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ABSTRACT 

 

Phytoplankton are key players in the aquatic environment and they can be effectively 

used to understand and predict the functioning and production of aquatic 

ecosystems. Given that phytoplankton is affected by natural and human-induced 

perturbations, such as eutrophication and global climate change, it is pressing to 

understand which factors regulate phytoplankton communities. The main goal of 

this work was, therefore, to understand how phytoplankton growth and production 

in the turbid Guadiana estuary, particularly in the freshwater tidal zone, is regulated 

by bottom-up factors, namely nutrients and light. 

Enrichment bioassays were carried out to evaluate nutrient and light limitation of 

phytoplankton growth. Nutrient limitation, specifically by nitrogen, was observed 

during the productive period. Nitrogen, as nitrate, became limiting to phytoplankton 

growth at concentrations lower than 20 µM. Although nitrate was the main nitrogen 

source in the Guadiana estuary, an overall preference for ammonium was observed, 

mainly by cyanobacteria and green algae. Diatoms were the most nutrient-limited 

group, and they clearly preferred nitrate as their N-source. Regarding light 

availability, phytoplankton was not acclimated to the low light conditions that 

prevail in the Guadiana estuary and light limitation occurred throughout the year. 

Diatoms were the most light-limited group, whilst cyanobacteria seemed to be more 

acclimated to low light. Primary production was higher in the more turbid regions, 

where light availability was the lowest, but nutrient concentrations, although 

occasionally limiting, were the highest. Therefore, phytoplankton in such turbid 

regions were the most efficient in using limiting resources. River flow was a major 

regulator of nutrient and suspended matter inputs to the estuarine zone. Tidally-

induced variability of phytoplankton and environmental drivers in the freshwater 

tidal estuarine zone was low and resulted from seasonal and fortnightly variability in 

river flow and tidal currents. 

 

 

 

Keywords: phytoplankton, nutrients, light, primary production, regulation, 

limitation, Guadiana estuary. 
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Regulação da base para o topo do fitoplâncton no estuário do Guadiana 

 

RESUMO 

 

O fitoplâncton é um componente chave nos ecossistemas aquáticos. Além da sua 

função crítica como produtor primário, o fitoplâncton afecta a qualidade da água e 

desempenha importantes papéis em muitos processos aquáticos. O fitoplâncton é 

também um importante indicador de qualidade ecológica, podendo ser usado para 

prever o funcionamento e produção dos ecossistemas aquáticos e as suas respostas a 

perturbações naturais e antropogénicas. Para tal, é necessário compreender de que 

forma o fitoplâncton é ele próprio regulado pelas variáveis ambientais. 

A variabilidade espacial e temporal do fitoplâncton reflecte a interacção entre 

processos que regulam o crescimento do fitoplâncton (regulação da base para o topo) 

e processos que regulam a sua biomassa (regulação do topo para a base). A regulação 

do topo para a base envolve processos de mortalidade e perda, através dos quais as 

células ou morrem ou são removidas do plâncton; estes processos incluem predação, 

lises virais, apoptose, advecção e sedimentação. Juntamente com estas fortes pressões 

do topo para a base, o fitoplâncton também compete entre si por recursos. Esta 

regulação da base para o topo é exercida pelos recursos que controlam o crescimento 

celular, como os nutrientes, a luz, a temperatura, o pH, a salinidade e a concentração 

de oxigénio.  

Os nutrientes são geralmente considerados os factores mais importantes na regulação 

do fitoplâncton. Aqueles que são necessários em maiores quantidades designam-se 

por macronutrientes, e a maior parte deles, como o carbono ou o oxigénio, ocorrem 

geralmente em quantidades suficientes nos sistemas aquáticos. Outros, como o azoto 

e o fósforo, existem geralmente em concentrações reduzidas, pelo que podem limitar 

o crescimento do fitoplâncton. 

A disponibilidade luminosa condiciona o processo fotossintético, podendo, portanto, 

ser também um factor limitante do crescimento. A disponibilidade de luz nos 

ecossistemas aquáticos é altamente variável e depende sobretudo da radiação solar 

incidente, da profundidade da camada de mistura e do grau de atenuação da luz na 

coluna de água. Este trabalho focou-se no efeito dos nutrientes e da luz, uma vez que 
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estas variáveis são consideradas as mais importantes na regulação do crescimento 

fitoplanctónico. 

A recente construção da barragem de Alqueva despoletou um grande interesse no 

estudo do ecossistema do estuário do Rio Guadiana. Contudo, os estudos publicados 

na área da dinâmica fitoplanctónica são meramente descritivos e baseados em 

observações no local. No entanto, estes estudos levantaram ainda mais questões 

acerca da dinâmica fitoplanctónica; especificamente, os factores que regulam a 

composição, crescimento e produção do fitoplâncton no estuário do Guadiana não 

são conhecidos. Dada a importância de um conhecimento sólido do funcionamento 

do ecossistema para avaliar, prevenir e/ou mitigar os impactos de perturbações 

naturais ou antropogénicas, estudos sobre a regulação fitoplanctónica neste 

ecossistema são imperativos. Assim, este trabalho teve como objectivos: 

 

a) rever a importância do fitoplâncton em ecossistemas costeiros e o uso do 

fitoplâncton como elemento de qualidade biológica na avaliação da qualidade da 

água (Capítulo 2); 

b) avaliar a variabilidade do fitoplâncton e seus factores reguladores induzida pelos 

ciclos de maré semidiurnos e quinzenais, na zona tidal de água doce do estuário do 

Guadiana (Capítulo 3); 

c) determinar qual o nutriente limitante para o crescimento fitoplanctónico e a sua 

variabilidade sazonal, e compreender os efeitos de potenciais enriquecimentos 

antropogénicos em nutrientes na estrutura da comunidade fitoplanctónica na zona 

de água doce do estuário do Guadiana (Capítulo 4); 

d) avaliar o efeito do nitrato e da amónia no crescimento do fitoplâncton, e o efeito de 

concentrações variáveis de amónia no consumo de nitrato na zona de água doce do 

Guadiana (Capítulo 5); 

e) observar a ocorrência e intensidade de limitação por luz do crescimento 

fitoplanctónico ao longo do ciclo sazonal, e o papel de potenciais adaptações 

fisiológicas a ambientes de baixa disponibilidade luminosa na zona de água doce do 

estuário do Guadiana (Capítulo 6); 

f) compreender a importância global da luz e dos nutrientes na sucessão e produção 

fitoplanctónicas (Capítulo 7). 
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A Directiva-Quadro da Água (DQA), a legislação comunitária que prevê a protecção 

e a gestão das águas naturais, refere o fitoplâncton como um dos elementos de 

qualidade biológica que deverão ser monitorizados regularmente e para o qual 

deverão ser estabelecidas condições de referência. No entanto, o uso do fitoplâncton 

como elemento de qualidade biológica em águas Portuguesas originará vários 

problemas, que são discutidos no Capítulo 2. Por exemplo, o estabelecimento de 

condições de referência para a comunidade fitoplanctónica poderá ser difícil em 

águas para as quais não existem dados históricos ou recentes. A frequência de 

amostragem para a monitorização do fitoplâncton (semestral) não parece ser a 

indicada para compreender a sucessão das comunidades e poderá impedir a 

detecção de florescências. Por fim, o uso da concentração de clorofila a como 

indicador de biomassa e mesmo abundância fitoplanctónicas tem sido proposto, o 

que pode negligenciar florescências de fitoplanctontes de menores dimensões (pico- e 

nanofitoplâncton) e sobrestimar a importância do microfitoplâncton. 

