of development (E), flower detail (F); D. rotundifolia: mature plant (G), upper leaf 

detail (H), detail of inflorescence and flowers (I), captured insect (J); D. intermedia: flowering plant (K), 

leaf detail (L). 
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October in the Bristish Isles. A single, slender, erect and glandular scape is produced 

per leaf axil, reaching 1-6 in number per season, which lengthens as the fruit develops 

to a maximal length of 15 cm (Figure 1.1.3 E). The flowers are small, covered with 

glands and pale lilac in colour (Figure 1.1.3 F) (Blanca et al., 1999). Pinguicula 

lusitanica does not form a hibernaculum at the end of the growing season. When 

conditions remain relatively mild the plant overwinters as a rosette, or occasionally it 

behaves as an annual (Heslop-Harrison, 2005). 

 

P. lusitanica is a native of bogs, wet heaths and is restricted to the oceanic, relatively 

frost-free areas wherever the substratum is favourable and sufficient moisture is 

available. It is found along coastal western Europe from Scotland to Iberia and Morocco 

in north-western Africa (Heslop-Harrison, 2005). In continental Europe P. lusitanica is 

found in sites from 10 m to 1200 m in altitude (Blanca et al., 1999) and its maximum 

limits are approximately only half those of P. vulgaris, possibly due to its habit and 

distinctive method of perennation. As opposed to P. vulgaris, it does not reproduce 

vegetatively and reproduction is entirely dependent on seed production. A single plant 

does not persist for longer than 2–3 years, and flowering is usually annual, although in 

unfavourable conditions flowering may be delayed until the following year. Seed set is 

very good as large numbers of seeds are released from the capsules, however, 

establishment is limited because seedlings do not withstand competition (Heslop-

Harrison, 2005). In addition, P. lusitanica is particularly susceptible to trampling 

because of the brittle and very thin nature of its leaves and the weak anchorage afforded 

by its short and shallow fibrous root system. It is mainly restricted to areas which have 

never been cultivated, and recent drainage and other man-made operations have resulted 

in the destruction of many of its previously existing sites. There is no biochemical data 

available for P. lusitanica, possibly due to its scarce existence. 

 

1.3.3. The genus Drosera 

 

1.3.3.1. Taxonomy and geographical distribution  

 

The genus Drosera belongs to the Droseraceae family together with the genera 

Aldrovandra and Dionaea. It comprises nearly 150 species with a worldwide 

distribution, however the vast majority of species are found in the Southern 
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Hemisphere, especially in south-western Australia (Rivadavia et al., 2003). In Europe 

only three species exist, Drosera anglica, D. intermedia and D. rotundifolia (Crowder 

et al., 1990). Droseraceae is classified in the order Caryophyllales, in a clade with three 

other families containing carnivorous genera, the Nepenthaceae, Drosophyllaceae, 

Dioncophyllaceae, and one non-carnivorous family, the Ancistrocladaceae. 

 

1.3.3.2. Biology, morphology and ecology 

 

Plants of the Drosera genus bear leaves with pin-shaped tentacles covered at the tip 

with glistering drops of mucilage that resemble drops of morning dew and to which they 

owe their scientific name (from Greek droseros, dewy) and their common name of 

sundew (Crowder et al., 1990). Sundews are short-lived perennial (or rarely annual) 

herbaceous plants which in most cases form prostrate or upright rosettes. In Australia 

however, many have long aerial stems, a few are bushy and up to 1 m tall, while others 

have scrambling stems up to 1.5 m long. The mature leaves vary in shape according to 

species but all are characterized by the above mentioned glandular tentacles that cover 

the upper part of their laminae. In most parts of the world the plants are confined to wet 

or damp sites, but in Australia many live in seasonally dry sites and perennate as tubers 

(Crowder et al., 1990). Most species are rather strongly light demanding, but some 

species with particularly large leaves occur in eucalypt and rain forest in southern 

Australia and northern Queensland (Australia), respectively (Lavarack, 1979). Many 

species of sundews are self-fertile and flowers will often self-pollinate upon closing but 

they also show varying degrees of vegetative reproduction. The seeds of most species 

germinate in response to moisture and light, while seeds of the tuberous species require 

a hot, dry summer period followed by a cool, moist winter to germinate.  

 

Drosera species have long held the interest of botanists and horticulturists because of 

their unique biology and carnivorous habit. However, apart from their ornamental value, 

Drosera plants have medicinal significance and due to uncontrolled collection, natural 

populations are becoming increasingly scarce, especially in Europe where the Drosera 

species are included in the European Red List of Threatened Plants (Kawiak et al., 

2003). In addition, according to a report of the Portuguese Instituto da Conservação da 

Natureza (ICN, 2006) the natural habitats of the Drosera species occurring in Portugal 
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are severely threatened. Dewatering, drainage in order to create productive land, 

trampling and cattle grazing are indicated as main threats to these habitats. 

 

1.3.3.3. Drosera rotundifolia 

 

Drosera rotundifolia (L.) is one of the most broadly distributed Drosera species, 

occurring throughout much of the Holarctic (Wolf et al., 2006). D. rotundifolia is an 

herbaceous perennial plant consisting of a prostrate rosette of long, flat, narrow, 

petioled, pubescent leaves which are attached spirally to the base (Figure 1.1.3 G,H). 

The species’ root structure is fibrous, fine, and blackish with two or three slightly 

divided branches (Crowder et al., 1990). The inflorescence of D. rotundifolia is a single, 

one-sided raceme that terminates in a naked, scape 5 to 12 cm in height. The flowers are 

white, 10 to 12 mm in diameter, radially symmetrical and 15 to 25 flowers occur on 

each flowering scape (Figure 1.1.3 I). The flowers are hermaphroditic and blossom from 

June to August (Wolf et al., 2006). Drosera rotundifolia can reproduce both sexually 

and asexually. Asexual reproduction occurs when leaf buds form plantlets or when 

axillary buds found below the rosette can form a secondary rosette, with two genetically 

identical individuals resulting from the decay of the joining stem. Sexual reproduction is 

achieved almost exclusively through self-pollination of the hermaphroditic flowers 

(Crowder et al., 1990). Cross-pollination and genetic recombination are rare, so nearly 

all reproduction results in offspring that are either genetically identical to the parent (via 

vegetative reproduction) or that contain an equal, or slightly reduced, genetic variability 

compared to the parent generation (via sexual self-pollination) (Wolf et al., 2006). 

 

Throughout the world D. rotundifolia occurs on peat, particularly on living Sphagnum 

moss, but it can occur on floating logs or damp acidic sand near ponds or streams 

(Crowder et al., 1990). Herbalists prescribe D. rotundifolia as a diuretic, a laxative, and 

a treatment for a variety of kidney, stomach, and liver problems (Wolf et al., 2006). 

Biochemical studies have shown that D. rotundifolia produces naphthoquinones 

(plumbagin and 7-methyljuglone) and flavonoids (Buzianowski, 1997; Paper et al., 

2005). The beneficial effects of Drosera Herba, a commercial formulation prepared 

from D. rotundifolia plants to treat convulsive or whooping cough, have been attributed 

to its content in naphthoquinones, but this issue is controversial since studies have 

shown that the drug contains only trace amounts of naphthoquinones (Krenn et al., 
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1998) and that the in vitro anti-inflammatory and spasmolytic effects of an ethanol 

extract of Drosera madagascariensis was correlated to the flavonoid content (Melzig et 

al., 2001). 

 

1.3.3.4. Drosera intermedia 

 

Drosera intermedia (H.) Hayne, or spoonleaf sundew, is a perennial herb which forms a 

semi-erect stemless rosette of spatulate leaves (Figure 2.1.3 K,L). It is slightly larger 

than D. rotundifolia and owes its name because it is intermediate in size between 

D. rotundifolia and D. anglica (Crowder et al., 1990). D. intermedia has a much more 

restricted distribution than D. rotundifolia. It is widespread in eastern north America 

and has a scattered distribution in the north and north-west America and western Europe 

(Wolf et al., 2006). Just as D. rotundifolia, D. intermedia is an obligate wetland species 

that requires continuously moist or saturated soils and is found in sites with shallow 

water depths (Crowder et al., 1990). D. intermedia is a lowland plant and is found over 

a narrow range of macroclimates, it is primarily a plant of sites that are flooded in 

winter, and subjected to drying out in summer, but it is also found in persistent pools. 

An adult plant can withstand periods of very low water levels but can also survive 

prolonged submergence. D. intermedia forms adventitious roots with few short hairs, 

similar to those of D. rotundifolia. Plants in temperate regions hibernate as small winter 

buds, from which new leafs expand and develop in the growing season. A mature ramet 

consists of a rosette of 10-30 leaves and blooms from June to August forming one to 

three flower stalks bearing 3-8 flowers each (de Ridder and Dhondt, 1992a). 

D. intermedia produces self compatible flowers and is also able to reproduce 

vegetatively by production of side rosettes during the growing season, regeneration of 

plantlets on senescing tissue and formation of axillary buds in autumn (de Ridder and 

Dhondt, 1992b). D. intermedia is known to produce plumbagin (Budzianowski, 1996) 

but the biochemical description of this species in literature is poor (Section 3.1.2). 

D. intermedia has been used as an infusion or a tincture for asthma, pulmonary catarrh 

and whooping cough (Crowder et al., 1990). 
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1.4. Objectives 

 

Carnivorous plants are species with very particular habits which are becoming 

increasingly scarce and whose potentialities are largely unexplored. The objectives of 

this study are to increase the knowledge on these plants hoping simultaneously to 

contribute to their conservation. This way, in this study it is proposed to: 

i) develop micropropagation protocols for P. vulgaris, P. lusitanica, D. rotundifolia and 

D. intermedia; 

ii) identify the major secondary metabolites produced by these species by analysing 

extracts prepared from them; 

iii) evaluate the biological properties of the prepared  extracts; 

iv) develop a method for the extraction of the secondary metabolite plumbagin from 

micropropagated D. intermedia. 
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Micropropagation of P. vulgaris, P. lusitanica, D. rotundifolia and D. intermedia 

 

2.1. INTRODUCTION 

 
2.1.1. The importance of micropropagation for the conservation of carnivorous 

plants 

 

Overharvesting of carnivorous plants together with a loss of their natural habitats has 

led to the protection of many species. Although species conservation is achieved most 

effectively through the management of wild populations and natural habitats (in situ 

conservation), ex situ techniques can be used to complement in situ methods and may in 

some instances be the only option (Sarasan et al., 2006). Micropropagation can 

contribute to the conservation of a species following a multifaceted approach, offering 

the possibility of plant regeneration for reintroduction in the wild, in vitro storage of 

germplasm, and biomass production for biological assays and chemical screening 

purposes, avoiding the collection of rare field specimens. As a result there has been a 

greater research into the micropropagation of carnivorous plants as a conservation 

strategy and the use of in vitro grown plants as alternative sources of biomass (Jang et 

al., 2003; Kim and Jang, 2004; Gonçalves and Romano, 2005). 

 

In vitro culture allows for the provision of plant material for DNA analyses and 

autecological studies, and the development of successful storage methods enables the 

establishment of extensive basal collections, with representative genetic diversity 

(Sarasan et al., 2006). Material that has been propagated in vitro can be viewed as a 

parallel collection to a seed bank, and has been termed an in vitro active gene bank 

(Fay, 1992). In the interest of reducing labour and minimizing the risk of genetic drift 

and somaclonal variation, techniques have been developed for the long-term storage of 

this material. This storage can be of two types, reduced growth and cryopreservation. 

Slow growth techniques have been used successfully with cultures of rare plants, 

normally by reducing the incubation temperature (Fay, 1992). 

 

Apart from the importance of micropropagation techniques to the conservation of 

threatened species, efficient propagation protocols allow for the continuous supply of 

large quantities of material with food value (Cassells et al. 1999; Choi et al., 2002). In 

addition, in vitro propagation techniques hold tremendous potential for the production 

of high-quality plant-based medicines, considering that these produce plants that are 
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genetically identical to the donor plants, allowing for the selection of high producing 

genotypes and clonal propagation for optimal product recovery (Bourgaud et al., 2001). 

For further details on in vitro culture techniques for secondary metabolite production 

see Section 5.1.1. 

 

2.1.2. Advantages of micropropagation 

 

Micropropagation can be considered in a broader sense a vegetative propagation 

technique. These techniques emerged from the necessity to produce plants genetically 

equal to the mother plant in order to retain its more favourable characteristics, avoiding 

the genetic recombination of gametes and therefore the phenotypic diversity of the 

plant. Vegetative propagation techniques are based on the totipotency theory, which 

states the capacity of a single cell to regenerate the genotype of the original organism 

and originate a new plant (Debergh and Zimmerman, 1991). However, not every plant 

species responds positively to the conventional methods due to the impossibility of 

controlling several environmental conditions, which led to the development of in vitro 

techniques. Micropropagation can be defined as the in vitro propagation of plants from 

cells or organs in a controlled environment and in a defined medium, through the 

employ of aseptic techniques and the use of proper containers (Debergh and 

Zimmerman, 1991). Micropropagation has many advantages over conventional methods 

of vegetative propagation and the most significant merits offered by micropropagation 

are: the possibility of producing large number of plants starting from a single explant in 

a relatively short time and space; propagation throughout the year; production of 

pathogen-free material, considering that tissue cultured plants are generally free from 

fungal and bacterial diseases, and virus eradication and maintenance of plants in a virus-

free-state are also readily achieved in tissue culture (Debnath et al., 2006). 

 

2.1.3. Development of micropropagation protocols 

 

Micropropagation techniques can be grouped into three types, namely, organogenesis, 

somatic embriogenesis, and meristem culture. Somatic embryogenesis involves the 

formation of bipolar structures while in organogenesis formation of shoots or roots are 

induced. Organogenesis and somatic embryogenesis can occur indirectly or directly, 

depending on whether an intermediary callus induction stage is involved or not, 
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respectively. The induction of callus growth and subsequent differentiation, 

organogenesis and somatic embryogenesis are accomplished by the differential 

application of plant growth regulators (PGRs) and the control of conditions in the 

culture medium. With the stimulus of endogenous growth substances or by addition of 

exogenous growth regulators to the nutrient medium, cell division, and cell growth and 

tissue differentiation are induced (Debnath et al., 2006). However, when working with 

plants of conservation importance, it is generally considered wise to avoid methods 

likely to induce somaclonal variation, like callus cultures, and to try and maintain 

genetic integrity in tissue culture (Fay, 1992). Meristem cultures are widely used as 

these express best the culture regeneration capacity, considering that the meristems have 

non-differentiated cells which are more reactive. 

 

An in vitro propagation protocol can be divided into five main stages: collection and 

preparative stage; culture initiation; culture maintenance and multiplication; elongation 

and root induction or development; and acclimatization (Debergh and Zimmerman, 

1991). Micropropagation begins with the selection and preparation of plant material to 

be propagated. When the cultures are to be initiated from plant explants, it is important 

to raise the mother plant or its parts under more hygienic conditions, by the use of 

sterilization agents and growing it in greenhouse, to fight possible contaminations 

before initiation of culture. During this phase it is also important to manipulate certain 

parameters to make an explant more suitable or more reliable as starting material. 

Temperature, light, photoperiod and growth regulators are controlled to obtain explants 

more reactive to in vitro growth (Debergh and Zimmerman, 1991). 

 

In the next stage the objectives are to establish cultures in aseptic conditions and to 

produce a considerable amount of explants with high proliferation capacity. 

Contamination, of both exogenous and endogenous origin, is a major obstacle for in 

vitro culture of plants. It is particularly important when dealing with threatened taxa for 

which the source material is often limited and usually located in the wild. Plant material 

is routinely initiated into axenic culture via a variety of sterilization procedures. These 

vary considerably from single-step to more complex protocols and utilize a huge variety 

of chemicals depending on the nature of tissue used. Contamination from internal 

sources can be potentially serious in culture as many plants harbour endophytic bacteria 

or fungi (Sarasan et al., 2006). The developmental stage, physiological age and size of 
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the initial explant are very important in this stage and can determine the success of the 

in vitro cultures (Debergh and Zimmerman, 1991).  

 

As an alternative to the use of explants as starting material, micropropagation can be 

initiated from seeds. Seeds are the ideal starting material for in vitro propagation when 

species conservation is a concern because a wider genetic base can be maintained (Fay, 

1992). In addition, more aggressive sterilization procedures can be used when 

disinfecting seeds, increasing the chances of initiating aseptic cultures. The activation of 

the metabolic machinery of the seed embryo leading to a new seedling plant is known as 

germination. For germination to be initiated the seeds must be viable and subjected to 

the appropriate environmental conditions, as seeds are often under a dormancy state 

which prevents immediate germination and regulates the time, conditions and place in 

which germination will occur in order to enhance seedling survival in natural conditions 

(Hartmann et al., 1990). The use of specific stratification treatments, like temperature or 

chemical treatment, can be used to break the dormancy state and to consequently induce 

germination.  

 

The induction and multiplication of shoots can be difficult for some species, particularly 

woody plants. Many plant species have very specific in vitro requirements for 

multiplication and, therefore, substantial variation in culture medium formulations 

exists. The medium should include a support material consisting of a semisolid or liquid 

medium; a mineral salt mixture with essential major and minor elements; an energy 

source, normally sucrose; and vitamin supplements (Hartmann et al., 1990). In general, 

mineral salt requirement varies from one plant group to the other. Similarly, specific 

growth hormones or supplements greatly enhance regeneration and growth in many 

cases. The most often used growth regulators in this phase are cytokinins, as they 

promote the formation and development of axillary shoots. Metabolism of phenolic 

compounds might be stimulated at this time in the explants due to stress of being 

isolated from the mother plant and to adaptation to the new conditions. As a result these 

products provoke blackening of the explants and medium, leading to a growth inhibition 

of the explants and consequently their death (Debergh and Zimmerman, 1991). After 

several weeks in culture, depending upon the plant, the mass culture is divided and 

subcultured onto fresh medium and this process is repeated until a uniform, well-

growing culture is produced (Hartmann et al., 1990). 
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Once cultures are successfully initiated, the following stage is characterized by the 

fragmentation and distribution of the plant material into new media to exponentially 

increase the number of shoots with high proliferation capacity. The culture medium is 

essentially the same as the one used in the initiation stage, but often the growth 

regulators supplement is increased (Hartmann et al., 1990). The concentration and ratio 

of cytokinin to auxin are especially important during this stage; their adjustment will 

promote the development of axillary shoots, reduce terminal shoot elongation and 

diminish rooting potential (Hartmann et al., 1990; Debergh and Zimmerman, 1991). 

Multiplication may be repeated several times to increase the supply of material to a 

predetermined level for subsequent rooting and transplanting (Hartmann et al., 1990).  

 

The third stage consists in the elongation of the produced shoots and their rooting. 

Frequently elongation can be obtained by transfer of isolated shoots from the 

multiplication medium to an appropriate elongation medium, devoid of cytokinins 

(Debergh and Zimmerman, 1991). Rooting can be particularly problematic for in vitro-

reared woody and recalcitrant taxa, requiring novel approaches and methods (Sarasan et 

al., 2006). Rooting can be attained in vitro, whether combined with elongation or not, or 

ex vitro. Usually rooting involves a medium in which the auxin level is increased and 

the cytokinin is decreased or suppressed (Hartmann et al., 1990). There is an increasing 

interest for rooting ex vitro due to its many advantages, essentially its simplicity and 

lower costs (Debergh and Zimmerman, 1991). This procedure consists in the direct 

rooting of the plantlet in the acclimatization substrate, after dipping the shoot’s base 

into a rich auxin solution.  

 

Plantlets growing in vitro are largely heterotrophic since they obtain their energy from 

sucrose present in the medium and therefore their photosynthetic activity is very low. 

These plantlets are also exposed to a very high relative humidity. All together, these 

aspects make the in vitro plantlets very sensitive to ex vitro transplantation. Therefore, 

in the final stage of micropropagation, the plantlets should be kept in very high 

humidity conditions and gradually exposed to a natural environment (Hartmann et al., 

1990). Addition of a carbon source is a primary requirement in conventional 

micropropagation systems for most plants. However, for some species supplementation 

with a carbon source is unnecessary and these issues can be circumvented (Sarasan et 

al., 2006). In comparison to plantlets produced by conventional systems, those produced 
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by photoautotrophic systems with a sugar-free medium showed, in many cases, better 

growth, higher quality, lower contamination rate in vitro, and higher percentage survival 

ex vitro (Zobayed et al., 2004). Successful acclimatization of plants is fundamental to 

the micropropagation of threatened species for collection and conservation. Once rooted 

and acclimatized, plants can be used for re-establishment programs or for botanic 

garden living collections (Sarasan et al., 2006). Several species grown in vitro have 

been successfully reintroduced into the wild (Decruse et al., 2003; Martin, 2003; 

Garcia-Rubio and Malda-Barrera, 2010). 

 

2.1.4. Objectives 

 

This thesis deals with the chemical investigation and evaluation of biological activities 

of four carnivorous plant species occurring in Portugal. The development of efficient 

micropropagation protocols is imperative for this work because the natural populations 

of the species under study cannot withstand collection of field specimens in sufficient 

amounts to allow the evaluation of their biological and chemical properties. The specific 

objectives of this chapter are to: 

i) Initiate in vitro cultures of P. vulgaris, P. lusitanica, D. rotundifolia and D. 

intermedia from seeds; 

ii) Establish micropropagation protocols for these species to provide plant biomass for 

the subsequent studies; 

iii) Contribute to the conservation of these species by maintaining an active germplasm 

collection in vitro. 
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2.2. EXPERIMENTAL 

 
2.2.1. Seed collection, seed germination and establishment of cultures 

 

The species under study in this thesis are carnivorous plants which grow naturally on 

Portuguese territory. Seeds of P. lusitanica (Figure 2.2.1 A) were collected from plants 

growing in a natural population close to Algoz (Algarve region) by Dr. Jorge Jesus and 

P. vulgaris seeds (Figure 2.2.1 B) were gently obtained from Dr. Henrique Pereira of 

the Institute for Nature Conservation and Biodiversity (ICNB). Seeds were collected by 

Mr. António Rebelo from a population near Cagarouço in Peneda Gerês National Park 

(Trás-os-Montes e Alto Douro region). D. intermedia seeds were collected from a 

population near the Sado estuary (Estremadura region) and D. rotundifolia seeds from a 

population found at a peat bog near the highest point of the Serra da Estrela mountain 

range (Beira Alta region). Information on the location of these two populations was 

kindly provided by Dr. Miguel Porto. 

 

D A B C 

 
Figure 2.2.1 - Seeds of P. lusitanica (A), P. vulgaris (B), D. intermedia (C), and D. rotundifolia (D). 

 

Specimens of P. lusitanica and D. intermedia were authenticated by Dr. Ana Isabel 

Correia of the Botanical Garden of the University of Lisbon and voucher specimens 

were deposited under the number LISU215272 and LISU231581, respectively. The 

obtained seeds were surface sterilized with commercial bleach at 15% (v/v) (5% of 

sodium hypochlorite) with a few drops of Tween-20 for 15 min, and washed 3 times in 

sterile water. A subset of D. intermedia seeds was subsequently stored at 5ºC during one 

week prior to inoculation to determine the effect of cold stratification on the 

germination rate. For each treatment 3 replicates of 10 seeds were tested. Seeds were 

aseptically transferred into test tubes containing 10 ml ¼MS medium (Murashige and 

Skoog, 1962) without growth regulators. Sucrose (2%, w/v) was used as carbon source 
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and media were solidified with 1% (w/v) agar. Media pH was adjusted to 5.75 before 

autoclaving at 121 ºC and 1.1 Kg/cm for 20 min. All cultures were incubated under a 

16 h photoperiod provided by cool-white fluorescent lights at a photon flux density of 

60 mol m-2 s-1 at a temperature of 25  2 ºC. 

 

2.2.2. Proliferation and rooting 

 
Two months after germination roots were discarded and the entire shoot was sub-

cultured onto fresh ¼MS medium (P. lusitanica and P. vulgaris) or full strength MS 

medium (D. intermedia and D. rotundifolia) without PGRs in order to obtain sufficient 

number of shoots for the subsequent assays. After 8 weeks, shoots with identical size 

were separated and used in the different assays. In the case of P. lusitanica, the effect of 

three concentrations of MS macronutrients (¼MS, ½MS and total MS), without PGR or 

supplemented with 0.2 or 0.5 mg/L of cytokinin (BA - 6-benzyladenine, Kin - kinetin 

and Zea - zeatin), on shoot proliferation was evaluated. Afterwards, the effect of 

combining Kin (0.5 mg/L) and indole-3-butyric acid (IBA) (0.25 or 0.5 mg/L) in ½MS 

or ¼MS medium was also evaluated. To induce rooting, shoots were isolated 

individually and transferred to MS, ½MS or ¼MS basal medium containing 0.2 or 0.5 

mg/L indole-3-acetic acid (IAA), IBA or 2-naphthaleneacetic acid (NAA). In the 

proliferation and rooting assays, 10 shoots were inoculated per assay and repeated 5 

times. Since after 8 weeks of culture simultaneous proliferation and rooting was 

observed in almost all tested media both proliferation and rooting results were recorded. 

The proliferation rate was assessed as the total number of shoots produced per culture 

and rooting expressed in terms of rooting frequency, root number and the longest root 

length per plantlet. 

 

The same procedure was employed for the remaining species with variations in the 

tested culture media. The effect of two concentrations of MS macronutrients (¼MS and 

total MS) and addition of cytokinin (BA and Zea at 0.1 mg/L) supplemented to ¼MS 

medium on the proliferation and rooting of P. vulgaris was evaluated. In addition, the 

effect of combining the auxin IBA (0.01 mg/L) and the cytokinins BA and Zea (0.1 

mg/L) in ¼MS basal medium was also evaluated. D. intermedia shoots were cultured in 

three concentrations of MS macronutrients (total MS, ½MS and ¼MS) without 

cytokinins or supplemented with 0.1 mg/L of Kin and D. rotundifolia shoots in PGR-
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free MS and ¼MS medium. For P. vulgaris, D. intermedia and D. rotundifolia cultures, 

4 repetitions with 10 explants were performed for each culture medium. Additional 

parameters were monitored for the three last cited species: the proliferation frequency, 

which corresponds to the percentage of explants that were able to regenerate new 

shoots; and the rooting percentage of the new produced shoots. No root formation was 

observed in the D. rotundifolia cultures and therefore the rooting response was not 

recorded. 

 

2.2.3. Plantlet acclimatization 

 

Plantlets with well developed roots were selected, removed from the culture flasks and 

the roots cleared of agar to prevent pathogenic contamination. The plantlets were placed 

in plastic pots containing a mixture of peat and vermiculite (3:1, v/v) and acclimatised 

inside transparent polyethylene boxes, and maintained in a growth room for 3 weeks 

under controlled conditions (16 h photoperiod, 60 mol m-2 s-1 and 25 ± 2ºC), and then 

gradually exposed to reduced relative humidity by progressively opening the plastic 

covers over a period of 3 weeks. 

 

2.2.4. Statistical analysis 

 

The data were subjected to analysis of variance (ANOVA) to assess treatment 

differences and interactions using the SPSS statistical package for Windows (release 

15.0, SPSS INC.). Significance between means was tested by Duncan’s New Multiple 

Range Test (P = 0.05). To analyze the data on rooting percentages, arcsin square root 

transformation was used. 
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2.3. RESULTS AND DISCUSSION 

 
2.3.1. P. lusitanica 

 

Seeds are the preferred starting material for establishing cultures of rare species as this 

ensures that a wide genetic base is maintained (Benson et al., 2000). Moreover, the use 

of seeds for the establishment of primary cultures can prevent most of the contamination 

problems that are often associated with explant establishment. Seeds of P. lusitanica 

were successfully sterilized and 40% germinated in vitro producing normal seedlings. 

Explants obtained from seedlings were cultured in several media with different basal 

media, and PGR type and concentrations, in order to determine the best conditions to 

propagate P. lusitanica in vitro. Despite the low germination rate, the seedlings had a 

great proliferation capacity even in PGR-free medium producing enough number of 

explants for the subsequent experiments (Figure 2.3.2 A, B). 

 

Interestingly, simultaneous proliferation and rooting was observed for the P. lusitanica 

shoots in media without PGR, media supplemented with cytokinins, auxins, or both. 

Thus, all the media tested were evaluated simultaneously in terms of proliferation and 

rooting response. The results concerning the proliferation rate and rooting frequency are 

shown in Figure 2.3.1 and the remaining parameters regarding rooting response, namely 

root number and root length, are shown in Table 2.3.1. Since the P. lusitanica shoots 

grow like a small horizontal rosette, it was impossible to evaluate shoot length, and 

therefore shoot proliferation was only evaluated by the proliferation rate, expressed as 

the mean number of shoots produced by each explant at the end of the subculture 

period. Figure 2.3.1 shows that the P. lusitanica cultures had a great proliferation 

capacity even in medium without PGR or supplemented with auxins only. The mean 

number of shoots was significantly affected by the MS macronutrients concentration 

(P < 0.001), the type (P < 0.001) and concentration (P < 0.001) of PGR and by the 

interaction between these factors (P < 0.001). Regardless of the type of PGR or its 

concentration, ½MS medium was more effective in inducing proliferation (P < 0.001). 

These results are in agreement with those obtained for other carnivorous plants in which 

shoot proliferation was promoted in media with low concentration of macronutrients 

(Jang et al. 2003; Kim and Jang 2004; Gonçalves et al. 2005) and seems to be a 

characteristic to this group. 
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Figure 2.3.1 - Effect of MS medium concentration, cytokinin and auxin type and concentration on 

proliferation rate and rooting frequency of P. lusitanica shoots. Control: media without growth regulators. 

Values represent means ± SE of 5 replications with 10 shoots. In each graph columns with different 

letters are significantly different at P < 0.05 according to Duncan’s multiple range test. 

 

This appears to be related with the requisites for growth in their natural habitats, 

considering that carnivorous plants are adapted to subsist in nutrient poor soils. The 

highest proliferation rates were observed in ½MS medium supplemented with the 

cytokinins BA, Kin or Zea at 0.5 mg/L, for which values of 28.88  1.54, 28.86  1.84 
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and 26.28  1.44 were scored, respectively (Figure 2.3.1, 2.3.2 C). However, high 

proliferation rates were also obtained in the absence of PGR and in auxin containing 

media, particularly IBA. The hormonal content of explants is a very important factor 

directing in vitro responses (Centeno et al., 1996; Baroja-Fernández et al., 2002). 

Therefore, the obtained results could be due to high levels of endogenous cytokinins in 

P. lusitanica shoots, as previously reported in other species (Centeno et al., 1996; Malá 

et al., 2005).  It is unclear however, why shoots grown in full strength MS medium 

supplemented with cytokinins at 0.2 mg/L showed considerably lower proliferation 

rates than shoots supplemented with cytokinins at 0.5 mg/L, but also than shoots grown 

in PGR-free medium. For instance, shoots grown in control medium showed a 

proliferation rate of 9.03 ± 0.70, while the proliferation rates of shoots grown in media 

supplemented with 0.2 and 0.5 mg/L of Kin corresponded to 3.09 ± 0.25 and 14.48 ± 

0.74, respectively. It is also interesting to see that, as opposed to the shoots grown in 

full strength MS and ½MS media, the proliferation rate of the shoots grown in ¼MS 

medium showed no response to supplementation with cytokinins. 

 

A B C

D E F

A B C

D E F

 
Figure 2.3.2 - Micropropagation of P. lusitanica: seedling explants used in the assays (A); shoots at the 

beginning of proliferation phase (B); shoots during proliferation phase (C); rooted shoot after 8 weeks of 

culture (D); plants during acclimatization after 2 months in ex vitro conditions (E); large scale biomass 

production for biological assays and chemical analysis (F). Bars = 1 cm. 
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The rooting of P. lusitanica shoots was significantly influenced by MS medium strength 

(P < 0.001) and the highest rooting response was observed in ¼MS medium (Figure 

2.3.2 D). Rooting response was also significantly affected by PGR type (P < 0.001) and 

concentration (P < 0.05). There is substantial evidence that auxins play a crucial role on 

adventitious root formation (de Klerk et al., 1999), although responses can vary 

depending on the auxin concentration, form of auxin application and the sensitivity of 

tissues to absorb or utilise the exogenous auxin (Kooi et al., 1999; Chhun et al., 2004). 

Nevertheless, in this study higher rooting frequencies (58-95%) were attained in PGR-

free media, probably due to available endogenous auxins. Unexpectedly, high rooting 

frequencies were also achieved in cytokinin containing medium, especially at the higher 

tested concentration (0.5 mg/L) (Figure 2.3.1). For instance, rooting percentages of 

100.00 ± 0.00, 92.00 ± 3.74 and 90.00 ± 7.75 were obtained for shoots growing in ½MS 

medium supplemented with 0.5 mg/L of BA, Kin and Zea, respectively. Again, it is 

unclear why shoots growing in the same basal medium supplemented with the lower 

concentration of cytokinin (0.2 mg/L), showed considerably lower rooting percentages 

than shoots growing in medium supplemented with cytokinins at 0.5 mg/L or in control 

medium. It seems that in some cases, at lower concentrations, the cytokinins 

compromise the induction of shoot multiplication and rooting of P. lusitanica. 

 

The results presented in Figure 2.3.1 show that overall, the rooting response of 

P. lusitanica shoots is higher in the presence of cytokinins. This result is very unusual 

and needs to be further studied and explained. Auxins are intimately involved in the 

process of adventitious root formation and the interdependent physiological stages of 

the rooting process are associated with changes in endogenous auxin concentrations 

(Gaspar et al., 1997). However, studies by Soh et al. (1998) and de Klerk et al. (2001) 

demonstrated that cytokinins, particularly at low concentrations, may be essential at 

early stages of the root induction process. Noteworthy, better rooting was observed in 

cytokinin supplemented medium than in NAA containing medium. In fact, the use of 

0.5 mg/L NAA totally suppressed rooting response (Figure 2.3.1). Similarly, NAA 

strongly suppressed root formation in shoots of the carnivorous plant Dionaea 

muscipula (Jang et al., 2003). The auxin seems to have a general negative affect on the 

viability of the shoots of P. lusitanica, considering that the highest concentration NAA 

also suppressed shoot multiplication completely (Figure 2.3.1). 
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Table 2.3.1. Effect of basal medium and PGR type and concentration on mean root number and length 

(mm) of P. lusitanica micropropagated shoots.  

Basal medium PGR 
Concentration 

(mg/L) 
Mean number 

of roots 
Longest root 
length (mm) 

Control - 2.76  0.30 a 3.90  0.34 a 
0.2 - - 

BA 
0.5 - - 

0.2 - - 
Kin 

0.5 2.67  0.65 a 4.11  0.39 a 
0.2 - - 

Zea 
0.5 2.25  0.37 a 4.63  0.33 a 
0.2 1.93  0.22 a 3.00  0.31 a 

NAA 
0.5 - - 

0.2 2.54  0.35 a 3.69  0.59 a 
IBA 

0.5 3.09  0.56 a 4.45  0.58 a 
0.2 2.42  0.26 a 3.79  0.31 a 

MS 

IAA 
0.5 2.59  0.25 a 3.64  0.27 a 

Control - 2.49  0.22 c 3.71  0.25 cd 
0.2 1.25  0.25 c 7.25  1.80 b 

BA 
0.5 14.08  1.39 a 4.40  0.12 c 
0.2 1.50  0.22 c 6.17  0.70 b 

Kin 
0.5 9.41  1.01 b 4.20  0.14 c 
0.2 1.50  0.13 c 7.50  0.39 a 

Zea 
0.5 5.16  0.57 bc 4.27  0.18 c 
0.2 2.81  0.16 c 2.71  0.26 d 

NAA 
0.5 - - 

0.2 2.83  0.17 c 4.20  0.24 c 
IBA 

0.5 4.59  0.81 c 3.37  0.30 cd 
0.2 3.80  0.49 c 3.65  0.22 cd 

½MS 

IAA 
0.5 4.24  0.49 c 4.24  0.23 c 

Control - 3.26  0.25 de 3.97  0.20 cde 
0.2 5.16  0.74 cd 7.24  0.58 a 

BA 
0.5 5.17  0.50 cd 3.22  0.12 ef 
0.2 4.35  0.48 de 6.19  0.50 b 

Kin 
0.5 9.40  0.78 a 3.76  0.12 def 
0.2 3.52  0.69 de 5.83  0.61 b 

Zea 
0.5 5.11  0.49 cd 4.30  0.20 cd 
0.2 3.14  0.22 e 3.06  0.31 f 

NAA 
0.5 - - 

0.2 3.55  0.30 de 4.84  0.20 c 
IBA 

0.5 3.45  0.42 de 3.45  0.42 def 
0.2 6.52  0.60 bc 4.64  0.17 c 

¼MS 

IAA 
0.5 7.77  0.83 ab 4.70  0.18 c 

Basal medium (A) *** ns 
PGR type (B) *** *** 

PGR concentration (C) *** *** 

A  B  C *** ns 

Values represent means  SE of 5 replications with 10 shoots. *, **, ***: significant at P < 0.05, at P < 

0.01 and at P < 0.001, respectively (Three-way ANOVA). For each variable, values followed by the same 

letter are not significantly different at P < 0.05 according to Duncan’s multiple range test. 
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The mean number of roots was strongly affected by the basal medium (P < 0.001), the 

type and concentration of PGR (P < 0.001) and the interactions between the three 

factors (P < 0.001) (Table 2.3.1). Root length was only affected by the type and 

concentration of PGR (P < 0.001) (Table 2.3.1). The highest mean number of roots was 

obtained in ½MS medium containing 0.5 mg/L BA (14.08 ± 1.39). However, at this 

cytokinin concentration root elongation was suppressed in comparison to the lower 

concentration (0.2 mg/L) (Table 3.2.1). The longest roots were observed in ½MS 

containing 0.2 mg/L Zea (7.50  0.39 mm) and ¼MS containing the same concentration 

of BA (7.24  0.58 mm). 

 

To date, the only micropropagation protocol available for a plant belonging to the 

Pinguicula genus is the one developed by Adams et al. (1979) for P. moranensis H.B.K. 

The author used leaf explants as starting material and found that the highest plantlet 

number and growth rate were obtained using 1/5Linsmaier-Skoog medium supplemented 

with a combination of BA at 0.02 mg/L and NAA at 0.01-0.10 mg/L. Although several 

authors have reported a synergistic effect of cytokinins and auxins during the 

proliferation of various species (Beena et al., 2003; Faisal et al., 2007), in this study this 

positive effect was not observed when Kin and IBA were used. In fact, this combination 

was less effective than the application of each PGR separately (Table 2.3.2). 

 

Table 2.3.2. Effect of Kin (0.5 mg/L) in combination with IBA (0.25 or 0.5 mg/L) on the mean number 

of shoots, rooting frequency and mean root number and length (mm) of P. lusitanica shoots. 

Basal 
medium 

IBA 
(mg/L) 

Mean number 
of shoots 

Rooting (%) 
Mean number 

of roots 
Longest root 
length (mm) 

½MS 0.25 4.86  0.40 b 100.00  0.00 a 2.42  0.36 b 3.29  0.38 ab 

 0.5 4.16  0.36 b 70.00  0.00 c 2.71  0.40 b 4.07  0.34 a 

¼MS 0.25 7.37  0.53 a 46.67  6.67 d 7.31  0.81 a 3.29  0.16 ab 

 0.5 5.38  0.54 b 96.67  3.33 b 7.79  1.11 a 2.79  0.24 b 

Values represent means  SE of 5 replications with 10 shoots. For each variable, values followed by the 

same letter are not significantly different at P < 0.05 according to Duncan’s multiple range test. 