Adicionalmente, a maioria dos estudos de fitoplâncton em águas Portuguesas usa 

apenas a microscopia de inversão para a observação e identificação dos organismos. 

No entanto, este método não permite a distinção entre células auto- e heterotróficas, 

sobretudo em amostras preservadas com lugol, e não permite a observação de células 

picoplanctónicas e nanoplanctónicas de menores dimensões. Como o uso da 

microscopia em programas de monitorização não é financeira e temporalmente 

viável, outras técnicas, como a detecção remota e análises quimiotaxonómicas, são 

propostas como complementos em programas de monitorização do fitoplâncton. 

 

Os efeitos das diferentes fases dos ciclos tidais semidiurnos e quinzenais na 

variabilidade do fitoplâncton e dos seus factores reguladores foram avaliados na 

zona de água doce do estuário do Guadiana e discutidos no Capítulo 3. Um método 

de amostragem Euleriano foi usado e as campanhas de amostragem cobriram 

diferentes estações do ano. Foram recolhidas amostras em situação de maré viva e 

maré morta, na preia-mar, vazante, baixa-mar e enchente. Várias variáveis físico-

químicas foram avaliadas, assim como a abundância e biomassa fitoplanctónicas. 



xvi 

A salindade foi maior em preia-mar e a concentração de matéria particulada em 

suspensão foi maior em maré viva e na enchente, devido a uma maior mistura 

vertical na coluna de água e à ressuspensão de sedimentos. A concentração de 

clorofila a no Inverno e no Verão foi maior em situação de maré morta que em maré 

viva, enquanto a abundância de diatomáceas pinuladas foi superior durante as marés 

vivas de Inverno e Primavera, reflectindo provavelmente diferenças a nível do 

caudal fluvial. No geral, a variabilidade induzida pela maré na zona de água doce do 

estuário do Guadiana não é tão significativa como a observada na zona marinha do 

estuário. No entanto, a ocorrência de variabilidade induzida pela maré em estações 

do ano específicas aponta para a importância de uma amostragem frequente em 

programas de monitorização do fitoplâncton. Amostragens ocasionais não irão 

reflectir a variabilidade típica deste tipo de ecossistemas altamente dinâmicos. 

 

A identificação do nutriente limitante para o crescimento fitoplanctónico é 

fundamental para o controle sustentado da eutrofização. No Capítulo 4 é 

apresentada a primeira evidência experimental da ocorrência de limitação por 

nutrientes e a sua variação sazonal na zona de água doce do estuário do Guadiana. 

Para tal, realizaram-se experiências em microcosmos com comunidades naturais de 

fitoplâncton do alto estuário do Guadiana. Efectuaram-se adições de nitratos, fosfatos 

e silicatos aos tratamentos experimentais, e a resposta da comunidade fitoplanctónica 

foi avaliada através de alterações na abundância e biomassa de grupos específicos. 

No geral, o crescimento do fitoplâncton, em particular as clorofíceas e as 

diatomáceas, esteve limitado por azoto ao longo do período produtivo. No verão de 

2008, as cianobactérias e o dinoflagelado tóxico Kryptoperidinium foliaceum 

responderam significativamente ao enriquecimento em azoto na ausência de sílica. A 

presença de Kryptoperidinium foliaceum foi observada pela primeira vez na zona de 

água doce do estuário do Guadiana, local onde geralmente não são observados 

dinoflagelados. O aumento significativo das taxas de crescimento dos dinoflagelados 

e cianobactérias em resposta a adições de azoto na ausência de sílica é preocupante, 

visto que os enriquecimentos antropogénicos são de azoto e fósforo, e não de sílica. 

Adicionalmente, concentrações relativamente altas de nitrato, até 22 µM, revelaram-

se limitantes para o crescimento do fitoplâncton. 
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O azoto é consumido pelo fitoplâncton sobretudo na forma de iões inorgânicos, o 

nitrato e a amónia. A utilização diferencial destes compostos azotados inorgânicos 

pelo fitoplâncton, que tem sido observada quer em culturas quer em comunidades 

naturais, pode ter impactos significativos na produtividade primária a nível local. No 

Capítulo 5 são apresentadas e discutidas experiências de enriquecimento em 

nutrientes com comunidades naturais de fitoplâncton da zona de água doce do 

estuário do Guadiana que tiveram como objectivo avaliar o consumo diferencial de 

amónia e nitrato, e também o efeito inibitório da amónia no consumo de nitrato e no 

crescimento do fitoplâncton. A resposta do fitoplâncton foi avaliada em termos de 

abundância e biomassa, usando microscopia de epifluorescência e microscopia de 

inversão. 

As concentrações de amónia na zona de água doce do estuário foram demasiado 

baixas para exercerem qualquer efeito inibitório no consumo de nitrato ou um efeito 

tóxico no crescimento do fitoplâncton. O nitrato foi claramente a principal fonte de 

azoto no estuário. No geral, o nitrato tornou-se limitante para o crescimento para 

concentrações inferiores a 20 µM, como tinha sido já observado no capítulo 4, e essa 

limitação foi particularmente intensa durante os meses de Verão. Um decréscimo no 

consumo de nitrato com o aumento da concentração e do consumo de amónia foi 

observado nas experiências, o que sugere uma preferência geral por amónia como 

fonte de azoto. No entanto, essa preferência não foi igual em todos os grupos de 

fitoplâncton, e foi observada sobretudo nas cianobactérias e clorofíceas. Pelo 

contrário, as diatomáceas preferiram o nitrato, não respondendo às adições de 

amónia. A eutrofização crescente no estuário do Guadiana e sobretudo o aumento do 

enriquecimento em amónia pode assim resultar em alterações na composição 

específica da comunidade fitoplanctónica, em direcção a uma dominância de 

cianobactérias e clorofíceas. 

 

A luz é geralmente o principal factor que regula o crescimento do fitoplâncton em 

estuários de elevada turbidez, mas tem recebido muito menos atenção que os 

nutrientes como factor regulador da base para o topo. No Capítulo 6 são 

apresentadas evidências experimentais da ocorrência de limitação por luz e sua 

variabilidade sazonal na zona de água doce do estuário do Guadiana. 
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Comunidades naturais de fitoplâncton foram expostas a diferentes intensidades 

luminosas. Incubações de curto período com adição de isótopos radioactivos de 

carbono permitiram estimar os parâmetros fotossintéticos da comunidade 

fitoplanctónica, ao passo que incubações mais longas permitiram avaliar os efeitos de 

diferentes intensidades luminosas na composição e crescimento do fitoplâncton. 

Durante o período estudado, foi observada uma constante limitação por luz na zona 

de água doce do estuário, ao passo que a fotoinibição da fotossíntese não ocorreu 

para intensidades luminosas iguais ou inferiores a 615 µmol fotões m-2 s-1. No Verão 

ocorreu co-limitação por nutrientes, o que evitou que a comunidade fitoplanctónica 

respondesse positivamente ao aumento de intensidade luminosa. As diatomáceas 

foram o grupo mais limitado por luz, enquanto que as cianobactérias pareceram mais 

bem adaptadas a baixas luminosidades. Os parâmetros fotossintéticos estimados, 

com valores elevados de intensidade luminosa saturante e taxa fotossintética máxima 

e uma baixa eficiência fotossintética, indicam que de facto a comunidade 

fitoplanctónica não se encontra fisiologicamente adaptada às condições de baixa 

luminosidade à qual está sujeita no estuário do Guadiana. 

 

Os nutrientes e a luz são considerados geralmente os mais importantes factores 

reguladores do crescimento fitoplanctónico em estuários. O Capítulo 7 teve como 

objectivo compreender a importância relativa da luz e dos nutrientes na sucessão e 

produção fitoplanctónicas no estuário do Guadiana. Para tal, realizaram-se 

campanhas de amostragem quinzenais em várias localidades do estuário, cobrindo as 

regiões alta (zona de água doce), média e baixa do estuário. Várias variáveis abióticas 

e bióticas, incluindo a disponibilidade luminosa e nutricional, e a composição, 

abundância e biomassa do fitoplâncton, foram determinadas quinzenalmente ao 

longo de dois anos de amostragem. 

Durante 2007 e 2008, o caudal fluvial controlou o fornecimento de nitratos e matéria 

particulada em suspensão para o estuário. O azoto foi limitante para o crescimento 

do fitoplâncton durante 2008, quando as concentrações de nitrato foram geralmente 

inferiores a 20 µM. Adicionalmente, a abundância e biomassa do fitoplâncton foram 

inferiores em 2008, apesar de ter sido observado o mesmo padrão sazonal. A típica 

sucessão fitoplanctónica de sistemas temperados de água doce foi observada no alto 
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e médio estuários, com uma florescência de diatomáceas no fim da Primavera, 

seguida de um máximo de biomassa de clorofíceas, e por fim, florescências de 

cianobactérias durante os meses de Verão. As diatomáceas foram o principal 

componente da biomassa da comunidade, enquanto as cianobactérias dominaram em 

termos de abundância. A luz foi limitante durante todo o período de estudo, e o 

fitoplâncton das zonas de maior turbidez não estava adaptado às condições de baixa 

luminosidade. A produção primária foi mais elevada nas regiões mais túrbidas, onde 

a disponibilidade luminosa é menor, mas onde as concentrações de nutrientes, se 

bem que por vezes limitantes, são maiores. Assim, o crescimento do fitoplâncton no 

estuário do Guadiana, sobretudo nas zonas do alto e médio estuário, não é apenas 

regulado pela luz, como descrito para outros estuários semelhantes, mas sim pela 

interacção entre a luz e os nutrientes.  

 

Finalmente, as conclusões dos capítulos anteriores estão resumidas no Capítulo 8, 

onde também são recapitulados os principais objectivos do trabalho. Relativamente 

aos factores que regulam o crescimento do fitoplâncton da base para o topo, este 

trabalho permitiu concluir que a limitação por luz é constante no alto e médio 

estuários do Guadiana, enquanto a limitação por nutrientes, especificamente por 

azoto, ocorre sobretudo nos meses de Primavera e Verão. Apesar de a amónia ser a 

fonte preferida de azoto pela comunidade fitoplanctónica, o nitrato é o nutriente 

azotado que ocorre em maiores concentrações no estuário, sobretudo no alto e médio 

estuários, pois a principal fonte de nitrato para a zona estuarina é o caudal do Rio. O 

Rio transporta também matéria particulada em suspensão, que por seu turno 

controla a atenuação da luz na coluna de água e, portanto, a disponibilidade 

luminosa. Relativamente à variabilidade induzida pelos ciclos tidais, concluiu-se que 

ocorre em períodos específicos do ano, e é observada sobretudo na concentração de 

clorofila a e na concentração de matéria particulada em suspensão.  

Por fim, são propostas futuras linhas de investigação na área da dinâmica 

fitoplanctónica no estuário do Guadiana, das quais se destaca o estudo dos efeitos 

das alterações globais na sucessão e crescimento do fitoplâncton. Especificamente, a 

avaliação dos efeitos de potenciais aumentos de CO2 atmosférico, radiação 

ultravioleta e temperatura na dinâmica do ecossistema é de crucial importância, 



xx 

tendo em conta que a bacia do Guadiana está localizada numa área considerada 

altamente vulnerável às alterações climáticas. 

 

 

Palavras-chave: fitoplâncton, nutrientes, luz, produção primária, regulação, 

limitação, estuário do Guadiana. 
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1.1 Phytoplankton 

 
1.1.1 Phytoplankton roles and importance 
 

Phytoplankton are a heterogeneous group of prokaryotic and eukaryotic 

photosynthetic organisms whose powers of locomotion are such that they drift freely 

in the water column. The first phytoplankton evolved in the Archaean oceans, more 

than 2.8 billion years ago (Bidle and Falkowski, 2004). Since then, phytoplankton has 

undergone dramatic diversification and numerous extinction events, and conquered 

the freshwater realm (Litchman and Klausmeier, 2008). Downsizing their paramount 

importance in the world’s aquatic ecosystems, phytoplankton are basically the 

producers of original autochthonous organic material that will fuel aquatic food 

webs. Today they account for approximately 50% of the Earth’s primary productivity 

(Falkowski et al., 2004). 

Phytoplankton are key players on aquatic systems’ functioning. Besides their critical 

function of primary production, they have significant impacts on water quality and 

play vital roles in many ecosystem processes, such as in biogeochemical processes, 

mediating cycling, sequestration and exportation of inorganic and organic 

compounds. In addition, phytoplankton are excellent model systems to address 

fundamental ecological questions (Litchman and Klausmeier, 2008), and they are also 

widely used for paleoenvironmental reconstructions (Barbosa, 2009). Overall, 

phytoplankton are a vital gauge of ecological condition and change, and they are 

effectively used to understand and predict the functioning and production of aquatic 

ecosystems and the responses to natural and anthropogenic-induced changes (e.g., 

Cloern and Dufford, 2005; Smetacek and Cloern, 2008). 

Phytoplankton communities are composed by an array of different species, with 

distinct biochemical contents and cell sizes spanning six orders of magnitude (Cloern 

and Dufford, 2005). Therefore, the composition of phytoplankton communities 

impacts the functioning of aquatic ecosystems, determining the pathways and 

efficiencies of energy transfer to aquatic food webs (see reviews by Cloern and 

Dufford, 2005, and Litchman and Klausmeier, 2008). Given that phytoplankton 

community composition is easily altered by many natural and human-induced 

perturbations, such as eutrophication and global climate change, it is pressing to 
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understand what factors regulate the growth and composition of phytoplankton 

communities. 

 

1.1.2 Phytoplankton regulation 

 

The spatial and temporal variability of phytoplankton in aquatic ecosystems basically 

reflects the interaction between many environmental factors that regulate 

phytoplankton growth (bottom-up regulation) and phytoplankton loss (top-down 

regulation).  

Top-down regulation of phytoplankton biomass involves mortality and loss 

processes, by which phytoplankton cells either die or are removed from the plankton 

to die elsewhere (Reynolds, 1997). These processes include grazing, cell lyses, viral 

lyses, cell apoptosis, advection and sinking. Although all these top-down pressures 

may have significant impacts on phytoplankton biomass during specific periods, it is 

now widely recognized that the major mortality source of phytoplankton is grazing 

by phagotrophic protists; these unicellular protists can ingest, on average, 67% of 

phytoplankton daily production (Calbet and Landry, 2004). 