 

The produced plantlets did not show any apparent morphological variation and great 

number of them flowered spontaneously in vitro (Figure 2.3.2 C). Sixty per cent of 

regenerated plantlets were successfully acclimatized to ex vitro conditions and flowers 

produced capsules and seeds normally (Figure 2.3.2 E). 
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Overall the best conditions for the micropropagation of P. lusitanica were obtained with 

½MS cytokinin supplemented medium at 0.5 mg/L as these media afforded the highest 

proliferation rates (> 26 explants), rooting percentages (> 90 %) and root formation (> 5 

roots per shoot). However, the higher cytokinin concentration compromised root 

elongation. Using ½MS medium supplemented with BA at 0.5 mg/L an average of 28.9 

rooted plantlets can be obtained from one single shoot in 8 weeks of culture. The 

protocol established in this study can be used to produce plant material to evaluate the 

biological properties of the plants’ secondary metabolites and for chemical screening 

purposes, avoiding the collection of field specimens and reducing the pressure of wild 

stock (Figure 2.3.2 F). In addition, the protocol can be used to generate plantlets with 

the objective of replenishing the declining populations in the wild. 

 

2.3.2. P. vulgaris 

 

Seeds of P. vulgaris were all free from contaminations after the applied sterilization 

procedure and 24.24% of the inoculated seeds germinated (Figure 2.3.4 A, B). The low 

germination rates might be explained by the low viability of the seeds or by the need of 

a specific treatment to break dormancy (Heslop-Harrison, 2004). Due to the reduced 

number of available seeds it was not possible to test the effect of stratification 

treatments on germination. The development of a micropropagation protocol for 

P. vulgaris proved to be a more difficult task in comparison to P. lusitanica. During the 

proliferation phase the shoots were very susceptible to the individualization step due to 

their delicate nature. In most cases a large number of explants dried out or lost viability 

during the course of the 8 weeks culture period. Due to the limiting amount of available 

plant material, the cultures were subjected to a reduced number of assays. Initially, the 

influence of two basal medium concentrations was tested: full strength and ¼MS 

medium. In addition to the number of produced shoots, the multiplication percentage of 

the explants was also monitored, which represents the ability of each explant to 

regenerate new shoots and is therefore also a measure of viability.  

 

The results show that most of the parameters were negatively influenced by the higher 

concentration of macronutrients. More specifically, the multiplication percentage 

(Figure 2.3.3 A), the rooting percentage of the new formed shoots (Figure 2.3.3 D), the 

number of roots of the initial explant (Figure 2.3.3 E) and the maximal root length of 
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Figure 2.3.3 - Effect of MS medium concentration, cytokinin type (BA and Zea at 0.1 mg/L) and 

combination of cytokinin (0.1 mg/L) and auxin (IBA at 0.01 mg/L) on proliferation and rooting of P. 

vulgaris shoots: proliferation frequency (A), mean number of developed shoots per initial explant (B), 

rooting percentage of initial explant (C), rooting percentage of new produced shoots (D), mean number of 

developed roots per initial explant (E), longest root length of initial shoot (F). Control: media without 

growth regulators. Values represent means ± SE of 3 replications with 10 shoots. In each graph columns 

with different letters are significantly different at P < 0.05 according to Duncan’s multiple range test. 

 

shoots (Figure 2.3.3 F) cultured in full strength MS (63.33 ± 3.33, 56.87 ± 3.44, 3.22 ± 

0.28, 8.83 ± 0.77, respectively) showed decreased values in comparison to shoots 

cultured in medium with lower macronutrients concentration (90.00 ± 5.77, 79.74 ± 

1.35, 5.11 ± 0.24, 13.54 ± 0.82, respectively) (P < 0.05), which is in agreement with the 

results obtained for P. lusitanica and other carnivorous plants. Despite the difference 
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not being statistically significant, the number of produced shoots per initial explant 

(Figure 2.3.3 B) is also larger for P. vulgaris shoots cultured in ¼MS medium (5.06 ± 

0.61 in full strength MS and 7.62 ± 0.51 in ¼MS medium). 

 

Following the results obtained for P. lusitanica, the P. vulgaris shoots were cultured in 

media supplemented with two cytokinins, BA and Zea at 0.1 mg/L. The results 

presented in Figure 2.3.3 show that no significant differences were observed between 

treatments regarding the proliferation frequency, number of produced shoots and 

rooting percentage of the initial explant (P  0.05). For these culture media, the 

proliferation frequencies were on average above 90.0%, the number of produced shoots 

over 6.6, and the rooting percentage of the initial explant was 100% in all cases. 

Noteworthy, all shoots grown in the other tested media rooted as well, independently of 

the basal media strength or supplementation with PGR (Figure 2.3.3 C).  

 

However, some differences for the other rooting parameters could be observed between 

the ¼MS PGR-free medium and the cytokinin supplemented media. In general, the 

rooting of the P. vulgaris was favoured by the absence of cytokinins. The highest 

rooting percentage of new shoots (79.74% ± 1.35) (P < 0.05) and number of produced 

roots (5.11 ± 0.24) (P < 0.05) were obtained for the shoots grown in ¼MS PGR free 

medium, while the length of the longest root was not significantly affected by cytokinin 

supplementation (P < 0.05), scoring values on average above 12.2 mm. 

 

It can be seen from Figure 2.3.3 that the proliferation of the P. vulgaris shoots was not 

greatly influenced by the tested cultured media. However, in the case of this species, the 

numerical values are not a correct representation of the results obtained from a 

morphological point of view. In general, the cultures grown in PGR free medium 

produced vigorous and healthy looking shoots, while the cultures grown in cytokinin 

supplemented medium displayed in some cases signs of necrose, underdevelopment and 

curdled leaves with a brittle texture, especially in the case of shoots grown in medium 

supplemented with Zea (Figure 2.3.4 C, D, E). This shows that in some cases growth 

parameters such as multiplication rate and rooting response alone do not represent the 

real efficiency of the experimental conditions. 
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Figure 2.3.4 - Micropropagation of P. vulgaris: seedlings 2 weeks after germination (A); seedling 

explants used in the assays (B); whole culture and individualized shoots at the end of proliferation phase 

cultured in ¼MS without PGR (C), supplemented with BA at 0.1 mg/L (D) or with Zea at 0.1 mg/L (E); 

acclimatized plants with 2 months in ex vitro conditions (F); leaf detail of acclimatized plant with 

captured insects (G, H). Bars = 1 cm. 

 

All the explants used in the assays were obtained from cultures grown in ¼MS PGR 

free medium, and it is therefore likely that if the cultures grown in PGR supplemented 

medium were to be sub-cultured, the results of the treatments would show great 

differences, considering that these explants appear to have little viability based on 

morphological aspects. This is an essential issue considering that it is not only important 

to produce a large amount of new shoots, but also that these must be able to regenerate 

new plantlets. As noted before, the results presented in Figure 2.3.2 show that the P. 

vulgaris shoots have a great predisposition for rooting. In fact, initial explants as well as 

the new produced shoots rooted spontaneously without the addition of auxins. 

Independently of the growth media, more than 50% of the new shoots were able to 

produce roots in all cultures. Only the youngest shoots (and therefore smaller shoots) 

did not produce roots and it seemed that the formation of roots was related with the size 

of the respective shoot and not with the specific growth medium. This suggests that the 
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development of a more efficient protocol should be directed to obtain a larger number of 

shoots without compromising shoot viability, taking into perspective that the rooting 

phase does not need optimization. Figure 2.3.3 also shows that, as was the case with P. 

lusitanica, a culture medium combining cytokinins (BA or Zea at 0.1 mg/L) with auxins 

(IBA at 0.01 mg/L) was not effective in inducing proliferation.  

 

The development of micropropagation protocols for the two Pinguicula species revealed 

some interesting differences in response to the in vitro environment. As opposed to 

P. lusitanica, P. vulgaris did not flower spontaneously. In addition, P. lusitanica 

showed considerably higher proliferation rates, while the shoots produced by 

P. vulgaris where in turn larger in size. A few P. vulgaris plantlets with well developed 

roots were acclimatized successfully and the leaves of the micropropagated plants were 

functional and able to catch insects (Figure 2.3.4 F, G, H).  

 

All in all, ¼MS PGR-free medium was the best medium for the micropropagation of P. 

vulgaris, as it provided the highest proliferation rate and rooting response. However, 

alternative strategies should be sought for to enhance the viability of the cultures and 

biomass production considering that the developed protocol does not ensure sufficient 

material for subsequent bioassays and chemical analysis. Altering abiotic conditions 

such as temperature, humidity and lighting might be required to enhance growth 

efficiency, since P. vulgaris inhabits a colder environment than P. lusitanica. 

 

2.3.3. D. intermedia 

 

In the case of D. intermedia, all seeds were successfully sterilized and germination 

occurred during the second week after inoculation (Figure 2.3.6 A). Higher germination 

rates were obtained for the control (84.22  3.85 %) than for the cold stratification 

treatment (65.70  6.71 %), although differences were not significant (P  0.05). These 

results are interesting as many Drosera species need a cold treatment to break dormancy 

and germinate (Jang and Park, 1999; Jang et al., 2003; Jayaram and Prasad, 2006). 

Seedlings had a high proliferation capacity, producing enough explants for the 

subsequent experiments (Figure 2.3.6 B).  
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The effect of basal media strength and addition of Kin at 0.1 mg/L on the growth of D. 

intermedia shoots in in vitro conditions was investigated and the results are summarized 

in Figure 2.3.5. The results show that the cultures had a high proliferation capacity in 

PGR-free media and in media supplemented with Kin (Figure 2.3.6 C). 
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Figure 2.3.5 - Effect of MS medium concentration and addition of Kin (0.1 mg/L) on proliferation and 

rooting of D. intermedia shoots: proliferation frequency (A), mean number of developed shoots per initial 

explant (B), rooting percentage of initial explant (C), rooting percentage of new produced shoots (D), 

mean number of developed roots per initial explant (E), longest root length of initial shoot (F). Control: 

media without growth regulators. Values represent means ± SE of 4 replications with 10 shoots. In each 

graph columns with different letters are significantly different at P < 0.05 according to Duncan’s multiple 

range test. 
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Concerning the percentage of initial explants with proliferation capacity, no significant 

differences were observed either among the MS macronutrient concentrations or 

between the control and Kin supplemented media (P  0.05). In all cases multiplication 

percentages above 90 % were recorded (Figure 2.3.5 A). The highest number of shoots 

was obtained in PGR-free ¼MS medium (18.16  1.91) and ¼MS medium 

supplemented with Kin at 0.1 mg/L (18.18  1.23), and no significant differences were 

observed between the PGR-free and the Kin supplemented media (Figure 2.3.5 B) (P  

0.05). However, the number of produced shoots was significantly influenced by the 

basal media strength (P < 0.05) and ¼MS was the most effective in inducing 

proliferation. From these results, we can conclude that decreasing the MS macronutrient 

concentration significantly enhances the multiplication of D. intermedia shoots and that 

the use of Kin does not affect proliferation. The promotion of shoot proliferation by 

media with low concentration of macronutrients is coherent with the results obtained for 

P. lusitanica and P. vulgaris, and other carnivorous plants. 

 

Rooting frequency of initial explants was not affected by MS macronutrient 

concentration or by the presence of Kin (Figure 2.3.5 C) (P  0.05). High rooting 

percentages were obtained in PGR-free media and also in media with Kin, reaching 

100 % in some cases. Taking into account that rooting percentages close to 100 % were  

obtained in all tested media, an additional rooting phase on medium with auxins was 

unnecessary. Noteworthy, the new developed shoots also rooted in very high 

percentages (Figure 2.3.5 D). Over 80 % of the produced shoots rooted in all tested 

media, except for shoots cultured in ¼MS medium supplemented with Kin which was 

statistically the less effective medium (P < 0.05). Because the tested media afforded 

very high proliferation rates and rooting percentages of 100 % in some cases, no further 

culture media were investigated. These results show that large amounts of D. intermedia 

plantlets can be produced in one single step. On average, one shoot cultured on PGR-

free ¼MS medium produces 15.8 plantlets in 8 weeks.  

 

Culture media supplemented with Kin did significantly enhance the number of roots 

produced (P < 0.05), with ¼MS (8.85  0.48) and ½MS (8.90  0.51) being the most 

effective basal media (Figure 2.3.5 E). The results presented in Figure 2.3.5 E also show  
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A B C 

D E F 

Figure 2.3.6 - Micropropagation of D. intermedia: seedlings 2 weeks after germination (A); seedling 

explants used in the assays (B); shoots at the end of proliferation phase (C); rooted shoot prior to 

acclimatization step (D); acclimatized plant with 2 months in ex vitro conditions (E); leaf detail of 

acclimatized plant and captured insects (F). Bars = 1 cm. 

 

that increasing the basal media strength has a negative effect on the root formation in 

D. intermedia shoots. The longest roots were obtained in ½MS medium without PGR, 

with an average length of 3.60  0.13 cm (P < 0.05), however, in general this parameter 

does not seem to be influenced by basal media concentration or addition of Kin (Figure 

2.3.5 F). In vitro produced plantlets did not show any apparent morphological variation 

and 100 % of regenerated plantlets with well developed roots (Figure 2.3.6 D) were 

successfully acclimatized to ex vitro conditions. Their leaves were functional and able 

to catch preys, and their flowers produced capsules and seeds normally (Figure 2.3.6 E, 

F). These results show that it is possible to produce D. intermedia plantlets in a large 

scale using a simple and efficient micropropagation protocol. Shoots, obtained from 

seedlings, showed high proliferation and rooting capacity and overall, the medium 

found to be best was PGR-free ¼MS medium. 
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2.3.4. D. rotundifolia 

 

As opposed to the other species studied in this work, several micropropagation 

protocols have been developed for D. rotundifolia (Anthony, 1992; Jang and Park, 

1999; Bobák et al., 2005). Most authors micropropated D. rotundifolia by direct shoot 

organogenesis from isolated leaves and showed that shoot regeneration readily occurs 

on PGR-free medium. However, these protocols reveal as a major problem that the 

newly formed shoots were either very small in size, or showed inhibited development 

on media with high regeneration rates. Therefore it was interesting to see how the 

micropropagation techniques using meristem cultures employed in this work would 

compare to the previously developed protocols. 

 

The results obtained by Anthony (1992) in the initiation step of the culture 

establishment point out the advantages of using seeds as starting material. While no 

contamination was detected in the seedling cultures (Figure 2.3.8 A,B), about 95 % of 

the original D. rotundifolia cultures were lost due to contamination in the work 

described by the authors. Due to the prostrate growth habit of D. rotundifolia it is likely 

that leaves in close proximity to the soil are infested with soil-borne organisms, since 

lower contamination frequencies were obtained for Drosera capensis and Drosera 

binata with a more upright growth habit (Anthony, 1992). 

 

As an initial approach D. rotundifolia seedlings were cultured in full strength MS 

medium and ¼MS medium (Figure 2.3.7). The obtained results were however 

disappointing. Despite the fact that a high percentage of shoots cultured in ¼MS 

responded (90.00 % ± 4.08; Figure 2.3.7 A) and produced a considerable amount of new 

shoots (10.68 ± 1.14; Figure 2.3.7 B), these were very small in size and in some cases it 

was not feasible to count or subculture them (Figure 2.3.8 C). In addition, no root 

formation was observed whatsoever, which is in great contrast to the response of 

D. intermedia cultures to in vitro conditions. Noteworthy, the same culture time in 

PGR-free ½MS medium was sufficient to produce shoots with extensive root systems 

by direct organogenesis from D. rotundifolia leaves (Anthony, 1992). In turn, Bobák et 

al. (1995) obtained an average number of 18.3 buds per explant in liquid full strength 

MS medium, which 38 days after culture initiation formed shoots with three to seven 

leaflets and rooted spontaneously on the mother leaf explant. Because the previously 
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developed protocols provided considerably higher yields than the presented results, no 

further assays were tested to micropropagate D. rotundifolia. An optimized protocol for 

the micropropagation of D. rotundifolia should be directed at the improvement of shoot 

elongation and rooting response, while maintaining the high proliferation rates. 

Considering that BA and NAA do not seem to enhance shoot elongation (Anthony, 

1992; Bobák et al., 2005), it could be worthwhile to supplement the culture medium 

with gibberellic acid since it has shown to promote shoot elongation in several cases 

(Sugla et al., 2007; Pandeya et al., 2010; Purkayastha et al., 2010). 
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Figure 2.3.7 - Effect of MS medium concentration on proliferation of D. rotundifolia shoots: proliferation 

frequency (A) and mean number of developed shoots per initial explant (B). Values represent means ± SE 

of 4 replications with 10 shoots. In each graph bars with different letters are significantly different at P < 

0.05 according to Duncan’s multiple range test. 

 

 

A C B D 

Figure 2.3.8 - Micropropagation of D. rotundifolia: seedlings 2 weeks after germination (A); seedling 

explants used in the assays (B); shoots at the end of proliferation phase (C); shoots obtained after longer 

periods between subcultures without individualization (D). Bars = 1 cm. 
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Noteworthy, it was observed that when the subculture periods were delayed and the 

shoots where left to grow, they produced vigorous cultures which assumed the 

morphology of field-grown specimens and were comprised by large individual plantlets 

(Figure 2.3.8 D). The fact that D. rotundifolia shoots do not proliferate efficiently when 

individualized might be related with their growth habit in natural conditions, taking into 

account that they grow in association with other plants of the same species or sphagnum 

moss which may act as a substratum giving physical support. 

 

Taking this observation into consideration, an alternative method could be devised for 

evaluating the proliferation of D. rotundifolia, using plant biomass as a growth indicator 

instead of monitoring shoot formation, as the process of plant individualization prior to 

inoculation seems to compromise regular growth. This method would not be 

advantageous for evaluating plantlet formation but can be of value when the interest is 

to compare growth conditions for in vitro biomass production. 
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2.4. CONCLUSIONS 

 
Micropropagation protocols were established for the first time for P. lusitanica, 

P. vulgaris and D. intermedia. In vitro cultures of D. rotundifolia were established as 

well but the growth rates were inferior to the previously developed protocols. Although 

the microproprogation protocol for P. vulgaris generates considerable amounts of 

plantlets in a short time and can be used to propagate the species efficiently, it is still 

susceptible to improvement as shoot viability can be an issue. 

 

All species shared the trait of growing more vigorously in media with lower 

macronutrients concentration, which seems to be characteristic for carnivorous plants. 

In addition, these species showed to grow well in the absence of PGR, as high 

proliferation rates were obtained in PGR-free media in most cases. The growth 

parameters of P. vulgaris were either unaffected or negatively influenced by the 

addition of cytokinins to the culture media and ¼MS PGR-free medium was found to be 

the best to micropropagate this species. The same was the case for D. intermedia, where 

growth was not positively influenced by the addition of Kin at 0.1 mg/L and ¼MS 

PGR-free medium provided the best results. On the contrary, P. lusitanica shoots were 

susceptible to supplementation with PGRs, showing higher proliferation and rooting 

response in ½MS media supplemented with cytokinins at 0.5 mg/L.  

 

In summary, efficient micropropagation protocols were developed for P. lusitanica and 

D. intermedia which allow for the regeneration of plantlets which can be used to 

replenish declining populations in the nature, making a valuable contribution to the 

conservation of the species, and biomass production for the subsequent chemical 

analysis and biological assays. Cultures of P. vulgaris and D. rotundifolia were 

established in vitro but need further optimization. 

55 



Phytochemical studies and biological activity of carnivorous plants 

2.5. REFERENCES 

 

Adams RM, Koenigsberg SS, Langhans RW. In vitro propagation of the butterwort 

Pinguicula moranensis HBK. HortScience 14: 701-702. 

Anthony JL. 1992. In vitro propagation of Drosera spp. HortScience 27: 850. 

Baroja-Fernández E, Aguirreolea J, Martínková H, Hanušd J, Strnad M. 2002. Aromatic 

cytokinins in micropropagated potato plants. Plant Physiology and Biochemistry 40: 

217-224. 

Beena MR, Martin KP, Kirti PB, Hariharan M. 2003. Rapid in vitro propagation of 

medicinally important Ceropegia candelabrum. Plant Cell, Tissue and Organ Culture 

72: 285-289. 

Benson EE, Danaher JE, Pimbley IM, Anderson CT, Wake JE, Daley S, Adams LK. 

2000. In vitro micropropagation of Primula scotica: a rare Scottish plant. 

Biodiversity and Conservation 9: 711-726. 

Bobák M, Blehová A, Krištín J, Ovečka M, Samaj J. 1995. Direct plant regeneration 

from leaf explants of Drosera rotundifolia cultured in vitro. Plant Cell, Tissue and 

Organ Culture 43: 43-49. 

Bourgaud F, Gravot A, Milesi S, Gontier E. 2001. Production of plant secondary 

metabolites: a historical perspective. Plant Science 161: 839-851. 

Cassells AC, Walsh C, Belin M, Cambornac M, Robin JR, Lubrano C. 1999. 

Establishment of a plantation from micropropagated Arnica chamissonis a 

pharmaceutical substitute for the endangered A. montana. Plant Cell, Tissue and 

Organ Culture 56: 139-144. 

Centeno ML, Rodríguez A, Feito I., Fernández B. 1996. Relationship between 

endogenous auxin and cytokinin levels and the morphogenic responses in Actinidia 

deliciosa tissue cultures. Plant Cell Reports 16: 58-62. 

Chhun T, Taketa S, Tsurumi S, Ichii M. 2004. Different behaviour of indole-3-acetic 

acid and indole-3-butyric acid in stimulating lateral root development in rice (Oryza 

sativa L.). Plant Growth Regulation 43: 135-143. 

56 



Micropropagation of P. vulgaris, P. lusitanica, D. rotundifolia and D. intermedia 

 

Choi YE, Lee KS, Kim EY, Kim YS, Han JY, Kim HS, Jeong JH, Ko SK. 2002. Mass 

production of Siberian ginseng plantlets through large-scale tank culture of somatic 

embryos. Plant Cell Reports 21: 24-28. 

de Klerk G-J, van der Krieken W, de Jong JC. 1999. The formation of adventitious 

roots: new concepts, new possibilities. In Vitro Cellular and Developmental Biology 

- Plant 35: 189-199. 

de Klerk G-J, Hanecakova J, Jasik J. 2001. The role of cytokinins in rooting of stem 

slices cut from apple microcuttings. Plant Biosystems 135: 79-84. 

Debergh PC, Zimmerman RH. 1991. Micropropagation: Technology and Application. 

Kluwer Academic Publisers, Dordrecht 1-13. 

Debnath M, Malik CP, Bisen PS. 2006. Micropropagation: A Tool for the Production of 

High Quality Plant-based Medicines. Current Pharmaceutical Biotechnology 7: 33-

49. 

Decruse SW, Gangaprasad A, Seeni S, Menon VS. 2003. Micropropagation and 

ecorestoration of Vanda spathulata, an exquisite orchid. Plant Cell, Tissue and Organ 

Culture 72: 199-202. 

Faisal M, Ahmad N, Anis M. 2007. An efficient micropropagation system for 

Tylophora indica: an endangered, medicinally important plant. Plant Biotechnology 

Reports 1: 155-161. 

Fay MF. 1992. Conservation of rare and endangered plants using in vitro methods. In 

Vitro Cellular and Developmental Biology - Plant 28: 1-4. 

Garcia-Rubio O, Malda-Barrera G. 2010. Micropropagation and reintroduction of the 

Endemic Mammillaria mathildae (Cactaceae) to Its Natural Habitat. HortScience 45: 

934-938. 

Gaspar T, Kevers C, Hausman JF. 1997. Indissociable chief factors in the inductive 

phase of adventitious rooting. In: Altman A, Waisel M (eds) Biology of Root 

Formation and Development. Plenum Press, New York. 

Gonçalves S, Quintas C, Gaspar MN, Nogueira JMF, Romano A. 2009. Antimicrobial 

activity of Drosophyllum lusitanicum, an endemic Mediterranean insectivorous 

plant. Natural Product Research 23: 219-229. 

57 



Phytochemical studies and biological activity of carnivorous plants 

Gonçalves S, Romano A. 2005. Micropropagation of Drosophyllum lusitanicum (L.) 

Link. an endangered West Mediterranean endemic insectivorous plant. Biodiversity 

and Conservation 14: 1071-1081. 

Hartmann HT, Kester DE, Davies Jr FT. 1990. Plant Propagation. Principles and 

Practices. Prentice-Hall International Inc, New Jersey 104-131; 459-508. 

Heslop-Harrison Y. 2004. Pinguicula L. Journal of Ecology 92: 1071-1118. 

Jang G-W, Kim K-S, Park R-D. 2003. Micropropagation of Venus fly trap by shoot 

culture. Plant Cell, Tissue and Organ Culture 72: 95-98. 

Jang G-W, Park R-D. 1999. Mass propagation of sundew, Drosera rotundifolia L. 

through shoot culture. Journal of Plant Biotechnology 2: 97-100. 

Jayaram K, Prasad MNV. 2006. Drosera indica L. and D. burmanii Vahl., medicinally 

important insectivorous plants in Andhra Pradesh - regional threats and conservation. 

Current Science 91: 943-946. 

Kim K-S, Jang G-W. 2004. Micropropagation of Drosera peltata, a tuberous sundew, 

by shoot tip culture. Plant Cell, Tissue and Organ Culture 77: 211-214. 

Kim K-S, Jang G-W. 2004. Micropropagation of Drosera peltata, a tuberous sundew, 

by shoot tip culture. Plant Cell, Tissue and Organ Culture 77: 211-214. 

Kooi LT, Keng CL, Hoe CTK. 1999. In vitro rooting of sentag shoots (Azadirachta 

excelsa L.) and acclimatization of the plantlets. In Vitro Cellular and Developmental 

Biology - Plant 35: 396-400. 

Malá J, Gaudinová A, Dobrev P, Eder J, Cvikrová M. 2005. Role of phytohormones in 

organogenic ability of elm multiplicated shoots. Biologia Plantarum 50: 8-14. 

Martin KP. 2003. Clonal propagation, encapsulation and reintroduction of Ipsea 

malabarica (Reichb. f.) J.D. Hook, an endangered orchid. In Vitro Cellular and 

Developmental Biology - Plant 39: 322-326. 

Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with 

tobacco tissue cultures. Physiologia Plantarum 15: 473-497. 

Pandeya K, Tiwari KN, Singh J, Verma JP, Dubey SD. 2010. In vitro propagation of 

Clitoria ternatea L.: A rare medicinal plant. Journal of Medicinal Plants Research 4: 

664-668. 

58 



Micropropagation of P. vulgaris, P. lusitanica, D. rotundifolia and D. intermedia 

 

59 

Purkayastha J, Sugla T, Paul A, Solleti SK, Mazumdar P, Basu A, Mohommad A, 

Ahmed Z, Sahoo L. 2010. Efficient in vitro plant regeneration from shoot apices and 

gene transfer by particle bombardment in Jatropha curcas. Biologia Plantarum 54: 

13-20. 

Sarasan V, Cripps R, Ramsay MM, Atherton C, Mcmichen M, Prendergast G, Rowntree 

JK. 2006.  Conservation in vitro of threatened plants - progress in the past decade. In 

Vitro Cellular and Developmental Biology - Plant 42: 206-214. 

Soh W, Choi P, Cho D. 1998. Effects of cytokinin on adventitious root formation in 

callus cultures of Vigna unguiculata (L.) Walp. In Vitro Cellular and Developmental 

Biology - Plant 34: 189-195. 

Sugla T, Purkayastha J, Singh SK, Solleti SK, Sahoo L. 2007. Micropropagation of 

Pongamia pinnata through enhanced axillary branching. In Vitro Cellular and 

Developmental Biology - Plant 43: 409-414. 

Zobayed SMA, Afreen F, Xiao Y, Kozai T. 2004. Recent advancement in research on 

photoautotrophic micropropagation using large culture vessels with forced 

ventilation. In Vitro Cellular and Developmental Biology - Plant 40: 450-458. 

 



 

 

 



 
 
 
 

 

CHAPTER 3 
______________________________________________________________________ 

 

 

 

CHEMICAL INVESTIGATION OF PINGUICULA LUSITANICA 

AND DROSERA INTERMEDIA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



Chemical investigation of Pinguicula lusitanica and Drosera intermedia 

 

3.1. INTRODUCTION 

 
3.1.1. Phytochemical characterization of extracts 

 

Natural products are usually extracted as complex mixtures containing many 

constituents present in different concentrations and representing a broad spectrum of 

physical and chemical properties (Jaroszewski, 2005). Furthermore, the composition of 

extracts is initially often completely unknown and therefore the isolation and structure 

elucidation of individual constituents from complex mixtures such as plant extracts can 

pose a considerable challenge. This chapter will focus on the structure elucidation of the 

major compounds of the extracts prepared from in vitro cultured P. lusitanica and D. 

intermedia. These species were selected for analysis because they are the least studied 

of the four species comprised in this work and biomass could be readily produced. 

 

3.1.2. Phytochemical data 

 

The secondary metabolites produced by P. lusitanica and D. intermedia are poorly 

described in literature. Extracts prepared from micropropagated D. intermedia have 

been investigated for their content in naphthoquinones by Budzianowski (1996), but the 

complete characterization of its main secondary metabolites remains unclear. The apolar 

fraction of the methanol extract yielded 7-methylhydrojuglone-4-O-glucoside, 

hydroplumbagin-4-O-glucoside and their corresponding free quinones (7-methyljuglone 

and plumbagin, respectively) after treatment with β-glucosidase. P. lusitanica, on the 

other hand, has not been studied at all from a phytochemical perspective, possibly due 

to its scarce existence. Of the known 85 species of the Pinguicula genus, only two have 

been the subject of a biochemical study, namely P. vulgaris (Marco, 1985; Damtoft et 

al., 1985) and P. moranensis (Damtoft et al., 1994). Several iridoid glycosides 

(globularin, globularicisin, scutellarioside-II and 10-O-benzoylcatalpol) and a caffeoyl 

phenylethanoid glycoside, namely acteoside, were identified in these two species. 

 

3.1.3. Collection of plant material and sample preparation 

 

An important requirement in analytical chemistry is that the sample analyzed is 

representative. This means that samples must be collected, treated and stored in such a 
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way that their chemical composition is similar to the average composition of the total 

material. In the analysis of plant material from field specimens the collection of a 

representative sample is difficult due to variability of individual plants among a species 

and due to seasonal and geographical variations in the plant’s metabolic profile 

(Romanik et al., 2007). These issues are however obviated when using in vitro cultured 

plant material. 

 

Sample preparation represents the first stage in an analytical procedure and is of great 

importance. The sample preparation methods and strategies used depend on whether the 

aim of the extraction is analytical or preparative and whether the plants used for 

extraction contain known compounds, or unknown molecules, where thermal stability 

may be important (Nyiredy, 2004). Prior to extraction it is important to reduce particle 

size and increase interfacial surface area in order to enhance extraction efficiency. Plant 

material is often dried before being grinded or milled, however the drying process can 

lead to heat decomposition of metabolites or to increased binding with the plant matrix 

(Marczak et al., 2005; Rodrigues et al., 2006). When drying is to be avoided, 

lyophilisation can be used as an alternative process, or, when the secondary metabolites 

produced by a specific plant are unknown, the fresh plant material can be grinded after 

adding liquid nitrogen, preventing the loss of the most volatile components. 

 

After obtaining a homogeneous sample, the extraction can be performed with a specific 

solvent or either a series or mixture of solvents. Several extraction methods can be used 

depending on the research objective. Maceration, Soxhlet extraction, ultrasound assisted 

extraction, microwave assisted extraction, supercriticial fluid extraction, accelerated 

solvent extraction and hydrodistillation  have been used to prepare extracts from plant 

material and some techniques will be discussed in further detail in Chapter 5 (section 

5.1.3). When the approach of the analytical task is qualitative, standard maceration is an 

appropriate method for obtaining a representative sample of the plants major secondary 

metabolites and preventing possible thermal decomposition of compounds. 

Furthermore, it is important to use a solvent that will extract the widest range of classes 

of metabolites when the chemical profile of a plant’s extract has not been characterized 

before (Nyiredy, 2004). Methanol and ethanol are often the selected solvents (Table 

3.1.1). An organic solvent is preferred in some cases over water as it halts metabolic 

processes and denaturing enzymes. This is important because the disruption of the 
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cellular structures during the extraction process releases enzymatic glucosidases which 

are other wise compartmentalized. These enzymes hydrolyse glycosylated compounds 

into their corresponding aglycone. In natural product analysis researchers are interested 

in obtaining the intact form of the metabolites instead of their aglycones, as great 

structural diversity can be observed in the sugar moieties. 

 

Table 3.1.1. Classes of natural products extracted by several solvents. Compounds in bold are commonly 

obtained only by one solvent (adapted from Cowan, 1999). 

Water Ethanol Methanol Chloroform Dichloromethanol Ether Acetone 

Anthocyanins Tannins Anthocyanins Terpenoids Terpenoids Alkaloids Flavonols 

Starches Polyphenols Terpenoids Flavonoids  Terpenoids  

Tannins Polyacetylenes Saponins   Coumarins  

Saponins Flavonols Tannins   Fatty acids  

Terpenoids Terpenoids Xanthoxyllines     

Polypeptides Sterols Totarol     

Lectins Alkaloids Quassinoids     

 Propolis Lactones     

  Flavones     

  Phenones     

  Polyphenols     

 

A common drawback of classical and modern extraction methods in sample preparation 

of complex matrices is that additional clean-up procedures are often required before 

chromatographic analysis. The use of most extraction methods results in non-selective 

co-extraction of relatively large amounts of undesirable components (lipids, sterols, 

chlorophylls), which can severely affect the separation and detection performance of  

subsequent analysis. Solid phase extraction (SPE) is a simple preparation technique 

based on the principles used in liquid chromatography, in which the solubility and 

functional group interactions of sample, solvent, and adsorbent are optimized to perform 

sample fractionation, concentration or clean-up. A wide range of chemically modified 

adsorbent materials enable separation on the basis of different types of physicochemical 

interactions (Huie, 2002). 

 

3.1.4. Analytical techniques 

 

The chemical characterization of crude plant extracts can be a technical demanding task. 

For each compound, the order of atoms and stereochemical orientations have to be 
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elucidated in a complex manner and the compounds cannot be sequenced as is the case 

for genes or proteins. Consequently and unlike genomics and proteomics, a single 

analytical technique that is capable of profiling all secondary metabolites in a plant 

extract does not exist (Wolfender et al., 2003). 

 

3.1.5. Separation techniques 

 

3.1.5.1. High Performance Liquid Chromatography (HPLC) 

 

The most important separation technique in natural product analysis is HPLC. This 

chromatography technique is capable of separating water-soluble, thermally-labile and 

nonvolatile compounds, with speed, precision and high resolution and has the ability, 

when combined with a detection technique, to identify and quantitate the compounds 

present in any sample that can be dissolved in a liquid (Marston and Hostettmann, 

2009). It was originally named high pressure liquid chromatography due to the 

increased pressure that was needed to circulate the mobile phase through the columns in 

comparison to gas chromatography, but “pressure” was replaced by “performance” as 

particles got smaller and columns became shorter (Marston, 2007). Gas chromatography 

is another separation technique that provides excellent resolution and is very adequate 

for the analysis of samples containing volatile compounds such as essential oils. 

However, less than 20% of organic compounds can be separated by gas 

chromatography, meaning that derivatisation is often necessary (Marston, 2007). 

 

The basic principle of a HPLC setup is the use of a two-phase system to separate 

compounds according to specific molecular properties like polarity or hydrogen bond 

formation. The two phases are the stationary phase, the actual HPLC column, and the 

mobile phase, the eluent. Chromatography is generally carried out in the reverse-phase 

mode, on octadecyl carbon chain (C18) bonded silica columns because most natural 

products contain a substantial apolar part and reversed columns are better suited 

therefore. In reverse phase chromatography the stationary phase is non-polar and the 

polarity of the mobile phase is gradually decreased and, as a result, the most polar 

compounds are eluted first, while the more apolar are bound longer to the column 

before eluting, resulting in different retention times. Gradient elution is generally 

performed with binary solvent systems, i.e., with water containing acetate or formate 
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buffer, and methanol or acetonitrile as organic modifier (de Rijke et al., 2006). Reverse 

phase chromatography can also be performed in a purely isocratic mode where the 

solvent conditions are held constant. 

 

3.1.6. Hyphenated techniques 

 

The research in the field of natural products has changed dramatically due to the 

development of hyphenated techniques. Hyphenated methods are defined as methods 

combining two or more analytical techniques, usually a separation and a spectroscopic 

technique, into one integrated technique (Jaroszewski, 2005). 

 

3.1.6.1. HPLC-UV 

 

Ultraviolet (UV) detection is the most simple and most widely used amongst all HPLC 

detectors. Most natural products absorb UV light in the range of 200–550 nm, including 

substances having one or more double bonds or that have unshared electrons. Thus, 

even compounds having weak chromophores can be detected by UV at short 

wavelengths. In this case, however, mobile-phases that exhibit high UV cut-offs should 

be avoided because they might blind the detection of natural products with weak 

chromophores (Wolfender, 2009). 

 

Three types of UV detectors are available: fixed wavelength, multiple wavelength, or 

diode array (DAD). DAD provides UV spectra directly online and is particularly useful 

for the detection of natural products with characteristic chromophores. With this type of 

compounds, DAD-UV spectral libraries can be built and used for dereplication (rapid 

identification of previously identified compounds), but compounds have to be analysed 

under the same HPLC conditions, as the composition of the mobile phase might affect 

the UV bands. With DAD-UV detection all wavelengths are stored during analysis, and 

thus multiple wavelengths can be monitored at the same time for detection of different 

classes of compounds which is particularly useful in the provisional sub-group 

classification of natural products (de Rijke et al., 2006). However, this detection 

technique suffers from some limitations because not all natural products possess UV 

chromophores and the amount of structural information derived from UV spectra is 

limited. 
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3.1.6.2. HPLC-MS 

 

The coupling of HPLC and mass spectrometry (MS) has resulted in one of the most 

sensitive analytical methods. MS detection provides important structural information 

online such as molecular weight, molecular formula, and diagnostic fragments, which 

are crucial for rapid online characterisation of natural products (Wolfender, 2009). 

 

A MS setup consists of three modules: the ionization source, the mass analyzer and the 

detector. The molecules are ionized at the ionization source, separated according to their 

mass to charge ratio (m/z) at the mass analyzer and then the detector calculates the 

abundance of each ion present. The great range of application of HPLC-MS techniques 

is largely due to atmospheric pressure ionisation interfaces including electrospray 

ionisation (ESI) and atmospheric pressure chemical ionisation, which surpassed the 

inherent incompatibilities of a liquid mobile phase and a high vacuum mass analyser by 

generating ions outside the vacuum part of the mass spectrometer (Marston, 2007). 

Furthermore, these soft ionization methods add hardly any collision energy to the 

sample and therefore enable very precise determination of the molecular weight. They 

provide mainly molecular ion species in the form of either protonated molecules 

([M+H]+) or deprotonated molecules ([M-H]–), when operating in positive mode or 

negative mode, respectively (Wolfender, 2009). Different adducts are also produced, 

depending on the solutes and the modifiers used. However, the intense molecular ion 

species which are generated provide only limited structural information. 

Complementary fragmentation information can be generated by tandem MS or in-source 

collision induced fragmentation. The generated collision induced spectra are however 

not comparable to those recorded by electron impact (EI) and this hampers direct use of 

the standard EI-MS natural products libraries for the rapid identification of metabolites. 

The Time-Of-Flight (TOF) detector is a widely used mass analyzer and is capable of 

separating all ions in one measurement, instead of the more conventional quadrupole 

ion trap, where one m/z is selected per measurement by an applied electromagnetic 

field. In order to get a full mass spectrum of a sample multiple measurements are 

needed. 