In addition to the strong pressures phytoplankton face from the top-down, cells also 

compete among each other for resources. This bottom-up regulation includes the 

resources that control cell replication, such as nutrients, light, temperature, pH, 

salinity and oxygen concentration.  

Nutrients are classically considered the most important factor regulating 

phytoplankton growth. A variety of elements are needed for cell growth, some in 

relatively large amounts, the macronutrients (e.g., C, H, O, N, P, Si, Mg, K, Ca), and 

others in much smaller quantities, the micronutrients or trace elements (e.g., Fe, Mn, 

Cu, Zn, Ba, Na, Mo, Cl, V, Co) (Parsons et al., 1984a). Most of these elements are 

available in sufficient amounts in marine and freshwaters, but others, particularly 

nitrogen (N), phosphorus (P) and silicon (Si, required only by Si-containing cells such 

as diatoms), may occur in natural waters in extremely low concentrations for 

phytoplankton growth. Therefore, these elements, which are taken up by cells mostly 

in their inorganic form, will often limit phytoplankton growth.  
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Nitrogen (N) is essential for the synthesis of amino acids and proteins. Although 

atmospheric nitrogen (N2) is the most abundant gas in the atmosphere, it can not be 

used by most autotrophs (N2-fixing cyanobacteria are the exception) in its elemental 

form, but only in ionic forms such as ammonium (NH4+) and nitrate (NO3-). As the 

concentrations of these ions in natural surface waters are usually low, nitrogen may 

be a limiting factor for phytoplankton growth. Sources of nitrogen to estuarine 

ecosystems include inputs from surface and groundwaters, atmospheric deposition 

and N recycling in the water column and sediments (Paerl et al., 2002), but dominant 

inputs of N are strongly linked to freshwater inputs from rivers (Bouwman et al., 

2005). Many of these inputs have increased in the last decades as a direct result of 

human activities and have lead to enhanced primary production, which can result in 

harmful algal blooms, hypoxia and even anoxia.  

Phosphorus (P) is an essential constituent of genetic material (DNA, RNA), cellular 

membranes (phospholipids) and energy-transforming molecules (e.g., ATP). 

Phosphorus availability in aquatic systems depends largely upon P speciation, since 

it can occur in inorganic and organic forms, either dissolved or particulate. Reactive 

phosphorus includes the potentially bioavailable phosphorus, that is mostly 

composed by H2PO4- in freshwaters and HPO42- in marine waters (Morel, 1983). 

Phosphorus enters rivers due to the weathering of terrestrial rock materials and 

anthropogenic inputs; in ecosystems not strongly impacted by anthropogenic 

activities, freshwater inputs from rivers are the main source of P to estuaries. 

Although silicon (Si) is the second most abundant element on the Earth’s surface, its 

importance on biogeochemical cycles is rather limited (Conley, 2002). Si is only 

needed by siliceous phytoplankton such as diatoms, but since diatoms are a major 

component of phytoplankton biomass, Si plays a major role on phytoplankton 

community structure. Silicon appears in surface freshwaters as a result of chemical 

weathering of sedimentary and crystalline rocks, and freshwater inputs from rivers 

are the only source of Si to estuaries and coastal areas (Turner et al., 2003 and 

references therein). A decrease in dissolved and particulate Si inputs to estuarine 

zones has been observed in the last decades due to water and sediment retention 

behind dams. This change in nutrient supply, accompanied by increased 

anthropogenic inputs of N and P, may promote changes in phytoplankton biomass 
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and species composition (Smayda, 1980), and may even lead to the development of 

nuisance algal blooms (Flynn, 2002). The most remarkable example of ecological 

problems associated to decreased Si inputs occurred in the Black Sea, where a 

diatom-based phytoplankton community was replaced by flagellates and other non-

siliceous organisms, due to water and sediment trapping behind the Iron Gates Dam 

in the Danube River (Humborg et al., 1997). 

Light has not yet received the same attention as nutrients as an environmental driver 

of phytoplankton, but light availability is of paramount importance for 

photosynthesis, the process by which phytoplankton produce their own organic 

material. Light availability in aquatic systems is extremely heterogeneous in space 

and time and is highly dependent on the incident solar radiation, the depth of the 

mixed layer and the degree of light attenuation in the water column. Light 

attenuation is mostly a function of the quantity and quality of dissolved and 

particulate materials in the medium, resulting in a pronounced vertical gradient in 

intensity and spectral distribution (Kirk, 1994). Photosynthesis is highly dependent 

on light intensity; the rate of photosynthesis is high at intermediate light levels and 

decreases as the light intensity either decreases or increases. The variability of light 

availability has significant impacts on phytoplankton community structure and 

seasonal succession, given that the optimum light intensities for photosynthesis vary 

between different phytoplankton groups and species. 

 

1.1.3 Estuarine phytoplankton  

 

Estuaries are among the most productive ecosystems in the world and their 

importance in terms of carbon fixation, fisheries habitat, nutrient assimilation, water 

storage and sediment stabilisation has long been recognized (Baban, 1997). These 

coastal ecosystems are characterized by strong environmental gradients, due to the 

dilution of seawater with freshwater derived from land drainage. The interplay 

between river flow and tidal regime affects the physical-chemical environment, 

particularly water column stability, water residence time, and nutrient and light 

availability, resulting in an extreme and complex ecosystem to phytoplankton. 

Estuarine phytoplankton is thus subjected to rapid spatial and temporal changes in 



1. General Introduction 

 7 

growth limiting resources. Light limitation may occur seasonally, especially in the 

winter, or throughout the whole year, being more common in the upper estuarine 

reaches and in the maximum turbidity zone. Nutrient limitation varies tremendously 

across estuaries, but the general observed trend is P limitation during winter and N 

limitation during summer, whilst Si may also limit diatom growth in the spring. 

Additionally, the lower estuary, at the seaward end, is more likely to be N-limited, 

whilst the upper estuary may be more P-limited (e.g., D’Elia et al., 1986; Fisher et al., 

1999; Kocum et al., 2002). 

Estuaries can be longitudinally divided in three sections, the lower, the middle and 

the upper estuaries. The upper estuary, or freshwater tidal zone, represents an 

extreme environment to phytoplankton, characterized by salinity conditions similar 

to the river, but subjected to a strong tidal influence. Resuspension of bottom 

sediments, increased turbidity, potential light limitation, high nutrient concentrations 

and occasional salt water intrusion are common characteristics of freshwater tidal 

estuarine environments (Morris et al., 1978; Cole et al., 1992; Muylaert et al., 1997). 

Yet, dense phytoplankton communities are usually found in these regions (Muylaert 

et al., 2000 and references therein), and they are also important sources of nutrients 

and biomass to downriver estuarine reaches and adjacent coastal areas (Rocha et al., 

2002; Domingues and Galvão, 2007). However, freshwater tidal zones have been 

neglected in both limnological studies, due to the presence of oceanic tidal influence, 

and estuarine studies, because they are bathed by freshwater and inhabited primarily 

by freshwater organisms (Odum, 1988).  

 

1.2 Rationale and Objectives 

 

The Guadiana River arises in Spain, at Campo de Montiel, province of Ciudad Real, 

flows for 810 km, and drains into the Atlantic Ocean, between Vila Real de Santo 

António, in Portugal, and Ayamonte, in Spain. It has the fourth largest drainage 

basin in the Iberian Peninsula, with an area of 67,039 km2, and its last 70 km are the 

estuarine zone. The Guadiana estuary is located in a Mediterranean climate area, 

subjected to hot, dry summers and temperate, wet winters. The estuary extends from 

the river mouth to the village of Mértola (approx. 70 km upriver), where the 
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semidiurnal, mesotidal regime is still detected. The upper estuary, or freshwater tidal 

zone, where most of the studies presented in this thesis were conducted, represents 

the largest estuarine region in length, extending from Álamo (25 km from the river 

mouth) up to the tidal limit (see Fig. 7.1, Chapter 7, p. 147). 

The recent construction of the Alqueva dam, a multipurpose hydrotechnical 

infrastructure located approx. 150 km from the river mouth, was the catalyst for an 

enhancement of research in different fields of ecosystem ecology in the Guadiana 

estuary. Published studies on phytoplankton in this estuarine system are descriptive 

and focused on the effects of the Alqueva dam on phytoplankton succession 

(Domingues et al., 2005, 2007; Domingues and Galvão, 2007), long-term trends 

(Barbosa et al., 2010) and cyanobacteria blooms (Caetano et al., 2001; Rocha et al., 

2002; Sobrino et al., 2004; Galvão et al., 2008). These studies have answered some 

questions on phytoplankton dynamics in the Guadiana estuary, but have asked even 

more. Specifically, the regulating mechanisms of phytoplankton in this estuarine 

system are still not clear. Given the importance of a sound knowledge on ecosystem 

functioning to properly assess, prevent and/or mitigate the impacts of natural or 

human-induced perturbations, studies on phytoplankton regulation are imperative. 

Therefore, the main goals of this thesis are: 

 

a) to review the importance of phytoplankton in coastal ecosystems and its use as a 

biological quality element for water quality assessment (Chapter 2); 

b) to analyse tidal variability of phytoplankton and their environmental drivers 

(salinity, temperature, nutrients, light), along semidiurnal and fortnightly time scales, 

in the freshwater tidal reaches of the Guadiana estuary (Chapter 3); 

c) to determine the limiting nutrient for phytoplankton growth and its seasonal 

variation, and to understand the effects of potential anthropogenic nutrient 

enrichments on phytoplankton community structure in the freshwater tidal zone of 

the Guadiana estuary (Chapter 4); 

d) to evaluate the effect of nitrate and ammonium on phytoplankton growth, and the 

effect of variable ammonium concentrations on nitrate uptake in the freshwater tidal 

zone of the Guadiana estuary (Chapter 5); 
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e) to observe the occurrence and intensity of light limitation of phytoplankton 

growth throughout the seasonal cycle, and the role played by potential physiological 

adaptations to a low light environment in the freshwater tidal zone of the Guadiana 

estuary (Chapter 6); 

f) to understand the overall importance of light and nutrients on phytoplankton 

succession and production in the Guadiana estuary (Chapter 7). 

 

1.3 Thesis outline 

  

A general introduction to phytoplankton is presented in Chapter 1, followed by the 

rationale behind this study and its main goals. Chapter 2 is an extended introduction 

on the importance of phytoplankton and its use as an indicator of ecological quality. 

Chapter 3 analyses the tidally-induced variability of phytoplankton and some 

important environmental variables, including bottom-up factors, in the freshwater 

tidal reaches of the Guadiana estuary. Chapters 4, 5 and 6 focus on specific bottom-

up factors. Nutrient and light limitation of phytoplankton in the freshwater tidal 

zone of the Guadiana estuary are discussed in these chapters and results on nutrient 

and light enrichment bioassays are used to infer about growth limitation and 

phytoplankton community structure. Specifically, Chapter 4 deals with the effects of 

nitrogen (as nitrate), phosphorus and silicon, and Chapter 5 analyses the interactive 

effects of two nitrogen compounds, ammonium and nitrate, on phytoplankton 

composition and growth. Chapter 6 describes the effects of light enrichments on 

phytoplankton composition and growth, and also on primary production. Chapter 7 

evaluates the overall importance of nutrients and light as bottom-up factors 

regulating phytoplankton, and the analysis is extended to the estuarine salinity 

gradient. Finally, general conclusions are presented in Chapter 8. 
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Constraints on the use of phytoplankton as a biological quality 

element within the Water Framework Directive in Portuguese waters 

Rita B. Domingues, Ana Barbosa, Helena Galvão 

Marine Pollution Bulletin 56: 1389-1395 (2008) 

 

Abstract 

The European Union Water Framework Directive (WFD), a new regulation aiming to 

achieve and maintain a clean and well-managed water environment, refers 

phytoplankton as one of the biological quality elements that should be regularly 

monitored and upon which reference conditions of water quality should be 

established. However, the use of phytoplankton as a biological quality element will 

produce several constrains, which are analysed in this article with examples from 

Portuguese waters. Specifically, the establishment of reference conditions of water 

quality may be difficult in some water bodies for which no historical data exists. The 

sampling frequency proposed for phytoplankton monitoring does not seem suitable 

to assess phytoplankton succession and may preclude the detection of algal blooms. 

Finally, the use of chlorophyll a as a proxy of phytoplankton biomass and abundance 

has been proposed by some authors, but it may overlook blooms of pico- and small 

nanophytoplankton and overestimate the importance of large microphytoplankton. 

Furthermore, most studies in Portugal have used only inverted microscopy for 

phytoplankton observation and quantification; this method does not permit the 

distinction between autotrophic and heterotrophic cells, especially in samples 

preserved with Lugol’s solution, and does not allow the observation of smaller-sized 

cells. Finally, some techniques, such as remote sensing and chemotaxonomic 

analysis, are proposed to be used as supplements in phytoplankton monitoring 

programs. 

 

Keywords: Water Framework Directive, phytoplankton, biomass, abundance, 

chlorophyll a, Portuguese waters 
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2.1 Introduction 

 

Phytoplankton has largely been used as a gauge of ecological condition and change. 