 

The combination of HPLC and MS is an efficient way of rapidly investigating the 

content of a natural extract. The fragmentation patterns of most natural product classes 
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are relatively specific and together with the accurate molecular weight, one can get an 

approximate idea of the compound under analysis. However, the integration of these 

techniques presents some limitations. Because ionisation is compound dependant in 

HPLC-MS, the great range of structural diversity of natural products cannot be covered 

by one type of MS experiment. Different classes of natural products will ionize more or 

less efficiently according to the applied ionization methods. This can be partly solved 

by using multiple ionization methods for the same sample. Also, the structural 

information gained by HPLC-MS is rather limited because although information on the 

molecular weight and fragmentation pattern is important, the variable ionization 

efficiency of fragments may confuse the analysis. In addition, MS spectra cannot 

provide an unequivocal structural determination, particularly in the case of isomers or 

when no reference material is available (Bieri et al., 2006). 

 

3.1.6.3. HPLC-NMR 

 

NMR spectroscopy is the most powerful and versatile technique for structure 

elucidation of natural products. An NMR spectrum gives information on the 

intramolecular distances between atoms or functional groups and on the orientation of 

substituents about chiral centers, enabling a full assignment of the molecular structure 

and determination of the stereochemistry (Havsteen, 2002; Jaroszewski, 2005). In 

addition, it is a highly non-selective detection technique as 1H-NMR spectroscopy will 

detect any hydrogen-containing compound present in the HPLC eluate in a sufficient 

amount, regardless of its structure. 

 

The principle of NMR spectroscopy is to measure the energy of a radiofrequency pulse 

required to alter the direction of the spin of a given type of nucleus. NMR experiments 

are conducted on nuclei of elemental isotopes that have a non-zero spin. The atomic 

nuclei commonly studied are the naturally occurring 1H and 13C isotopes (Table 3.1.2). 

Placing a sample in a strong magnetic field will orientate the spin of all nuclei in the 

direction of the external magnetic field and by applying radiofrequency pulses the state 

of spin of a nucleus can be changed. As soon as the radiofrequency wave is shut off, the 

nuclear spin relaxes to its previous direction and the amount of energy absorbed by the 

sample as a function of the strength of the magnetic field is measured. The energetic 

difference between the two spin states of a specific nucleus is called energy of 
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resonation and the frequency at which the nucleus resonates reflects its chemical 

environment in the molecule. Electron density locally diminishes the magnetic field and 

therefore information on the molecular structure such as the presence of electronegative 

atoms as oxygen and nitrogen, double bonds and aromatic systems can be obtained with 

NMR by measuring the frequency shift. This frequency shift is converted into a 

dimensionless value know as chemical shift (δ) (Havsteen, 2002). 

 

Table 3.1.2. NMR data for important nuclei in phytochemistry (Eisenreich and Bacher, 2007). 

Isotope Spin Natural Abundance % 
1H 1/2 99.985 
2H 1 0.015 
3H 1/2 3×10-16 
13C 1/2 1.100 
14N 1 99.634 
15N 1/2 0.366 
19F 1/2 100.000 
29Si 1/2 4.670 
31P 1/2 100.000 

77Se 1/2 7.600 

 

The elucidation of a compounds’ structure can be complicated because often there are 

many protons in the same type of environment, however 2D-NMR methods pose a 

significant aid in these cases. Although there are a large number of NMR experiments 

available, a small subset is usually sufficient to determine the structures of low 

molecular weight metabolites (Bross-Walch et al., 2005). Two-dimensional 1H-1H 

correlation experiments, such as Double-Quantum-Filtered Correlation Spectroscopy 

(DQF-COSY) (Piantini et al., 1982) or Total-Correlation Spectroscopy (TOCSY) 

(Braunschweiler and Ernst, 1983) are used to assign the proton spins via scalar 

couplings, i.e., the mutual influence that neighbouring nuclei exert on each other via 

chemical bonds. The spectra from COSY experiments contain mainly cross-peaks due 

to vicinal couplings while TOCSY spectra additionally contain correlations with other 

protons in the same spin system, which is very useful for compounds containing many 

separate spin systems. Another important 1H homonuclear experiment is NOESY 

(Nuclear-Overhauser-Effect Spectroscopy) (Macura and Ernst, 1980) which yields 

correlations of dipolar-coupled protons through space and is used for obtaining 

stereochemical information but also for linking separate spin systems. Furthermore, 
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proton-detected 1H–13C correlation experiments, known also as heteronuclear 2D 

techniques, such as Heteronuclear Single Quantum Coherence (HSQC; Bodenhausen 

and Ruben, 1980) or Heteronuclear Multiple Bond Coherence (HMBC; Bax and 

Summers, 1986) are used to correlate the 13C chemical shifts with protons via one or 

two/three bonds, respectively. On the basis of these experiments, a set of constraints for 

the constitution and the configuration of a molecule can be obtained which may provide 

sufficient information to unambiguously assign the structure of a typical metabolite 

(Bross-Walch et al., 2005). It is to be noted, however, that these techniques are material 

limited, and the more powerful the experiment, the greater the amount of material 

needed to obtain reliable NMR experiments. 

 

There are several methods to deliver the HPLC fraction into the NMR detection coil. 

The simplest way is to couple the HPLC directly to the NMR spectrometer and to 

perform on-flow analysis of the chromatographic fractions. The drawback of this 

on-flow NMR method is that the residence time of the sample in the NMR flow cell is 

determined by the flow supplied by the HPLC pump, and not by the time necessary to 

obtain a sufficient S/N (signal to noise ratio) in the NMR spectrum. The stopped-flow 

cell technique addresses this problem by stopping the flow cell of the HPLC pump as 

soon as the fraction of interest is inside the NMR flow cell, while keeping the pressure 

constant in order not to disturb the separation. Chromatography is then resumed under 

normal flow as soon as the NMR measurement is complete. However, a complete set of 

NMR experiments can take several hours and this can cause on-column diffusion. An 

alternative to this method is to collect the fractions in capillary storage loops during the 

HPLC elution, which can then be transferred into the NMR system independently from 

the ongoing separation (Wolfender et al., 2001; Bross-Walch et al., 2005). 

 

The major drawback of NMR spectroscopy in structure elucidation is its relative 

insensitivity which is mainly caused by the small energy difference between ground and 

excited state of nuclear spins (Eisenreich and Bacher, 2007). This lack of sensitivity 

renders the on-flow measurements of minor products impossible and hampers the direct 

observation of 13C-NMR resonances even for the main constituents of a crude plant 

extract. Information of the 13C-NMR resonances represents an important element for 

natural product identification but the vast majority of carbon present in natural organic 

matter is not available for NMR detection because of the low abundance of the 13C 
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isotope (Table 3.1.2). The difficulty of obtaining 13C information is probably the biggest 

hindrance to a wider use of HPLC-NMR. As a consequence, many plant metabolites, 

especially with characteristic 1H signals which are not well separated on the NMR scale, 

are difficult to identify at present by this technique. Compounds which exhibit very few 
1H signals and which have mainly quaternary carbons or hydroxyl substituents in their 

structure will also yield little structural information in HPLC-1H-NMR (Wolfender et 

al., 2003). 

 

Another problem is that the whole range of the 1H-NMR signals is not directly 

observable in classical LC-1H-NMR spectra because of the need for solvent 

suppression. Specific NMR pulse sequences can suppress the solvent signals, but as a 

result, the signals of the analytes of interest which reside under the solvent peak, will be 

suppressed together with the solvent signal. This can be a major drawback when dealing 

with unknown constituents. One way of overcoming the problem of solvent suppression 

is to perform the separation in fully deuterated solvents. This, however, cannot be 

envisaged routinely on standard HPLC columns due to the cost of the deuterated 

solvents (Wolfender et al., 2001). 

 

3.1.6.4. HPLC-SPE-NMR 

 

The inherent lack of sensitivity of HPLC-NMR has improved over the years by 

miniaturization of the flow cells, higher magnetic field strengths, and cryogenically 

cooled NMR probes and preamplifiers. However, all these advancements still rely on 

analyte concentrations delivered by the HPLC column. Moreover, the range of HPLC 

eluents used is still restricted to those suitable for NMR analysis. The introduction of 

on-line solid phase extraction (SPE) in HPLC-NMR has enhanced considerably the 

sensitivity of this technique. In HPLC-SPE-NMR compounds are detected postcolumn 

by UV or MS and automatically trapped on SPE cartridges, enabling multiple trapping 

and subsequent transfer of the analytes to the NMR flow probe using a deuterated 

solvent. In order to enhance trapping efficiency, the flow in organic solvents eluting 

from the HPLC is mixed with additional water and as a consequence of the change in 

polarity, the compounds are trapped on the cartridge. The cartridge is dried with 

nitrogen gas after which the fraction is eluted with deuterated solvent to the NMR flow 

cell and can be analyzed at any time (Figure 3.1.1). 
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Figure 3.1.1 - Schematic diagram of an HPLC-SPE-NMR system (Jaroszewski, 2005). The mixture 

components are separated on a HPLC column with non-deuterated solvents, and a chromatogram is 

recorded using a photodiode array detector. The HPLC column eluate is diluted with water and the 

chromatographic peaks are trapped on individual SPE cartridges, triggered by signals from the UV or MS 

detector. The cartridges are dried with a stream of nitrogen gas and the analytes eluted with a deuterated 

solvent into the NMR flow-probe. The analyzed content of the probe can be discarded or collected for 

further analysis.  

 

The introduction of the SPE interface between the chromatography and NMR has 

several advantages. The collected fractions elute in very small solvent volumes into the 

NMR flowprobe and are therefore highly concentrated and the amount of sample can be 

increased by multiple trapping on the same cartridge. Moreover, the whole 

chromatography can be run with protic solvents, and deuterated solvent is only required 

for elution from the dried cartridge. The interfacing of liquid chromatography with 

NMR spectroscopy using the integrated SPE device has enhanced the potentialities of 

NMR in structural determination by improving its sensitivity and facilitating acquisition 

of 2D NMR data (Clarkson et al., 2005). These improvements allow obtaining structural 

information directly from crude extracts using minute amounts of sample, avoiding the 

lengthy and laborious preparative-scale isolation process (Clarkson et al., 2005; 

Jaroszewski, 2005). 
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3.1.4. Objectives 

 

P. lusitanica and D. intermedia are two species which are becoming increasingly scarce 

and little is known about their secondary metabolite production profile. The objectives 

of this chapter are to: 

i) identify the major compounds produced by these species using the hyphenated 

HPLC-ESI-MS and HPLC-SPE-NMR techniques; 

ii) discuss the possible biological and taxonomic importance of the identified secondary 

metabolites.  
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3.2. EXPERIMENTAL 

 
3.2.1. Plant material and sample preparation 

 

In vitro cultures of P. lusitanica and D. intermedia were produced according to the 

optimized protocols described in Chapter 2 (Sections 2.3.1 and 2.3.3, respectively). 

Fresh micropropagated plants were powdered in a mortar with liquid nitrogen and 

extracted twice for 24 h with methanol in the case of P. lusitanica and with methanol, 

water or n-hexane in the case of D. intermedia. The percentage yields (extract 

mass/fresh weight mass) for the P. lusitanica extract was 3.0% and 3.7%, 2.3% and 

0.2% for the methanol, water and n-hexane extracts prepared from D. intermedia, 

respectively. The obtained extracts were filtered (Whatman nº1, Springfield Mill, 

England), concentrated by rotary vacuum evaporation, dissolved in water and 

lyophilized.  

 

A solid phase extraction column (Supelclean LC-18 Packing; 60 mL; 10 g) was used for 

sample preparation to remove the most apolar and fatty constituents of the extracts and 

served as a sample cleanup. The column was activated with 100 mL methanol, washed 

with 100 mL acetonitrile, and equilibrated with 100 mL of 30% acetonitrile in water 

solution. The crude methanol extract of P. lusitanica was dissolved in 30% acetonitrile 

in water solution at approximately 40 mg/mL and loaded onto the column. Another 

100 mL of 30% acetonitrile in water solution were loaded on the column and collected. 

The remaining extract was eluted from the column with acetonitrile and discarded. The 

column was washed successively with 100 mL of acetonitrile, chloroform and methanol 

before further use. The same procedure was performed for the methanol and n-hexane 

extract prepared from D. intermedia, except that the n-hexane extract was eluted from 

the column with 50% acetonitrile in water, because the extract would not elute 

completely with the 30% aqueous acetonitrile solution. The water extract was not 

subjected to the SPE cleanup procedure because of the low affinity of its constituents 

with the column material. Instead, the water extract was dissolved in the analysis 

solvent and centrifuged at 10000 rpm during 15 min to remove the insoluble fraction of 

the extract in order not to obstruct the column. The recovered fractions were 

concentrated under vacuum evaporation, freeze-dried and stored at -20ºC until analysis. 
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3.2.2. HPLC-MS and HPLC-SPE-NMR measurements 

 

3.2.2.1. General experimental setup 

 

The HPLC-ESI-MS / HPLC–SPE–NMR system consisted of a Agilent 1200 quaternary 

solvent delivery pump, an Agilent 1200 autosampler, a Bruker Daltonics MicrOTOF 

ESI mass spectrometer (Figure 3.2.1 A), a BSFU column oven, a Bruker diode array 

detector, a Knauer K120 pump for postcolumn water delivery, a Spark Prospekt 2 solid 

phase extraction device (Figure 3.2.1 B), containing HySphere resin SH cartridges (10 × 

2 mm, 25-35 μm) for the P. lusitanica extract, or Oasis HLB Prospekt 2 Symbiosis 

cartridges (10 × 2 mm, 96/pkg) for D. intermedia extracts, and a Bruker Avance III 600 

NMR spectrometer equipped (Figure 3.2.1 C) with a 5 mm (30 μL) inverse cryoflow 

probe operating at 300 K. Chromatography, peak trapping, and analyte transfer from the 

SPE unit to the NMR spectrometer were controlled with HyStar 3.2 software, whereas 

the NMR experiments were controlled and processed with TopSpin 2.0 (Bruker 

BioSpin). 

 

CA B

 

Figure 3.2.1 - Equipment used for the HPLC-ESI-MS and HPLC-SPE-NMR experiments: Bruker 

Daltonics micrOTOF (time of flight) ESI mass spectrometer (A), Spark Holland Prospekt 2 SPE unit (B) 

and Bruker Avance III 600 MHz NMR spectrometer (C). 
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3.2.2.2. HPLC-MS and HPLC-SPE-NMR experiments 

 

3.2.2.2.1. HPLC-(DAD) gradient optimization 

 

Several trial runs were performed to obtain an optimized gradient for the P. lusitanica 

extract which are shown in Table 3.2.1. These were performed with a smaller diameter 

analytical column (Alltima C18; 3 μm; 150 × 2.1 mm i.d.) to allow a better separation. 

The final working gradient optimized for the HPLC-SPE-NMR experiments was carried 

out on an Alltima HP 3 μm (150 × 4.6 mm i.d.) column using a binary eluent consisting 

of nondeuterated water containing 0.1% formic acid (v/v) (A) and acetonitrile (B), with 

a 0.6 mL/min flow rate and the following linear gradient: at 0 min, 10% B; at 5 min, 

15% B; at 43 min, 25% B; at 45 min, 95% B; at 47 min 95% B; and at 50 min 10% B, 

followed by a 5 min conditioning step (Table 3.2.1, gradient 3). 

 

Table 3.2.1. Tested experimental conditions for the optimization of the working gradient. 

Gradient 1  Gradient 2  Gradient 3 
Time 
(min) 

Acetonitrile 
(%) 

 Time 
(min) 

 Acetonitrile 
(%) 

 Time  
(min) 

Acetonitrile 
 (%) 

0 5.0  0 10.0  0 10.0 
40.0 95.0  40.0 35.0  5.0 15.0 
45.0 95.0  45.0 95.0  43.0 25.0 
47.0 5.0  47.0 95.0  45.0 95.0 
55.0 5.0  50.0 10.0  47.0 95.0 

   55.0 10.0  50.0 10.0 
      55.0 10.0 

150 × 2.1 mm i.d. column; 0.2 mL/min  
150 × 4.6 mm i.d. column; 0.6 

mL/min 

 

In the case of the D. intermedia extracts the chromatographic separations were carried 

out using the same binary solvent and the following optimized gradients: at 0 min, 5.0% 

B; at 30 min, 95% B; at 31 min, 100% B; at 45 min, 100% B; at 46 min 5.0% B, 

followed by a 10 min conditioning step, for the n-hexane extract; at 0 min, 5.0% B; at 

45 min, 35% B; at 47 min, 100% B; at 57 min, 100% B; at 59 min 5.0% B, followed by 

a 5 min conditioning step, for the water extract; at 0 min, 8.0% B; at 45 min, 30% B; at 

47 min, 100% B; at 57 min, 100% B; at 59 min 8.0% B, followed by a 5 min 

conditioning step, for the methanol extract. 
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3.2.2.2.2. HPLC-ESI-MS experiments 

 

The extracts were analyzed by ESI-MS in positive and negative mode. Ions were 

detected in negative mode in the range of m/z 100 to 1500 and in both MS experiments 

working conditions were as follows: nebulizer pressure was 3.0 bar, with a drying gas 

flow of 8.0 L/min and drying gas temperature of 190 ºC, capillary spray was 4.2 kV. In 

the case of the methanol extract of P. lusitanica, the ESI-MS measurements were 

performed using gradient 2, by flushing the content of the cartridges after the NMR 

experiments from the probe into vials. The compounds in the vials dissolved in 

approximately 100 µL of deuterated solvent, were then diluted with a 50% acetonitrile 

in water solution before a volume of 20 μL of each peak was injected into the mass 

spectrometer. In the case of D. intermedia, a volume of 5 μL of each extract at 50 

mg/mL (50% methanol solution in water) was analyzed by HPLC-ESI-MS, using the 

optimized gradients and a flow rate of 0.2 mL/min (150 × 2.1 mm i.d. column). 

 

3.2.2.2.3. HPLC-SPE-NMR experiments 

 

The methanol extracts of P. lusitanica and D. intermedia where analyzed by HPLC-

SPE-NMR using the solid phase extraction unit to trap the chromatographic peaks. In 

the case of the P. lusitanica extract the HPLC eluate was monitored by DAD, and 

absorption thresholds at 220, 280 and 312 nm were defined in order to provide 

automatic start and stop signals for the SPE trappings. The extract was dissolved at 

50 mg/mL (50% methanol solution in water) and a total of 4 cumulative trappings were 

performed for each peak selected for analysis using an injection volume of 20 µL. For 

the D. intermedia extract peaks were trapped manually using the MS instrument as 

detector. A total of 3 cumulative trappings were performed for each peak selected for 

analysis after injecting 40 µL of extract prepared at 300 mg/mL (75% methanol solution 

in water) using the optimized gradient (150 × 4.6 mm i.d. column; 1.0 mL/min flow 

rate). Prior to the trappings, the SPE cartridges were conditioned with 500 μL of 

deuterated methanol and equilibrated with 500 μL of water. After the chromatographic 

separation, water was added to the eluent with the makeup pump at a flow rate of 1 

mL/min to lower the elution strength and provide proper retention of the peaks under 

study on the SPE cartridges. The cartridges were dried with nitrogen gas for 59 min to 

remove the residual solvents and subsequently, methanol-d4 was used for elution and 
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transfer of the analytes to the NMR flow probe. 1H-NMR spectra were recorded at 600 

MHz using standard pulse sequences. The methanol signal at 3.31 ppm was used for 

chemical shift calibration. 1D and 2D-DQF (double quantum filtered) COSY, TOCSY, 

ROESY, HSQC and HMBC spectra were acquired using state-of-the-art pulse 

sequences.  

 

3.2.2.2.4. Direct NMR analysis 

 

The n-hexane and methanol extracts were analyzed directly by NMR. The n-hexane 

extract (5 mg) was dissolved in 500 μL of deuterated chloroform and the methanol 

extract (10 mg) in 1 mL of deuterated methanol and transferred to a 5 mm NMR tube to 

be analyzed. The spectra were acquired using the standard pulse sequences. 
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3.3. RESULTS AND DISCUSSION 

 
3.3.1. P. lusitanica 

 

3.3.1.1. HPLC gradient optimization 

 

It is necessary to obtain a good separation of the chromatographic peaks before any 

further work can be undertaken. This is achieved by optimizing the gradient, namely the 

gradual change of the content of organic solvent in the mobile phase. As previously 

stated, in the field of natural products research, reverse phase columns are preferred. 

The stationary phase is non-polar, binding the analytes through hydrophobic 

interactions, which result from repulsive forces between a polar eluent. By increasing 

the gradient of the mobile phase the analytes are eluted sequentially based on their 

polarity. Retention time is longer for molecules which are more apolar, while polar 

molecules elute more readily. As there was no information available on the biochemical 

data of P. lusitanica, as a first approach a gradient covering the range of 5-95% of 

acetonitrile (gradient 1, Table 3.2.1) was used. The chromatogram in Figure 3.3.1.1 

shows that the separation of the peaks is not satisfactory and that all major peaks are 

relatively polar. The absorbance was recorded at several wavelengths but 280 nm gave 

the highest intensity for most of the compounds. 
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Figure 3.3.1.1 - HPLC chromatogram monitored at 280 nm of P. lusitanica methanol extract (150 × 2.1 

mm i.d. column). Gradient elution profile is shown as percent of acetonitrile in water (gradient 1, Table 

3.2.1). 
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In an attempt to enhance the chromatographic separation, a second gradient was tested 

based on the previous chromatographic run. The new gradient covered the range of 10-

35% acetonitrile (gradient 2, Table 3.2.1), and a better resolution of the region of 

interest was achieved, as can be seen in Figure 3.3.1.2. 
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Figure 3.3.1.2 - HPLC chromatogram monitored at 280 nm of P. lusitanica methanol extract (150 × 2.1 

mm i.d. column). Gradient elution profile is shown as percent of acetonitrile in water (gradient 2, Table 

3.2.1). 

 

The final working conditions were based on the former gradient, with some minor 

adjustments because a column with a larger inner diameter was used (gradient 3, Table 

3.2.1). This column is more appropriate for the subsequent experiments, because to 

obtain good quality NMR spectra it is important to submit the largest amount possible 

to chromatography in order to enhance the SPE efficiency. Against expectations, the 

column with larger diameter provided a better resolution, as depicted in Figure 3.3.1.3. 

The gradient provided satisfactory separation to perform the SPE trappings and the nine 

most intense peaks were selected for analysis and labeled 1-9. Peak 1 has nearly no UV 

absorbance at 280 nm, but was selected for analysis because of its strong absorbance at 

220 nm. 
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Figure 3.3.1.3 - HPLC chromatogram monitored at 280 nm of P. lusitanica methanol extract (150 × 4.6 

mm i.d. column). Gradient elution profile is shown as percent of acetonitrile in water (gradient 3, Table 

3.2.1). The peaks selected for the HPLC-SPE-NMR experiments are labelled 1-9. 

 

3.3.1.2. HPLC-ESI-MS 

 

The P. lusitanica extract was subjected to HPLC-ESI-MS measurements in both 

positive and negative mode using gradient 2. Table 3.3.1.1 shows the DAD-UV and 

ESI-MS data and the deduced molecular formulas obtained for the selected peaks for 

analysis. Because a different gradient was used for the NMR analysis, and no splitter 

was available when SPE trappings were performed, the molecular weights of some 

trapped compounds were not known. For that reason, after NMR analysis the trapped 

peaks were flushed out of the flow cell and recovered in vials. The vials were then 

analyzed individually by ESI-MS conducted in negative mode for molecular weight 

determination and therefore some peaks were not analyzed in positive mode. In most 

cases the negative mode ESI-MS spectra showed base peaks corresponding to the 

molecular ion with few other fragment ions, whereas the spectra obtained in positive 

mode showed fragmentation patterns with some structural information. 
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Table 3.3.1.1. DAD-UV and ESI-MS spectral data of selected peaks of P. lusitanica chromatogram for 

analysis. 

MS positive mode Peak tR 
(min) 

UV λmax 
(nm) [M+H]+ 

(m/z, amu) 
Fragments 
(m/z, amu) 

MS negative mode 
[M-H]- (m/z, amu) 

Molecular 
Formula 

1 5.49 236 377.1 215.1, 

197.1, 179.1 

375.1 C16H24O10 

2 12.75 320, 300 
(sh), 290 
(sh), 247 

641.2 623.2, 471.1, 
325.1, 163.0 

639.2 C29H36O16 

3 13.15 320, 300 
(sh), 290 
(sh), 247 

641.2 623.2, 471.1, 
325.1, 163.0 

639.2 C29H36O16 

4 13.66 312, 299 
(sh), 228 

ND 507.2 C24H28O12 

4' 13.66 312, 299 
(sh), 228 

ND 523.2 C24H28O13 

5 18.12 320, 300 
(sh), 290 
(sh), 247 

ND 653.2 C30H38O16 

6 18.46 320, 300 
(sh), 290 
(sh), 247 

ND 653.2 C29H36O16 

7 20.26 320, 300 
(sh), 290 
(sh), 247 

625.2 479.1, 471.1, 
325.1, 163.0 

623.2 C29H36O15 

8 24.37 320, 300 
(sh), 290 
(sh), 247 

ND 653.2 C30H38O16 

9 28.55 280, 221, 
217 

493.2 331.1, 131.0 537.2* C24H28O11 

* Formic acid adduct of peak 9 ([C24H28O11+HCOO]-)  

 

3.3.1.3. HPLC-SPE-NMR 

 

3.3.1.3.1. SPE trapping procedure 

 

From the chromatogram obtained in Figure 3.3.1.3, the nine most intense peaks were 

selected for trapping with SPE. The trapping was triggered by UV absorbance threshold 

at three different wavelengths. Peaks 2-8 were trapped using 312 nm, peak 9 using 280 

nm and peak 1 using 220 nm (Figure 3.3.1.4). After the first trapping procedure and a 

preliminary NMR analysis it was decided that four successive trappings would be 

sufficient to obtain good quality spectra. 
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Figure 3.3.1.4 - Chromatogram of P. lusitanica methanol extract indicating SPE trappings for peaks 1 

(220 nm), 2-8 (312 nm) and 9 (280 nm), and respective retention times. 
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3.3.1.3.2. HPLC-SPE-NMR 

 

The NMR spectra that were obtained from the trapped peaks were overall of satisfactory 

quality. Except for peak 8, all 1H spectra were of sufficient quality for the most 

important protons to be assigned. The NMR spectrum of peak 8 had a too low S/N for 

any conclusions to be drawn, so no further investigations were pursued. In the case of 

peaks 1, 4, 7 and 9 the S/N was good enough for 2D spectra to be measured, namely 

COSY, ROESY, TOCSY, HSQC, and in the case of peak 7 an HMBC spectrum was 

measured as well. Results are discussed per peak, which are grouped by the family of 

identified compounds, namely iridoid glucosides and phenylethanoid glycosides. 

 

3.3.1.3.2.1. Iridoid glucosides 

 

The methanol extract of P. lusitanica contains three iridoid glucosides, namely 

mussaenosidic acid (peak 1), scutellarioside II (peak 4) and globularin (peak 9). In 

addition, another iridoid glucoside was co-eluted with peak 4 (peak 4') and its structure 

was not conclusively elucidated, but the obtained data suggest that peak 4' might be the 

5-OH derivative of scutellarioside II. The structures of the identified compounds are 

depicted in Figure 3.3.1.5 and the NMR data that allowed the assignment of these 

compounds is shown in Table 3.3.1.2. 
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Figure 3.3.1.5 – Structures of the iridoid glucosides from P. lusitanica.



 

Table 3.3.1.2. 1H and 13C NMR data of the iridoid glucosides obtained by HPLC-SPE-NMR from the methanol extract of P. lusitanica. 

 1   4   4'   9  
Position δH* δC**  δH* δC**  δH* δC**  δH* δC** 
Aglycone            
1 5.46 (1H, d, 4.2) 95.0  5.08 (1H, d, 10.0) 95.5  5.35 (1H, d, 9.0)  95.5  5.08 (1H, d, 9.8) 95.3 
3 7.41 (1H, s) 151.8  6.36 (1H, d, 6.0) 141.4  6.39 (1H, d, 6.0)  142.4  6.36 (1H, dd, 1.7, 6.0)  141.5 
4    5.07*** 103.6  4.96*** 107.4  5.08*** 103.4 
5 3.15 (1H, m) 31.7  2.29 m 38.9     2.30 (1H, m) 38.7 
6a 2.30 (1H, td, 16, 14, 7.5) 30.5  3.95 (1H, d, 8.6) 78.9  4.13 (1H, br s)  78.5  3.96 (1H, dd, 8.2, 1.0) 79.2 
6b 1.47 (1H, td, 14, 14, 7.5)           
7 1.72 (2H, t, 7.5) 40.4  3.49 (1H, s) 62.7  3.61 (1H, br s) 63.2  3.50 (1H, d, 1.0) 62.5 
9 2.22 (1H, dd, 9.2, 4.1) 52.0  2.65 (1H, dd, 9.4, 8.2) 43.4  2.66 (1H, d, 9.0)  51.1  2.66 (1H, dd, 9.7, 7.7) 43.3 
10a 1.33 (3H, s) 24.4  4.27 (1H, d, 12.6) 64.0  4.23 (1H, d, 12.8) 63.5  4.26 (1H, d, 12.6) 64.3 
10b    4.98 (1H, d, 12.5)   4.95 (1H, d, 12.7)   5.03 (1H, d, 12.6)  
Glucosyl            
1' 4.68 (1H, d, 7.9) 99.5  4.74 (1H, d, 7.9) 100.0  4.71 (1H, d, 7.8) 100.0  4.76 (1H, d, 7.9) 100.0 
2' 3.19 (1H, t, 8.6) 74.4  3.19 (1H, t, 8.3) 74.6  3.19*** 74.6  3.18 (1H, t, 9.2) 74.4 
3' 3.36 (1H, t, 9.0) 77.7  3.35 (1H, t, 9.1) 77.5  3.35*** 77.5  3.35 (1H, t, 9.1) 77.7 
4' 3.25 (1H, t, 9.0) 71.6  3.26 (1H, t, 9.2) 71.1  3.26*** 71.1  3.26 (1H, t, 9.1) 71.3 
5' 3.30**** 77.9  3.32**** 78.0  3.32**** 78.0  3.30**** 78.2 
6a' 3.64 (1H, dd, 11.9, 6.4) 62.7  3.92 (1H, dd,  1.4, 11.9) 62.7  3.95 (1H, dd, 11.4, 1.8) 62.7  3.66 (1H, dd, 11.9, 6.4) 62.7 
6b' 3.90 (1H, dd, 11.9, 1.8,)   3.66 (1H, dd, 6.0, 12.0)   3.68***   3.92 (1H, dd, 11.9, 1.9)  
Coumaroyl /Cinnamoyl           
2''    7.49 (1H, d, 8.5) 131.0  7.49*** 131.0  7.63 (1H, dd, 6.7, 2.9) 129.2 
3''    6.80 (1H, d, 8.5) 116.5  6.80*** 116.5  7.41 m 129.7 
4''          7.41 m 129.7 
5''    6.80 (1H, d, 8.5) 116.5  6.80*** 116.5  7.41 m 129.7 
6''    7.49 (1H, d, 8.5) 131.0  7.49*** 131.0  7.63 (1H, dd, 6.7, 2.9) 129.2 
α    6.37 (1H, d, 15.9) 114.8  6.37*** 114.8  6.57 (1H, d, 16.0) 118.3 
β    7.65 (1H, d, 15.9) 146.7  7.65*** 146.7  7.73 (1H, d, 16.0) 146.5 
*Relative to the residual methanol signal set to δ 3.31, δ values given in ppm; number of protons, multiplicity of signals (s, singlet; br s, broad singlet; d, doublet; dd, double 

doublet; t, triplet; td triple doublet; m, multiplet) and coupling constants (apparent splittings) given as numerical values in Hz are shown in parenthesis. **13C NMR chemical 

shifts obtained from HSQC experiments, relative to the resonance of the solvent set to δ 49.05. ***Signal unclear due to overlapping signals. **** Supressed due to 

overlapping with solvent signal, chemical shift determined by HSQC. 
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The assignments of the identified compounds based on the obtained MS and NMR data 

will be discussed in further detail for each peak in the following section. The results of 

the ESI-MS experiments of peak 9 show that the molecular formulas that can be 

deduced from the deprotonated [M-H]- (m/z 537) and protonated [M+H]+ (m/z 493) base 

peak ions obtained do not match (Table 3.3.1.1). The difference is due to the fact that in 

the ESI-MS experiments conducted in negative mode, the measured ion corresponds to 

the formic acid adduct of the molecular ion ([M+HCOO]-). Taking this into 

consideration, the molecular weight of compound 9 corresponds to 492 for which a 

molecular formula of C24H28O11 can be deduced. This result shows the importance of 

conducting MS experiments in both negative and positive mode, as different 

information can be obtained from each kind of experiment.  

 

The 1H-NMR spectrum of peak 9 showed signals of an anomeric proton at δ 4.76 (d, J= 

7.9 Hz) with a coupling constant characteristic of a sugar moiety with a β configuration. 

From the anomeric proton, it was possible to assign every proton and carbon of the 

sugar moiety by detailed analysis of 1H-1H COSY and HSQC spectra. The signal of the 

H-5' proton was located under the solvent signal, and its splitting pattern could therefore 

not be determined, but its chemical shift could be deduced from the HSQC spectrum. 

The splitting patterns and coupling constants of the protons made it possible to assign 

the fragment as a β-D-glucopyranosyl unit (Bross-Walch et al., 2005; Feng et al., 2006). 

The presence of a sugar unit can also be confirmed by the ESI-MS results conducted in 

positive mode, due to the appearance of a peak at m/z 331 (Table 3.3.1.1) resulting from 

the loss of an anhydrohexose unit (m/z 331= 493-162). In addition, in the downfield 

region of the 1H-NMR spectrum, five aromatic protons at δ 7.63 (H-2'', H-6'') and δ 7.41 

(H-3'', H4'', H5'') and two olefinic doublets resonating at δ 6.57 (H-α) and δ 7.73 (H-β) 

were consistent with a cinnamoyl moiety. The large coupling constant (J= 16.0 Hz) of 

the olefinic protons suggests a trans stereochemistry (E conformation) at the double 

bond of the cinnamoyl moiety. Despite the fact that the aromatic protons of the 

cinnamoyl moiety are superimposed, it is possible to determine the number of protons 

corresponding to each signal by analyzing their respective integrals. The integral of the 

signals at δ 7.63 (2H) and δ 7.41 (3H) is approximately two and three times higher, 

respectively, than the signal at δ 7.73 corresponding to one single proton (Figure 

3.3.1.6). 
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Figure 3.3.1.6 - 1H-NMR spectrum between δ 7.85 and 7.25 of peak 9, showing integrals of the signals 

corresponding to H-2'',6'' and H-3'',4'',5'' in relation to H-β. 

 

Of the compounds’ 24 C atoms, six were attributed to a β-D-glucopyranosyl unit and 

nine ascribed to an (E)-cinnamoyl moiety. The remaining C-resonances that could be 

deduced from the HSQC spectrum indicated that compound 9 has an iridoid skeleton 

(cyclopentapyran ring system) with nine C-atoms, one of which is a quaternary carbon 

with no protons attached. For the analysis of the iridoid skeleton, the starting point was 

the resonance at δ 6.36 (dd, J= 6.0, 1.7 Hz) which was assigned to H-3. The COSY 

spectrum (Figure 3.3.1.7) showed correlations with the signals located at δ 5.08 (m) and 

δ 2.30 (m), which were therefore assigned to H-4 and H-5, respectively. The H-5 signal 

exhibited correlations with protons located at δ 2.66 (dd, J= 9.7, 7.7) and δ 3.96 (dd, J= 

8.2, 1.0) which were then assigned to H-9 and H-6, respectively. The signal located at 

δ 3.50 (d, J= 1.0) was assigned to H-7 through its correlation with the signal located at 

δ 3.94, previously attributed to H-6, and the last signal located at δ 5.08 (d, J= 9.8 Hz) 

was attributed to H-1 through its correlation with the H-9 proton. The H-10 protons 

were easily assigned to the AB spin system located at δ 4.26 and δ 5.03 with a large 

coupling constant (J =12.6 Hz). 
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Figure 3.3.1.7 - Assignment of the protons of the iridoid skeleton of peak 1 with aid of the COSY 

spectrum. 

 

The described unit comprising the iridoid core and the glucopyranose moiety is 

commonly designated catalpol, and the site of esterification of the cinnamoyl moiety 

was determined to be at the C-10 position of the iridoid glucoside due to the relatively 

downfield shifts of the H-10 protons, compared to the regular catalpol unit (Çaliş et al., 

1993). The compound was therefore assigned as 10-O-(E)-cinnamoyl-catalpol, 

scutelarioside I or globularin. The resonances of the protonated C-atoms of peak 9 

deduced from the HSQC spectrum (Figure 3.3.1.8) together with the data obtained from 

the 1H-NMR spectrum were in good agreement with the previously published 13C and 
1H-NMR data (Faure et al., 1987; Boros and Stermitz, 1990).  
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Figure 3.3.1.8 - HSQC spectrum obtained in HPLC-SPE-NMR experiment for peak 9. 

 

From the ESI-MS experiments it could be deduced that peak 4 is a mixture of two 

co-eluting compounds. The spectrum shows one major peak at m/z 507 (compound 4) 

and one minor peak at m/z 523 (compound 4') (Table 3.3.1.1). Because the two 

compounds were trapped in different amounts their signals in the 1H-NMR spectrum 

can be distinguished based on their relative intensities. The structure of compound 4 

will be discussed first because its signals are more prominent making its assignment 

easier. The 1H-NMR data of compound 4 quickly reveals that it bears great similarities 

with compound 9, showing only differences in the aromatic region (Table 3.3.1.2). The 

two signals at δ 7.63 and 7.41 belonging to the cinnamoyl moiety of compound 9 were 

replaced by two signals at δ 6.80 (d, J= 8.5 Hz) and δ 7.49 (d, J= 8.5 Hz), corresponding 

to two protons each. These signals showed an AA'XX' spin system consistent with a 

1,4-disubstituted aromatic ring, which together with the olefinic protons at δ 6.37 (d, J= 

15.9 Hz) and δ 7.65 (d, J= 15.9 Hz) are indicative of a 4-coumaroyl group. The ESI-MS 

experiments conducted in negative mode revealed a peak at m/z 507, from which a 

molecular formula of C24H28O12 could be deduced, suggesting that it has one extra 

hydroxyl group than compound 9, corroborating the results obtained from the NMR 
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experiments. Therefore, compound 4 could be assigned as the coumaroyl analogue of 

compound 9, 10-O-(E)-coumaroyl-catalpol or scutelarioside II (Figure 3.3.1.5). The 

HSQC spectrum provided the 13C chemical shifts of all protonated carbons of the 

molecule, and comparison with literature data confirmed its structure (Çaliş et al., 

1993). 

 

The difference of m/z between the molecular ions of compounds 4 and 4' suggests that 

compound 4' is substituted by one extra hydroxyl group (Δ +16 amu). Most of the 

signals of compound 4' are overlapped by the signals of compound 4 but some signals 

show slight deviations. By superimposing the HSQC spectra of compound 4 and 9, 

which are practically identical except for the substituting group at the C-10 position, it 

was possible to identify the C atoms belonging to compound 4' (Figure 3.3.1.9).  
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Figure 3.3.1.9 - HSQC spectra of compound 9 (left) and compound 4 (right). The highlighted signals 

show the additional protonated carbons corresponding to compound 4'. 

 

Using this approach, it could be seen that the differences between compound 4 and 4' 

resided in the iridoid skeleton, as the coumaroyl and the glucopyranose moiety 

remained unchanged, except for the anomeric proton of compound 4' which showed a 
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slight deviation (Table 3.3.1.2). The H-1 proton of compound 4' on the other hand, 

shifted somewhat downfield (Δδ +0.27) and could be assigned due to its characteristic 

splitting pattern (d, J= 9.0 Hz) and due to the corresponding C-ressonance (δ 95.5) 

which is identical to that of compound 4' (Table 3.3.1.2). From the H-1 proton it was 

possible to assign H-9 at δ 2.66 (m) through a strong cross peak in the COSY spectrum. 