Besides its critical ecological function of primary production that directly and 

indirectly fuels food webs, it has tremendous impacts on water quality and plays a 

number of other major roles in many ecosystem processes. For instance, 

phytoplankton is a fundamental actor in global biogeochemical processes, 

participating in the transformation and cycling of key elements. Additionally, 

phytoplankton affects turbidity, oxygen depletion and the total productivity of the 

system (Los and Wijsman, 2007). Although phytoplankton has been mostly used as 

an indicator of changes in nutrient loads, it is also effective in evaluating responses to 

many other environmental stressors, due to its fast population responses to changes 

in water quality, hydrology or climate. The effect of alterations in the nutritional 

environment, namely nutrient enrichment, on phytoplankton composition and 

succession has been addressed for a long time (e.g., Schindler, 1977), but it gained a 

new meaning due to the global eutrophication problem and the new European 

guidelines for surface waters quality. The European Union Directive 2000/60/EC 

(EC, 2000), also known as Water Framework Directive (WFD), aims to achieve and 

maintain a clean and well-managed water environment, through the establishment of 

reference conditions of water quality, based on the evaluation of several biological 

and chemical quality elements. Phytoplankton is the only planktonic element 

referred by the WFD. Several phytoplankton-related variables, namely 

phytoplankton composition, abundance and biomass, as well as the composition, 

frequency and intensity of phytoplankton blooms, which are fundamental to 

define/classify the ecological status of surface waters, are required to be evaluated 

by Member States. This article aims to analyze the use of phytoplankton as a 

biological quality element in Portuguese surface waters. It is our belief that with the 

application of the WFD several constrains will emerge, mainly related to reference 

conditions, sampling frequency, phytoplankton variables and methodology.  
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2.2 Constraints 

 

2.2.1 Reference conditions 

 

The establishment of reference conditions, i.e., a description of the quality elements 

that correspond to totally or nearly totally undisturbed conditions, that is, with no, or 

with only a very minor impact of human activities (EC, 2000), is a fundamental step 

for the implementation of the Water Framework Directive. Comparison with an 

existing undisturbed site, historical data, models or expert judgement are the options 

for deriving reference conditions for each body of water (EC, 2000). Ecological 

modelling is in fact the only tool to determine reference conditions in water bodies 

such as dams and reservoirs, where non-disturbed conditions never existed (e.g., 

Cabecinha et al., 2007). However, it is our belief that there are no sufficient historical 

and recent data for the establishment of reference conditions for phytoplankton 

composition, abundance and biomass in most Portuguese surface waters. Although 

several sets of phytoplankton data can be found in grey literature, such as project 

reports and thesis (graduation, masters and doctoral), most of these sources are not 

usually publicized and/or are not generally available for consultation, thus 

constraining the identification of data holders. In addition, some data can be found in 

technical reports published by Portuguese governmental research institutes, between 

late 1940’s and 1980’s. These studies were mainly focused on estuaries (Guadiana, 

Sado, Tagus), coastal lagoons (Ria Formosa, Óbidos Lagoon) and bays (Sesimbra, 

Cascais, S. Martinho do Porto). Conversely, data published and discussed in 

scientific articles are scarce. Published data on phytoplankton community structure 

are relatively recent and do not cover all Portuguese surface waters. The aquatic 

systems studied are several lakes (Lake Vela: Abrantes et al., 2006; de Figueiredo et 

al., 2006), mesotidal well-mixed estuaries (Guadiana estuary: Rocha et al., 2002; 

Domingues et al., 2005, 2007; Chícharo et al., 2006; Domingues and Galvão, 2007; 

Tagus estuary: Gameiro et al., 2004, 2007, Brogueira et al., 2007), mesotidal shallow 

lagoons (Ria Formosa coastal lagoon: Loureiro et al., 2006), mesotidal semi-enclosed 

lagoons (Quinta do Lago lake: Morais et al., 2003; Foz de Almargem: Coelho et al., 

2007; Santo André coastal lagoon: Macedo et al., 2001; Duarte et al., 2006) and 
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mesotidal Atlantic coast (Loureiro et al., 2005a; Silva et al., 2008) (Fig. 2.1, Table 2.I). 

Other articles present data on chlorophyll and/or primary production (e.g., Linhos 

Lake: Pereira et al., 2002; Ria de Aveiro: Almeida et al., 2002, 2005; Mondego estuary: 

Lillebø et al., 2005; Douro estuary: Azevedo et al., 2006) in other Portuguese 

ecosystems. However, the establishment of reference conditions based on these 

variables, particularly chlorophyll a, is questionable, and will be discussed below.  

In addition to the lack of spatial and temporal coverage of phytoplankton 

community structure in Portugal, most of the published data is based only on 

inverted microscopy, thus neglecting picophytoplankton and many nano-sized 

organisms (0.2-20 µm) (see section 2.3). Furthermore, some studies classified 

phytoplankton only into main groups, providing no information on species 

composition. Overall, the approaches used so far in phytoplankton studies in 

Portuguese waters will inevitably constrain the establishment of reference conditions 

based on this biological quality element.  

In conclusion, this scenario makes it difficult to establish reference conditions 

representing a non-disturbed situation, particularly in systems where the human 

impact has increased significantly and promoted drastic changes on phytoplankton 

communities. For instance, alterations in nutrient ratios, specifically decreases in Si:N 

and Si:P, have been driving changes in phytoplankton biomass and composition, 

from diatom-based communities to dominance of non-siliceous forms. These shifts in 

phytoplankton composition have already been observed with dam construction (e.g., 

Black Sea due to the Iron Gates dam in the Danube River: Humborg et al., 1997) and 

cultural eutrophication of surface waters (e.g., German Bight: Radach et al., 1990). 

The introduction of exotic herbivores may also promote community changes; for 

instance, an introduced suspension-feeding clam (Potamocorbula amurensis) in San 

Francisco Bay (USA), is presumably responsible for the disappearance of the summer 

phytoplankton biomass maximum (Alpine and Cloern, 1992). Increased turbidity 

associated to dredging for harvesting the bivalve Tapes philippinarum in Venice 

Lagoon (Italy) induced a large decrease in phytoplankton biomass and changes in 

phytoplankton composition (Facca et al., 2002). Additionally, phytoplankton 

communities have experienced long-term changes unrelated to human impact. 

Indeed, changes in phytoplankton community structure, production and the 
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occurrence of phytoplankton blooms associated to climatic changes (e.g., Howarth et 

al., 2000; Paerl et al., 2003; Cloern et al., 2005) have also been documented.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 – Location of some surface water bodies in Portugal. 1 – Guadiana River; 2 – Ria Formosa 

coastal lagoon; 3 – Foz de Almargem coastal lagoon; 4 – Sagres; 5 – Santo André coastal lagoon; 6 - 

Sado River; 7 – Tagus River; 8 – Mondego River; 9 – Ria de Aveiro; 10 – Douro River; 11 – Lima River; 

12 – Minho River. 
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Table 2.I – Data presented, methods employed and sampling strategy in published articles on 

phytoplankton monitoring in Portuguese waters (inv = inverted microscopy; epifl = epifluorescence 

microscopy).  

System Phytoplankton 
composition 

Phytoplankton 
abundance 

Phytoplankton 
biomass 

(biovolume) 

Chlorophyll 
a 

Sampling 
frequency 

Number 
of 

sampling 
stations 

References 

Guadiana 
estuary 

Inv + epifl 
(groups) 

Inv + epifl - + 
Monthly (Oct 1996 

– Mar 1998) 
4 

Rocha et al. 
(2002) 

Guadiana 
estuary 

Inv + epifl. 
(groups) 

Inv + epifl Inv + epifl + 
Fortnightly (Abr – 

Oct 2001) 
1 

Domingues 
et al. (2005) 

Guadiana 
estuary 

Inv (groups) Inv - + 
Every 2-3 months 
(Dec 1999 –Nov 

2001) 
6 

Chícharo et 
al. (2006) 

Guadiana 
estuary 

Inv + epifl 
(groups) 

Inv + epifl  Inv + epifl + 
Monthly/fortnightly 

(Mar 2002 – Oct 
2003) 

3 
Domingues 
et al. (2007) 

Guadiana 
estuary 

Inv + epi 
(groups) 

Inv + epi - + 
Monthly/fortnightly 

(Mar 2004 – Oct 
2005) 

3 
Domingues 
& Galvão 

(2007) 
Ria 

Formosa 
coastal 
lagoon 

Inv (spp.) Inv - + 
Every 3 months 
(Jun 2001 – July 

2002) 
3 

Loureiro et 
al. (2006) 

Quinta do 
Lago lake 

Inv + epifl 
(groups) 

Inv + epifl - + 
Fortnightly  

(Feb – Sep 1998) 
3 

Morais et 
al. (2003) 

Foz de 
Almargem 

coastal 
lagoon 

Inv (spp.) Inv - + 
Every 45 days (Jun 
2001 – Jul 2002) 

3 
Coelho et 
al. (2007) 

Sagres Inv (spp.) Inv Inv + 
Weekly  

(May-Sep 2001) 
1 

Loureiro et 
al. (2005a) 

Santo 
André 
lagoon 

Inv (spp.) Inv - + 
Monthly (Jan 1998 

– Jan 1999) 
1 

Macedo et 
al. (2001) 

Santo 
André 
lagoon 

Inv (groups) Inv - + 
Monthly (Jan 1998 

– Jan 1999) 
1 

Duarte et al. 
(2006) 

Tagus 
estuary 

Inv (spp.) Inv - + 
Monthly (Mar 1999 

– Mar 2000) 
4 

Gameiro et 
al. (2004) 

Tagus 
estuary 

HPLC (groups) - - + 
Monthly (Mar 1999 

– Nov 2005) 
4 

Gameiro et 
al. (2007) 

Tagus 
estuary 

Inv (spp.) Inv - - 3 sampling dates 19 
Brogueira 

et al. (2007) 
Lisbon 

Bay 
Inv (spp.) Inv - + 

Weekly (Apr 2004-
May 2005) 

1 
Silva et al. 

(2008) 

Vela lake Light (groups) Inv - + 
Fortnightly  

(1 year) 
1 

Abrantes et 
al. (2006) 

Vela lake Light (groups) Inv - + 
Fortnightly (Nov 
2000 – Nov 2001) 

1 
de 

Figueiredo 
et al. (2006) 

 

 

Still, it is worthy to mention that paleoecological approaches can also be used to go 

back to the past, where historical phytoplankton data are absent, to characterize non-

impaired conditions. In fact, fossil pigment assemblages (Riedinger-Whitmore et al., 

2005; Bunting et al., 2007) and historical cyst record (Dale, 2001; Chmura et al., 2004) 

can serve as reliable bioindicators of past and present phytoplankton community 

structure and environmental trends.   
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2.2.2 Sampling strategy 

 

The Water Framework Directive establishes that each surface water system should be 

divided into homogeneous water bodies further used for monitoring and 

management purposes (EC, 2000). For Portuguese waters, Ferreira et al. (2005, 2006) 

developed a multi-criteria semi-quantitative approach to divide transitional and 

inshore coastal waters, integrating both natural characteristics and human 

dimension. However, phytoplankton data available for Portuguese surface waters do 

not provide information for all proposed water bodies. In this context, only the Tagus 

estuary (Brogueira et al., 2007), with four water bodies, the Guadiana estuary (Rocha 

et al., 2002, Chícharo et al., 2006), with three water bodies, and Santo André coastal 

lagoon (Macedo et al., 2001; Duarte et al., 2006), with one water body, were wholly 

sampled. Thus, the spatial coverage of most Portuguese surface waters is incomplete.  

The sampling frequency proposed by the WFD for surveillance monitoring of 

phytoplankton composition, abundance and biomass in lakes, rivers, transitional and 

coastal waters is every six months (EC, 2000). A “Monitoring Plan for Portuguese 

Coastal Waters” (Ferreira et al., 2005) was recently commissioned by the Portuguese 

government to prepare a scheme for compliance with the Water Framework 

Directive monitoring (Ferreira et al., 2007). The proposed sampling frequencies for 

Portuguese surface waters are: (1) seasonal sampling for phytoplankton abundance, 

biomass and composition in open coastal water bodies; (2) monthly sampling for 

phytoplankton abundance and biomass and every six months for phytoplankton 

composition in transitional and inshore coastal waters. Additionally, Ferreira et al. 

(2007) appropriately recommended the evaluation of tidal variability, at least at high 

and low tides, in estuaries and coastal lagoons. However, these monitoring 

frequencies do not seem suitable to measure all the required variables. In fact, the 

required monitoring efforts to ensure a precise classification of ecological status are 

considerably higher than predicted by the WFD, so the proposed sampling 

frequencies will not provide sufficient precision (Carstensen, 2007). These sampling 

frequencies may even preclude the detection/observation of important 

phytoplankton bloom events. Dubelaar et al. (2004) referred a minimum sampling 
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frequency of 5 to 6 days per week to follow some algal blooms, since many species 

may reach blooming conditions and start disappearing again within one week.  

Indeed, algal blooms can be prolonged recurrent seasonal phenomena, rare events 

associated to exceptional conditions or short-term episodic events (see Cloern, 1996). 

The high in situ doubling times displayed by phytoplankton cells (e.g., 6.5 hours for 

eukaryotic picophytoplankton, 8.1 hours for diatoms, 16.5 hours for the 

cyanobacterium Synechococcus and 17.3 hours for nanoflagellates, in the Ria Formosa 

coastal lagoon: Barbosa, 2006) clearly demonstrate that a bloom can be triggered on a 

very small time-scale. However, as rapidly as it initiates, a bloom can terminate 

within a short period of time, particularly due to herbivory by phagotrophic protists, 

the most efficient controllers of phytoplankton biomass, due to their high specific 

growth rates (see Irigoien et al., 2005). Nutrient and/or light limitation can lead to a 

decrease in phytoplankton in situ growth rate, also contributing to overall bloom 

termination. The interplay between phytoplankton growth rate and mortality rate 

will control the duration of phytoplankton blooms. For instance, in the Guadiana 

estuary and the Ria Formosa coastal lagoon, cyanobacteria, eukaryotic 

picophytoplankton and diatom blooms can last less than 2 weeks (Domingues et al., 

2005; Barbosa, 2006; Domingues and Galvão, 2007). Additionally, a toxic 

dinoflagellate bloom advected from off-shore fronts lasted less than 1 week in the Ria 

Formosa (Barbosa, 2006). Furthermore, the frequency of phytoplankton blooms is 

increasing worldwide (e.g., Hallegraeff, 1993; Carstensen et al., 2007), so their 

detection is extremely important, especially if the bloom-forming species are toxin-

producers, such as many dinoflagellates and cyanobacteria.  

We recognize that the Water Framework Directive foresees more frequent sampling 

programs associated to operational and investigative monitoring. However, these 

types of monitoring implicitly assume situations of non-compliance with quality 

status or risk of failing to meet the environmental objectives. Thus, the general 

detection of a risk situation is dependent on its previous observation under the 

surveillance monitoring program. Still, the proposed sampling frequencies may 

unable the detection of risk situations that should be further monitored. 

A phytoplankton surveillance monitoring program should, therefore, consider the 

time-scale of variability of photoautotrophic processes; sampling for determination 
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of biomass, abundance and composition should be as frequent as possible. Whilst 

weekly sampling is most likely unaffordable, monthly sampling is usually feasible 

and should be considered in phytoplankton monitoring programs. This is especially 

important in temperate climate regions, such as Portugal, where phytoplankton 

composition displays a high seasonal variability (e.g., Domingues et al., 2005; 

Gameiro et al., 2007). 