The large downfield shift of C-9 (Δδ +7.7) of compound 4' in comparison to compound 

4 suggests that the substitution with the extra hydroxyl group is at one of the adjacent 

positions. The HSQC spectrum showed another distinct signal at δC 78.5 (Figure 

3.3.1.9), connected to a broad singlet at δH 4.13. The ROESY spectrum shows that this 

proton is coupled to another broad singlet at δH 3.61, which was in turn connected to a 

carbon atom at δC 63.5. The ROESY spectrum also shows that these protons are 

coupled in the same way as the H-6 and H-7 in compound 4 and 9. Therefore, the peaks 

in the 1H-NMR spectrum of compound 4' at δ 4.13 and δ 3.61 were assigned to H-6 and 

H-7, respectively. The same connectivity could not be observed in the COSY spectrum, 

possibly due to its lower resolution.  

 

The 1H-NMR spectrum of peak 4 showed an additional signal at δ 6.39 (d, J= 6.0 Hz) 

that did not belong to the structure of the major compound and was assigned as H-3 of 

compound 4', due to its similar C-resonances and identical splitting pattern in 

comparison with H-3 of compound 4 (Table 3.3.1.2). The proton assigned as H-3 was 

correlated with a peak resonating at δ 4.96, which was assigned as H-4. The H-4 of 

compound 4' could not be correlated with any other proton besides H-3, which does not 

happen for compound 4. This observation, together with the fact that the H-6 of 

compound 4' lost its large coupling constant and the large downfield shifts of C-4 (Δδ -

3.8) and C-9 (Δδ -7.7), suggests that compound 4' is the 5-OH derivative of compound 

4. The proposed structure has not been previously identified and therefore must be 

carefully assigned using complete 1H and 13C NMR spectra, especially as these 5-OH 

derivatives have not been found in this plant family. To assign the structure 

unambiguously the compound will have to be isolated using preparative techniques, 

which will be a difficult task as compounds 4 and 4' have exactly the same retention 

time. 

 

With aid of the HSQC spectrum all the protons and carbons of the sugar unit of peak 1 

could be assigned (Table 3.3.1.2), indicating the presence of a glucopyranosyl moiety in 

92 



Chemical investigation of Pinguicula lusitanica and Drosera intermedia 

 

93 

compound 1. The coupling constant of the anomeric proton at δ 4.68 (J = 7.9 Hz) 

indicated the β-configuration of the glucopyranose unit. The 1H-NMR spectrum also 

showed a doublet located at δ 5.46 (d, J= 4.2 Hz) which is a characteristic signal for H-1 

of an iridoid molecule (Boros and Stermitz, 1990; Feng et al., 2006). The COSY 

spectrum showed that the latter was coupled to a proton at δ 2.22 (dd, J= 9.2, 4.1 Hz), 

assigned as H-9, which in turn was coupled to a multiplet resonating at δ 3.15, assigned 

as H-5. In the TOCSY spectrum, a very weak signal could be seen between H-5 and H-

9 and a very characteristic singlet resonating at δ 7.41, which was assigned as H-3. The 

downfield position of this proton suggests that it is located between the oxygen at 

position 2 of the iridoid skeleton and another electronegative group at C-4, causing a 

deshielding effect. From the H-5 proton it was possible to assign the remaining signals 

of the protons connected to the iridoid skeleton with aid of the TOCSY spectrum. The 

signals at δ 2.30 (td, J= 16, 14, 7.5 Hz) and 1.47 (td, J= 14, 14, 7.5 Hz) were assigned to 

H6a and H6b, respectively, and the signal at δ 1.72 (t, J= 7.5 Hz) to the two H-7 

protons. From the splitting patterns of H-9 and H-7 it could be deduced that C-8 was a 

unprotonated carbon, and therefore the strong signal located at δ 1.33 (s) belonging to a 

methyl group, was assigned to the C-10 position. From the molecular formula deduced 

by the ESI-MS experiments (C16H24O5, Table 3.3.1.1), six C and 5 O atoms were 

assigned to the glucopyranose moiety and nine C and two O atoms to the iridoid core 

structure. The remaining C and three O atoms belong to a hydroxyl (OH) and carboxyl 

(COOH) substituent groups, which are connected to the two unprotonated C atoms (C-4 

and C-8) of peak 1. The carboxyl group was assigned to the C-4 position, due to the 

downfield resonance of H-3 and the hydroxyl group to the C-8 position. From the 

information deduced from the NMR and MS data it was possible to identify peak 1 as 

mussaenosidic acid (Damtoft et al., 1985; Boros and Stermitz, 1990).  

 

3.3.1.3.2.2. Phenylethanoid glycosides 

 

From the obtained UV spectra it was possible to conclude that peaks 2, 3, 5, 6 and 7 

(Table 3.3.1.1) were structurally related and analysis of NMR data (Table 3.3.1.3) 

revealed that they belong to the family of the phenylethanoid glycosides. The methanol 

extract of P. lusitanica comprised acteoside (peak 7) and the two pairs of enantiomers R 

and S campneoside I (peaks 2, 3), and R and S campneoside II (peaks 5, 6). The 

chemical structures of the identified compounds are shown in Figure 3.3.1.10. 
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Table 3.3.1.3 - 1H and 13C NMR data of the phenylethanoid glycosides obtained by HPLC-SPE-NMR from the methanol extract of P. lusitanica. 
 2  3  5  6  7   
Position δH*  δH*  δH*  δH*  δH*  δC** 
Aglycone            
1           131.4 
2 6.88 (1H, d, 1.5)  6.84 (1H, d, 1.5)  6.79 (1H, d, 2.0)  ***  6.70 (1H, d, 1.9)  116.9 
3           146.1 
4           144.3 
5 6.80 (1H, d, 8.0)  6.74 (1H, d, 8.3)  6.76 (1H, d, 8.1)  6.76 (1H, d, 8.2)  6.68 (1H, d, 8.0)  116.1 
6 ***  6.71 (1H, dd, 8.0, 1.5)  6.68 (1H, dd, 8.1, 2.0)  6.66 (1H, dd, 7.8, 1.5)  6.57 (1H, dd, 8.0 1.9)  121.0 
αa 3.84 (1H,  dd , 9.4. 2.8)  3.98 (1H, dd, 10.2, 2.5)  4.02 (1H, dd,  11.0, 8.2)  3.88 (1H, dd, 10.9, 2.8)  4.05 (1H, dt, 8.1, 6.8)  72.0 
αb 3.70 (1H, dd,  9.4, 3.1)  3.68 (1H, dd, 9.4, 2.9)  3.68 (1H, dd, 9.5, 3.1)  3.68 (1H, dd, 9.5, 3.2)  3.74 (1H, dt, 8.6, 7.2)   
β 4.76 ***  4.75 (1H, dd, 9.1, 2.0)  4.35 (1H, m)  4.37 (1H, m)  2.80 (2H, m)   36.4 
OCH3     3.25 (3H, s)  3.25 (3H, s)     
Glucosyl            
1' 4.40 (1H, d, 7.9)  4.41 (1H, d, 7.8)  4.39 (1H, d, 7.9)  4.42 (1H, d, 7.9)  4.39 (1H, d, 7.9)  104.0 
2' ***  ***  ***  ***  3.39 (1H, dd, 9.2, 7.9)  76.0 
3' 3.86 (1H, t, 9.4)  3.85 (1H, t, 9.2)  3.82 (1H, t, 9.2)  3.83 (1H, t, 9.1)  3.82 (1H, t, 9.2)  81.4 
4' 4.96 (1H, t, 9.3)  4.94 (1H, t, 9.2)  4.92 (1H, t, 9.4)  4.92 (1H, t, 9.1)  4.92 (1H, t, 9.5)  70.2 
5' ***  ***  3.53***  3.53***  3.52***  76.0 
6' ***  ***  3.62***  3.62***  3.62***  62.0 
     3.52***  3.52***  3.53***   
Rhamnosyl            
1'' 5.22 (1H, d, 1.0)  5.22 (1H, d,  1.2)  5.20 (1H, d, 1.6)  5.21 (1H, d, 1.2)  5.19 (1H, d, 1.2)  102.7 
2'' ***  3.90 (1H, dd, 12.9, 1.4)  3.92 (1H, dd, 3.3, 1.6)  3.92***  3.92 (1H, dd 2.8, 1.9)  71.7 
3'' ***  ***  ***  ***  3.58***  71.7 
4'' ***  ***  ***  ***  3.29 (1H, t, 9.5)  73.7 
5'' ***  ***  3.54***  3.54***  3.56***  70.2 
6'' 1.02 (3H, d, 6.6)  1.10 (3H, d, 6.0)  1.09 (3H, d, 6.2)  1.09 (3H, d, 6.2)  1.09 (3H, d, 6.2)  18.2 
Caffeoyl            
1'''           127.6 
2''' 7.08 (1H, d, 1.5)  7.05 (1H, d, 1.6)  7.05 (1H, d, 2.0)  7.05 (1H, d, 1.6)  7.05 (1H, d, 1.9)  115.1 
3'''           146.8 
4'''           149.6 
5''' 6.80 (1H, d, 8.4)  6.78 (1H, d, 8.3)  6.78 (1H, d, 8.2)  6.78 (1H, d, 8.2)  6.78 (1H, d, 8.2)  116.4 
6''' 6.98 (1H, dd, 8.2, 2.0)  6.96 (1H, dd, 8.3, 1.2)  6.96 (1H, dd, 8.3, 2.0)  6.96 (1H, dd, 8.2, 1.5)  6.96 (1H, dd, 8.2 1.9)  123.0 
α''' 6.30 (1H, d, 15.9)  6.27 (1H, d, 15.9)  6.27 (1H, d, 15.9)  6.27 (1H, d, 15.9)  6.27 (1H, d, 15.9)  114.6 
β''' 7.62 (1H, d, 15.9)  7.60 (1H, d, 15.9)  7.59 (1H, d, 15.9)  7.59 (1H, d, 15.8)  7.59 (1H, d, 15.9)  147.6 
CO           167.9 
*Relative to the residual methanol signal set to δ 3.31, δ values given in ppm; number of protons, multiplicity of signals (s, singlet; d, doublet; dd, double doublet; t, triplet; m, 

multiplet) and coupling constants (apparent splittings) given as numerical values in Hz are shown in parenthesis. **13C NMR chemical shifts obtained from HMBC 

experiments, relative to the resonance of the solvent set to δ 49.05. ***Signal/splitting pattern unclear due to overlapping signals. 
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Acteoside (peak 7): R=H; Campneoside I (peak 2, 3): R=OH; Campneoside II (peak 5,6): R=OCH3 

 

Figure 3.3.1.10 - Structure of the phenylethanoid glycosides from P. lusitanica. 

 

The molecular formula of C29H36O15 of peak 7 was deduced from its molecular ion 

peak in the negative mode ESI-MS spectrum (m/z 623; Table 3.3.1.1). The 1H-NMR 

spectrum of peak 7 showed signals of two aromatic rings, both with coupling patterns 

corresponding to a 1,2,4-trisubstituted benzene: δ 6.70 (d, J= 1.9, H-2), 6.68 (d, J= 8.0 

Hz, H-5), 6.57 (dd, J= 8.0, 1.9 Hz, H-6) and δ 7.05 (d, J=1.9 Hz, H-2'''), 6.78 (d, J= 8.2 

Hz, H-5'''), 6.96 (d, J= 8.2, 1.9 Hz, H-6'''). A trans-coupled olefinic pair of doublets was 

observed at δ 6.27 and 7.59 (d, J= 15.9 Hz), which together with the aromatic proton 

resonances indicated the presence of a caffeoyl moiety. In addition, the 1H-NMR 

spectrum showed signals of two sugar moieties. Characteristic resonances of an 

anomeric proton appearing at δ 5.19 (d, J= 1.2 Hz, H-1'') together with a methyl group 

at δ 1.09 (d, J= 6.2, H6'') suggested the presence of a rhamnopyranosyl unit, and a 

second doublet corresponding to an anomeric proton of a glucopyranosyl residue was 

observed at δ 4.39 (J= 7.9 Hz, H-1'). The assignment of all resonances of the 

rhamnopyranose and the glucopyranose residues (Table 3.3.1.3) was possible from a 

COSY spectrum. In the upfield region of the 1H-NMR spectrum, characteristic signals 

of an –CH2–CH2– group were observed at δ 2.80 (m, 2H), 3.74 (ddd J= 17.0, 8.0, 2.0 

Hz) and 4.05 (ddd, J= 17.0, 8.0, 2.0 Hz), assigned as H-β, H-αb and H-αa, respectively, 

which together with the second aromatic spin system form a hydroxytyrosyl unit. 

 

From the amount trapped of peak 7 it was possible to obtain a HMBC spectrum which 

is extremely helpful as it yields correlations between H and C-atoms through long range 

couplings, allowing to link fragments of a molecule (Fig. 3.3.1.11). This way, it could 
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be seen that H-1' of the glucopyranose moiety was correlated with C-α of the 

hydroxytyrosyl group. The HMBC spectrum of peak 7 also indicated the attachment 

point of the rhamnosyl and the caffeoyl residues to the glucopyranose unit, through the 

correlations between H-3' and C-1'' and H-4' and C-α'', respectively. Peak 7 was 

therefore assigned as acteoside (β-[3',4'-dihydroxyphenyl]-ethyl-O-α-L-

rhamnopyranosyl[1→3]-β-D-[4-O-caffeoyl]-glucopyranoside), commonly known as 

verbascoside. The HMBC also allows to derive chemical shifts of quaternary C-atoms, 

thus it was possible to assign all 13C and 1H-NMR resonances, which were in agreement 

with the published data (Wu et al., 2004). 
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Figure 3.3.1.11 - Selected correlations observed in the HMBC spectrum of peak 7 (H→C). 

 

Peaks 2 and 3 are isomers with a molecular formula of C29H36O16, as deduced from the 

ESI-MS experiments (Table 3.3.1.1). The 1H-NMR spectra show that these two peaks 

are related to peak 7, showing only differences at the H-β and H-α positions of the 

aglycone (hydroxtyrosol unit). Furthermore, the deduced molecular formula suggests 

that the isomers are substituted by one extra hydroxyl group in comparison to acteoside. 

The signals belonging to H-α and H-β of acteoside were replaced by signals at δ 4.76, 

3.70, 3.84 (peak 2) and δ 4.75, 3.98, 3.68 (peak 3) indicating the approximate site of 

hydroxylation. The S/N obtained for the 1H-NMR spectra of peaks 2 was relatively low 

and it was not possible to assign all the protons of the molecules, but by comparing the 

obtained diagnostic information with data in literature it was possible to assign peaks 2 

and 3 as R/S β-hydroxyacteoside, or R/S campneoside II. Although both isomers were 

separated in chromatography, it was not possible to distinguish them. It is interesting to 
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see that campneoside II follows the same fragmentation pattern as acteoside after the 

loss of the hydroxyl residue (18 amu) giving the precursor ion at m/z 623 (Table 

3.3.1.1). 

 

The 1H-NMR spectra showed that peaks 5 and 6 are also isomers and related to 7. From 

the ESI-MS experiments, a molecular formula of C30H38O16 was deduced, suggesting 

that they are substituted by a methoxy group (OCH3) in comparison to acteoside. This is 

supported by the strong singlet appearing at δ 3.35 (3H) in the 1H-NMR spectra of peak 

5 and 6. From the obtained diagnostic 1H-NMR information it was possible to assign 

peaks 5 and 6 as R/S β-methoxyacteoside or R/S campneoside I. Once more, it was not 

possible to distinguish both isomers. However, this might be achieved if larger amounts 

of material are trapped and better NMR spectra are obtained, because the two pairs of 

isomers were separated in chromatography using the optimized gradient, which was not 

the case in a previous work (Wu et al., 2004). 

 

3.3.1.4. Biological and taxonomical relevance 

 
1H-NMR spectroscopy is a very non-selective technique, as it detects any proton in a 

sample regardless of its structure, thus the relative amounts of the components of an 

extract can be deduced to a good approximation by comparing the intensity of a specific 

signal. Table 3.3.1.4 shows the S/N of the identified compounds in the methanol extract 

of P. lusitanica compounds. Assuming that the SPE efficiency was the same for all 

peaks, it is possible to infer that acteoside (S/N = 226.2) is the most abundant in the P. 

lusitanica extract, followed closely by mussaenosidic acid (S/N = 211.5). The relative 

amount of these two compounds is similar, suggesting that the pathways for these two 

types of compounds in P. lusitanica are of equal importance. It has been suggested that 

the function of phenylethanoid glycosides in plants is resistance to, or protection from, 

fungal or viral attacks (Jiménez and Riguera, 1994). 

 

The benefit of iridoid glucosides for the plant is not clear, although the bitterness of 

many of these compounds is considered to be a deterrent for herbivores. Konno et al. 

(1999) have also demonstrated that the iridoid aucubin is a strong protein denaturant 

when hydrolyzed by the plant’s enzymes. The authors suggest that the glycosilated form 

of the iridoid is compartmentalized in the cells of the intact plant, but when the tissue is
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Table 3.3.1.4. S/N of the secondary metabolites of the P. lusitanica methanol extract obtained in HPLC-

SPE-NMR experiments. 

Compound S/N* 

Iridoid glucosides  

Mussaenosidic acid (peak 1) 211.5 

Globularin (peak 9) 79.6 

Unknown (peak 4') 16.0 

Scutelarioside II (peak 4) 47.3 

Phenylethanoid glycosides  

Acteoside (peak 7) 226.2 

R or S Campneoside I (peak 5) 14.4 

R or S Campneoside I (peak 6) 16.8 

R or S Campneoside II (peak 2) 3.4 

R or S Campneoside II (peak 3) 11.9 

* Signals determined for the respective anomeric protons under identical acquisition conditions, obtained 

for 4 cumulative trappings and injection volume of 20 μL (50 mg/mL). 

 

damaged by herbivores, the compound is hydrolyzed and reacts irreversibly with the 

proteins and renders these more or less indigestible, contributing to the plants defence 

mechanism. This suggests that iridoid glucosides may play an important role in the 

defense mechanism against herbivores and that further investigation is needed to better 

understand the biological function of these compounds. The biosynthetic pathway of 

catalpol, the iridoid center core of globularin and scutelarioside, has been previously 

determined by experiments using deuterium-labeled precursors (Damtoft et al., 1994). It 

was shown that mussaenosidic acid is a precursor of catalpol, therefore it can be 

assumed that globularin and scutelarioside II are also derived from mussaenosidic acid.  

 

Table 3.3.1.4 also shows that the concentration of both isomers of campneoside I is 

similar (S/N = 14.4 and 16.8). It is interesting to observe that the isomer of campneoside 

II that is eluted first (peak 2) has a lower S/N (3.4) than the other isomer (11.9). 

However, it is assumable that the isomers are present in similar amounts because the 

UV intensities of both isomers of campneoside II are similar and they have the same 

chromophores. This could mean that peak 2 was extracted less efficiently in the SPE 

cartridge. It is likely that these isomers are derived from acteoside after hydroxylation, 

to give campneoside II and posterior methylation, to give campneoside I. The fact that 

both pairs of isomers were identified in P. lusitanica in similar amounts suggests that 
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the reactions involved in the hydroxylation and methylation are chemical processes, or 

reactions without a stereochemical preference, in case we are dealing with enzymatic 

processes. 

 

Phenylethanoid glycosides and iridoid glucosides occur simultaneously in several plant 

families (Bignoniaceae, Labitaeae, Oleaceae) and are of taxonomic and genetic 

importance. The genera Digitalis (Taskova et al., 2005), Veronica (Jensen et al., 2005; 

Pedersen et al., 2007) and Plantago (Rønsted et al., 2000; 2003) of the Plantaginaceae 

family, and Rehmannia (Albach et al., 2007) of the Scrophulariaceae family, have been 

extensively studied and important taxonomical information has been inferred from their 

content in iridoid and phenylethanoid glycosides. Globularin and scutellarioside II were 

found in P. vulgaris and mussaenosidic acid in Utricularia australis (Damtoft et al., 

1985), both members of the Lentibulariaceae family, which is in good agreement with 

the metabolites found in P. lusitanica. Within the Pinguicula genus, acteoside has only 

been identified in P. moranensis (Damtoft et al., 1994), possibly due to the use of less 

sensitive analytical techniques. P. vulgaris and P. moranensis belong to the subgenus 

Pinguicula, while P. lusitanica was included in the Isoloba subgenus, according to the 

classification of Casper (1966). Also, an analysis of the trnK intron (Cieslak et al., 

2005) within species of the Pinguicula genus confirmed that P. lusitanica is genetically 

considerably distinct from P. vulgaris and P. moranensis (Figure 3.3.1.12). The fact that 

these species have the same compounds in their constitution suggests that the two main 

chemical pathways of iridoid and phenylethanoid synthesis are rather conserved in the 

Pinguicula genus. 

 

3.3.2. D. intermedia 

 

3.3.2.1. HPLC gradient optimization and SPE trappings 

 

In vitro produced plant material of D. intermedia was extracted with n-hexane, water 

and methanol. The prepared extracts vary considerably in composition and therefore a 

specific gradient was optimized for each one. The obtained HPLC-ESI-MS 

chromatograms and the respective gradients are depicted in Fig. 3.3.2.1. The 

chromatogram of the n-hexane extract shows that it is composed by one single major
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Figure 3.3.1.12 - Phylogenetic tree of the Pinguicula genus, based on the analysis of the trnK intron 

[adapted from Cieslak et al., (2005)]. The highlighted species have been previously analyzed for their 

secondary metabolite profile. 

 

compound and therefore it was not necessary to perform SPE trappings. The compound 

has a long retention time meaning it is relatively apolar and was dissolved in deuterated 

chloroform and analyzed directly in a NMR tube. The HPLC chromatogram of the 

methanol extract showed a large amount of metabolites with a satisfactory separation. 

The ten most intense peaks were selected for SPE trapping and the obtained MS data is 

displayed in Table 3.3.2.1. 

 

The chromatogram of the water extract showed a low content in secondary metabolites 

with 3 major peaks. The most intense peak at tR= 22.4 min was also extracted in the 

methanol extract and selected for SPE-NMR analysis and was therefore not further 

investigated. The peak at tR = 18.8 min showed a pseudo-molecular ion peak [M-H]- at
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Fig. 3.3.2.1 - HPLC-ESI-MS chromatograms measured in negative mode of the n-hexane (A), water (B) 

and methanol (C) extracts of D. intermedia (150 × 2.1 mm i.d. C18 column). Gradient elution profile is 

shown as percent of acetonitrile in H2O. 
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Table 3.3.2.1 - ESI-MS data of the major peaks of the n-hexane, water and methanol extracts of D. 

intermedia. 

MS negative mode Peak tR 
(min) [M-H]- 

(m/z, mau) 

Fragments 

(m/z, amu) 

MS positive mode 
[M+H]+ (m/z, amu) 

Possible Molecular 
Formula 

n-hexane      

1 23.4 187.0 175.0, 159.0, 
131.0 

189.1 C11H8O3 

water      

1 18.8 385.2 223.1, 205.1, 
153.1 

387.2 C19H30O8 

2 22.4 371.1 249.1 373.1 C16H20O10 

3 27.3 401.2 301.0 403.2 C19H30O9 

methanol      

1 8.3 513.2 351.1, 188.0 515.2 C23H30O13 

2 18.9 371.1 249.1 373.1 C16H20O10 

3 22.2 479.1 316.0 481.1 C21H20O13 

4 23.3 631.1 317.0 633.1 C28H24O17 

5 25.6 301.0 257.0, 229.0, 
173.1 

303.0 C14H6O8 

6 26.8 463.1 301.0 465.1 C21H20O12 

7 27.1 491.1 476.1, 328.0, 
313.0 

493.1 C22H20O13 

7' 27.1 463.1 301.0 465.1 C23H24O12 

8 28.5 615.1 301.0 617.1 C28H23O16 

9 34.0 315.0 300.0 317.0 C15H8O8 

10 43.5 329.0 
314.0, 299.0, 

271.0 
331.0 C16H10O8 

 

m/z 385 in the negative ion ESI-MS spectrum, for which a possible molecular formula 

of C19H30O8 was deduced. A search in natural product libraries (DNP, 2007) gave 

several hits for glycosylated dihydroxymegastigmadiene isomers (Figure 3.3.2.2). This 

possibility is supported to some extent by the obtained fragmentation in the ESI-MS 

spectra, which showed fragments at m/z 223 and 205 suggesting the successive loss of 

one hexosyl moiety ([(M-H)-162]-) and a hydroxyl unit ([(M-H)-162-18]-), respectively. 

The possible molecular formula (C19H30O9) deduced for peak 3 (tR = 27.3 min) of the 

water extract also gave hits for a megastigmadiene derivative, substituted with one extra 

hydroxyl group in comparison to peak 1, enhancing the probability that these 

compounds might be produced by D. intermedia. However, these results are very 

inconclusive and taking into account that they have not been previously identified in 

plants of the Droseraceae family, further investigation is needed to confirm the presence 
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of these compounds in the metabolome of D. intermedia. Due to the low levels of these 

metabolites in the water extract it was not possible to analyze them by SPE-NMR. 
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Figure 3.3.2.2 - Example of dihydroxymegastigamadiene derivative: (6R)-9,10-dihydroxy-4,7-

megastigmadien-3-one-9-O-β-D-glucopyranoside (Saleem et al., 2006). 

 

3.3.2.2. Direct NMR analysis of the n-hexane extract 

 

The negative-ion ESI-MS spectrum showed a pseudo-molecular ion peak [M-H]- at m/z 

187 corresponding to the molecular formula C11H8O3. Because the extract was very 

concentrated and relatively clean a 13C-NMR spectrum could be obtained. The spectrum 

exhibited 8 carbon signals in the range δC 115.1 - 161.2 and two carbon signals 

resonating further downfield at δC 161.2 and δC 190.3 ascribable to a naphthalenedione 

ring and an additional signal resonating upfield at δC 16.6 consistent with a methyl 

group (Table 3.3.2.2). The carbons of the naphthalenedione ring bore four directly 

attached hydrogens according to the obtained HSQC. Also a characteristic signal of a 

phenolic hydroxyl group could be seen at δ 11.97 in the 1H-NMR spectrum, leaving two 

oxygen atoms belonging to two carbonyl groups to be assigned. The described structure 

is consistent with plumbagin (5-hydroxy-2-methyl-1, 4-naphthalenedione or 5-hydroxy-

2-methyl-1,4-naphthoquinone; Figure 3.3.2.3) (Sankaram et al., 1986) which is 

considered a taxonomic marker for the family Droseraceae (Culham and Gornall, 1994). 

The connectivities shown in the HMBC spectrum made it possible to assign the entire 

molecule (Table 3.3.2.2; Figure 3.3.2.4).  
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CH3

OH  
Figure 3.3.2.3 - Structure of plumbagin. 
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The coupling constants of the protons belonging to the methyl group at δ 2.19 (3H, d, 

J= 1.5 Hz) and the proton at δ 6.80 (J= 1.5 Hz) indicated that they are in the same spin 

system and therefore the aromatic proton could be assigned as H-3. From the H-3 

proton connectivities could be seen with signals at δC 16.6, 115.1, 149.6, 161.2 and 

184.8 in the HMBC, which could be assigned as CH3, C-10, C-2, C-5 and C-1, 

respectively. From the 1H-NMR spectrum it could be seen that the remaining aromatic 

protons at δ 7.25 (dd, J= 8.2, 1.4 Hz), δ 7.60 (dd, J= 8.2, 7.5 Hz) and δ 7.63 (dd, J= 7.5, 

1.4 Hz) are coupled forming an ABC spin system. The signal at δ 7.60 was assigned as 

H-7, the signal at δ 7.63 as H-8 and the signal at 7.25 as H-6 due to its relative upfield 

position. 

 

Table 3.3.2.2 - 1H and 13C NMR data of D. intermedia n-hexane extract in (in CDCl3). 

Position δH* δC**  HMBC*** 

1  184.8   

2  149.6   

3 6.80 (1H, d, 1.5) 135.4  C-1, C-2, C-5, C-10, CH3 

4  190.3   

5  161.2   

6 7.25 (1H, dd, 8.2, 1.4) 124.2  C-4, C-5, C-8, C-9, C-10 

7 7.60 (1H, dd, 8.2, 7.5) 136.0  C-5, C-6, C-8, C-9 

8 7.63 (1H, dd, 7.5, 1.4) 119.3  C-1, C-4, C-6, C-7, C-10 

9  132.1   

10  115.1   

CH3 2.19 (3H, d, 1.5) 16.6  C-1, C-2, C-3, C-4 

*Relative to the residual methanol signal set to δ 3.31, δ values given in ppm; number of protons, 

multiplicity of signals (d, doublet; dd, double doublet) and coupling constants (apparent splittings) given 

as numerical values in Hz are shown in parenthesis. **13C NMR chemical shifts obtained from HMBC 

experiments, relative to the resonance of the solvent set to δ 77.00. ***Correlations observed in the 

HMBC spectrum (H→C). 

 

These assignments were supported by the HMBC spectrum which showed 

connectivities between H-6 and C-5, C-10 and signals at δC 119.3, 132.1 and 190.3 

corresponding to C-8, C-9, and C-4, respectively; and between H-8 and C-1, C-4 and C-

10 and signals at δC 124.2 and 136.0, corresponding to C-6 and C-7, respectively. 

 

The 13C and 1H NMR spectra depicted in Fig. 3.3.2.4 also show that no other peaks 

belonging to contaminating compounds can be seen, meaning that the SPE procedure is 
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a very effective and simple method to purify plumbagin from n-hexane extracts of 

D. intermedia.
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Figure 3.3.2.4 - HMBC spectrum of n-hexane extract of D. intermedia. 

 

These results also show that n-hexane is a very selective extractant for plumbagin as 

none of the compounds extracted with water or methanol were extracted in significant 

amounts with n-hexane. This can be explained by the fact that plumbagin is relatively 

apolar and therefore has a higher affinity towards n-hexane than the more polar solvents 

such as water or methanol. Because plumbagin is a compound with a broad range of 

biological activities and commercial value, a method to extract the naphthoquinone 

from D. intermedia plants is developed and discussed in Chapter 5, as well as its 

biological and ecological aspects (section 5.1.2.2). 

 

3.3.2.3. HPLC-SPE-NMR analysis of the methanol extract of D. intermedia 

 

A preliminary analysis of the NMR spectra of the trapped peaks showed that the 

methanol extract comprised at least three groups of secondary metabolites. Peaks 3, 4, 

6, 9 and the minor compound of peak 7 showed characteristic signals of flavonoid 
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moieties in the aromatic region of the respective 1H-NMR spectra and will be discussed 

in further detail in the next section. The 1H-NMR spectra of peaks 5, 9, 10 and the 

major compound of peak 7 were very characteristic showing few 1H-NMR signals and 

were assigned as ellagic acid derivatives. For peak 1 it was only possible to obtain 1D 
1H-NMR spectra but the diagnostic signals suggest that the compound bears a 

naphthalene ring and belongs to a different class of natural products. Peak 2 was lost 

during transfer from the SPE cartridge to the NMR probe, due to an incorrect transfer 

volume. Because peak 2 was one of the minor peaks of the methanol extract it was not 

further investigated.  

 

3.3.2.3.1. Flavonoid glucosides 

 

The methanol extract comprised 6 flavonoid glycosides, namely quercetin-3-O-

galactoside (peak 6), quercetin-3-O-glucoside (peak 7'), quercetin-3-O-(2''-O-

galloylgalactoside) (peak 8), myricetin-3-O-galactoside (peak 3), myricetin-3-O-

glucoside (peak 3') and myricetin-3-O-(2''-O-galloyl)-galactoside (peak 4). The 

structures of the identified compounds are depicted in Figure 3.3.2.5 and the NMR data 

that allowed the assignment of these compounds is shown in Table 3.3.2.3.  
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Figure 3.3.2.5 - Structures of the flavonoid glucosides of D. intermedia. 
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Table 3.3.2.3 - 1H and 13C NMR data of the flavonoid glucosides obtained by HPLC-SPE-NMR from the methanol extract of D. intermedia. 

*Relative to the residual methanol signal set to δ 1, δ values given in pm  protons, multiplicity of signals (s, singlet; d, ublet; dd, double doublet; d e triplet), 

coupling constants (apparent splittings) given as numerical values in Hz are shown in parentheses. **

3.3 p ; number of  do t, doubl

Position 3   3’   4  6    7’  8 
     δH* δC**  δH* δC**  δH*  δH* δC**  δH*  δH* 

Aglycone               
2  158.6        150.0      
3  135.8        135.8     
4  ND        ND     
5  163.0        163.1     
6 6.21 (1H, d, 2.1) 99.6  6.21*** 99.6  6.16 (1H, d, 2.0)  6.21 (1H, d, 2.0) 100.0  6.21 (1H, d, 2.0)  6.17 (1H, d, 2.0) 
7  166.0        166.2     
8 6.40 (1H, d, 2.1) 94.3  6.39 (1H, 

d, 2.1) 
94.3  6.32 (1H, d, 2.0)  6.41 (1H, d, 2.0) 95.0  6.40 (1H, d, 2.0)  6.34 (1H, d, 2.0) 

9  158.4        158.5     
10  105.6        105.6     
               
1'  121.6        123.1     
2' 7.38 (1H, s) 109.7  7.30 (1H, s) 109.7  7.27 (1H, s)  7.84 (1H, d, 2.1) 117.9  7.71 (1H, d, 2.0)  7.65 (1H, d, 2.2) 
3'  146.5        145.8     
4'  137.8        159.1     
5'  146.5       6.87 (1H, d, 8.5) 116.1  6.87 (1H, d, 8.5)  6.79 (1H, d, 8.5) 
6' 7.38 (1H, s) 109.7  7.30 (1H, s) 109.7  7.27 (1H, s)  7.60 (1H, dd, 8.5, 2.1) 123.1  7.60 (1H, dd, ***, 

2.0) 
 7.50 (1H, d, 8.5, 2.2) 

Sugar unit               
1'' 5.20 (1H, d, 7.8) 105.2  5.26 (1H, 

d, 7.8) 
104.2  5.79 (1H, d, 8.0)  5.17 (1H, d, 7.8) 105.7  5.26 (1H, d, 7.6)  5.69 (1H, d, 8.0) 

2'' 3.83 (1H, dd, 9.7, 7.9) 73.0  3.52*** 75.5  5.45 (1H, dd, 9.7, 8.1)  3.82 (1H, dd, 9.6, 8.0) 73.3  3.45 (1H, t, 7.7)  5.44 (1H, dd, 9.9, 8.0) 
3'' 3.57 (1H, dd, 8.0, 1.6) 74.9  3.43*** 77.8  3.85 (1H, dd, 9.8, 3.2)  3.54 (1H, dd, 6.3, 5.0) 75.1  3.35 (1H, t, 9.5)  3.82 (1H, dd, 9.9 3.3) 
4'' 3.87 (1H, dd, 3.2, 0.5) 69.9  3.38*** 70.8  3.96 (1H, d, 3.2)  3.85 (1H, d, 3.0) 70.0  3.42 (1H, t, 9.0)  3.93 (1H, d, 3.2) 
5'' 3.49 (1H, td, 6.2, 6.0, 0.5) 77.0  3.23*** 78.2  3.42***  3.48 (1H, td, 6.0, 5.4, 

0,8) 
77.3  3.22 (1H, dd, 5.3, 

2.5) 
 3.42 (1H, dt, 2.8, 2.6, 

1.5) 
6a'' 3.65 (1H, dd, 11.2, 6.0) 61.7  3.90*** 62.3  3.88 (1H, dd, 11.9, 

2.2) 
 3.64 (1H, dd, 11.2, 6.0) 62.0  3.71 (1H, dd, 11.8, 

2.3) 
 3.68 (1H, dd, 11.8, 6.0) 

6b'' 3.58 (1H, dd, 9.3, 6.2)   3.71***   3.70 (1H, dd, 5.9, 2.2)  3.56 (1H, dd, 6.4, 3.2)   3.57 (1H, dd, 11.2, 
5.8) 

 3.59 (1H, dd, 6.5, 6.0) 

Galloyl               
2'''/6'''       7.15 (2H, s)       7.13 (2H, s) 

13C NMR chemical shifts obtained from HMBC experiments, relative to the 

resonance of the solvent set to δ 49.05. ***Signal unclear due to overlapping signals. 
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These metabolites can be subgrouped in the class of the flavonols (3-hydroxyflavones) 

and their general structure is depicted in Figure 3.3.2.6. The assignment of each peak is 

discussed in further detail in the next section. 
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Figure 3.3.2.6 - Flavonol structure and ring nomenclature (Middleton et al., 2000). 

 

The negative-ion ESI-MS spectrum of peak 6 showed a pseudomolecular ion [M-H]–

peak at m/z 463 suggesting a molecular formula of C21H20O12, together with ion 

fragments at m/z 301 coherent with the loss of one hexosyl unit ([(M-H)-162]-). The 
1H-NMR spectrum (Table 3.3.2.3) showed five aromatic proton resonances, belonging 

to two different spin systems determined by a TOCSY experiment. One pair of doublets 

at δ 6.41 (d, J= 2.0 Hz) and 6.21 (d, J= 2.0 Hz), suggest one tetra-substituted aromatic 

ring and three doublets at δ 7.84 (d, J= 2.1 Hz), 7.60 (dd, J= 8.5, 2.1 Hz) and 6.87 (d, J= 

8.5 Hz), form a separate spin system indicating the presence of an 1,2,4-tri-substituted 

aromatic ring. These signals are characteristic of a flavonol aglycone (Figure 3.3.2.6) 

and analysis of the HMBC spectrum with aid of reference data gave the full assignment 

of the C-resonances of the aglycone of peak 6, which was confirmed to be quercetin 

(Tatsis et al., 2007). The signals at δ 6.41 and 6.21 could be assigned as H-8 and H-6, 

respectively, of the A ring of the flavonol and the signals at δ 7.84, 7.60 and 6.87 as 

H-2', H-6' and H-5', respectively, of the B ring of the flavonol. 1H-1H COSY 

connectivities were used to assign the protons of the sugar unit. The multiplicities and 

coupling constants for the proton resonances in the 1H-NMR spectrum indicated the 

presence of one O-linked galactopyranosyl moiety and the anomeric proton signal at 

δ 5.17 (d, J = 7.8 Hz) indicated the β-configuration of the unit. Therefore, the compound 

was assigned as quercetin-3-O-β-D-galactopyranoside, also known by the trivial name 

hyperoside (Tatsis et al., 2007). 

 

The negative ion ESI-MS spectrum of peak 3 showed a pseudo-molecular ion peak at 

m/z 479 for which a molecular formula of C21H20O13 could be deduced, suggesting that 
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it is a hydroxylated derivative of hyperoside. The 1H-NMR spectrum shows that the 

proton resonances of the A ring of the aglycone and of the sugar moiety are identical to 

that of hyperoside. However, instead of three proton resonances at the B ring of the 

aglicone, only one singlet can be seen, suggesting that the phenyl group is substituted at 

the C-5 position with one extra hydroxyl group and that the aglycone is myricetin. This 

substitution explains the appearance of one singlet with a higher intensity at δ 7.38 (2H, 

s) which corresponds to the overlapping signals of the symmetrical H-2' and H-6' 

protons of the B ring. Therefore peak 3 was assigned as myricetin-3-O-β-D-

galactopyranoside. The 1H-NMR spectrum of peak 3 showed signals belonging to a 

second myricetin moiety, namely a singlet belonging to the H-2' and H-6' protons of the 

B ring of the flavonoid at δ 7.30 (2H, s) and a doublet belonging to H-8 at δ 6.39 (d, J= 

2.1 Hz). The signal belonging to H-6 of the minor compound was overlapped by the 

same proton signal of myricetin-galactoside. Also, the signal corresponding to a second 

anomeric proton could be seen at δ 5.26 (d, J= 7.8 Hz). It was not possible to determine 

the multiplicities and coupling constants of the protons comprising the sugar moiety, 

however by analyzing the COSY and HSQC spectra it was possible to determine the 

chemical shift of each H and C-atom, allowing to assign it as a glucopyranosyl unit, by 

comparison with literature data (Slimestad et al., 1995). The minor compound of peak 3 

was therefore assigned as myricetin-3-O-β-D-glucopyranoside. 

 

Peak 8 showed a pseudo-molecular ion peak [M-H]- at m/z 615 consistent with a 

molecular formula of C28H24O16. The aromatic region of the 1H-NMR spectrum of peak 

8 is very similar to that of peak 6 indicating that it is another quercetin glycoside 

derivative. The proton resonances of the sugar unit were assigned by analyzing their 

multiplicities and coupling constants which suggested that it is a β-galactopyranosyl 

unit. From the obtained molecular formula for peak 8 it can be deduced that after the 

assignment of the quercetin unit (C15H9O7) and the hexosyl unit (C6H10O5) a fragment 

of C7H5O4 is left to be assigned. The molecular formula of the fragment suggests that 

peak 9 is substituted with a galloyl group, which is consistent with the NMR data as one 

extra aromatic singlet can be seen at δ 7.13 corresponding to the two symmetrical H-2''' 

and H-6''' protons of the galloyl unit (Akdemir et al., 2001). The H-2'' proton showed a 

great downfield shift (Δδ + 1.61) in comparison to the same proton of peak 3 (δ 3.83), 

suggesting that the substituent group is O-linked at the C-2'' position of the sugar 
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moiety. Peak 8 was therefore assigned as quercetin-3-O-β-(2''-galloylgalactoside) and 

confirmed with literature data (Pakulski and Budzianowski, 1996a). 

 

Peak 7 was comprised of two co-eluting compounds. The ESI-MS spectrum suggested 

that the minor compound was an isomer peak 6, showing a pseudo-molecular ion [M-

H]- peak at m/z 463. The aromatic region of the 1H-NMR spectrum of the minor 

compound of peak 7 minor has the characteristic set of signals of a quercetin moiety, 

which is almost identical for peak 6 (Table 3.3.2.3), indicating that the difference 

resides in the sugar unit. Discrimination between quercetin glycosides can be based on 

the differences of the glycoside protons chemical shifts, especially that one of the 

anomeric proton (Hansen et al., 1999; Lommen et al., 2000). The minor compound of 

peak 7 could therefore be assigned as quercetin-3-O-β-D-glucopyranoside or 

isoquercitrin based on the characteristic signal of the anomeric proton at δ 5.26 (d, J= 

7.6 Hz), which resonates slightly further downfield and has a smaller coupling constant 

in comparison to the anomeric proton of hyperoside (δ 5.17, d, J= 7.8 Hz), as has been 

previously reported (Tatsis et al., 2007). 

 

The negative ion ESI-MS spectrum of peak 4 showed a pseudo-molecular ion peak at 

m/z 631 suggesting a molecular formula of C28H24O17. The intensities of the peaks that 

could be seen in the 1H-NMR spectrum were low, but faint signals of a meta coupled 

pair of doublets at δ 6.16 (d, 2.0) and δ 6.32 (d, 2.0) and an intense singlet at δ 7.27 (2H, 

s) suggested that peak 4 is a myricetin derivative. Also an anomeric proton resonating at 

δ 5.79 (d, J= 8.0 Hz) and the signals between δ 5.45-3.42 indicated the presence of a 

sugar moiety, which was identified as a galactopyranosyl unit by comparison of the 

multiplicities and coupling constants of the sugar moiety of hyperoside. The singlet at 

δ 7.15 and the downfield shift of the H-2'' proton of the sugar moiety, as verified for 

peak 8 (Table 3.3.2.3), suggested the linkage position of a galloyl group. This way, 

peak 4 could be assigned as myricetin 3-O-(2''-O-galloyl)-β-D-galactopyranoside and 

confirmed with literature data (Akdemir et al., 2001). 

 

3.3.2.3.2. Ellagic acid derivatives 

 

The second largest group of secondary metabolites identified in D. intermedia 

comprised ellagic acid (peak 5) and their derivatives 3-O-methylellagic acid (peak 9), 
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3,3'-di-O-methylellagic acid (peak 10) and 3,3'-di-O-methylellagic acid 4-O-β-D-

glucoside (peak 7). The chemical structures of the identified compounds are shown in 

Figure 3.3.2.7 and the NMR data that led to their assignment in Table 3.3.2.4. 
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Figure 3.3.2.7 - Structures of the ellagic acid derivatives of D. intermedia. 

 
The assignment of peak 5 was a complicated task due to the few signals that could be 

seen in the 1H-NMR spectrum. In fact, in the entire spectrum only one signal could be 

seen, namely a singlet at δ 7.59 (coupled to δC 111.5 in HSQC) indicating that the 

compound is highly functionalized and has very few protonated carbons (Table 3.3.2.4). 

The negative ion ESI-MS spectrum showed a pseudo-molecular [M-H]- at m/z 301 

consistent with a molecular formula of C14H6O8. A search in a natural products 

database (DNP, 2007) based on the molecular formula indicated ellagic acid as a 

candidate. Ellagic acid is a compound bearing only two symmetrical protonated carbons 

which resonate at δ 7.47 (in DMSO-d6) according to literature data (Li et al., 1999). 

Assigning a compound based on a single resonance is risky and undesirable and, 

therefore it is important to gather more information to support the assignment. An 

additional hazard in assigning ellagic acid derivatives comes from the fact that both 

quercetin and ellagic acid have a molecular weight of 302, making them difficult to 

distinguish in MS experiments. However, negative ion-mode HPLC-MSn experiments 

have pointed out that when the m/z 301 ion is further fragmented the quercetin 

fragments produce ions at m/z 179 and 151, while the equivalent ellagic acid ion yields 

fragments at m/z 257 and 229. This data supports the assignment of peak 5 as ellagic 

acid, because in-source fragmentation of peak 5 yielded the corresponding characteristic 

fragments (Figure 3.3.2.8). In addition, ellagic acid has been identified in extracts of 

other Drosera species (Paper et al., 2005). 
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Table 3.3.2.4 - 1H and 13C NMR data of the ellagic acid derivatives obtained by HPLC-SPE-NMR from 

the methanol extract of D. intermedia. 

*Relative to the residual methanol signal set to δ 3.31, δ values given in ppm; Number of protons, 

multiplicity of signals (s, singlet; d, doublet) and coupling constants (apparent splittings) given as 

numerical values in Hz are shown in parenthesis. **13C-NMR chemical shifts obtained from HMBC 

experiments of total methanol extract, relative to the resonance of the solvent set to δ 49.05. ***Signal 

unclear due to overlapping signals.  

 5   7  9  10 
Position δH* δC**  δH*  δH*  δH* 
Aglycone         
1  112.1       
2  ND       
3  140.7       
4  152.3       
5 7.59 (2H, s) 111.5  7.93 (1H, s)  7.56 (1H, s)  7.59 (2H, s) 
6  ND       
7  159.2       
3-OCH3    4.20 (3H, s)  4.18 (3H, s)  4.18 (6H, s) 
1'         
2'         
3'         
4'         
5'    7.58 (1H, s)  7.59 (1H, s)   
6'         
7'         
3'-OCH3    4.19 (3H, s)     
         
Sugar unit         
1''    5.15 (1H, d, 7.8)     
2''    3.59 (1H, dd, 8.9, 7.8)     
3''    3.53 (1H, dd, 9.1, 8.7)     
4''    3.48 (1H, dd, 9.2, 7.5)      
5''    3.55***     
6''    3.92 (1H, dd, 12.2, 1.9)     
    3.75 (1H, dd, 12.2, 5.3)     
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Figure 3.3.2.8 - Negative-ion ESI-MS spectrum of peak 5 of D. intermedia methanol extract. 
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Ellagic acid derivatives, bearing 12 non-protonated and only two protonated aromatic 

carbons, are very difficult to assign using regular NMR spectroscopy experiments, 

because 1H-1H experiments such as COSY, TOCSY or NOESY would give no 

information and even a good quality HSQC spectrum indicates only one single C-

resonance of the core structure. Perhaps the most indicated experiment to assign similar 

compounds is the Incredible Natural Abundance Double Quantum Transfer 

Spectroscopy (INADEQUATE) which is a specially designed COSY experiment that 

yields 13C-13C correlations, however, the drawback of this experiment is its extremely 

low sensitivity. A different approach has been described to achieve the complete 

assignment of ellagic acid derivatives using HMBC experiments with different delay 

times in order to optimize the detection of long range couplings (Li et al., 1999). 

 

In this case, the trapped peak was not subjected to further NMR experiments due to the 

low amount of trapped material, which did not provide enough signal to obtain a good 

quality 13C spectrum. Instead a different approach was used, which involved dissolving 

the entire methanol extract in deuterated methanol and analyzing it directly by NMR in 

order to obtain some C-resonances through HMBC experiments. The HMBC spectrum 

showed that the H-5 proton was correlated with signals at 112.2, 140.7, 159.2 and a 

faint signal at 152.3 which were in good agreement with the resonances referred in 

literature for C-1, C-3, C-7 and C-4, respectively, confirming the assignment of peak 5. 

 

The negative ion ESI-MS spectrum of the major compound of peak 7 showed a [M-H]- 

at m/z 491 suggesting a molecular formula of C22H20O13. The 1H-NMR spectrum also 

showed very few signals in the aromatic region, namely two singlets appearing at δ 7.93 

and 7.58 and a doublet resonating at δ 5.15 (d, J= 7.8 Hz) suggesting that peak 7 was a 

glucosylated ellagic acid derivative. The chemical shifts and the multiplicities of the 

protons of the sugar moiety determined by analyzing the COSY and TOCSY spectra 

allowed to assign it as a glucopyranosyl unit and the coupling constant of the anomeric 

proton (J= 7.7 Hz) indicated its β-configuration. The 1H-NMR spectrum also showed a 

signal appearing at δ 4.20 which at first resembled a doublet but were actually two 

intense singlets belonging to two methyl groups. This result is in agreement with the 

ESI-MS experiments which indicated an aglycone of m/z 329, suggesting a structure 

based on an ellagic acid skeleton substituted by two methyl groups. The 328 m/z 

fragment obtained in the negative-ion spectrum corresponds to the radical ion of the 
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aglycone ([M-H]•--162). With aid of reference data the major compound of peak 7 was 

assigned as 3,3'-di-O-methylellagic acid 4-O-β-D-glucopyranoside (Papulski and 

Budzianowski, 1996b). 

 

The molecular formula deduced for peak 10 (C16H10O8) from the ESI-MS experiments 

suggests that is the deglycosilated analogue of the major compound of peak 7. This is 

supported by the 1H-NMR experiments which showed only two signals at δ 7.59 (2H, s) 

and δ 4.18 (6H, s), consistent with the signals of two symmetrical aromatic protons (H-

5, H-5') and two symmetrical methyl groups. By comparison with reference data peak 

10 was assigned as 3,3'-di-O-methylellagic acid (Hillis and Yazaki, 1973; Papulski and 

Budzianowski, 1996b). It is interesting to see that the in-source fragmentation reported 

in Table 3.3.2.1 shows the successive losses of the methyl groups (m/z 314 = 329-15 

and m/z 299 = 314-15). The same analysis quickly showed that peak 9 was the mono-

methylated derivative of peak 10. The 1H-NMR spectra showed two signals at δ 7.56 

(1H, s) and δ 7.59 (1H, s), assigned as H-5 and H-5', respectively, and a singlet at δ 4.18 

(3H, s) belonging to a methyl group, making it possible to assign peak 9 as 3-O-

methylellagic acid (Papulski and Budzianowski, 1996b). 

 

3.3.2.3.3. Naphthoquinone glycosides 

 

The pseudo-molecular ion at m/z 513 obtained in the negative ion ESI-MS spectrum 

suggested a molecular formula of C23H30O13 for peak 1 and search in a natural product 

database (DNP, 2007) gave a hit for plicataloside, a diglycosylated methylnaphthalene-

triol. This structure was in good agreement with results obtained in the ESI-MS 

experiments, showing fragments at m/z 351 (m/z 513-162) and 189 (m/z 351-162), 

corresponding to the loss of two hexosyl units. The fragment obtained at m/z 189 

corresponding to the aglycone is consistent with a naphthalene ring substituted with one 

methyl and three hydroxyl groups. Furthermore, the 1H-NMR spectra shows 4 signals in 

the aromatic region belonging to different spin systems and two anomeric protons 

resonating at δ 4.78 (d, J= 7.8 Hz) and 5.07 (d, J= 7.8 Hz) (Table 3.3.2.5). One singlet 

can be seen at δ 7.21 and three protons forming a ABC spin system at δ 6.76 (d, J= 7.6 

Hz), 7.30 (dd, J= 8.1, 8.0 Hz) and 7.95 (d, J= 8.4 Hz), seem to be coherent with the 

structure of plicataloside (Figure 3.3.2.9). 
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Figure 3.3.2.9 - The structure at the left corresponds to plicataloside (3-methyl-1,2,8-naphthalenetriol 

2,8-di-O-β-D-glucopyranoside) and the structure at the right to hydroplumbagin 1,4-di-O-β-D-

glucopyranoside. 

 

However, when comparing the obtained chemical shifts with literature data for 

plicataloside (Wessels et al., 1996) the results are discrepant. On the other hand, the 

chemical shifts obtained for the aromatic protons of the aglycone are very similar to 

those reported for a 4-glycosylated hydroplumbagin aglycone (Kreher et al., 1990), 

which is also coherent based on biogenetic factors, considering that this compound has 

been previously identified in D. intermedia (Budzianowski, 1996). The signal appearing 

at δ 7.21 was assigned as H-3 and the signals belonging to the second aromatic ring at 

δ 6.76, 7.30 and 7.95 were assigned as H-6, H-7 and H-8, respectively. Peak 1 has got 

one extra sugar moiety attached but unfortunately it was not possible to obtain 2D 

experiments, such as NOESY which would indicate the site of glycosilation. However, 

bearing in mind that the chemical shifts of the aromatic protons are similar to those 

reported for hydroplumbagin 4-O-β-D-glucopyranoside, it is assumable that the site of 

glycosilation is at the C-1 instead of the C-5 position of the aglycone. Peak 1 was 

therefore tentatively assigned as hydroplumbagin di-1,4-O-β-D-glucopyranoside, but 

further experiments will have to confirm this assignment, as this structure has not been 

reported before. 

 

3.3.3. Biological and taxonomical importance 

 

Flavonoids are one of the largest groups of secondary metabolites and are widespread in 

the plant kingdom (de Rijke et al., 2006). Plant flavonoids play an important role in 

plants as defence and signalling compounds in reproduction, pathogenesis and 

symbiosis (Maxwell and Philips, 1990). It has been demonstrated that this group of 
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secondary metabolites is involved in response mechanisms against stress, as caused by 

elevated UV-B radiation (Middleton and Teramura, 1993; Olsson et al., 1998), infection 

by microorganisms or herbivore attack (de Rijke et al., 2006). In addition, they are 

pigment sources for flower colouring compounds (Goto and Kondo, 1991) and play an 

important role in interactions with insects (Biggs and Lanea, 1978). 

 

Table 3.3.2.5 - 1H NMR data of the naphthoquinone glycosides obtained by HPLC-SPE-NMR from the 

methanol extract of D. intermedia. 

  Peak 1 
Position δH

* 

Aglycone  
1  
2  
3 7.21 (1H, s) 
4  
5  
6 6.76 (1H, d, 7.6) 
7 7.30 (1H, dd, 8.4, 7.6) 
8 7.95 (1H, d, 8.4) 
9  

10  
CH3 2.49 (3H, s) 

  
Glucosyl 1  

1' 5.07 (1H, d, 7.8) 
2' ** 
3' ** 
4' ** 
5' ** 
6' 3.95 (1H, dd, 12.1, 1.9) 
 3.74 (1H, dd, 11.3, 6.9) 
  

Glucosyl 2  
1'' 4.78 (1H, d, 7.8) 
2'' ** 
3'' ** 
4'' ** 
5'' ** 
6'' 3.73 (1H, dd, 11.5, 1.9) 
 3.63 (1H, dd, 11.6, 5.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Relative to the residual methanol signal set to δ 3.31, δ values given in ppm; number of protons, 

multiplicity of signals (s, singlet; d, doublet; dd, double doublet) and coupling constants (apparent 

splittings) given as numerical values in Hz are shown in parenthesis. **Signal unclear due to overlapping 

signals. 

 

Ellagic acid and its derivatives are included in the family of the polyphenols and are 

also widely distributed, having therefore little taxonomical value. In plants they are 

often bound to polyol carbohydrates such as glucose forming the known ellagitannins, 

but that seems not to be the case in D. intermedia. The naphthoquinone plumbagin, 
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however, together with its isomer 7-methyljuglone are the major compounds in the 

Droseraceae family and are of taxonomic significance. The distribution of these two 

naphthoquinones within the Drosera genus has been used to support taxonomical 

classifications (Culham and Gornall, 1994). At the family level the presence of 

naphthoquinones has few taxonomic significance due to its scatered but widespread 

distribution within flowering plants and other organisms (for further details see section 

5.1.2.2). Within the Drosera genus however, species can be divided into three main 

groups considering the relative frequencies of plumbagin and 7-methyljuglone. In the 

first group 7-methyljuglone is commonly present, often in association with plumbagin; 

in the second group plumbagin is predominant and 7-methyljuglone rare or absent; and 

the third group apparently lacks naphthoquinones altogether, which support previous 

classifications based on morphological characteristics (Culham and Gornall, 1994). 

Interestingly, 7-methyljuglone is reported to be produced by D. intermedia 

(Budzianowski, 1996), but could not be identified in this work, possibly due to a 

different extraction protocol. 

 

The classes of natural products identified in D. intermedia are structurally distinct and it 

is difficult to determine the relative amount of each compound by comparing the 

intensities of the signals in their respective 1H-NMR spectra because they do not have 

protons in a similar chemical environment. However, by identifying the signals 

corresponding to the most characteristic protons of each compound in the 1H-NMR 

spectrum recorded from the total methanol extract and comparing their intensities, it 

was possible to deduce by approximation that ellagic acid and 3,3'-di-O-methylellagic 

acid are the major compounds, followed by 3,3'-di-O-methylellagic acid 4-O-β-D- 

glucopyranoside, hyperoside and myricetin-3-O-β-D-glucopyranoside. The relative 

quantification of the extract components directly from the total extract has the 

advantage that the trapping efficiency of each compound does not interfere with the 

quantification. 

 

The occurrence of plumbagin in other unrelated carnivorous genera, such as Nepenthes 

(Nepenthaceae) (Rischer et al., 2002) and Triphyophyllum (Dioncophyllum) 

(Bringmann et al., 2000) is interesting, indicating that a taxonomic link to the 

Droseraceae is possible and that the carnivorous habit might have a similar origin. 

Within the Droseraceae family this theory was supported by a more recent work where 
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combined rbcL and 18S rDNA sequence data were used to infer phylogenetic 

relationships among Drosera, Dionaea, and Aldrovanda, and revealed that all Drosera 

species form a clade, sister to a clade including Dionaea and Aldrovanda (Rivadavia et 

al., 2003). However, outside the Droseraceae family it is more likely that 

naphthoquinone evolution has followed a parallel or convergent course in these 

carnivorous plant families and that it bears no relation with the carnivorous habit, 

considering that no naphthoquinones have been found in other carnivorous species such 

as Cephalotus follicularis (Cephalotaceae), Byblis gigantea (Byblidaceae), Roridula 

gorgonias (Roridulaceae), Sarracenia flava, Heliamphora nutans (Sarraceniaceae), 

Utricularia Iongifolia (Lentibulariaceae) (Zenk et al., 1969; Culham and Gornall, 1994) 

or the the other species studied in this work, P. lusitanica. It is believed that 

naphthoquinones are produced by carnivorous plants as antimicrobial compounds to 

protect the prey from decomposition during digestion (Culham and Gornall, 1994). 

Other possible roles for these compounds are as allelopathic (Spencer et al., 1986; 

Gonçalves et al., 2009), insecticidal, or antifeedant chemicals (Villavicencio and Perez-

Escandon, 1994; Gonçalves et al., 2008). 

 

This work provided a detailed insight on the compounds produced by D. intermedia, 

which had not been done so far for any member of the Drosera genus because most 

studies concentrated specifically on one class of natural products. When comparing the 

secondary metabolite profile of D. intermedia and Dionae muscipla the similarities are 

remarkable, both species produce plumbagin and more interestingly, the same 3-O-

flavonols and ellagic acid derivatives (Pakulski and Budzianowski, 1996a; 1996b), 

indicating a taxonomical proximity between these two genera, which is in agreement 

with molecular biology studies (Rivadavia et al., 2003). 
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3.4. CONCLUSIONS 

 

This chapter dealt with the identification of the major secondary metabolites produced 

by P. lusitanica and D. intermedia using the hyphenated techniques HPLC-ESI-MS and 

HPLC-SPE-NMR. The secondary metabolites identified in P. lusitanica were grouped 

into two classes of natural products. The iridoid glucosides mussaenosidic acid, 

globularin and sucutellarioside II and the caffeoyl phenylethanoid glycosides acteoside, 

R/S campneoside I and R/S campeneoside II were the major secondary metabolites 

identified from the P. lusitanica methanol extract. By comparing the intensities of the 

anomeric protons in the respective 1H-NMR spectra it was deduced to an approximate 

extent that the major components of the methanol extract were acteoside and 

mussaenosidic acid. The methanol extract also yielded a compound with an iridoid 

structure which was not conclusively assigned and might not have been reported before. 

 

From the methanol extract of D. intermedia several flavonol glycosides (quercetin-3-O-

galactoside, quercetin-3-O-glucoside, quercetin-3-O-(2''-O-galloylgalactoside), 

myricetin-3-O-glucoside, myricetin-3-O-galactoside and myricetin-3-O-(2''-O-galloyl)-

galactoside) and ellagic acid derivatives (ellagic acid, 3-O-methylellagic acid, 3,3'-di-O-

methylellagic acid and 3,3'-di-O-methylellagic acid 4-O-β-glucoside) could be 

identified, together with a diglycosylated naphthoquinone, tentatively assigned as 

hydroplumbagin di-1,4-O-β-glucoside. Further experiments will be needed to confirm 

the structure of this compound. The water extract was not investigated by HPLC-SPE-

NMR due to its low content in metabolites. The n-hexane extract was composed by 

mainly one single compound which was analyzed directly by NMR and identified as the 

naphthoquinone plumbagin. The obtained 1H and 13C spectra showed that the sample 

was nearly pure, meaning that extraction of D. intermedia with n-hexane followed by 

SPE is an effective method for obtaining high purity plumbagin samples. 

 

P. lusitanica had never been investigated for its secondary metabolites and great part of 

the compounds identified in D. intermedia were reported for the first time in this 

species, meaning that this work is a contribution to the better understanding of their 

biochemistry. In addition, the secondary metabolites identified in this chapter for 
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P. lusitanica and D. intermedia were in agreement with previous chemical studies 

performed in species of the Lentibulariaceae and Droseraceae families, respectively. 

 

The techniques employed in this chapter allowed for the rapid identification of the 

major components of each extract without having to recur to preparative scale 

procedures. To date, the majority of the HPLC-NMR work in the area of natural 

products has been done with fractions or extracts that have been enriched for particular 

classes of compounds. In the present work, the initial preparative SPE step was used 

only to remove the most highly hydrophobic components, and thus, essentially crude 

extracts were subjected to the HPLC-SPE-NMR analysis. The sensitivity gain was 

illustrated by the ability to acquire HSQC and HMBC spectra, from which 13C chemical 

shift data, necessary for structure elucidation of complex natural products, could be 

obtained. The sensitivity gain is achieved in part by concentrating the analytes present 

in the chromatographic eluate in a highly sensitive NMR flow probe, and in part by 

accumulation of the analyte by multiple SPE trapping steps from repeated injections. It 

is worth mentioning that by using HPLC-SPE-NMR it was possible to obtain NMR 

spectra with sufficient quality to identify the above mentioned compounds using merely 

4 and 36 mg of crude extract of P. lusitanica and D. intermedia, respectively. By 

analogy, the amount of plant material needed to prepare enough extract for these 

experiments is also minute, in contrast to conventional preparative techniques where 

several hundreds grams of plant material can be used. This can be of utmost importance 

when dealing with endangered plant species and available material is limited. In 

summary, the HPLC-SPE-NMR together with HPLC-MS proved to be very effective 

techniques for the rapid identification of the major secondary metabolites of P. 

lusitanica and D. intermedia. 
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Biological assays for preliminary screening 

4.1. INTRODUCTION 

 
4.1.1. Antioxidant activity 

 

4.1.1.1. Reactive oxygen species and their biological importance 

 

Free radicals are highly reactive and unstable chemical species which can be defined as 

molecules or molecular fragments containing one or more unpaired electrons in atomic 

or molecular orbitals (Valko et al., 2007). Radicals derived from oxygen or, more 

generally, reactive oxygen species (ROS) represent the most important class of radical 

species generated in living systems (Miller et al., 1990). The term ROS collectively 

denotes oxygen-centered radicals such as the superoxide anion (O2
•–), hydroxyl (•OH) 

and peroxyl (ROO•) as well as non-radical species derived from oxygen, such as 

hydrogen peroxide (H2O2), singlet oxygen (1O2), and hypochlorous acid (HOCl) 

(Middleton et al., 2000). The generation of ROS is a ubiquitous biological phenomenon 

in cellular metabolism and plays a dual role in living organisms. Beneficial effects of 

ROS occur at low to moderate concentrations and involve physiological roles in cellular 

responses to noxia, as for example in defence against infectious agents, in the function 

of a number of cellular signalling pathways, and the induction of a mitogenic response 

(Valko et al., 2007). The harmful effect of free radicals causing potential biological 

damage is termed oxidative stress and occurs in biological systems when there is an 

overproduction of ROS on one side and a deficiency of enzymatic and non-enzymatic 

antioxidants on the other (Kovacic and Jacintho, 2001). In other words, oxidative stress 

results from the metabolic reactions that use oxygen and represents a disturbance in the 

equilibrium status of prooxidant/antioxidant reactions in living organisms. The excess 

ROS can damage cellular lipids, proteins or DNA, inhibiting their normal function. 

Because of this, oxidative stress has been implicated in a number of human diseases 

such as cancer, atherosclerosis, hypertension, diabetes mellitus and neurodegenerative 

disorders (Alzheimer’s disease and Parkinson’s disease) as well as in the ageing process 

(Valko et al., 2007).  

 

Cellular organisms have defence mechanisms to prevent free radical-induced oxidative 

stress which involve enzymatic antioxidants (such as superoxide dismutase, glutathione 

peroxidase, catalase) and non-enzymatic antioxidants represented by ascorbic acid 
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(Vitamin C), α-tocopherol (Vitamin E), glutathione, carotenoids, flavonoids, and other 

small molecule antioxidants. Non-enzimatic antioxidants are a special group of 

compounds that neutralize or quench free radicals and break down radical chain 

reactions, contributing to maintain the redox homeostasis of the cell. The assessment of 

the antioxidant activity of a pure compound or mixture of compounds is therefore an 

important preliminary assay in the context of drug discovery, considering that their 

antioxidative properties often underlie other biological activities. 

 

4.1.1.2. Methods for the determination of antioxidant capacity 

 

Phytochemicals have been extensively studied for their antioxidant capacity (AOC) and 

there is an increasing interest in natural antioxidants present in plants that might help 

prevent oxidative stress (Halliwell, 1999; Gardner et al., 2000; Huang et al., 2010). 

Antioxidants can deactivate radicals by two major mechanisms, hydrogen atom transfer 

(HAT) and single electron transfer (SET). The end result is the same, regardless of the 

mechanism, but kinetics and potential for side reactions differ. SET and HAT reactions 

may occur in parallel, and the mechanism dominating in a given system will be 

determined by antioxidant structure and properties, solubility and partition coefficient, 

and system solvent. SET-based methods detect the ability of a potential antioxidant to 

transfer one electron to reduce any compound while HAT-based methods measure the 

ability of an antioxidant to quench free radicals by hydrogen donation, which is more 

relevant to the radical chain-breaking capacity (Huang et al., 2005). Therefore, it is 

believed that these are the most relevant reactions where antioxidants typically act. 

 

Various methods to measure antioxidant activity have been developed over the years. 

However, none of the methods accurately reflects the total antioxidant activity of a 

sample, because there are diverse antioxidants and free radical and oxidant sources with 

different chemical and physical characteristics involved in a complex system. 

Furthermore, the vast amount of methods and variations in methods to measure 

antioxidants in plant-derived samples that have been proposed make the study of the 

AOC a complicated issue. Too many analytical methods result in inconsistent results, 

inappropriate application and interpretation of assays, and improper specification of 

AOC. The antioxidant capacity needs to reflect both lipophilic and hydrophilic capacity 

and for physiological activity it needs to reflect and differentiate both radical quenching 
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(HAT) and radical reduction (SET). Therefore, the antioxidant efficacy of a plant 

extract is best evaluated based on results obtained by commonly accepted and 

standardized assays, taking into account different oxidative conditions, system 

compositions, and antioxidant mechanisms (Prior et al., 2005). Accordingly, AOC was 

evaluated using the oxygen radical absorbance capacity (ORAC), trolox equivalent 

antioxidant capacity (TEAC) and Folin-Ciocalteu (F-C) assays, adapted for microplate 

readings for high throughput. The ORAC assay follows a HAT mechanism while the 

other two an SET mechanism (Huang et al., 2005; Prior et al., 2005). 

 

4.1.1.2.1. ORAC assay 

 

The ORAC assay is based upon the early work of Glazer (1990) and Ghiselli et al. 

(1995), and developed further by Ou et al. (2001). The ORAC assay is composed by a 

synthetic free radical generator [2,2’-azobis-2-methyl-propanimidamide dihydrochloride 

(AAPH)], an oxidizable molecular probe (fluorescein) and an antioxidant. The capacity 

of the antioxidant to scavenge peroxyl radicals generated by spontaneous decomposition 

of AAPH is estimated through the change in fluorescent intensity of the probe. The 

radical-induced oxidation reaction of fluorescein leads to a loss of fluorescence and the 

AOC of a sample is determined by a decreased rate and amount of non-fluorescent 

product formed over time (Figure 4.1.1). The reaction is driven to completion and the 

AOC of the sample is measured by determining the area under the fluorescence decay 

curve of the sample (AUCsample) compared to that of a control sample (AUCblank). 

ORAC values are usually reported as Trolox (water soluble analogue of Vitamin E) 

equivalents using a standard curve generated by plotting standard concentrations of 

Trolox against their respective net AUC (AUCsample - AUCblank). This assay is unique in 

that it is run to completion and the dynamic change in fluorescence of the probe over 

time is accounted for by calculating the AUC, considering both inhibition degree and 

inhibition time (Prior et al., 2005). In addition, the fluorescence measurement applied in 

the assay causes less interference by coloured compounds (Prior and Cao, 2000) and it 

can be adapted to assay lipophilic antioxidant components by using methylated β-

cyclodextrin as water solubility enhancer (Huang et al., 2002). Mechanistic studies have 

determined that the reaction of peroxyl radical neutralization follows a HAT mechanism 

(Ou et al., 2001). However, the main drawback of the ORAC method is the assumption 

that the autooxidative mechanism and protection of the fluorescent probe can mimic 
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critical biological substrates (Frankel and Meyer, 2000). The ORAC assay has been 

widely used in the nutritional field, but a recent protocol was developed for the 

measurement of AOC of plant samples (Gillespie et al., 2007). 

 

 
Figure 4.1.1. Proposed fluorescein oxidation pathway in the presence of AAPH (Ou et al., 2001). 

 

4.1.1.2.2. TEAC assay 

 

The TEAC assay was first reported by Miller et al. (1993) and is based on the ability of 

antioxidants to scavenge the long-life radical cation ABTS•+. In this assay, ABTS [2,2’-

azinobis(3-ethylbenzothiazoline-6-sulfonic acid); Figure 4.1.2] is oxidized by peroxyl 

radicals or other oxidants to its radical cation, ABTS•+, which is intensely coloured. The 

AOC is measured as the ability of test compounds to decrease the colour reacting 

directly with the ABTS•+ radical, reducing it back to ABTS. In an improved method, the 

ABTS•+ radical cation was generated by reaction with potassium persulfate (Re et al., 

1999). Chemical generation of the radical requires a long time, therefore a mixture of 

ABTS and potassium persulfate is generally allowed to stand overnight at room 

temperature in dark to form ABTS•+. 
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Figure 4.1.2 - Structure of 2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid). 

 

The absorption maxima of ABTS•+ were shown to be at wavelengths of 415, 645, 734 

and 815 nm. Among them, 415 and 734 nm are adopted by most researchers to 

spectrophotometrically monitor the reaction between the antioxidants and ABTS•+ 

(Prior et al., 2005). The AOC is quantified by measuring the absorbance decrease of 

ABTS•+ in the presence of a testing sample or Trolox standards at a fixed time point. 

The concentration of antioxidants giving the same percentage change of ABTS•+
 

absorbance as that of 1 mM Trolox is regarded as TEAC. Thus, the percentage 

inhibition of the ABTS•+ radical cation, measured by the extent of decolourization, is 

determined as a function of concentration and time and calculated relative to the 

reactivity of Trolox as a standard, under the same conditions (Re et al., 1999). 

 

The TEAC assay is operationally simple and can be automated and adapted to 

microplates (Chen et al., 2004; Erel, 2004). The radical ABTS•+ is soluble in both 

aqueous and organic solvents and is not affected by ionic strength, meaning that it can 

be used in multiple media to determine both hydrophilic and lipophilic antioxidant 

capacities of extracts. Also, the assay has the advantage of being able to eliminate 

colour interference of extract components by measuring ABTS•+ at 734 nm (Awika et 

al., 2003). However, the ABTS radical used in TEAC assays is not found in mammalian 

biology and thus represents a nonphysiological radical source (Prior et al., 2005). 

 

4.1.1.2.3. F-C assay 

 

The F-C assay has for many years been used as a measure of total phenolics in natural 

products, but the basic mechanism is an oxidation/reduction reaction and, as such, can 

be considered as another antioxidant activity method (Huang et al., 2005). The F-C 

reagent (Folin and Ciocalteu, 1927) was initially intended for the analysis of proteins 

taking advantage of the reagent’s activity towards protein tyrosine (containing a phenol 
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group) residue. Singleton and co-workers extended this assay to the analysis of total 

phenols in wine and since then the assay has found many applications (Singleton et al., 

1999). The exact chemical nature of the F-C reagent is not known, but it is believed to 

contain a mixture of the heteropoly acids, phosphomolybdic and phoshotungstic acids, 

in which the molybdenum and tungsten atoms are in the 6+ state, giving it an intense 

yellow colour (Ikawa et al., 2003). In highly basic medium, dissociation of a phenolic 

proton leads to a phenolate anion which is capable of reducing the F-C reagent, forming 

blue molybdenum and tungsten complexes that are determined spectroscopically at 

approximately 760 nm (Huang et al., 2005). The activity according to the F-C assay is 

often calculated as gallic acid equivalents. 

 

The F-C assay is commonly used to determine the total phenolics content of a sample, 

.1.2. Antimicrobial activity 

.1.2.1. The issue of antibiotic resistance 

fectious diseases were the leading cause of death worldwide at the beginning of the 

leading cause of death in the develop countries (Fauci, 2001). 

however, because the oxidation/reduction reaction mechanism of the F-C reagent is 

nonspecific to phenolic compounds, other oxidation substracts besides phenols may 

interfere (Prior et al., 2005). Despite the undefined chemical nature of the F-C reagent, 

it is a convenient, simple and reproducible assay to determine the reducing capacity of a 

sample and a specific protocol adapted for microplate readings has been developed for 

plant samples (Ainsworth and Gillespie, 2007). 

 

4

 

4

 

In

twentieth century, but the introduction of penicillin in the 1940s into clinical use and 

subsequent development of streptomycin, chloramphenicol, tetracycline, erythromycin, 

rifamycin, and vancomycin between 1940 and 1960 had a striking impact on the 

treatment of infectious diseases and decreased mortality dramatically. However, new 

emerging infections, re-emerging infections experienced previously appearing in more 

virulent forms and antimicrobial-resistant bacterial strains, caused by the indiscriminate 

use of antibiotics, have shattered the optimism felt in the so-called “Era of antibiotics” 

that infectious diseases could be controlled and prevented (Cohen, 2000). Today, 

infectious diseases are the second-leading cause of death worldwide and the third-
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The occurrence of antibiotic resistance is inevitable considering that the widespread use 

of antibiotics imposes strong selection pressure for the development of resistance and as 

nts can be due to an innate property of the bacterium, or 

cquired as a consequence of mutation or gene transfer. An example of innate intrinsic 

 

ction and members of each class share a common core structure. Although a large 

number of antibiotics are used clinically, the variety of targets that they inhibit is 

the frequency of antibiotic use increases, the speed of resistance development also 

increases (Yoneyama and Katsumata, 2006). Clinically significant resistance usually 

appears after months to years whenever a new antibiotic is introduced. Penicillin 

resistance was detected a few years after its clinical debut in 1942 (Travis, 1994) and 

streptomycin resistance a year after its discovery in 1944 (Davies, 1994). The major 

concerns today are the emergence of methicillin-resistant Staphylococcus aureus 

(MRSA), which exhibits multiantibiotic resistance against all penicillins (methicillin, 

dicloxacillin, nafcillin) and many structurally unrelated antibiotics (Neu, 1992; Cushnie 

and Lamb, 2005), including vancomycin, which was regarded as the antibiotic of last 

resort (Sievert et al., 2002). Recently, a new class of antibiotic oxazolidinones 

(linezolid) and cyclic lipopeptides (daptomycin) were introduced for clinical use. 

Although these new antibiotics are effective against vancomycin-resistant MRSA, it is 

clear that the problematic pathogens will eventually develop resistance to these 

compounds too if they are used indiscriminately (Yoneyama and Katsumata, 2006). In 

fact, clinical isolates of S. aureus showing linezolid resistance were reported a year after 

launch (Tsiodras et al., 2001). 

 

Resistance to antimicrobial age

a

resistance is Pseudomonas aeruginosa, whose low membrane permeability is likely to 

be a main reason for its innate resistance to many antibiotics (Nakae, 1995). Resistance 

often arises in the whole bacterial community and the longer that suboptimal levels of 

antimicrobial agent are in contact with the bacteria, the more likely the emergence of 

resistance (Coates et al., 2002). The main mechanisms of genetic resistance are 

inactivation of the antibiotic either by hydrolysis or by modification; modification of the 

site of action (enzyme, ribosome, cell wall precursor), reducing the affinity for 

antibiotics; modification of the permeability of the cell wall; overproduction of the 

target enzyme; and the bypass of the inhibited steps (Yoneyama and Katsumata, 2006). 

 

Antibiotics are usually classified on the basis of their chemical structure and mode of

a
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limited. Antimicrobial agents inhibit essential components of bacterial metabolism 

which include four classical targets: cell wall biosynthesis, protein biosynthesis, DNA 

and RNA biosynthesis and folate byosynthesis (Yoneyama and Katsumata, 2006). Since 

bacteria are only distantly related to humans, unique and specific targets should be 

abundant, and novel antibiotics with low toxicity should be relatively easy to find. 

However, this has not been the case considering that almost 40 years were required for 

the development of a new structural class of synthetic antibiotics of broad spectrum 

(oxazolidinones), since the introduction of nalidixic acid in 1962 and that the vast 

majority of the antibiotics used today are derived from core structures of antibiotics 

discovered half a century ago (Fichbach and Walch, 2009). The oxazolidinone linelozid 

has a unique mode of action, inhibiting protein synthesis at the initiation stage (Swaney, 

1998).  

 

The main strategy of the pharmaceutical industry for new therapeutics has been 

modification of existing antibiotics using processes of synthetic tailoring where the core 

f the antibiotic is left intact, preserving its activity, and the chemical groups at its o

periphery are modified to improve the drug’s properties. Although this approach is 

effective, it has turned out to be increasingly difficult to launch new drugs to meet the 

clinical needs, underlining the importance of finding not only new antibiotics but new 

classes of antibiotics as well (Yoneyama and Katsumata, 2006; Fichbach and Walch, 

2009). The great chemical diversity provided by natural products might contribute in 

finding new lead structures considering that combinatorial chemistry practiced by nature 

is much more sophisticated than combinatorial chemistry in the laboratory, yielding 

exotic structures rich in stereochemistry, concatenated rings, and reactive functional 

groups (Verdine, 1996; Demain, 2009). Though no plant-derived compound has been 

found to compete with clinically used antibiotics to date, the great structural variety 

found in plants makes them attractive as a source of novel lead compounds (Cowan, 

1999). In fact, secondary metabolites produced by higher plants frequently exhibit 

significant potency against human bacterial and fungal pathogens (Alviano and Alviano, 

2009). 
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4.1.2.2. Antibacterial and antifungal assays 

 

Antimicrobial activity of pure compounds and plant extracts can be detected by 

observing the growth response of various microorganisms to samples that are placed in 

contact with them. Several methods for detecting activity are available, but since they 

are not equally sensitive or not based upon the same principle, results will be 

profoundly influenced by the method (Cos et al., 2006). The currently available 

screening methods for the detection of antimicrobial activity of natural products fall into 

three groups, including bioautographic, diffusion, and dilution methods. The 

bioautographic and diffusion methods are known as qualitative techniques since these 

methods will only give an idea of the presence or absence of substances with 

antimicrobial activity. On the other hand, dilution methods are considered quantitative 

assays once they determine the minimum inhibitory concentration (MIC). 

Bio-autographic methods localize antimicrobial activity directly on a chromatogram and 

can therefore also indicate the active fraction of an extract, supporting a quick search for 

antimicrobial agents through bioassay-guided isolation (Valgas et al., 2007). Despite its 

advantages, this technique was not included in this work. The agar diffusion and 

dilution methods account for the majority of the assays performed in the search for 

antimicrobial active sources, possibly due to their inherent simplicity. 

 

4.1.2.2.1. Agar diffusion methods 

 

In the diffusion method, a reservoir containing the sample at a known concentration is 

brought into contact with an inoculated medium. If there are active compounds present, 

the growth of the microorganism is either slowed or stopped, resulting in the 

deformation of the colony and the diameter of the clear zone around the reservoir 

(inhibition diameter) is measured at the end of the incubation period (Cole, 1994). Two 

principal assay techniques are commonly employed according to the type of reservoir 

used: the paper disc diffusion technique, in which the sample is loaded onto a paper disc 

of fixed dimensions; and the agar well technique, in which holes are punched in the 

medium and the sample is directly transferred. In general, the relative antimicrobial 

potency of different samples may not always be compared, giving merely a qualitative 

assessment of whether or not a compound or extract possesses antimicrobial activity, 

mainly because of differences in physical properties, such as solubility, volatility and 
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diffusion characteristics in agar. The agar diffusion techniques assume that active 

compounds are soluble in the agar and therefore diffuse through the medium. This 

assumption is however not valid for non-polar compounds or highly charged molecules 

which may undergo ion exchange processes with the agar matrix (Cole, 1994). 

 

4.1.2.2.2. Dilution methods (Minimum inhibitory concentration determination) 

 

In the dilution method, the extract or compound, incorporated at a known concentration 

into a suitable agar based growth medium, is serially diluted using two fold-dilutions 

and is inoculated with the test organism (Cole, 1994). The lowest concentration at 

which the microorganisms do not grow is taken as the MIC. The method can be carried 

out in liquid as well as in solid media and growth of the microorganism can be 

measured in a number of ways. Turbidity can be estimated visually or obtained more 

accurately by measuring the optical density at 405 nm. However, test samples that are 

not fully soluble may interfere with turbidity readings, emphasizing the need for a 

sterility control, i.e., extract dissolved in blank medium without microorganisms. The 

liquid-dilution method also allows determining whether a compound or extract has a 

cidal or static action at a particular concentration. The minimal bactericidal or 

fungicidal concentration is determined by plating-out samples of completely inhibited 

dilution cultures and assessing growth (static) or no-growth (cidal) after incubation (Cos 

et al., 2006). 

 

4.1.2.3. General considerations on antimicrobial assays 

 

A review tackling the issue of the discovery of antimicrobial agents from medicinal 

plants revealed that still too many articles claim promising antimicrobial activities, 

despite major flaws in used methodologies (Rios and Recio, 2005). The most frequent 

are the omission of appropriate in-test controls, selection of target organism and growth 

medium, and the inclusion of unrealistically high assay dosages. Assays conducted with 

quantities higher than 1 mg/ml for extracts or 0.1 mg/ml for isolated compounds should 

be avoided, whereas the presence of activity is very interesting in the case of 

concentrations below 100 μg/ml for extracts and 10 μg/ml for isolated compounds. The 

choice of test microorganisms depends on the specific purpose of the investigation. In a 

primary screening, drug-sensitive reference strains are preferably used and should 
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represent common pathogenic species of different classes. Also, the panel should 

consist of Gram-positive and Gram-negative bacteria. American Type Culture 

Collection (ATCC) strains are well characterized and very popular for that purpose, but 

clinical field isolates may also be used if fully characterized. Also, it is important to use 

inoculates taken from actively growing colonies cultures in the logarithmic growth 

phase, since this is the growth stage at which the colony will be most homogeneous 

(Cole, 1994). Both positive and negative controls should be incorporated into the 

bioassay design. The negative control ensures that it is not the assay procedure itself 

which is responsible for any observed activity and that the tested microorganism is able 

to grow under the experimental conditions, whilst the positive control provides a marker 

against which the potency of an active extract can be measured. In addition, a sterility 

test control should be performed with the growth medium alone, to ensure that 

contamination by other microorganisms is prevented. 

 

4.1.3. Objectives 

 

P. lusitanica and D. intermedia have been used in traditional medicine and are known 

for their beneficial effects in fighting infections. Furthermore, because no scientific 

evaluation of any biological activity has been reported and the major compounds of 

their extracts have been identified, P. lusitanica and D. intermedia were selected to be 

submitted to biological assays. The aims of this chapter are to: 

i) evaluate the AOC of extracts prepared from in vitro cultures of D. intermedia and 

P. lusitanica; 

ii) investigate the antimicrobial activity of the extracts against a panel of human 

pathogenic microorganisms (including yeasts and bacteria) using the agar disc diffusion 

method followed by the determination of MICs; 

iii) discuss the relation between the observed activities and the structure of the 

previously identified compounds. 
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4.2. EXPERIMENTAL 

 
4.2.1. Plant material and sample preparation 

 

The P. lusitanica methanol extract and the D. intermedia n-hexane, water and methanol 

extracts were prepared from in vitro cultured plant material according to the protocol 

described in section 3.2.1, except the lyophilized extracts were not cleaned using a SPE 

column as was done prior to the chemical analysis, but were included in the bioactivity 

assays as crude extracts. For the antioxidant assays the extracts were dissolved in 

phosphate buffer (75 mM, pH 7.0) and for the antimicrobial assays they were dissolved 

in their respective extraction solvents at the required concentration. 

 

4.2.2. Antioxidant activity 

 

4.2.2.1. Oxygen radical absorbance capacity (ORAC) assay  

 

The peroxyl radical scavenging capacity of the prepared extracts was evaluated 

according to the protocol described by Gillespie et al. (2007). Fluorescein (Panreac, 

Spain, Barcelona) was used as the fluorescent probe and AAPH (Acros, Geel, Belgium) 

as a peroxyl radical generator. A black microplate (NUNC, Rochester, New York, USA) 

was loaded with 150 µL fluorescein (0.08 µM) and 25 µL of sample dilution (1-0.01 

mg/mL), trolox standard (6.25-50 µM) or phosphate buffer (blank), and after a 10 min 

incubation period at 37ºC the reaction was initiated by adding 25 µL of AAPH 

(150 mM) to each well. The decrease in fluorescence of fluorescein was determined by 

collecting readings for excitation at 485 nm and emission at 530 nm every minute for 90 

min with an Infinite 200 (Tekan, Grödig, Austria) microplate reader. The average area 

under the curve (AUC) of the blanks was subtracted from the AUC of each sample and 

standard to obtain the net AUC. The ORAC value for each extract was calculated using 

the respective net AUC and the regression equation obtained by plotting trolox standard 

concentrations against the net AUC (Figure 4.2.1). Results were expressed as trolox 

equivalents (TE) per gram of extract. Determinations were carried out three times and in 

triplicate, on each occasion and at each separate concentration of the standard and 

samples. 
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Figure 4.2.1 - Trolox standard curve for the ORAC assay. 

 

4.2.2.2. Trolox equivalent antioxidant capacity (TEAC) assay 

 

The radical scavenging capacity of the prepared extracts against the radical cation 

ABTS+• was determined by the TEAC assay (Sigma-Aldrich, Steinheim, Germany) 

according to the procedure proposed by Re et al. (1999). The ABTS+• stock solution 

was prepared by reacting an ABTS tablet (Sigma, USA) with a 2.45 mM potassium 

persulfate (Sigma-Aldrich, Steinheim, Germany) solution as the oxidant agent to give a 

final concentration of 7 mM, and was left to stand in the dark at room temperature for 

12-16 h before use. The working solution of ABTS+• was obtained by diluting the stock 

solution in phosphate buffer to give an absorption of 0.70 ± 0.02 at 734 nm. Afterwards, 

10 µL of extract dilutions (1-0.1 mg/mL), trolox standards (0.1-0.4 mM) (Calbiochem, 

Darmstadt, Germany) or phosphate buffer (blank) were transferred to a clear 96-well 

microplate (NUNC, Rochester, New York, USA) and the reaction began with the 

addition of 190 µL of the ABTS+• working solution. The absorbance reading was taken 

1 min after initial mixing at 734 nm. The percentage of activity inhibition calculated as 

the decrease of the sample absorbance at 734 nm in relation to the control (Formula 

4.2.1) was plotted as a function of Trolox concentration to obtain the standard curve 

(Figure 4.2.2). 

100


Blank

SampleBlank

Abs

AbsAbs

       Formula 4.2.1 

The sample dilution that produced between 20-80% inhibition was used for TEAC 

calculation and results were expressed as TE per gram of extract. 
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Figure 4.2.2 - Trolox standard curve for the TEAC assay. 

 

4.2.2.3. Folin-Ciocalteu (F-C) assay 

 

The F-C colorimetric method was used as described by Ainsworth et al. (2007) with 

slight modifications. In brief, 200 µL of 10% (v/v) F-C reagent (Fluka, Buchs, 

Switzerland) was added to 100 µL sample dilution (10-0.01 mg/mL) prepared in 

phosphate buffer (75 mM, pH 7.0), standard or phosphate buffer (blank) in a microtube. 

A 700 mM sodium carbonate solution (800 µL) (VWR, Leuven, Belgium) was added to 

each microtube and incubated for 2 h at room temperature. Thereafter, 200 µL of the 

content of each microtube was transferred to a clear 96-well microplate (NUNC, 

Rochester, New York, USA) and the absorbance was read at 765 nm. The standard 

curve was obtained plotting the gallic acid (Fluka, Buchs, Switzerland) concentrations 

ranging from 40 µM to 0.5 mM against the blank-corrected absorbance at 765 nm 

(Figure 4.2.3) and the results were expressed as gallic acid equivalents (GAE) per g of 

extract. 
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Figure 4.2.3 - Gallic acid standard curve. 
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4.2.3. Antimicrobial activity 

 

4.2.3.1. Microorganisms 

 

The prepared extracts were tested against a panel of bacteria and yeasts. The bacterial 

strains were acquired from the ATCC and included Gram-positive (Staphylococcus 

aureus ATCC 25923, S. epidermidis ATCC 12228 and Enterococcus faecalis ATCC 

29212) as well as Gram-negative strains (Pseudomonas aeruginosa ATCC 27853, 

Escherichia coli ATCC 25922, Cronobacter sakazakii ATTCC 29544 and C. sakazakii 

ATTCC BA-894). The tested yeasts included clinically isolated strains (Candida 

albicans YP0175, C. famata YP0011, C. catenulata YP0160, C. guilliermondi YP0170, 

Trichosporon mucoides YP0096 and Cryptococcus neoformans YP0186) and two 

reference strains of C. albicans (C. albicans ATCC 10231 and C. albicans ATCC 

90028). Bacterial species were grown overnight at 37ºC in Plate Count Agar medium 

(PCA, Scharlau, Spain). Strains of C. albicans were grown overnight at 37ºC in Yeast 

Medium (YM, Scharlau) and the other yeasts were cultured in the same medium at 25ºC 

for 48 h. 

 

4.2.3.2. Agar disc diffusion assay  

 

The antimicrobial activity was evaluated according to the National Committee for 

Clinical Laboratory Standards (NCCLS) (1997) using the agar disc diffusion method. 

Briefly, a 24 or 48 h-old culture of selected bacteria/yeast was mixed with sterile 

physiological saline solution (0.85%) and the turbidity was adjusted to the McFarland 

scale 0.5 [~106 colony forming units (CFU) per mL]. Petri plates containing 20 mL of 

Mueller Hinton agar (MHA, Scharlau) were used for all tested bacteria and yeasts were 

cultured in MHA supplemented with 2% glucose (w/v) and 0.5 g/L methylene blue 

dye (pH 7.2–7.4). The inoculum was spread on the surface of the solidified media and 

allowed to dry for 10 min. Filter paper discs (6 mm in diameter) were placed on the 

previously inoculated plates and impregnated with 20 L of extract at 50 mg/mL (1 mg 

extract/disc). Chloramphenicol (30 g/disc, Oxoid, UK) was used as positive control for 

bacteria (except for P. aeruginosa ATCC 27853 where gentamicin at 10 g/disc was 

used) and amphotericin B (20 g/disc, Sigma) for yeasts. Paper discs impregnated with 
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20 L of saline solution, methanol, water or n-hexane were used as negative controls. 

Plates of bacteria and C. albicans strains were incubated at 37ºC for 24 h and the other 

yeasts at 25ºC for 48 h. The inhibition zone diameters (IZDs) were measured in mm. All 

the tests were performed in triplicate. 

 

4.2.3.3. Minimum inhibitory concentration (MIC) determination 

 

A broth dilution susceptibility assay was used, as recommended by NCCLS, for the 

determination of the MIC values (1999). The tests were performed in Mueller Hinton 

Broth medium (MHB, Scharlau) supplemented with 2% (w/v) glucose for the yeasts. 

Plant extracts, chloramphenicol and amphotericin B were serially-diluted with culture 

medium from a previously prepared stock solution. Each tube, containing 1 mL of 

extract/drug dilution, was inoculated with 200 L of standard bacterial/yeast 

suspension; the inoculum concentration for standard MIC was 2  105 to 8  105 

CFU/mL. Test tubes with methanol, water, n-hexane, DMSO and ethanol were also 

used as negative controls. For bacteria and C. albicans strains, tubes were incubated 

(under normal atmospheric conditions) at 37ºC for 24 h and for yeasts at 25ºC for 48 h. 

Results were expressed as the lowest concentration of extract which completely 

inhibited visible growth (turbidity on liquid media). The MIC was not determined for 

microorganisms that were inactive in the agar diffusion assay. All the tests were 

performed in triplicate. 

 

4.2.4. Statistical analysis 

 

The results of the antioxidant assays were subjected to one-way analysis of variance 

(ANOVA) to assess treatment differences using the SPSS statistical package for 

Windows (release 15.0; SPSS Inc., Chicago, IL, USA). Significant differences between 

means were determined using Duncan’s New Multiple Range Test (P = 0.001). 
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4.3. RESULTS AND DISCUSSION 

 

4.3.1. Antioxidant capacity 

 

The methanol extract prepared from P. lusitanica and the n-hexane, water and methanol 

extracts prepared from D. intermedia were submitted to the ORAC, TEAC and F-C 

assays to determine their AOC (Figure 4.3.1). The results show that the P. lusitanica 

methanol extract has the highest AOC (P < 0.001), according to the ORAC and F-C 

assays, scoring values of 341.4 ± 18.3 μmolTE/gextract and 677.7 ± 54.7 μmolGAE/gextract, 

respectively. 
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Figure 4.3.1 - AOC of P. lusitanica and D. intermedia extracts determined by the ORAC, TEAC and F-C 

assays. In each graph, columns with different letters are significantly different at P < 0.001 according to 

Duncan’s multiple range test. 
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The same result was not observed in the TEAC assay as it indicated similar activity for 

the methanol extracts of P. lusitanica (335.8 ± 25.6 μmolTE/gextract) and D. intermedia 

(332.2 ± 29.1 μmolTE/gextract). This result might indicate a decreased affinity of the 

components of the P. lusitanica extract towards the ABTS+• radical in comparison to the 

radical sources tested in the other assays. The largest difference in AOC between the P. 

lusitanica and D. intermedia extracts was obtained in the ORAC assay which suggests 

that the components of the P. lusitanica extract are better H donors and are therefore 

more effective at neutralizing radicals through the HAT mechanism. The major 

components of the P. lusitanica extract are acteoside and mussaenosidic acid (Section 

3.3.1.4); however, it is assumable that the major contribution to the extract’s AOC 

comes from acteoside and its derivatives considering that several studies have pointed 

out that this phenylethanoid glycoside is a very strong antioxidant and that the 

compounds belonging to the family of the iridoids generally have weak activity (Shahat 

et al., 2005; Harput et al., 2006; Es-Safi et al., 2007). In fact, Aligiannis et al. (2003) 

demonstrated that the 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging capabilities of 

acteoside are comparable to that of butylated hydroxytoluene and α-tocopherol and 

suggested the potential of using acteoside as a natural protective agent against oxidative 

rancidity. 

 

Structure-activity relationship studies have shown that phenolic hydroxyls play an 

important role in the antioxidant activity of acteoside and related phenylethanoid 

glycosides (Fu et al., 2008). The two catechol (O-dihydroxy) units belonging to the 

phenylethanoid and the caffeoyl moieties are very vulnerable to loss of a proton or an 

electron and capable of forming stable species due to resonance delocalization and are 

therefore at the base of the radical scavenging properties of acteoside (Figure 4.3.2). 
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Figure 4.3.2 - Structure of acteoside. 
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In addition, the double bond at the olifinic chain of the caffeoyl moiety confers extra 

stability to the resulting free radicals (Es-Safi et al., 2007). Phenylethanoid glycosides 

bearing only two separate phenol moieties showed very low AOC in comparison to 

acteoside (Wong et al., 2001). The same author suggested that the antioxidant activities 

observed for acteoside are most likely attributable to their proton-donating capacities, 

supporting the relatively high AOC observed in the ORAC assay. 

 

A recent review deals with the topic of naturally occurring phenylethanoid glycosides 

and their potential as leads for therapeutic activities (Fu et al., 2008). Besides the free 

radical scavenging capabilities of acteoside, the review article highlights a number of 

interesting biological activities. Acteoside has been reported to have significant 

neuroprotective activities against glutamate-induced toxicity in primary cultures of rat 

cortical cells (Koo et al., 2006); cytotoxic activity against HepG2 cells (Ahmed et al., 

2009); and has been shown to inhibit HIV type-1 reverse transcriptase (Fu et al., 2006) 

and HIV-1 integrase in vitro (Kim et al., 2001). These findings suggest that acteoside 

might be an interesting lead structure to be further investigated and submitted to new 

biological assays. 

 

The results presented in Figure 4.3.1 also show that the extracts prepared from 

D. intermedia have very different AOCs which is expectable considering their distinct 

compositions. The results show that in all assays the methanol extract has the greatest 

AOC (ORAC: 64.7 ± 7.8 μmolTE/mgextract; TEAC: 332.2 ± 29.1 μmolTE/mgextract; F-C: 

378.6 ± 31.5 μmolGAE/mgextract). Phytochemical analyses revealed that the methanol 

extract was mainly composed by two groups of natural products, namely ellagic acid 

derivatives and flavonols (Section 3.3.2.3). Both classes of compounds have phenolic 

groups in their structures and therefore are expected to possess strong radical 

scavenging activity (Figure 4.3.3). When these compounds react with a free radical, it is 

the delocalization of the unpaired electron over the aromatic nucleus (resonance effect), 

that prevents the continuation of the free radical chain reaction (Tsao and Deng, 2004). 

The chemical structures of these compounds are suggestive of chain-breaking 

antioxidants since the hydrogen atom on the phenolic OH groups is prone to donation 

with subsequent formation of phenoxyl radicals (Laranjinha et al., 1994). 
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Figure 4.3.3 - Aglycone structure of the major ellagic acid derivatives and flavonols identified in the D. 

intermedia methanol extract.  

 

Flavonoids are known to be very efficient radical scavengers and this activity can be 

related with some determinant structural aspects (Middleton et al., 2000). Studies have 

shown that the catechol or pyrogallol (trihydroxy) group in the B ring in conjunction 

with the C2-C3 double bond of the C ring (Figure 4.3.3) confer great scavenging ability 

because of the stability of the produced phenoxyl radicals. In addition, the keto double 

bond at position 4 of the C ring, especially in association with the C2-C3 double bond, 

increases scavenger activity by delocalizing electrons from the B ring. Also, the 3-OH 

group on the C ring, in addition to the C2-C3 double bond and 4-oxo group, forms an 

extremely active scavenger, and compounds bearing this structural combination appear 

to have the best combination on top of the catechol group (Rice-Evans and Miller, 

1998). These structural aspects explain why quercetin and myricetin are the flavonoids 

with the most efficient radical scavenging activity (Middleton et al., 2000). Several 

glycosilated derivatives of both flavonoids were identified in the methanol extract of 

D. intermedia, however, it is assumable that their activities will be somewhat 

compromised by the sugar moieties attached at the 3-OH group of the aglycone. In 

addition, the major compounds present in the methanol extract are ellagic acid and 3,3'-

di-O-methylellagic acid and it is therefore assumable that they are responsible for the 

largest contribution to the extract’s AOC profile. Despite the fact that ellagic acid bears 

two catechol groups in its structure, it has been reported to be a poorer radical scavenger 

in comparison to quercetin and myricetin (Kim and Lee, 2004). This might be due to 

internal hydrogen bonding between the oxygen atom of the carbonyl group present in 

the lactonic ring and the proximate phenolic OH group which reduces the ability of 

ellagic acid to donate a phenolic hydrogen atom to an attacking radical (Laranjinha et 
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al., 1994). In fact, it has been suggested that the presence of electron withdrawing 

substituents in phenolic molecules decreases reactivity with peroxyl radicals (Burton et 

al., 1985), which might explain the relative low reactivity of the methanol extract in the 

ORAC assay. In addition, it is expected that the AOC of 3,3'-di-O-methylellagic acid is 

even lower than ellagic acid, because of the two methylated phenolic hydroxyls which 

compromise its ability to react with free radicals. Overall, the D. intermedia methanol 

extract might have lower AOC in comparison to the P. lusitanica extract due to its more 

complex composition implicating a lower concentration of each individual antioxidant 

compound. In addition, the compounds with the highest reported antioxidant potential 

(myricetin and quercetin derivatives) belong to the minor components of the extract. 

 

Figure 4.3.1 shows that the D. intermedia n-hexane extract had the lowest AOC 

(ORAC: 4.1 ± 0.5 μmolTE/mgextract; TEAC: 12.9 ± 0.7 μmolTE/mgextract; FC: 10.2 ± 1.9 

μmolGAE/mgextract) (P < 0.001). Phytochemical analysis pointed out that the extract was 

composed by mainly one compound, the naphthoquinone plumbagin. The structure of 

plumbagin is based on a naphthalene ring substituted at positions 1 and 4 with two 

ketone groups, forming the quinone moiety (Figure 4.3.4).  

 

1

4

O

O

CH3

OH  
Figure 4.3.4 - Structure of plumbagin. 

 

The two electron withdrawing ketone groups are responsible for the compounds’ 

electrophilic nature which makes plumbagin unlikely to donate protons, but on the 

contrary, prone to act as a prooxidant. In fact, Murakami et al. (2010) showed that 

plumbagin was able to stimulate lipid peroxidation of microsomes from rat liver. 

Noteworthy, the water extract which was characterized by having a low content in 

secondary metabolites which could not be identified, showed superior AOC in 

comparison to the n-hexane extract (ORAC:  28.4 ± 3.4 μmolTE/mgextract; TEAC: 121.1 

± 10.8 μmolTE/mgextract; FC: 104.5 ±  16.1 μmolGAE/mgextract). 
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It is interesting to see that the obtained AOC values for the different D. intermedia 

extracts show a consistent order of activity between the tested methods (Figure 4.3.1), 

even though different reaction substrates and mechanisms are involved, suggesting that 

the antioxidant components follow a similar reaction mechanism with the free radicals 

and the F-C reagent. Although no related species to P. lusitanica and D. intermedia 

have been investigated for their AOC, rendering useless any comparison of results, the 

present results show that these species are sources of compounds with considerable 

antioxidant activity. 

 

4.3.2. Antimicrobial activity 

 

The antimicrobial activity of the methanol extract of P. lusitanica and the n-hexane, 

water and methanol extracts of D. intermedia was determined by the agar diffusion 

assay and by determination of MIC values against a panel of bacterial and yeast strains 

(Table 4.3.1). Except for the P. lusitanica extract, all the extracts showed significant 

inhibition of microbial growth based on the obtained inhibition zone diameter (IZD) 

values. For this reason the MICs were only determined for the D. intermedia extracts. 

 

4.3.2.1. D. intermedia 

 

Of the extracts prepared from D. intermedia, the n-hexane extract showed greater IZD 

values (14.3 ± 1.2 to 59.0 ± 0.6 mm) than water (8.7 ± 0.3 to 43.3 ± 1.3 mm) and 

methanol (9.0 ± 0.6 to 43.0 ± 0.6 mm) extracts (Table 3.4.1, Figure 4.3.5). The results 

obtained by the MIC determination assay further accentuate the fact that the n-hexane 

has by far the greatest antimicrobial activity. The n-hexane extract yielded MIC values 

under 100 µg/mL against nine of the tested strains, showing remarkable activity for a 

crude extract. In the case of S. aureus ATCC 25923 and C. albicans YP0175, the 

obtained MIC values for the n-hexane extract were over 100 fold inferior to those of the 

water and methanol extracts: 26.0 μg/mL, 13.0 μg/mL for the n-hexane extract, 5208.3 

μg/mL, 5208.3 μg/mL for the water extract, and 5208.3 μg/mL, 2608.3 μg/mL for the 

methanol extract, respectively. These results were expectable considering that the main 

component of the n-hexane extract, the naphthoquinone plumbagin, is a potent 

antimicrobial agent for which activity had been previously demonstrated (Didry et al., 

1998; Lim et al., 2007; Gonçalves et al., 2009). 



 

Table 3.4.1. Antimicrobial activity of the P. lusitanica methanol extract and n-hexane, water and methanol extracts of D. intermedia determined by the agar disc diffusion and 

minimum inhibitory concentration (MIC) method.  

  P. lusitanica  D. intermedia   

  Methanol  n- Hexane  Water  Methanol  Standard a 

Microorganism  IZDb (mm)  IZDb (mm) MIC (µg/mL)  IZDb (mm) MIC (µg/mL)  IZDb (mm) MIC (µg/mL)  IZDb (mm) MIC (µg/mL) 

Bacteria               

E. faecalis ATCC 29212  -  21.0 ± 0.6 52.1  - ND  - ND  16.0 ± 0.6 33.3 

S. aureus ATCC 25923  12.3 ± 0.9  43.3 ± 0.7 26.0  21.7 ± 1.8 5208.3  24.0 ± 1.5 5208.3  20.3 ± 0.3 8.3 

S. epidermidis ATCC 12228  12.7 ± 0.7  50.7 ± 1.5 13.0  43.3 ± 1.3 650.0  43.0 ± 0.6 325.0  23.7 ± 0.3 8.3 

C. sakazakii ATCC 29544  -  19.7 ± 1.2 208.3  9.0 ± 0.0 > 10000  9.7 ± 0.3 > 10000  23.0 ± 1.0 8.3 

C. sakazakii ATCC BA-894  -  19.0 ± 0.6 208.3  9.0 ± 0.0 > 10000  9.0 ± 0.6 5208.3  24.0 ± 0.6 16.7 

E. coli ATCC 25922  -  14.3 ± 1.2 208.3  11.3 ± 1.9 > 10000  13.7 ± 2.2 > 10000  24.0 ± 0.6 4.2 

P. aeruginosa ATCC 27853  -  - ND  - ND  8.7 ± 0.3 > 10000  23.0 ± 0.6 ND 

Ye  ast               

C. albicans ATCC 10231  -  41.7 ± 1.5 52.1  19.0 ± 0.6 5208.3  23.3 ± 2.2 5208.3  32.3 ± 1.2 0.1 

C. albicans ATCC 90028  -  44.3 ± 0.3 26.0  9.7 ± 0.3 1300.0  11.0 ± 0.0 1300.0  30.7 ± 1.5 0.03 

C. albicans YP0175  -  45.7 ± 0.7 13.0  14.7 ± 1.2 5208.3  15.0 ± 1.2 2608.3  30.3 ± 0.9 0.1 

C. catenulata YP0160  -  38.3 ± 0.9 52.1  11.3 ± 1.2 2608.3  12.7 ± 1.5 1300.0  30.0 ± 0.0 0.13 

C. famata YP0011  -  30.7 ± 1.5 104.2  11.0 ± 0.6 > 10000  12.0 ± 0.6 5208.3  27.0 ± 0.6 0.1 

C. guillermondi YP0170  -  39.7 ± 0.3 52.1  8.7 ± 0.3 2608.3  10.3 ± 0.7 5208.3  28.7 ± 0.7 0.1 

C. neoformans YP0186  -  59.0 ± 0.6 104.2  24.0 ± 0.6 1300.0  28.7 ± 0.7 650.0  32.0 ± 0.6 0.3 

T. mucoides YP0096  -  34.0 ± 1.2 52.1  12.0 ± 1.5 5208.3  12.7 ± 1.2 2608.3  31.0 ± 1.0 0.1 
a For agar diffusion method chloramphenicol (30 µg/disc) was used as control for bacteria, except for P. aeruginosa ATCC 27853 where gentamicin (10 µg/disc) was used, and 

amphotericin B for yeasts (20 µg/disc); b Extracts were tested at 1 mg/disc; IZD Inhibition zone diameter, including disk diameter of 6 mm; (-) inactive; ND not determined; values 

represent mean± standard error of 3 repetitions. 
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Caption: H - n-hexane extract; M - methanol extract; W - water extract; A - reference antibiotic 

(chloramphenicol for bacteria, amphotericin B for yeasts); C1 - methanol; C2 - saline solution. 

 

Figure 4.3.5 - Growth inhibition zones of selected microorganisms induced by D. intermedia extracts and 

reference antibiotics and solvents. 
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The chemical basis for the toxicity and pharmacology of quinones has been examined 

extensively and two primary mechanisms have been proposed to account for their 

actions (Inbaraj and Chignell, 2004; Rodriguez et al., 2004; Castro et al., 2008). 

Following the first mechanism, quinones can undergo one-electron reduction to 

semiquinone-free radicals by electron-transferring enzymes such as NADPH-

cytochrome P450 reductase and mitochondrial NADH-ubiquinone oxidoreductase. 

These free radicals are oxidized back to quinones by transferring electrons to O2, 

generating the superoxide anion and other ROS (Figure 4.3.6 A). This reduction and 

oxidation cycle of quinones is defined as redox cycling. Because of the catalytic nature 

of this redox process, one equivalent of quinone can generate multiple equivalents of 

superoxide and in this way overwhelm the protective, antioxidant systems in the cell.  

 

Alternatively, quinones can act as potent electrophiles capable of reacting directly with 

protein thiol groups via 1,4-addition chemistry, leading to covalent modification of 

biological molecules at their nucleophilic sites and resulting in loss of function (Figure 

4.3.6 B). Although the ability of quinones to act as either electrophiles or redox cycling 

agents is well established, the degree to which these properties contribute to their 

overall toxicity is unclear and will be highly dependent on their chemical properties and 

the conditions of cellular exposure. Determination of the contribution of these two 

mechanisms to the overall toxicity of many quinones is difficult since both mechanisms 

can operate under most experimental conditions (Rodriguez et al., 2004). Because the 

redox cycling mechanism can only occur in the presence of oxygen, the activity of 

plumbagin was tested against Saccharomyces cerevisiae, a facultative anaerobic 

organism, in the presence and absence of oxygen in an attempt to discriminate the 

mechanism responsible for the activity of plumbagin (Castro et al., 2004). The authors 

showed that plumbagin exerted mainly toxicity by binding with proteins and to a lesser 

extent by generating oxidative stress. It would be interesting to test the bioactivity of the 

n-hexane extract in the absence of oxygen in order to determine the toxicity mechanism 

exerted against the tested yeast strains. 

 

The only microorganism tolerant to the n-hexane extract of D. intermedia was 

P. aeruginosa ATCC 27853, which comes as no surprise since it has a very high level 

of intrinsic resistance to virtually all known antimicrobials and antibiotics due to a
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Figure 4.3.6 - Toxic reaction pathways of quinones: generation of reactive oxygen species by redox 

cycling mechanism (A); nucleoophilic 1,4-addition reaction (B) (Rodriguez et al., 2004).  

 

combination of a very restrictive outer membrane barrier and efficient efflux 

mechanisms (Nikaido, 1999). This result could be confirmed by a work perfomed by 

Tegos et al. (2002), which could not detect the MIC at the limit of solubility of 

plumbagin (> 500 μg/mL) against P. aeruginosa as well. The standard chloramphenicol 

is not effective against this bacterial strain (Gonçalves et al., 2009) and gentamicin was 

used for the agar diffusion method instead. 

 

In general, Gram-negative bacteria are less susceptible to antimicrobial products than 

Gram-positive because their cell walls present a more significant barrier to entry. As 

opposed to Gram-positive bacteria which have a more permeable outer peptidoglycan 

layer, Gram-negative bacteria have a efficient phospholipidic outer barrier, with narrow 

porin channels which limit the penetration of hydrophobic molecules and a low fluidity 

lipopolysaccharide leaflet which slows down the inward diffusion of lipophilic products 

(Simões et al., 2008). The presence of efflux systems consisting of multidrug resistance 

pumps (MDRs) coupled with low permeability of the outer membrane which restricts 

diffusion of antimicrobials into the cells is responsible for the very high intrinsic 

resistance of Gram-negative bacteria. The results presented in Table 4.3.1 are consistent 

with this knowledge, since the tested Gram-negative bacteria (C. sakazakii ATCC 
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29544, C. sakazakii ATCC BA-894, E. coli ATCC 25922 and P. aeruginosa ATCC 

27853) were overall less affected by the D. intermedia extracts. 

 

The IZD values presented in Table 3.4.1 also show that the water and methanol extracts 

were able to inhibit the growth of all tested microorganisms, except for E. faecalis 

ATCC 29212 and P. aeruginosa ATCC 27853 in the case of the water extract. Although 

showing less activity than the n-hexane extract, the water and methanol extracts have 

considerable activity, which could explain the use of D. intermedia for the treatment of 

various respiratory diseases (Melzig et al., 2001; Paper et al., 2005). Overall, the most 

susceptible bacterial strain to the D. intermedia extracts is S. epidermidis ATCC 12228 

(MIC: 13.0 μg/mL, 650.0 μg/mL, 325.0 μg/mL for n-hexane, water and methanol, 

respectively) and P. aeruginosa ATCC 27853 the most tolerant (MIC: not determined 

for n-hexane and water; > 10000 μg/mL for methanol). 

 

An interesting result was that, in contrast to the n-hexane extract, the methanol extract 

showed a slight activity against P. aeruginosa. This indicates that the growth inhibition 

is not only exerted by a different compound, but also that it is active by a different 

mechanism. Noteworthy, Krolicka et al. (2008) also reported activity of a methanol 

extract of Dionaea muscipula, which has a similar secondary metabolite profile as 

D. intermedia (Section 3.3.3; Pakulski and Budzianowski, 1996a; 1996b), against 

P. aeruginosa, while the chloroform extract containing plumbagin was ineffective. 

Some flavonoids, including myricetin, have been reported to have antimicrobial activity 

against Gram-negative and Gram-positive bacteria by inhibiting the synthesis of nucleic 

acids (Cushnie and Lamb, 2005). Therefore, the same author tested the bactericidal 

activity of myricetin and quercetin against P. aeruginosa which proved to be 

ineffective, suggesting that the ellagic acid derivatives might be responsible for the 

observed activity. Ellagic acid and its derivatives have been shown to have 

antimicrobial activity (Atta et al., 2001), which could explain the activity of the 

methanol extract against the panel of selected bacteria and yeasts. It is believed that the 

antimicrobial activity of ellagic acid and other phenolic phytochemicals is related with 

the fact that these compounds are weak acids capable of dissociating at the cell 

membrane, creating a proton gradient which alters the function of many proton pumps 

on the cell membrane and changes its resting potential (Mirzoeva et al., 1997; Choi and 

Gu, 2001). However, the reported activities are moderate and no activity was shown for 
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ellagic acid against P. aeruginosa (Reddy et al., 2007). Another possibility for the 

activity of the methanol extract against P. aeruginosa and other tested strains is a 

synergistic action between flavonoid glycosides or ellagic acid derivatives and 

plumbagin, which might have been extracted in residual amounts. For example, it has 

been shown that quercetin-3-rutinoside does not exhibit antibacterial activity but 

enhances significantly the antimicrobial properties of its aglycone quercetin (Arima et 

al., 2002). The phenomenum can be the result of cooperation of metabolites strongly 

influencing permeability of bacterial cell walls and of metabolites with effective 

antimicrobial activity. A number of plant metabolites have been identified which, 

although not being antimicrobial themselves, are capable of inhibiting MDRs, thereby 

potentiating the action of antimicrobials that would otherwise be extruded from the 

bacterial cell (Gibbons, 2005; Krolicka et al., 2008). In fact, ellagic acid has been shown 

to enhance the susceptibility of the Gram-negative bacterium Acinetobacter baumannii 

against a variety of antibiotics (Chusri et al., 2009). Taking into account the high 

resistance of P. aeruginosa against most antibiotics, it would be interesting to 

investigate this theory by fractionating the extract and testing these fractions 

independently and in combination against P. aeruginosa or by adding plumbagin to the 

crude extract to determine if its action against the pathogen is potentiated in a 

concentration dependent manner. 

 

In the case of the yeasts, discrepant activities were observed for the D. intermedia 

extracts as well. Based on the obtained MIC values, the most tolerant strain to the 

n-hexane extract was C. neoformans YP0186 (104.2 μg/mL), while it was the most 

susceptible strain to the water and methanol extracts (1300.0 μg/mL and 650.0 μg/mL, 

respectively). This result suggests that more than one group of compounds with 

different action mechanisms are responsible for the activity. Overall, the most 

susceptible yeast to the D. intermedia extracts is C. albicans ATCC 90028 (MIC: 26.0 

μg/mL, 1300.0 μg/mL, 1300.0 μg/mL for n-hexane, water and methanol extracts, 

respectively) and the most tolerant is C. famata YP0011 (MIC: 104.2 μg/mL, > 10000 

μg/mL, 5208.3 μg/mL for n-hexane, water and methanol extracts, respectively). 
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4.3.2.2. P. lusitanica 

 

In contrast to the D. intermedia extracts, the methanol extract of P. lusitanica showed 

little activity against the panel of microorganisms (Figure 4.3.7). Only the Gram-

positive bacteria S. aureus ATCC 25923 and S. epidermidis ATCC 12228 showed 

susceptibility with inhibition zones of 13.3 ± 0.9 mm and 12.7 ± 0.7 mm (Table 4.3.1), 

respectively. The tested Gram-negative bacteria and yeasts were tolerant to the P. 

lusitanica methanol extract and therefore the MIC’s were not determined for this 

extract. However, moderate antimicrobial activity has been reported for the major 

extract components, namely acteoside (Didry et al., 1999) and iridoid glucosides 

structurally related to mussaenosidic acid (Ishiguro et al., 1983). Interestingly, removal 

of the sugar moiety of the iridoid glucoside aucubin by treatment with β-glucosidase 

resulted in a potent antimicrobial capable of inhibiting the growth of several 

Gram-negative and Gram-positive bacteria (Davini et al., 1986). This seems to be 

related with the plant’s strategy to store anti-infective agents which become only active 

after endogenous enzymatic hydrolysis induced by herbivore attack (Section 3.3.1.4; 

Konno et al., 1999). For this reason, it could prove worthwhile to test the corresponding 

aglycones of the iridoids identified in P. lusitanica to determine their effective 

antimicrobial potential. 

 

S. aureus ATCC 25923 C. sakazakii ATCC 29544 C. albicans ATCC 90028 C. catenulata YP0160S. aureus ATCC 25923 C. sakazakii ATCC 29544 C. albicans ATCC 90028 C. catenulata YP0160

 
Figure 4.3.7 - Growth inhibition zones induced by P. lusitanica methanol extract (top) against selected 

bacterial and yeast strains. 

 

4.3.3. Evaluation of antimicrobial assays 

 

When comparing the results obtained by the agar diffusion method and the MIC 

determination method one can see that they are not always coherent. For example, 
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C. neoformans was one of the most tolerant yeast strains to the n-hexane extract 

according to the obtained MIC value (104.2 μg/mL), while showing the largest IZD 

(59.0 ± 0.6 mm). This can be explained by the fact that the strains which present the 

largest IZDs are not always the most sensitive, as antimicrobial effectiveness of a 

compound is compromised by factors such as extract solubility, the diffusion range in 

the agar and the evaporation of the extract’s solvent (Hernández et al., 2005). For this 

reason, the MIC method should prevail over agar diffusion methods in evaluating the 

antimicrobial activity of an active principle. Also, the fact that the agar diffusion 

method does not highlight the higher activity of the n-hexane extract of D. intermedia, 

to the same extent as the dilution method, can be explained by the low solubility of n-

hexane as solvent carrier in an aqueous based agar media. 

 

4.3.4. Potential of D. intermedia metabolites as antimicrobial agents 

 

Plant antimicrobials are not used as systemic antibiotics at present. Although there are a 

significant number of phytochemical classes with antibacterial potential, none has 

reached clinical application (Tegos et al., 2002; Gibbons, 2005; Simões et al., 2008). In 

most cases, the concentrations required for phytochemicals to exert activity are too high 

to be clinically relevant, i.e., the reported MICs for plant antimicrobials are often in the 

range of 100 to 1000 μg/ml, orders of magnitude higher than those of common broad-

spectrum antibiotics from bacteria or fungi (MICs 0.01 to 10 μg/ml). Those rare plant 

antimicrobials that are effective and that have broad-spectrum activities, like pyrithione 

of Polyalthea nemoralis (Han et al., 1981), are fairly toxic antiseptics. The case of 

plumbagin is similar, despite its relatively broad range of activity and high 

effectiveness, plumbagin is an unlikely candidate as an antimicrobial agent, due to its 

toxicity and low therapeutic selectivity (Kayser et al., 2003). The remaining major 

secondary metabolites produced by D. intermedia, namely ellagic acid derivatives and 

flavonoid glucosides are reported in literature as antimicrobial compounds and showed 

activity against the panel of selected microorganisms, however their activities are 

possibly too weak to be considered as potential candidates for drug development. 

 

It is generally accepted that phytochemicals are less potent anti-infectives than agents of 

microbial origin (Yamada, 1991; Cushnie and Lamb, 2005). Nevertheless, research 

programs combining phytochemical screening and biological assays continue to be of 
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importance as new classes of antimicrobial drugs are urgently required (Levy, 1998; 

Cowan, 1999). Future optimisation of these compounds through structural alteration 

may allow the development of a pharmacologically acceptable antimicrobial agent or 

group of agents (Cushnie and Lamb, 2005). Despite the fact that the activity identified 

by an in vitro test does not necessarily confirm that a plant extract is an effective 

medicine, nor a suitable candidate for drug development, it does provide basic 

understanding of its efficacy and in some cases toxicity (Alviano and Alviano, 2009). In 

addition, phytochemicals should continue to be considered as a source of potential 

antimicrobials following the ecological rationale that antimicrobial natural products are 

produced to protect the plant from pathogenic microbes in its environment (Gibbons, 

2005).  

 

A new insight concerning the potential of plant derived antimicrobials has been given 

by Tegos et al. (2002). The authors showed a striking increase in antimicrobial activity 

of several plant metabolites by disabling the multidrug resistance pumps (MDRs) in 

Gram-negative bacteria and suggested that plant antimicrobials can be developed into 

effective, broad-spectrum antibiotics in combination with inhibitors of MDRs. For 

instance, the activity of rhein, a metabolite produced by Rheum officinalis, was 

potentiated 100- to 2,000-fold, depending on the bacterial species, by disabling the 

MDRs. Comparable results were obtained for plumbagin. This strategy was inspired on 

Berberis plants which besides the strong antimicrobial berberine, were shown to 

produce the MDR disruptors 5’-methoxyhydnocarpin D and pheophorbide A, which 

facilitate the penetration of berberine into attacking microorganisms. Berberis plants do 

not have known bacterial pathogens, suggesting that they have developed means of 

delivering their antimicrobials into bacterial cells, following a similar mechanism as the 

putative synergistic action between the D. intermedia compounds previously described 

in section 4.3.2.1. The study performed by Tegos et al. (2002) shows that plant 

antimicrobials are potentially as effective as conventional antibiotics produced by 

bacteria and fungi if they are delivered into the pathogen cell. The potentiation of these 

metabolites by MDR inhibitors opens the possibility for the development of 

combination therapy. 
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4.4. CONCLUSIONS 

 

The AOC of extracts prepared from P. lusitanica and D. intermedia was evaluated by 

the ORAC, TEAC and F-C assays. The results indicated that the methanol extract of 

P. lusitanica has the highest AOC, which is possibly due to one of its major 

components, acteoside. Acteoside is a secondary metabolite which has shown activity 

against several biological targets and is a potential candidate for further studies. The D. 

intermedia methanol extract also showed considerable AOC which can be explained by 

the combined activity of ellagic acid derivatives and flavonoid glucosides. The same 

extracts were also subjected to antimicrobial assays, in which their capacity to inhibit 

the growth of several bacteria and yeasts were evaluated by the agar disc diffusion and 

MIC methods. In this case the most effective extract was the n-hexane extract of 

D. intermedia inhibiting the growth of all tested microorganisms, except P. aeruginosa. 

The observed activity can be explained by the fact that the major component of the 

extract is plumbagin, a naphthoquinone reported to have remarkable antimicrobial 

potency.  

 

The bioactivity of plumbagin is most likely explained by its electrophilic nature and its 

ability to bind to proteins and other biomolecules, but also by its capacity to induce the 

production of ROS in cellular organisms by the redox cycling mechanism, which 

explains the low AOC values obtained in the antioxidant assays. Despite the promising 

results of this preliminary assay, plumbagin is an unlikely candidate due to its toxicity 

and low therapeutic selectivity. Interestingly, the methanol extract was able to inhibit 

slightly the growth of the multidrug resistant P. aeruginosa, possibly by a membrane 

destabilizing effect induced by the ellagic acid derivatives. Considering the high 

resistance of this microorganism to most antibiotics it would be interesting to determine 

the underlying mechanism. The P. lusitanica extract showed little activity against the 

panel of microorganisms and was only able to inhibit the growth of two bacteria, 

namely S. aureus ATCC 25923 and S. epidermidis ATCC 12228.  

 

This chapter dealt with the preliminary bioactivity screening of extracts prepared from 

P. lusitanica and D. intermedia. Overall it was shown that both species are sources of 

antioxidant compounds and that the metabolites produced by D. intermedia have 
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considerable antimicrobial activity. Despite the fact that the assays did not result in any 

potential candidate for drug development, nor underline any potential specific 

application, is it important to continue to submit phytochemicals to screening programs 

taking into perspective the vast diversity of chemical structures derived from plants and 

the amount of drugs derived from them which are currently in use. 
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5.1. INTRODUCTION 

 
5.1.1. Biocompound extraction from plants  

 

Many higher plants are major sources of useful secondary metabolites which are used in 

pharmaceutical, agrochemical, flavour and aroma industries (Debnath et al., 2006; 

Karuppusamy et al., 2009). Attempts to synthesise plant-derived active principles have 

largely been successful, but in most cases this has proved to be uneconomic in 

comparison to isolation from plant material. Camptothecin (Camptotheca acuminata), 

podophyllotoxin (Podophyllum hexandrum and P. peltatum), vinblastine and vincristine 

(Catharanthus roseus) are examples of anticancer compounds that are extracted from 

their natural sources and not synthesized chemically on a commercial scale due to their 

complex structure with several chiral centres (Wink et al., 2005). Often, the respective 

plants are grown in plantations as conservation problems may arise when they are 

harvested from nature. However, inconsistent production and low yields, as usually 

secondary metabolites account for less than 1% of the plants’ dry weight, make this 

approach unfeasible in the long term (Georgiev et al., 2009). 

 

In response to these issues, in vitro culture technology has become an attractive and 

cost-effective alternative for the production of high value plant-derived metabolites. 

Plant cell and tissue cultures can be established routinely under sterile conditions from 

explants, such as plant leaves, stems, roots and meristems for both multiplication and 

extraction of secondary metabolites purposes, as they produce and accumulate many of 

the same valuable chemical compounds as the parent plant in nature. Secondary 

metabolite production in plant cell and tissue culture has the advantage of being reliable, 

predictable, generated on a continuous year-round basis without seasonal constraints, 

and in some cases yields may exceed the ones found in nature (Debnath et al., 2006; 

Karuppusamy et al., 2009).  

 

In a limited number of instances production of high-value phytochemicals in 

non-organized callus and suspension cultures using bioreactors was successfully 

implemented. Paclitaxel is an alkaloid that was first isolated from the bark of Taxus 

brevifolia, during a screening program of the United States National Cancer Institute, 

and is currently produced by plant cell fermentation by Phyton Biotech (Germany). Sold 
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under the trademark Taxol®, paclitaxel is used in cancer chemotherapy to treat lung, 

ovarian and breast cancer and is a good example of commercially viable production of 

secondary metabolites using biotechnological approaches (Wink et al., 2005). 

 

However, undifferentiated callus and suspension cultures very often fail to accumulate 

the compounds of interest. This situation occurs when the metabolite is only produced 

in specialized plant tissues or glands in the parent plant and production requires more 

differentiated microplant or organ cultures. A prime example is the production of 

ginseng saponins (Panax ginseng), for which root culture is required as these saponins 

are produced specifically in the roots (Karuppusamy, 2009). It is assumed that the genes 

that encode proteins of secondary metabolite biosynthesis, transport or storage are 

regulated in a cell- or tissue-specific way as is the situation for most of the genes 

regulating development and metabolic functions. It is likely that the secondary 

metabolite related genes are turned off in undifferentiated tissues, which would explain 

the failure of callus and suspension cultures to produce these in significant quantities 

(Wink, 1987; de Luca and St. Pierre, 2000). On the other hand, organized tissue cultures 

such as shoot and root cultures, as well as hairy roots, hardly ever fail to synthesize 

secondary metabolites. Karuppusamy (2009) presents an extensive review on the 

secondary metabolites produced by in vitro tissue, organ and cell cultures. From a 

literature survey, there has only been one example of commercial production of a higher 

plant natural product by plant tissue culture and that is the case of Lithospermum 

erythrorhizon cultures, which are used to produce the antiseptic dye shikonin 

(Philipson, 1994). 

 

5.1.2. The naphthoquinone plumbagin 

 

5.1.2.1 Importance of plumbagin 

 

Plumbagin is the most efficient secondary metabolite isolated so far from carnivorous 

plants (Eilenberg et al., 2005). This naphthoquinone has received an enormous amount 

of attention in pharmacological research due to its antimalarial (Likhitwitayawuid et al., 

1998), antimicrobial (Didry et al., 1994; Didry et al., 1998, Gonçalves et al., 2009a), 

antifungal (Ribeiro de Paiva et al., 2003), anticancer (Parimala and Sachdanandam, 

1993; Sugie et al., 1998), antimutagenic (Durga et al., 1992), cardiotonic (Itoigawa et 
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al., 1991), hypolipidemic and antiatherosclerotic effects (Sharma et al., 1991). Despite 

the broad range of biological activities of plumbagin, its high cytotoxicity and relative 

low therapeutic selectivity are the major disadvantages that limit its medical application 

(Kayser et al., 2003). To circumvent this problem several synthetical plumbagin 

derivatives have been examined to identify products exerting plumbagin-like activity 

and lower toxicity (Ogihara et al., 1997; Hazra et al., 2002; Tandon et al., 2004; Tandon 

et al., 2006). Nevertheless, it has been shown recently that at subtoxic concentrations, 

plumbagin  is proving to be an effective agent against several pharmacological targets 

and has regained the interest of researchers in the field of drug discovery in the past 

years (Checker et al., 2009; Son et al. 2009; Shieh et al., 2010) (Figure 5.1.1).  
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Figure 5.1.1 - Citation number in the period of 1995-2009 of published items with the following search 

criteria:  topic=“plumbagin”, areas=“pharmacology and pharmacy” or “medicinal chemistry”. Citation 

report generated by Web of Science (ISI Web of Knowledge). 

 

Plumbagin and several of its analogues also exert a strong antifeedant activity against 

Spodoptera litura due to a combination of both high volatility and high redox potential 

(Tokunaga et al., 2004). Furthermore, the inhibition of insect ecdysis and chitin 

synthetase by plumbagin suggests that plumbagin and its closely related derivatives may 

serve as environmentally friendly insect control agents and be of value to the 

agrochemical industry (Kubo et al., 1983). 
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5.1.2.2. Occurrence and biological significance of plumbagin 

 

Naphthoquinones are one of the groups of secondary metabolites widespread in nature. 

Plumbagin is produced by a disperse and heterogeneous group of plant families and can 

be found in members of the Droseraceae (Marckzack et al., 2005), Plumbaginaceae 

(Ribeiro de Paiva et al., 2003), Nepenthaceae (Rischer et al., 2002), Ebenaceae 

(Dzoyem et al., 2007) families and also in Drosophyllum lusitanicum (Grevenstuk et al., 

2008) and Triphyophyllum peltatum (Bringmann et al., 2000), which belong to the 

monotypic families Drosophyllaceae and Dioncophyllaceae, respectively. The 

production of naphthoquinones is common in carnivorous plants but not exclusive to 

this group of plants. The ability of naphthoquinone synthesis is not limited to higher 

plants. Naphthoquinones have also been found in fungal organisms in genera such as 

Fusarium, Aspergillus, Cladosporium, Microsporium, Mollisia, Penicillium, 

Trichophyton and Verticillium and Actinomycetes of the genus Streptomyces 

(Medentsev and Akimenko, 1998). Plumbagin, however, has not been found in these 

organisms to date. 

 

The biosynthetic pathway of plumbagin (Figure 5.1.2) has been studied in plants and it 

was established that it is synthesized by the acetate-malonate pathway using L-alanine 

as precursor (Durand and Zenk, 1974). The fact that many plants accumulate this 

naphthoquinone in significant amounts suggests that it plays an important role in the 

plants’ interaction with its environment (Tokunaga et al., 2004). 

 

 
Figure 5.1.2 - Proposed biosynthetic pathway of plumbagin (Rischer et al., 2002). 
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Besides the effects of plumbagin on vertebrates, there are many reports on its 

allelochemical effects on organisms of interest in the ecological context. Plumbagin acts 

as an antifeedant agent on herbivorous insects: it is capable of repelling even adapted 

Lepidoptera (Villavicencio and Perez-Escandon, 1994) and insects feeding on plants 

containing a critical dose of plumbagin die either immediately (Gonçalves et al., 2008) 

or during the next ecdysis due to the inhibiton of ecdysteroid (Joshi and Sehnal, 1989) 

and chitin synthetase production (Kubo et al., 1983). Plumbagin is responsible for 

fungicidal activity against plant pathogenic species, acts as a potent phytoalexin against 

parasitic plants (Bringmann et al., 1999) and inhibits the germination of seeds from 

other species (Spencer et al., 1986; Gonçalves et al. 2009b). These findings support the 

importance of the production of plumbagin and related naphthoquinones, improving the 

plants’ fitness and conferring an adaptive advantage over other plants (Rischer et al., 

2002). 

 

5.1.2.3. Chemical and physical characterization of plumbagin 

 

The chemical structure of naphthoquinones is based on a bicyclic structure, more 

specifically on a naphthalene skeleton, substituted at positions C1 and C4. Plumbagin 

(5-hydroxy-2-methyl-1,4-naphthoquinone; Figure 3.3.2.3) is substituted at position C2 

and C5 by a methyl and hydroxyl group, respectively. At Standard Temperature and 

Pressure (STP) conditions it presents a physical state of a yellow crystalline powder and 

with a melting point of 78-79 ºC it is considered to be a moderately polar compound 

(Merck 1997). Plumbagin is slightly soluble in hot water; soluble in alcohol, acetone, 

chloroform, benzene, and acetic acid (Merck, 1997) 

 

5.1.2.4. The exploitation of plumbagin 

 

At present, the most exploited source of plumbagin is the roots of Plumbago spp. 

However, these plants grow quite slowly and the roots suitable for extraction take years 

to grow (Komaraiah et al., 2003). Moreover, conventional propagation of the plant is 

rather difficult and insufficient to meet the growing demand owing to the poor 

germination of seeds and death of young seedlings under natural conditions (Verma et 

al., 2002). Attempts to produce plumbagin synthetically proved to be commercially 
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ineffective (Ichihara et al., 1980; Wurm and Gurka, 1986), and therefore alternatives for 

the production of plumbagin based on in vitro techniques should be sought for. 

 

Nahálka et al. (1996) showed that cell suspension cultures of D. lusitanicum are capable 

of producing large quantities of plumbagin in a short amount of time. However, vitality 

of the suspension was relatively low because of cell plasmolysis and compromised the 

process viability (Nahálka et al., 1998). Plumbagin is produced mainly in the roots of 

Plumbago spp., therefore, researchers used another approach using hairy root cultures in 

the expectation that it might lead to high levels of plumbagin production (Verma et al., 

2002; Gangopadhyay et al., 2008). Hairy roots are obtained by transforming root 

cultures with Agrobacterium rhizogenes, resulting in a phenotype that is characterized 

by fast hormone-independent growth, lack of geotropism and genetic stability (Veena 

and Taylor, 2007). Despite achieving promising biomass production rates, the 

plumbagin content was too low for commercial exploitation. 

 

Komaraiah (2003) used an improved method to produce plumbagin using Plumbago 

indica (same species as P. rosea) cell cultures. The cells were immobilized in calcium 

alginate while elicitated using chitosan and plumbagin was recovered simultaneously 

using in situ adsorption. Elicitors are signal compounds of plant defence responses, 

which can therefore enhance the production of secondary metabolites. The most 

frequently used elicitors are fungal carbohydrates, yeast extract and chitosan 

(Karuppusamy, 2009). The immobilized cell system enhanced plumbagin production, 

possibly due to increased degree of differentiation or cell to cell contact (Komaraiah et 

al., 2001). In situ direct extraction also increased plumbagin recoveries by reducing the 

toxic effects of plumbagin on the cells and feed back inhibition of secondary metabolite 

synthesis. However, Plumbago plants might not be the most adequate source of plant 

material for the bioprospection of plumbagin because its content in field specimens is 

lower when compared to other plumbagin bearing plants, such as  D. lusitanicum for 

instance (Grevenstuk et al., 2008). Drosera spp. were never seriously considered for 

plumbagin prospection due to their low biosynthesis of this naphthoquinone (Crouch et 

al., 1990), nevertheless, this issue is controversial since higher recoveries have been 

obtained from Drosera plants in comparison to Plumbago plants (Marczak et al., 2005; 

Krolicka et al., 2008; Putalun et al., 2010).  
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5.1.3. Methods for plant secondary metabolite extraction  

 

5.1.3.1. Solvent extraction 

 

5.1.3.2. Maceration 

 

Maceration is the simplest form of solid-liquid extraction from plants and consists of 

leaching the compounds contained in the plant matrix by immersion in the extracting 

solvent. Due to reduced mass-transfer rates, high solvent volumes and long extraction 

times are required. Stirring can be used to enhance mass-transfer. The choice of 

extracting solvent is preponderant as different solvents will yield different extracts and 

extract compositions. Several solvents have been used to extract plumbagin, including 

methanol and chloroform, however n-hexane seems to be the most adequate solvent as 

it provides high recoveries and degree of purity (Grevenstuk et al., 2008; Babula et al., 

2009). 

  

5.1.3.3. Soxhlet extraction 

 

Soxhlet extraction is a general and well established technique used for the isolation and 

enrichment of analytes of medium and low volatility and thermal stability (Romanik et 

al., 2007). In a conventional Soxhlet system, plant material is placed in a thimble-holder 

and filled with solvent. When the liquid reaches the overflow level, a siphon aspirates 

the solution of the thimble-holder and unloads it into the distillation flask, carrying 

extracted solutes into the bulk liquid. The solvent is separated from the solute in the 

solvent flask by distillation and the condensed solvent passes back into the plant solid 

bed, until complete extraction is achieved (Wang and Weller, 2006). Soxhlet extraction 

is one of the oldest techniques for isolating metabolites from plant material but 

continues to be the main reference for evaluating the performance of other solid-liquid 

extraction methods due to its simplicity and exhaustive extraction. It surpasses in 

performance other conventional extraction techniques except for the extraction of 

thermolabile compounds, as the extraction usually occurs at the solvents’ boiling point 

for long periods leading to the thermal decomposition of the target compounds. Other 

drawbacks such as long extraction times and high solvent volumes can be pointed out 

(Wang and Weller, 2006). 
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5.1.3.4. Ultrasound Assisted Extraction (UAE) 

 

Ultrasounds are waves with frequencies ranging from 16 kHz to 1 GHz acting as 

mechanical vibrations in a solid, liquid and gas (Luque-Garcia and Luque de Castro, 

2003). The mechanical effects of ultrasound induce a greater penetration of solvent into 

cellular materials and can also disrupt biological cell walls, facilitating the release of 

contents. These effects are attributed to the phenomenon called acoustic cavitation. If 

the ultrasound intensity is sufficient, the expansion cycle can create cavities or micro-

bubbles in the liquid. Once formed, these bubbles will absorb the energy from the sound 

waves, grow during the expansion cycles and recompress during the compression cycle. 

The increase in pressure and temperature caused by the compression leads to the 

collapse of the bubbles, which generates shock waves that pass through the solvent, 

enhancing the mass transfer within the system (Toma et al., 2001; Yang and Zhang, 

2008). Therefore, efficient cell disruption and effective mass transfer are considered to 

be the major factors leading to the enhancement of extraction with ultrasonic power 

(Mason et al., 1996). 

 

Two general designs of ultrasound-assisted extractors are ultrasonic baths or closed 

extractors fitted with an ultrasonic horn transducer. The average time of ultrasonic 

extraction typically ranges from a few to 60 min, and the recoveries are comparable to 

those obtained after several hours of Soxhlet extraction (Szentmihályi et al., 2002; 

Chemat et al., 2004). The extraction is carried out at room temperature, which makes it 

suitable for the extraction of thermally labile analytes. The need for separation of the 

extract from the sample following the extraction is a disadvantage of this technique 

(Romanik et al., 2007). 

 

5.1.3.5. Supercritical fluid extraction (SFE) 

 

Solvent extraction techniques are cost effective but present considerable shortcomings 

as to what concerns safety and environmental issues. These techniques require large 

volumes of expensive, high purity organic solvents which not only increase operating 

costs but also cause additional environmental problems during post-processing of the 

extracts for solvent elimination (Wang and Weller, 2006). For instance, n-hexane is 

listed as No. 1 on the list of 189 hazardous air pollutants by the US Environmental 
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Protection Agency (Mamidipally and Liu, 2004). Thus, there is an increasing demand 

for new extraction techniques with shortened extraction time, better selectivity, reduced 

organic solvent consumption, and increased pollution prevention. Supercritical fluid 

extraction (SFE) was introduced as an environmentally responsible and efficient 

extraction technique for solid materials and extensively studied for separation of active 

compounds from plants (Jarvis and Morgan, 1997; Pourmortazavi and Hajimirsadeghi, 

2007). Supercritical state is achieved when the temperature and the pressure of a 

substance are raised over its critical value (Figure 5.1.4). Supercritical fluids have 

several advantages over liquid solvents: they penetrate plant material samples as well as 

gases due to their high diffusion coefficients and low viscosity and surface tension; and 

at the same time their dissolving power is similar to liquids (Romanik et al., 2007). 

Furthermore, the dissolving power of a supercritical fluid solvent depends on its 

density, which is highly adjustable by changing the pressure and temperature, meaning 

that the extraction can be selective to some extent by controlling the density of the 

medium. After extraction the material is easily recovered by simply depressurizing, 

allowing the supercritical fluid to return to gas phase and evaporate leaving no or little 

solvent residues (Abbas et al., 2008). 
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Figure 5.1.4 - Phase diagram for a single substance: Pc, critical pressure; Tc, critical temperature 

(Brunner, 2005). Supercritical state is achieved when the temperature and the pressure of a substance are 

raised over its critical value.  

 

The most common extracting agent is carbon dioxide, because of its low cost, low 

toxicity, and favourable critical parameters (Tc= 304 K, Pc= 7.3 MPa; Wang and 

Weller, 2006). CO2 as a nonpolar substance is capable of dissolving nonpolar or 

moderately polar compounds and is especially well suited for the isolation of substances 
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of low and medium polarity and high volatility (Romanik et al., 2007). A mixture of 

CO2 with modifiers (polar organic solvents) is used for the extraction of polar 

substances. The modifiers increase the solubility of analytes, preventing them from 

adsorbing on the active sites of sample matrix. 

 

5.1.3.5. SFE Operation 

 

A SFE process can be carried out in different modes of operation. The majority of cases 

concerns extraction from solids, which is usually carried out in batch and single stage 

mode (Brunner, 2005). A simplified generic SFE system is shown in Figure 5.1.4. A 

typical batch extraction proceeds as follows, raw material is charged in the extraction 

tank which is equipped with temperature controllers and pressure valves at both inlet 

and outlet to keep desired extraction conditions. The extraction tank is pressurized with 

the fluid by a pump, which is also needed for the circulation of the fluid in the system. 

The fluid and the dissolved components are transferred to the separator where the 

solvation power of the fluid is decreased by increasing the temperature, or more likely, 

decreasing the pressure of the system. The product is then collected via a valve located 

in the lower part of the separators and the fluid is further regenerated and cycled (Wang 

and Weller, 2006). 

 
Figure 5.1.4 - Schematic diagram of a SFE system: CO2 reservoir (R); CO2 feed pump (P); heat 

exchanger (H); pressure valve (V); extraction vessel (E); separator 1 (S1); separator 2 (S2); product 1 

(P1); product 2 or waste (P2); condenser (C); (adapted from Wang and Weller, 2006). 
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5.1.3.5. Operation parameters in SFE 

 

There are many variables to be considered in SFE and method development can be a 

demanding task. One initial area that must be assessed is the solubility of the analyte to 

be extracted in the supercritical extracting fluid. This can be investigated by spiking an 

inert medium, usually celite or sand, with the analyte of interest (Pourmortazavi and 

Hajimirsadeghi, 2007). However, solute solubility in the fluid alone does not 

necessarily guarantee successful extraction and other parameters need to be optimized. 

 

5.1.3.5.1. Plant matrix 

 

The effect of matrix on SFE is of critical importance since the rate of extraction also 

depends on the rate of diffusion of the supercritical fluid through the sample matrix and 

the influence of the analyte-matrix adsorption effects (Modey et al., 1996). Different 

factors such as the particle size, shape, surface area, porosity, moisture and the nature of 

the matrix will affect the extraction results. As a general rule, decreasing the particle 

size of solid matrices leads to a higher surface area, making extraction more efficient. 

Yet, excessive grinding may hinder the extraction due to readsorption of the analytes 

onto matrix surfaces (this could be avoided by increasing the flow rate) and pressure 

drop inside the extraction chamber (Pourmortazavi and Hajimirsadeghi, 2007). 

 

Even though the solubility of water in CO2 is limited (0.3%), the content in water of the 

plant sample can cause restrictor plugging upon the fluid depressurization, which may 

freeze out as the fluid evaporates (Modey et al., 1996). Therefore, the sample matrix is 

usually dried before extraction, preferably by freeze-drying, as oven drying may result 

in solute volatilization (Pourmortazavi and Hajimirsadeghi, 2007). However, in some 

cases water can be beneficial to extraction, increasing the polarity of the fluid and 

enabling higher recoveries of relatively polar species. Water can also aid in the 

extraction process by opening pores and swelling the matrix, thereby allowing the 

supercritical fluid better access to analytes and aid in the flow trough the matrix 

(Pourmortazavi and Hajimirsadeghi, 2007). 
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5.1.3.5.2. Effect of pressure and temperature 

 

Solubility of a substance in a supercritical fluid is the sum of two factors: the volatility 

of the substance, which is a function of temperature; and the solvating effect of the 

supercritical fluid, which is a function of fluid density. Therefore, solubility is 

controlled experimentally by selecting the extraction pressure and temperature (Modey 

et al., 1996). Once the experimental conditions at which the solute begins to partition in 

to the supercritical fluid are reached, the fluid pressure is the main parameter that 

influences the extraction efficiency. An elevation of operating pressure at a given 

temperature results in an increase of fluid density, which means an enhanced solubility 

of the solutes. It is often desirable however, to extract the sample just above the point 

where the analyte becomes soluble, minimizing the extraction of interfering compounds 

(Wang and Weller, 2006). The temperature should be above the critical temperature and 

chosen taking into consideration the thermal stability of the solutes. Higher 

temperatures often improve extraction recoveries owing to increased solute diffusion 

coefficients in the fluid with increasing temperature. However, the effect of a 

temperature elevation is difficult to predict because of its dependence on the nature of 

the sample. For a non-volatile solute, an increase in temperature would result in lower 

extraction recovery owing to a decrease in solubility because the density of CO2 

decreases when the temperature is increased at constant pressure (Pourmortazavi and 

Hajimirsadeghi, 2007). 

 

5.1.3.5.3. Extraction time and flow rate 

 

The extraction time should be sufficient to maximize SFE extraction, however, 

extraction is never complete in a finite time, being in general initially rapid but then 

tailing off with time: a 99% removal of a particular analyte may require an extraction 

period of up to ten times that needed to remove the first 50% (Modey et al., 1996). The 

speed of the supercritical fluid flowing through the cell has a strong influence on the 

extraction efficiencies. Lower flow rates usually enhance extraction efficiency because 

the fluid is able to penetrate the matrix deeper at slower velocity. The fluid speed can be 

expressed by the linear velocity, which is strongly dependent on the flow rate and the 

cell geometry (Pourmortazavi and Hajimirsadeghi, 2007). 
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5.1.3.6. SFE of plumbagin 

 

The low polarity and high volatility of plumbagin makes SFE an interesting technique 

for extracting the naphthoquinone, especially when one takes into account that as a rule 

of thumb, the solubilizing properties of supercritical carbon dioxide are compared to 

n-hexane (Modey et al., 1996). Plumbagin has been previously extracted by SFE from 

the roots of Plumbago scandens (Rodrigues et al., 2006). The authors determined the 

solubility of several naphthoquinones and determined that for plumbagin a maximum 

solubility of 13.1 g/L was obtained at 40 ºC and 13.5 MPa (the highest pressure tested). 

The results also show that the greatest amount of plumbagin is extracted during the 

initial 20 min and that after 120 min the extraction has nearly reached completion. 

P. scandens roots were extracted at 40 ºC and 20 MPa and a plumbagin mass fraction of 

0.193% was obtained from fresh roots. 

 

5.1.4. Evaluation of extraction efficiency 

 

In order to evaluate the effectiveness of an extraction method it is important to 

accurately determine the concentration or purity, and the recovery of the final product. 

A survey prepared by Rao and Nagaraju (2003) indicated that in the field of 

pharmaceutical quality control, HPLC has been the main technique used for analysis of 

impurities in drugs. In most cases, reversed-phase mode with UV absorbance detection 

is used, as this method provides the best available reliability, analysis time, repeatability 

and sensitivity. Although isocratic elution is preferred over gradient elution by most 

analysts due to simpler method transfer between instruments and laboratories, shorter 

column reequilibration time and lower baseline noise (Schellinger and Carr, 2006), 

good results have been obtained using a gradient elution to quantify plumbagin from 

Plumbago zeylanica (Wang et al., 2005). The authors used a mobile phase composed of 

water and methanol and peaks were detected at 254 nm. 

 

5.1.5. Solid Phase Extraction (SPE) procedure 

 

SPE is a sample preparation technique for chromatographic analysis and is used for 

sample extraction, concentration and cleanup, increasing reproducibility of analysis and 

column life-span. SPE has replaced liquid/liquid extraction as it prevents problems such 
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as incomplete phase separations, less-than-quantitative recoveries, use of expensive, 

breakable specialty glassware, and disposal of large quantities of organic solvents. 

Furthermore, SPE has the ability to isolate and enrich both volatile and non-volatile 

analytes, eliminate emulsion formation (common in liquid/liquid extraction) and 

foaming (common in gas/liquid extraction). SPE involves adsorption of sample 

components on the surface of a solid sorbent (aminopropyl or octadecyl stationary 

phases, bonded to silica gel), followed by elution with a selected solvent. SPE is carried 

out in glass or polypropylene columns or on extraction disks. A wide selection of 

sorbents enables substantial selectivity of the enrichment process and allows not only 

the isolation of analytes but also the removal of interferences (Romanik et al., 2007). In 

the context of this work, SPE was used as a sample purification step for the isolation of 

plumbagin, taking into account the results obtained in Chapter 3. 

 

SPE is a process that generally involves four steps (Figure 5.1.5). After choosing the 

most adequate sorbent type, the SPE tube is conditioned with a water miscible organic 

solvent to wet the surface of the sorbent and penetrate bonded alkyl phases, allowing 

water to wet the silica surface efficiently. The sample is transferred to the tube and is 

washed with solvent to remove unwanted, weakly bonded retained materials. Finally, 

the tube is rinsed with a solvent that elutes compounds of interest and leaves the 

maximum of impurities behind. The eluate is collected and the tube cleaned for further 

use. 
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Figure 5.1.5 - Schematic diagram of the process for the separation of impurities from the compound of 

interest using SPE: sorbent conditioning (A); sample transfer (B); packing washing (C); Elution of 

compounds of interest (D) (Adapted from Supelco Bulletin 910 - Guide to Solid Phase Extraction, Sigma-

Aldrich). 
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5.1.5. Objectives 

 

Plumbagin is a natural product with commercial value which is obtained from cultivated 

plants. In Chapter 3 it was observed that high purity plumbagin could be recovered in 

high amounts from D. intermedia using a simple procedure. This chapter deals with the 

development of a method for the bioprospection of plumbagin from micropropagated D. 

intermedia plants to determine whether the process can be viable and therefore the 

specific objectives of this chapter are to: 

i) monitor the growth of D. intermedia cultures over time to determine the biomass 

production rate; 

ii) compare plumbagin production levels with other producing species; 

iii) compare plumbagin extraction efficiency of different methods; 

iv) evaluate the viability of SPE for product recovery and purification. 
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5.2. EXPERIMENTAL 

 
5.2.1. Biomass production 

 

D. intermedia plant material was produced according to the micropropagation protocol 

developed in section 2.3.3. The biomass increment of D. intermedia cultures was 

monitored in order to determine the optimum harvesting period. The culture growth 

index was registered at 2 week intervals (in quadruplicate) during 16 weeks of culture 

according to Formula 5.2.1: 

 

htfresh weig Initial

fresh weig Initial -ht fresh weig Final
indexGrowth 

ht
Formula 5.2.1 

 

Separate cultures with the same culture time as the ones used for plumbagin extraction 

were dried until constant weight (in quadruplicate) to determine its water content for dry 

weight yield determination. 

 

5.2.2. Plant material extraction 

 

All extraction procedures were performed with 5 g of fresh micropropagated 

D. intermedia plantlets (in triplicate) harvested at the optimum growth period. Prior to 

extraction, the plant material was ground in a mortar with liquid nitrogen to reduce 

particle size. Solvent extractions were performed with n-hexane using the same volume 

of solvent (150 mL) to compare extraction efficiency. CO2 without modifiers was the 

solvent of choice for SFE. 

 

5.2.2.1. Solvent extraction 

 

The plant material was extracted twice for 24 h by maceration at room temperature 

under mechanical stirring. Soxhlet extraction (Figure 5.2.1 A) was performed until 

exhaustion to prevent eventual thermal degradation of plumbagin. Thus, plant material 

was extracted until verifying loss of yellow coloration of the solvent in the extractor 

(indicating dissolved plumbagin), which coincided with 1 h extractions (extraction 

cycles lasting between 3-4 min). For UAE, the plant-solvent mixture was placed in an 
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Erlenmeyer flask and immersed into a Bandelin Sonorex Super RK103H (Bandelin 

Electronic, Berlin, Germany) ultrasound bath operating at 35 kHz (Figure 5.2.1 B,C). A 

period of 1 h sonication at room temperature was chosen to guarantee maximum 

product recovery. The water of the bath was renewed after each extraction to prevent 

overheating.  

 

 

A B D E 

F 

C 
H I G 

Figure 5.2.1 - Extraction methods used for recovering plumbagin from micropropagated D. intermedia: 

Soxhlet extraction (A); plant matrix and solvent mixture in ultrasound bath (B); solvent after 1 h 

extraction by UAE (C); ground material prior to extraction by SFE (D); closed extraction vessel (E); 

decompression zone (F); first collection vessel (G); recovered plumbagin in first collection vessel (H); 

second collector placed in Dewar flask (I). 

 

5.2.2.2. Supercritical fluid extraction (SFE) 

 

5.2.2.2.1. General experimental setup 

 

Extraction procedure was carried out in a semi-batch flow extraction apparatus built at 

Instituto Superior Técnico, Technical University of Lisbon (Esquível and Bernardo-Gil, 

1993). The schematic diagram is shown in Figure 5.2.2. Compressed carbon dioxide (6 

MPa) is refrigerated in a cold bath at approximately 0 ºC and is fed to a Haskell 

reciprocating liquid pump operated by compressed air. Liquefied carbon dioxide flows 

through a coil in a water bath where it is brought to the desired extraction temperature, 

prior to being fed to a 100 mL stainless steel tubular extractor with the following 
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dimensions: 9.4 cm in height and 2.13 cm internal diameter. The extractor is immersed 

in the same thermostatic water bath to maintain extraction temperature. The outlet 

stream of the extraction vessel is depressurized in two stages to atmospheric pressure 

across two micrometering valves (Figure 5.2.1 F). The piping between the valves is 

placed in a heated water bath (40 ºC) and the extract is collected in the first receiver as it 

is thrown out of solution when the carbon dioxide expands (Figure 5.2.1 G,H). A 

second collector is immersed in a Dewar flask containing a freezing mixture consisting 

of acetone supersaturated with solid carbon dioxide where water and the volatile 

fraction of the extract are collected (Figure 5.2.1 I). The solute-free carbon dioxide 

leaving the collectors is vented through an Ariete Compact gas flow meter.  

 

 
Figure 5.2.2 - Schematic diagram of the SFE apparatus (adapted from Esquível and Bernardo-Gil, 1993). 

 

5.2.2.2.2. SFE operation 

 

The operation parameters were based on a protocol that was optimized for extraction of 

plumbagin from Plumbago scandens (Rodrigues et al., 2006). Before each extraction 

the plant material was placed in the extractor between two pads of washed glass wool to 

prevent downward dissipation of the plant matrix or entrainment of solid particles in the 

stream of compressed carbon dioxide (Figure 5.2.1 D,E). Then, CO2 was pumped until 

the extraction pressure of 20 MPa was reached. The extraction temperature was set to 
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40 ºC and after ensuring that there was no leak in the equipment, the expansion valves 

were opened and a steady stream of the solvent was allowed to pass upward through the 

bed of plant material until reaching an extraction time of 2 h. The valve settings were 

adjusted to give a flow rate of approximately 2 L/min. The extract deposited in the 

tubing around the expansion valves was recovered by washing the system with 

n-hexane at the end of each experiment. The n-hexane was sucked out with a vacuum 

pump and collected in a glass receiver. The CO2 was supplied by ARLIQUIDO-

Portugal in bottles as a 99.5% pure fluid. 

 

5.2.3. Sample treatment 

 

All extracts, except the one obtained by Soxhlet extracion, were filtered (Whatman nº 1, 

Springfield Mill, England) centrifuged (Heraeus Megafuge 1.0R, Osterode, Germany) 

and the supernatants were evaporated under vacuum on a rotary evaporator at 40 ºC. 

The extraction yields were registered and the dry samples were dissolved in a 50% 

acetonitrile solution in water at 2.5 mg/mL for further analysis. 

 

5.2.4. SPE procedure 

 

A SPE column (SUPELCLEAN™ LC-18 Packing; 60 mL; 10 g) was used to clean an 

aliquot of each sample. The distinct yellow coloration of plumbagin makes it possible to 

elute plumbagin selectively from a SPE column using an appropriate gradient. Before 

each SPE procedure the column was activated with 100 mL methanol, washed with 

100 mL acetonitrile, and equilibrated with 100 mL of 30% acetonitrile in water solution. 

Then, the sample was loaded onto the column and the most polar impurities were eluted 

with 100 mL of 30% acetonitrile in water solution (Figure 5.2.3 A, B). A volume of 

100 mL of 50% acetonitrile in water solution was used to elute plumbagin and collected 

(Figure 5.2.3 C,D). The remaining extract was eluted from the column with 100% 

acetonitrile and discarded (Figure 5.2.3 D). The column was washed with 100 mL  of 

acetonitrile, 100 mL of chloroform and 100 mL of methanol for further use. The 

collected sample was evaporated under vacuum to remove the organic solvent and the 

water removed by lyophilisation. The recovery yields were registered by weighing the 

dry sample. Parameters such as extraction yield, sample purity and product recovery 

were calculated to evaluate process efficiency. 
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A B C 

D 

Figure 5.2.3 - Sample loaded onto the SPE column (A); SPE column eluted with 30% acetonitrile in 

water solution (B); SPE column eluted with 50% acetonitrile in water solution (C); recovered fractions: 

30% (left), 50% (center) and 100% (right) acetonitrile in water fractions (D). 

 

5.2.4. Plumbagin quantification 

 

To determine the content in plumbagin the obtained samples were analyzed using a 

HPLC-DAD system. The analyses were carried out on an Agilent 1100 series liquid 

chromatography system (Agilent Technologies, Waldbronn, Germany), composed by 

the following modules: vacuum degasser (G1322A), quaternary pump (G1311A), 

autosampler (G1313A), thermostated column compartment (G1316A) and diode array 

detector (G1315B). Data acquisition and instrumental control were performed using 

LC3D ChemStation (Agilent Technologies) software. Analyses were performed on a 

Mediterranean Sea 18 column (150 mm × 4.0 mm, 5 μm particle size; Teknokroma, 

Barcelona, Spain) adapted with a Ultraguard Sea 18 (10 × 3.2 mm; Teknokroma, 

Barcelona, Spain) precolumn. The mobile phase consisted of acetonitrile (A) and water 

(B). The applied gradient was: 0-30 min, 10-90% A; 30-35 min, 90-100%; 35-40 min 

hold at 100%; 40-45 min 100-10%; and hold at 10% for 15 min. The flow rate was 

0.5 mL/min and the injection volume 10 μL. The analyses were performed at 25 ºC and 

the detector was set at 254 nm. The crude extracts and SPE products were injected at 

1.0 mg/mL and 0.5 mg/mL, respectively. The plumbagin concentration of the samples 

was determined using the standard external method. Calibration solutions of plumbagin 
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(Sigma, Steinheim, Germany) were prepared in 50% acetonitrile solution in water at 

0.2; 0.4; 0.6; 0.8 mg/mL and injected in triplicate. A standard curve was obtained 

plotting the concentration of the calibration solutions against their peak areas 

(Figure 5.2.4).  
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 Figure 5.2.4 - Plumbagin standard curve. 

  

The content of plumbagin or purity of the samples was calculated using Formula 5.2.2: 

 
 Sample volumeInjection 

Plumbagin volumeInjection 

m(Sample)

)nm(Plumbagi
  (%) Purity

samplesample
sample 




    Formula 5.2.2 

[Plumbaginsample] – Sample plumbagin concentration determined by the standard curve; 

[Sample] – Concentration of the injected sample. 

 

5.2.5. Statistical analysis 

 

The data was subjected to analysis of variance (ANOVA) to assess if there were 

significant differences between the extraction procedures. Significant differences 

between means were determined using Duncan’s New Multiple Range Test (P = 0.05). 

All calculations were performed with SPSS statistical package for Windows (release 

11.0, SPSS Inc., Chicago, IL, USA). 

193 



Phytochemical studies and biological activity of carnivorous plants 

 

5.3. RESULTS AND DISCUSSION 

 
5.3.1. Evaluation of biomass production 

 

The growth rate of D. intermedia cultures was monitored in order to determine the 

optimum harvesting time for product recovery (Figure 5.3.1). The results show that the 

biomass increases slowly during the first 6 weeks of culture, period after which the 

cultures grow more vigorously, reaching a 9.70 ± 0.94 fold increase in biomass after 10 

weeks of culture. 

Culture Time (weeks)

0 2 4 6 8 10 12 14 16

G
ro

w
th

 in
de

x

0

2

4

6

8

10

12

 
Figure 5.3.1 - Growth index of D. intermedia cultures during a 16 weeks culture period. 

 

The efficiency of in vitro culture methods is usually evaluated in terms of the capacity 

of an explant to generate new shoots, instead of biomass production. It is therefore 

difficult to assess the efficiency of D. intermedia biomass production in the tested 

growth conditions as these results are available only for few Drosera species. However, 

D. intermedia does seem to grow more vigorously than Drosera capensis. After 4 

weeks of growth in ½MS medium, biomass gain of D. capensis control cultures 

amounted to 1.193 ± 0.035 g FW/g initial FW (Krolicka et al., 2008), while for 

D. intermedia a gain of 2.79 ± 0.10 g FW/g initial FW (result not shown; 1.74 ± 0.10 

fold biomass increment) was scored. The same author also reported a two fold increase 

in biomass production after addition of jasmonic acid, meaning that the biomass 

production of D. intermedia could be further enhanced. 
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The biosynthesis of plumbagin was not monitored over time, which could lead to 

misassumptions concerning the optimum harvesting time, as the production of 

plumbagin can vary depending on the growth phase. However, Verma et al. (2002) 

showed that the highest plumbagin concentration found in the roots of P. zeylanica 

hairy cultures coincided with the period with the highest biomass production. The 

authors reported a 21 fold increase in biomass yield after 6 weeks of culture. The higher 

biomass production yields reported for P. zeylanica cultures are expectable since hairy 

roots have higher growth rates and no growth regulators were used when producing 

D. intermedia cultures. 

 
5.3.2. Evaluation of extraction methods 

 

In vitro produced D. intermedia plant material was extracted with n-hexane using 

maceration under mechanical stirring, Soxhlet extraction, UAE and by SFE using 

supercritical carbon dioxide as solvent. The results expressing extraction yield, purity 

and plumbagin content obtained for each extraction method were calculated in terms of 

fresh weight (FW) and are presented in Table 5.3.1. The content in plumbagin of the 

obtained extracts is also presented in terms of dry weight (DW) in order to allow 

comparisons with other publications. 

 

Table 5.3.1 - Extraction parameters of plumbagin from D. intermedia using different extraction methods. 

 Extraction yield 
(mgextract/g FW) 

Purity (%) Plumbagin content 
(mg/g FW) 

Plumbagin content 
(mg/g DW)* 

     
Maceration 5.23 ± 0.61 a 42.60 ± 2.36 b 2.21 ± 0.17 c 17.51 ± 1.40 c 

Soxhlet 5.63 ± 0.14 a 47.43 ± 1.24 b 2.67 ± 0.04 b 21.18 ± 0.44 b 

UAE 5.14 ± 0.54 a 61.88 ± 5.59 a 3.12 ± 0.05 a 24.78 ± 0.55 a 

SFE 5.93 ± 0.44 a 43.14 ± 3.00 b 2.54 ± 0.14 bc 20.15 ± 1.13 bc 

Values represent mean ± standard error of 3 repetitions. For each parameter values with different letters 

are significantly different at P < 0.05 according to Duncan’s multiple range test. * FW : DW ratio of 

D. intermedia cultures = 7.9 ±  0.13 : 1. 

 

The results show that the extraction methods are equivalent as to what concerns the 

extraction yield but that there exist differences in the purity of the extracts obtained by 

the different methods. The extract obtained by UAE is the most concentrated in 

plumbagin (61.88 ± 5.59%) and therefore affords the highest content in plumbagin 

(3.12 ± 0.05 mg/g FW) (P < 0.05), despite its relative low extraction yield (5.14 ± 0.54 
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mgextract/g FW). The amount of plumbagin extracted by UAE is superior to that obtained 

by Soxhlet extraction (2.67 ± 0.04 mg/g FW) (P < 0.05), which is surprising as the latter 

is performed until the plant matrix is exhausted, meaning that the amount of plumbagin 

contained in the plant matrix should be entirely extracted. UAE has been frequently 

used to reduce extraction times while maintaining similar extraction yields to Soxhlet 

extraction (Hemwimol et al., 2006; Williams et al., 2006; Jadhav et al., 2009), but few 

cases have reported superior yields when using UAE. However, it is interesting that the 

amount of plumbagin extracted from Drosera binata was also higher using UAE instead 

of Soxhlet extraction (Marczak et al., 2005).  

 

This result might be explained by the fact that the solvent is able to penetrate deeper in 

to the plant cells due to the effect of the ultrasounds and is therefore able to extract 

plumbagin that is inaccessible when using Soxhlet extraction. Scanning electron 

microscopy micrographs of plant material after extraction with UAE show that samples 

irradiated with ultrasound reveal structural changes in comparison to samples extracted 

by maceration (Yang et al., 2008). The appearance of pits on the plant cell surface 

confirms that the ultrasonic exposure causes the cells to rupture more readily. It is also 

possible that the amount of plumbagin recovered with Soxhlet extraction was inferior in 

comparison to that obtained by UAE because the extraction time (1 h) was insufficient 

and therefore limiting. However, it has been demonstrated that prolonged extraction 

times lead to a decrease in the extraction of plumbagin, possibly due to thermal 

decomposition (Ribeiro de Paiva et al., 2004). For this reason the plant material was 

extracted until the solvent in the extractor lost its yellow coloration and was therefore 

no longer extracting plumbagin. The total extraction time was short in comparison to 

typical Soxhlet extractions due to the high volatility of n-hexane, allowing a higher 

number of extraction cycles in a shorter time, when compared to other frequently used 

solvents. 

 

Nevertheless, in this work the greatest advantage of UAE over the other tested methods 

for obtaining plumbagin from D. intermedia plants is the increased purity of the 

obtained crude extract. It is unclear however, why fewer contaminating metabolites are 

co-extracted with plumbagin when using UAE. Furthermore, it is possible that the 

extraction process can be enhanced by adjusting other operation parameters. Increasing 

ultrasonic power can result in increased extraction yields, as has been reported 
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(Smelcerovic et al., 2006), or reduce extraction time if plumbagin is being recovered 

completely. The operating temperature also influences extraction efficiency and can 

therefore be optimized as well in order to maximize product recovery. An extraction 

period of 1 h was chosen for UAE to compare its efficiency with Soxhlet extraction and 

because extraction reaches exhaustion for most materials after this time (Fulzele and 

Satdive, 2005; Hemwimol et al., 2006; Smelcerovic et al., 2006). 

 

The extract obtained by SFE afforded a considerable amount of plumbagin (2.54 ± 0.14 

mg/g FW), with comparable yields to Soxhlet ectraction (P < 0.05). The highest 

extraction yield was obtained with SFE (5.93 ± 0.44 mgextract/g FW), despite the 

difference not being statistically different from the other extraction methods, and yet the 

amount of plumbagin recovered is inferior to the ones recovered with UAE and SE 

(3.12 ± 0.05 mg/g FW and 2.67 ± 0.04 mg/g FW, respectively). This means that other 

undesired compounds are being co-extracted with the supercritical solvent. 

 

It seems unlikely that plumbagin recoveries can be greatly increased by altering the 

operating conditions, as the extraction temperature and pressure were held at the 

optimal values for plumbagin extraction (Rodrigues et al., 2006). An elevation of the 

extraction pressure may enhance extraction by increasing the fluid density and therefore 

its solvating power, but the risk of co-extracting other undesired compounds is also 

increased. The SFE extraction was performed for 2 h because it was reported by 

Rodrigues et al. (2006) that the extraction had reached exhaustion after this time. 

Because the extracted plant material (P. scandens roots) is a woodier and harder matrix 

for the solvent to penetrate it was assumed that the same extraction time would be 

sufficient in this study. On the other hand, the extracted amounts of root sample were 

smaller and therefore it is difficult to exclude that the extraction time was not limiting. 

However, extraction may be optimized using organic modifiers and adjusting other 

parameters such as flow rate and particle size. At low flow rates the effect of axial 

dispersion is important and extraction efficiency decreases, on the other hand, if flow 

rates are too high the extraction efficiency is hampered as well due to shorter residence 

times (Pourmortazavi and Hajimirsadeghi, 2007). This means that there is an optimum 

flow rate at which the extraction should be performed. Decreasing particle size could 

also enhance extraction as it will increase surface area, allowing a better contact with 

the solvent and enhancing mass transfer. 
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Another aspect is that in the SFE setup used in this work, organic solvent is required to 

flush the extract out of the piping and to dissolve the extract that is deposited in the first 

receiver flask. This can lead to product losses besides representing a considerable 

consumption of organic solvent. It would be of interest to control operating conditions 

in such a way that the extract would keep in solution until reaching the receiver flask. 

This can be achieved by placing the flow restrictor in the collection solvent, and 

depressurizing the supercritical CO2-extract mixture directly in contact with the solvent. 

In this setup it is important that the restrictor is heated to prevent obstructions caused by 

solvent that freezes out during decompression. This would reduce even more the use of 

organic solvents and pose an important step for an eventual scaling-up process.  

 

The results presented in Table 5.3.1 also show that maceration is the least efficient 

method as it extracts the smallest amount of plumbagin (2.21 ± 0.17 mg/g FW) (P < 

0.05). The low efficiency and long extraction times makes maceration an inadequate 

method for the extraction of plumbagin. These results are expectable as maceration 

usually affords lower yields in comparison to other extraction methods. It is interesting 

to see that the amount of plumbagin recovered using maceration (2.21 ± 0.17 mg/g FW) 

is not statistically different from the one using SFE (2.54 mg/g FW ± 0.14) (P < 0.05), 

despite the considerable absolute difference. This can be explained by the fact that plant 

materials are not completely homogeneous, resulting in variations of active compound 

contents in different extracts from the same plant material (Smelcerovic et al., 2006). 

However, these issues are greatly reduced when using micropropagated plant material, 

as can be confirmed by comparing the experimental deviations obtained in a similar 

study conducted with field specimens of D. lusitanicum (Grevenstuk et al., 2008). 

 

Another extraction technique that bears some similarities with UAE and has been 

implemented successfully in many cases is microwave assisted extraction (MAE). The 

method is based on absorption of microwave energy (electromagnetic radiations with a 

frequency from 0.3 to 300 GHz) by molecules of polar chemical compounds. 

Microwaves offer a rapid delivery of energy to the solvent and solid plant matrix 

mixture with subsequent heating of the mixture. Because water within the plant matrix 

absorbs microwave energy, cell disruption is promoted by internal superheating, which 

facilitates desorption of chemicals from the matrix (Wang and Weller, 2006). However, 

the high operating temperatures (150-190 ºC) make this method unfeasible for the 
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extraction of plumbagin as it would lead to high product losses due to thermal 

decomposition. 

 

Although all extractions were performed with fresh plant material, the content in 

plumbagin is presented on fresh weight and dry weight basis in order to allow 

comparison with previous publications. Despite the fact that most extraction methods 

use dry plant material, for the purpose of this work the extractions were performed with 

fresh plant material because the extraction of plumbagin is greatly hampered when 

using dry material (Verma et al., 2002; Marczak et al., 2005; Grevenstuk et al., 2008). 

Marczak (2005) hypothesized that plumbagin may be more strongly bound to the dry 

plant matrix instead of being decomposed during the drying process. The author showed 

that it was possible to extract plumbagin from dried material with methanol, even after 

it had been extracted with chloroform, possibly due to easier disruption of 

intermolecular interactions with the more polar solvent. When performing extractions 

with fresh samples, higher yields were obtained with chloroform than with the other 

solvents. 

 

5.3.3. D. intermedia as a source of plumbagin 

 

The naphthoquinone plumbagin is currently exploited from plants of the Plumbago 

genus. However, when comparing the recoveries presented in Table 5.3.1 with the 

contents in plumbagin of Plumbago spp. reported in literature, one can conclude that 

D. intermedia could be an alternative source of plumbagin. The content in plumbagin 

obtained by maceration with ethyl acetate of dried P. zeylanica roots varies between 

0.629 and 4.975 mg/g according to Wang et al. (2005). For the same species, Hsieh 

(2005) reported a recovery of 13.40 ± 1.30 mg/g DW after extracting the plant material 

with boiling ethanol. Another author reported recoveries of 1.50, 1.91 and 1.40 mg/g 

DW obtained from roots of Plumbago auriculata, P. indica and P. zeylanica, 

respectively, obtained by Soxhlet extraction with acetone (Mallavadhani et al., 2002). 

Despite the fact that in these reports the plant material was dried prior to extraction and 

the extraction procedures are diversified, the recoveries are in some cases considerably 

lower than those obtained from D. intermedia. The lowest plumbagin recovery was 

17.51 ± 1.40  mg/g DW, obtained by maceration. 
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Roots of P. scandens were extracted by SFE with plumbagin contents ranging from 

0.056 to 1.93 mg/g FW depending on the time period between collection and extraction 

(Rodrigues et al., 2006). Using the same extraction method and experimental conditions 

2.54 ± 0.14 mg/g FW were obtained from D. intermedia. It is worth underlining that the 

results mentioned above were obtained from field specimens of Plumbago spp. and 

might therefore be overestimated. The differences of the recoveries reported in literature 

for plants of the Plumbago genus, even for those of the same species, are in part due to 

the different extraction procedures but also due to geographical and seasonal factors 

which affect the content in secondary metabolites, underlining one of the advantages of 

using in vitro cultures for bioprosprection, as it is a more reliable and qualitatively 

consistent source of plant material. 

 

Several biotechnological approaches have been used to improve the production yield of 

plumbagin of Plumbago spp., while simultaneously preventing harvesting of the whole 

plant. Hairy root cultures have been established from P. zeylanica (Verma et al., 2002) 

and P. indica (Gangopadhyay et al., 2008) with the intent of increasing the growth rate 

and plumbagin production. The hairy root cultures resulted in increased plumbagin 

yields in comparison to untransformed roots (8.40 mg/g DW from P. zeylanica; 6.18 

mg/g DW from P. indica), however, the obtained plumbagin contents are inferior to 

those obtained from D. intermedia cultures (Table 5.3.1). Another approach used to 

improve the production of plumbagin was to immobilize cell cultures of P. indica in 

calcium alginate while being elicitated with chitosan and collecting plumbagin by in 

situ adsorption, thereby reducing the feedback inhibition of secondary metabolite 

production (Komaraiah et al., 2003). This way, recoveries of 92.13 mg/g of dry cell 

weight (DCW) were obtained, which is nearly four times more than the highest recovery 

obtained from D. intermedia (24.78 ± 0.55 mg/g DW). In the cited study, the step of 

plumbagin elicitation with chitosan alone was responsible for a production increment of 

over six times, meaning that the production of plumbagin by D. intermedia could be 

enhanced considerably as well using adequate elicitors. In a different study the 

production of plumbagin by Drosera burmanii suffered a 3.5-fold increase over control 

due to elicitation by yeast extract application (Putalun et al., 2010). 

 

D. intermedia produces significant amounts of plumbagin, even when compared to 

plants of the same genus. D. intermedia seems to produce higher levels of the 
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naphthoquinone then the eight in vitro cultured Drosera species evaluated by Marczak 

(2005). In this study, the highest plumbagin recovery was obtained from D. binata (12.4 

mg/g DW) using UAE with chloroform as extracting solvent. Using the same extraction 

technique, higher recoveries were obtained from D. intermedia (24.78 ± 0.55 mg/g 

DW).  It has to be stated that chloroform can give higher recoveries, although this 

increment usually comes at cost of the extract purity, because a greater amount of 

undesired compounds are co-extracted (Grevenstuk et al., 2008). 

 

The plumbagin production levels of D. intermedia seem to be similar to those reported 

for D. lusitanicum (Grevenstuk et al., 2008). Field specimens were extracted with n-

hexane using Soxhlet extraction and UAE affording recoveries of 2.42 ± 0.39 mg/g FW 

and 1.52 ± 0.39 mg/g FW, respectively. The recovery of plumbagin using Soxhlet 

extraction is comparable to the one obtained from D. intermedia (2.67 ± 0.04 mg/g 

FW). The plumbagin content of the extract obtained by UAE is lower compared to the 

one obtained from D. intermedia (3.12 ± 0.05 mg/g FW), but this can be explained by 

the fact that an experimental setup with a horn transducer was used to deliver 

ultrasounds to the D. lusitanicum matrix, instead of an ultrasound bath. In this setup, the 

ultrasounds are only delivered efficiently to the plant matrix close the horn transducer, 

leading to lower recoveries. In a different work, cell suspension cultures were 

established from D. lusitanicum, yielding high amounts of plumbagin (35 mg/g Fresh 

Cell Weight) (Nahálka et al., 1996). The cell suspension culture was able to produce 

over 10 times more than the mother plant, but the cultures underwent a strong 

plasmolysis short after being transferred to the liquid medium, making this approach 

unviable. D. lusitanicum is a species endemic to the Iberian Peninsula and northern 

Morocco and is in risk of eminent extinction; therefore harvesting this plant from the 

wild for plumbagin extraction is unfeasible and irresponsible from an ecological 

perspective. An in vitro culture protocol has been developed for this species (Gonçalves 

et al., 2005), but D. intermedia seems to grow easier and more vigorously in these 

conditions. 

 

5.3.4. Evaluation of the SPE purification procedure 

 

An aliquot of each sample obtained from the different extraction methods was 

concentrated using a SPE column to investigate the potential of using SPE to purify the 

201 



Phytochemical studies and biological activity of carnivorous plants 

 

crude extracts. The main product was plumbagin in all cases which was confirmed 

based on comparison of retention time and UV spectral data with an authentic standard 

(Figure 5.3.1). 
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Figure 5.3.1 - Chromatograms and respective UV-DAD spectrum at peak apex position of: blank run 

(acetonitrile) (A); plumbagin standard 0.6 mg/mL (B); maceration (C); Soxhlet (D); UAE (E) and SFE 

(F) samples at 0.5 mg/mL after SPE purification. 
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The results expressing SPE yield (ratio between the obtained product and the mass of 

extract subjected to purification), product purity and SPE recovery (percentage of 

plumbagin recovered from the total amount of plumbagin that was subjected to 

purification) are presented in Table 5.3.2. 

 

Table 5.3.2 - Purification of plumbagin from D. intermedia extracts using SPE. 

 SPE yield (mg product/mg extract) Purity (%) SPE recovery (%) 
Maceration 0.37 ± 0.03 b 94.30 ± 1.80 b 82.58 ± 2.31 a 

Soxhlet 0.37 ± 0.01 b 99.91 ± 0.09 a 78.49 ± 2.13 a 

UAE 0.54 ± 0.06 a 99.51 ± 0.49 a 86.31 ± 2.40 a 

SFE 0.32 ± 0.04 b 83.90 ± 3.23 c 71.58 ± 3.44 b 

Values represent mean ± standard error of 3 repetitions. For each parameter values with different letters 

are significantly different at P < 0.05 according to Duncan’s multiple range test. 

 

The results show that the highest extraction yield was obtained from the extract 

prepared by UAE (0.54 ± 0.06 mg product/mg extract) (P < 0.05). This result is 

expectable because the extract was the most concentrated, and therefore the content in 

plumbagin represents a larger fraction of the crude extract in comparison to the other 

extracts. The results also show that the purity of the obtained SPE products is very high 

and in some cases purities over 99.5% were achieved. The products obtained from the 

Soxhlet and UAE extracts were the most pure (P < 0.05), with purities of 99.91 ± 0.09% 

and 99.51 ± 0.49%, respectively. The SPE products with the highest purity were the 

ones obtained from the purest crude extracts. This shows how important it is to use the 

purest possible extract in an initial stage, even sometimes at cost of the absolute 

recovery, because it enhances the efficiency of the subsequent purification steps. 

 

The SPE recovery parameter represents an indirect measure of product loss during the 

SPE procedure which is unavoidable in sample purification procedures. For the SPE 

products of extracts prepared by solvent extraction, product recoveries between 78.49 

and 86.31% were achieved. These recoveries are quite promising taking into account 

that the procedure has not been thoroughly optimized. Different stationary phases and 

gradients can be applied to increase the amount of plumbagin recovered while 

minimizing the co-elution of impurities at the same time. 
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The SPE procedure was less effective for the extract prepared by SFE; for which the 

lowest purity (83.90 ± 3.23%) and SPE recovery (71.58 ± 3.44%) was obtained (P < 

0.05). This means that the impurities extracted by SFE are different in nature than those 

obtained by solvent extraction and are more difficult to remove using SPE. It seems that 

these impurities have a similar polarity to that of plumbagin and are therefore co-eluted 

with the chosen gradient. On the other hand, the recoveries are relatively low as well, 

suggesting that some product is bound to the contaminants and is lost in the SPE waste. 

This procedure needs to be optimized in order to be implemented in the purification of 

the extracts prepared by SFE. Perhaps an initial approach would be to characterize the 

co-extracted contaminants that are obtained together with the purified product to 

efficiently adapt the gradient, and to analyze the SPE waste to understand where the 

remaining plumbagin that is not recovered is lost. 

 

Figure 5.3.2 shows the overall process of plumbagin extraction from D. intermedia and 

the subsequent SPE purification step. The results are expressed in relation to the initial 

fresh weight of the plant material to show the amount of absolute plumbagin that can be 

produced according to this procedure. It can be seen that the combined UAE and SPE 

procedure can be used to produce 2.74 mg of plumbagin (purity = 99.5%) per gram of 

fresh D. intermedia plant material.   
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Figure 5.3.2 - Extraction, SPE yields and respective plumbagin contents per gram of fresh D. intermedia 

plant material. 
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The graphic shown in Figure 5.3.2 illustrates well that nearly all the impurities (white 

area) are removed from the crude extract in one single step. This is very desirable 

because any additional step will result in product loss and reduction of the overall 

extraction yield. A different approach for obtaining plumbagin from P. indica is 

reported by Kapadia (2005). The method consists in obtaining a crude extract by cold 

maceration of powdered root material with acetone and precipitating plumbagin by 

adding water to the acetone extract, making use of the hydrophobic nature of 

plumbagin. The residue was filtered, taken in chloroform and the concentrated 

chloroform extract was subjected to column chromatography. Using this procedure, 

1.65 g of plumbagin were obtained starting from 100 g of plant material (16.5 mg/g 

DW). The total yield is lower than the highest yield obtained in this study (2.74 mg/g 

FW ~ 21.75 mg/g DW), but it is not possible to compare the efficiency of the 

purification procedures because the author does not present yields of the intermediary 

steps. Nevertheless, based on the presented results it can be said that SPE is an efficient 

procedure to isolate plumbagin from a crude extract with high recoveries and final 

purities.  

 

205 



Phytochemical studies and biological activity of carnivorous plants 

 

5.4. CONCLUSIONS 

 
Overall the best method for the extraction of plumbagin from D. intermedia is UAE, as 

it provides the greatest recovery of plumbagin in a short period of time. The increased 

extract purity in comparison to the other tested methods is also of interest because it 

smoothes the progress of posterior purification procedures. This way, plumbagin can be 

extracted on a commercial scale by simply applying ultrasound to the pre-leached 

mixture for a short period of time. Optimizing an extraction procedure with SFE can be 

a daunting task, but for an initial approach the obtained results are encouraging, 

affording considerable plumbagin recoveries with the advantage of avoiding the use of 

hazardous organic solvents for extraction. Therefore, the optimization of plumbagin 

extraction using supercritical fluids is worthwhile investigating due to the 

environmental advantages that SFE offers over conventional methods. 

 

The results also show that D. intermedia plants produce increased amounts of 

plumbagin in comparison to the Plumbago spp. on a fresh weight basis. Additionally, 

D. intermedia cultures grow fast and could therefore represent an alternative for the 

bioprospection of plumbagin. Taking into consideration that no growth regulators or 

elicitors were used it is possible that the production of plumbagin can be further 

enhanced. Furthermore, extracting plant metabolites from in vitro cultures is desirable 

when high yields can be obtained. Plant materials are not completely homogeneous and 

are affected by seasonal and geographical factors, and this may be one reason for the 

variations in active compound contents in different extracts from the same plant 

material (Smelcerovic et al., 2006). Micropropagated plant material is more reliable and 

homogeneous on the other hand, and this might have contributed to lower experimental 

error deviations when compared to experiments conducted with field specimens 

(Grevenstuk et al., 2008). 

 

The SPE procedure is very effective in concentrating the sample and removing 

impurities; in some cases purities of over 99% could be obtained while maintaining 

considerable recoveries (over 75% for products of extracts prepared by solvent 

extraction).  However, it did not show the same efficiency for the extracts prepared by 

SFE and has to be optimized in order to be considered a viable alternative. 
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General Conclusions 

GENERAL CONCLUSIONS  

 
The plant kingdom represents an immeasurable source of chemical diversity which is 

still largely unexplored and is of utmost importance to drug discovery. Collectively, 

plants produce a remarkably diverse array of over 100,000 low-molecular-mass natural 

products, also known as secondary metabolites, which are important to medicine not 

only for their direct pharmacological effects but also in their role as template molecules 

for the production of new drug substances. However, plant biodiversity is declining at 

an unprecedented rate and conservation measures are urgently needed. In vitro 

techniques have found increasing use in the conservation of threatened plants in recent 

years and this trend is likely to continue as more species face risk of extinction. 

 
Carnivorous plant species are becoming increasingly scarce in the wild due to depletion 

of natural habitats. Yet, at the same time the interest in these plants has been a constant, 

greatly due to the interest of biologists in trying to unfold the secrets of their 

characteristic carnivorous habits and because they have been shown to produce valuable 

secondary metabolites. As natural populations of carnivorous plant species occurring in 

Portugal are fragile and cannot provide sufficient material for research activities, the 

development of micropropagation protocols for the studied species was crucial. In 

Chapter 2 of this thesis the establishment of in vitro cultures of P. vulgaris, 

P. lusitanica, D. rotundifolia and D. intermedia is discussed. In general it was found 

that these species thrive in media with reduced macronutrient concentrations, which is 

in good agreement with their natural habit. Also, they are relatively indifferent to 

supplementation with plant growth regulators (PGRs), and in some instances these had a 

negative effect on growth. Except for D. rotundifolia, all species formed shoots and 

roots simultaneously in the proliferation phase, which might be an indication of high 

levels of endogenous growth hormones. Two rapid and efficient protocols were 

developed for P. lusitanica and D. intermedia which provided sufficient plant material 

to achieve the goals set for the subsequent phases of this study. The micropropagation 

protocols for P. vulgaris and D. rotundifolia have to be further optimized. In the case of 

P. vulgaris, the viability of the shoots was low, while for D. rotundifolia the produced 

shoots were small and unable to produce roots. Nevertheless, the cultures initiated in 

vitro represent an active germplasm collection which is of value in the case of extinction 

of local populations in the wild and for possible reintroduction programs. 
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Chapter 3 dealt with the chemical characterization of extracts prepared from 

micropropagated P. lusitanica and D. intermedia plant material. For this purpose, state 

of the art HPLC-MS and HPLS-SPE-NMR equipment was used, capable of providing 

on-line structural information sufficient for structure elucidation directly from 

essentially crude extracts without having to recur to large scale preparative procedures 

for compound isolation. The interface of an automated SPE unit between the 

chromatographic separation and the NMR equipment allowed for the selective 

extraction and concentration of chromatographic peaks to SPE cartridges for subsequent 

spectroscopic analysis. Following this approach it was possible to determine 

unambiguously the structure of most of the major secondary metabolites of P. lusitanica 

and D. intermedia using minimal amounts of material. The secondary metabolites 

identified in the P. lusitanica methanol extract were grouped into iridoid glucosides and 

phenylethanoid glycosides. In turn, the major components of the D. intermedia 

methanol extract were ellagic acid derivatives and flavonoid glucosides, while the n-

hexane extract was exclusively composed of plumbagin. However, further experiments 

are needed to confirm the structure of a compound with a naphthoquinone-like structure 

from D. intermedia and an iridoid glucoside from P. lusitanica, as partial structural 

information suggests that their structures might not have been hitherto reported. P. 

lusitanica was investigated for its secondary metabolite profile for the first time and D. 

intermedia was only investigated for its content in naphthoquinone-related compounds, 

and therefore this work is a contribution to the better understanding of the biochemistry 

of these plants. Also, from a chemotaxonomical perspective, the secondary metabolites 

identified in P. lusitanica and D. intermedia were in agreement with previous chemical 

studies performed in species of the Lentibulariaceae and Droseraceae families, 

respectively. 

 
There are several approaches to natural product-based drug discovery; however the 

most appropriate seems to combine chemical screening procedures and biological 

assays in detriment of bioassay guided isolation procedures, because compounds with 

other interesting activities might be missed out. Also the dereplication of compounds 

present in the extracts in early stages of research projects is important because it ensures 

that novelty is brought into the isolation process and that only the most promising lead-

structures are selected for further investigation. Because it is unfeasible to perform a 

large number of biological assays at once, as a starting point, it was decided to perform 
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a preliminary screening of the biological activities of the P. lusitanica and 

D. intermedia extracts by evaluating their antioxidant and antimicrobial activity. 

Determination of a samples’ antioxidant capacity (AOC) is a valuable assay because it 

can give an indication of activity against several other biological targets. Antibacterial 

activity was evaluated due to the urgent need to find new sources of anti-infective 

agents. Because the extracts were previously characterized it was possible, to some 

extent, to deduce the structure activity relationships behind some activities. The results 

pointed out that the methanol extract of P. lusitanica has the highest AOC, which is 

possibly due to one of its major components, acteoside. Because acteoside has 

previously shown activity against several biological targets it is a potential candidate for 

further study. Determinant structural aspects of acteoside, such as two catechol units, 

seem to confer high free radical scavenging potential to the molecule. In addition, the 

compound is considered to be nontoxic, because it has been detected as a component of 

several edible plants. The methanol extract of D. intermedia also showed considerable 

antioxidant activity which can be explained by the combined activity of ellagic acid 

derivatives and flavonoid glucosides. 

 
The D. intermedia extracts were the most effective in the antimicrobial activity assays, 

particularly the n-hexane extract, which showed activity against a diverse panel of 

microorganisms and scored very low MICs for a crude extract. The observed activity 

could be explained by the fact that the extract was in great part composed of plumbagin, 

for which antimicrobial potency had been previously reported. It is believed that the 

activity of plumbagin is mainly related with covalent binding to biomolecules and to a 

lesser extent due to generation of ROS. However, it is unclear whether plumbagin has a 

great enough margin of safety for pharmacological use. The D. intermedia methanol 

extract also showed considerable antimicrobial activity, and interestingly, was able to 

inhibit the growth of the only strain resistant to the n-hexane extract, namely the 

multidrug resistant P. aeruginosa. Considering the high resistance of this 

microorganism to most antibiotics it would be interesting to determine the underlying 

mechanism. The P. lusitanica extract showed little activity against the panel of 

microorganisms. Although the performed biological assays did not point out any 

potential application for the prepared extracts it is important to pursue further screening 

programs considering the vast chemical diversity of phytochemicals and the enormous 

contribution plants have provided to the current state of medicine. 
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During the chemical analysis of the n-hexane extract prepared from D. intermedia it 

became clear that, using a relatively straightforward procedure, large amounts of nearly 

pure plumbagin could be obtained from micropropagated D. intermedia plants. Due to 

the commercial value of the naphthoquinone and the failed attempts of production by 

chemical synthesis, the potential of plumbagin bioprospection from in vitro cultures of 

D. intermedia was evaluated. The results showed that, besides the relatively high 

biomass production rates obtained, D. intermedia plants seem to produce higher 

amounts of plumbagin in comparison to the current source of exploitation (Plumbago 

spp.). Also, it is expected that the production of plumbagin can be further enhanced 

considering that no growth regulators or elicitors were used in this study. Besides the 

advantages of obtaining plumbagin from micropropagated plants in terms of quality 

control, harvesting plumbagin from naturally growing or cultivated plants would be 

obviated. Comparison of several extraction methods showed that the most efficient way 

to extract plumbagin consists on applying ultrasound to a pre-leached mixture of 

micropropagated plant material and n-hexane for a short period of time. Alternatively, 

following a more environmental approach, plumbagin can be extracted using 

supercritical carbon dioxide, avoiding the use of hazardous organic solvents for 

extraction. Despite yielding lower recoveries, SFE provided encouraging results for an 

initial attempt and method development might be worthwhile investigating due to the 

advantages that SFE offers over conventional methods. The potential of using SPE to 

purify the crude extracts was evaluated and results showed that the procedure is very 

effective in concentrating plumbagin and removing impurities in one single step. The 

SPE procedure applied to the UAE extract can be used to produce plumbagin in large 

amounts with a purity of nearly 100% and very low product losses. 

 
In conclusion, this work provided a more in-depth study of the carnivorous plant species 

P. lusitanica, P. vulgaris, D. rotundifolia and D. intermedia, and hopefully contributed 

to a better understanding of their in vitro culture, biochemistry as well as to the 

development of methods for discovering secondary metabolites with potential as lead 

structures for drug development in a sustainable approach. Given some of the 

remarkable aspects of these plants mentioned in this work it is crucial that further efforts 

for the conservation of these species are undertaken. 
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