 

2.2.3 What and how to measure 

 

Chlorophyll a concentration has been widely used in aquatic studies as an indicator 

of phytoplankton biomass (e.g., Gameiro et al., 2004; Kromkamp and Peene, 2005), 

but it has also been recommended as a proxy of phytoplankton abundance (e.g., 

Bettencourt et al., 2003; Devlin et al. 2007). However, chlorophyll a concentration, 

biomass and abundance are three different variables.  

Abundance represents the number of cells per volume of water. Phytoplankton 

biomass, usually represented in carbon units, corresponds to the amount of organic 

carbon present in the phytoplankton cells per volume of water. Chlorophyll a, the 

key photosynthetic pigment, is indeed present in all phytoplankton cells, but it only 

represents a fraction of the whole phytoplankton biomass. It seems obvious that 

abundance, biomass and chlorophyll a are three different phytoplankton metrics. 

Chlorophyll a can be analysed using a set of different techniques (spectrophotometry, 

fluorimetry, HPLC, remote sensing); the most widespread methods, 

spectrophotometry and fluorimetry, are time and cost-effective, highly reproducible 

and allow the comparison and integration of different sets of data. Therefore 

chlorophyll a concentration is extensively used to estimate phytoplankton biomass, 

usually through the application of a carbon/chlorophyll a ratio typically between 30 

and 50 (e.g., Legendre et al., 1999). However, the relationship between carbon 

biomass and chlorophyll a (C:Chl) is highly variable on both intra- and inter-specific 

levels. In fact, C:Chl ratio depends on the physiological state of the cell and it usually 

increases with increasing nutrient stress, and decreases with decreasing light (e.g., 

Zonneveld, 1998; Kruskopf and Flynn, 2005). In respect to inter-specific variability, 

diatoms usually present a low C:Chl ratio (33-35 mg C mg Chl-1), dinoflagellates 
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exhibit a high C:Chl ratio (90-120 mg C mg Chl-1) (Chan, 1980) and small cells 

typically have high C:Chl ratios (see Putland and Iverson, 2007). Thus, 

phytoplankton community in specific systems can exhibit a wide temporal and 

spatial variability in C:Chl values (e.g. 5-345 mg C mg Chl-1: see Putland and Iverson, 

2007), which will complicate the estimation of phytoplankton biomass using 

chlorophyll a values. For instance, in case of phytoplankton communities dominated 

by dinoflagellates, the use of average C:Chl ratios can lead to severe underestimates 

of phytoplankton biomass. This was obvious in the Ria Formosa coastal lagoon, 

when a bloom of a toxic gymnodinoid dinoflagellate (527 x 103 cells L-1) that induced 

the prohibition of bivalve harvesting was clearly detected on biomass (carbon) 

analyses but depicted no obvious signal on chlorophyll a concentration (Barbosa, 

2006). In addition, chlorophyll a is a poor indicator of total phytoplankton biomass in 

poor light environments (Buchanan et al., 2005). Available data for Portuguese 

systems are scarce, and indicate that some systems exhibit a significant and positive 

correlation between total phytoplankton biomass and chlorophyll a concentration 

(Ria Formosa coastal lagoon: Barbosa, 2006), whilst others present non significant 

correlations between those variables (shallow coastal waters off southeast Portuguese 

coast: Barbosa, 2006; Guadiana upper estuary: Domingues et al., unpublished data).  

In addition, chlorophyll a should be used cautiously as an alternative for 

phytoplankton abundance and biomass, especially when pico- and 

nanophytoplankton (<2 µm and 2-20 µm, respectively, sensu Sieburth, 1979) are 

important components of the community. The relative contribution of 

picophytoplankton biomass to total biomass decreases with increasing chlorophyll a 

concentration, thus coastal and estuarine waters present low relative contributions of 

picophytoplankton, usually ranging between 10 and 20% (Bell and Kalff, 2001). 

However, picophytoplankton contribution to total phytoplankton abundance is 

largely higher than its contribution to phytoplankton biomass. For instance, in the 

Ria Formosa coastal lagoon, picophytoplankton accounts on average for 13% of total 

phytoplankton biomass and 82% of total phytoplankton abundance (Barbosa, 2006). 

In addition, important blooms of picocyanobacteria (Phlips et al., 1999) and 

eukaryotic picophytoplankton (Vaquer et al., 1996) may occur in coastal and 

estuarine systems but, due to their small size, these events may not be detected using 
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chlorophyll a as a phytoplankton metric. In some cases picophytoplankton bloom 

events may present deleterious ecological impacts, thus impairing overall 

environmental quality status. Hence, blooms of potentially toxic picocyanobacteria 

(Sorokin et al., 2004) and pico-eukaryotic species such as the pelagophyte Aureococcus 

anophagefferens (Gobler et al., 2002; Nuzzi and Waters, 2004) that may result in fish 

and shellfish mortality, may not be detected. For instance, in the Guadiana estuary, 

the cyanobacteria summer bloom, mainly composed of picocyanobacteria and the 

potentially toxic Microcystis, is recognizable in the abundance plot, but clearly 

undetectable in the biomass curve (Fig. 2.2). Additionally, the evaluation of 

picophytoplankton abundance should be considered in water quality monitoring 

programs, given that this phytoplankton metric may be used as an indicator of least-

impaired and oligotrophic conditions in coastal environments (Lacouture et al., 

2006).  
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Figure 2.2 – Total phytoplankton abundance (x107 cell L-1) and biomass (x106 µg C L-1) in the Guadiana 

estuary from April through September 2001 (see Domingues et al., 2005). 

 

Overall, the lack of information on smaller-sized phytoplankton groups is related to 

the deeply rooted use of the inverted microscope technique (Utermöhl, 1958). Whilst 

this method is effective for microphytoplankton identification and counting, it 

underestimates nano-sized cells and does not allow the observation of pico-sized 

forms. Therefore, most phytoplankton studies in Portuguese waters only account for 
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microphytoplanktonic species and some nano-sized genera (e.g., Gameiro et al., 2004; 

Loureiro et al., 2005a; Chícharo et al., 2006; Loureiro et al., 2006; Brogueira et al., 2007; 

Coelho et al., 2007). A growing number of studies indicate that nano- (Sin et al., 2000; 

Ansotegui et al., 2003; Ornolfsdottir et al., 2004; Thomas et al., 2005) and 

picophytoplankton (Iriarte and Purdie, 2004; Beg et al., 2005) are important 

constituents of the community in different aquatic ecosystems, such as lakes, rivers, 

estuaries and the pelagic ocean (see Carrick and Schelske, 1997), but their 

contribution is frequently overlooked with the inverted microscope.  

The quantitative evaluation of pico- and nanophytoplankton should be based on 

epifluorescence microscopy (Haas, 1982) or flow cytometry. Although fluorescence 

techniques have been extensively used in Portugal for heterotrophic 

bacterioplankton enumeration (e.g., Barbosa, 1991; Cunha et al., 2000; Almeida et al., 

2005), it is seldom used in phytoplankton studies. Thus, the quantitative analysis of 

the whole phytoplankton community abundance, biomass and composition should 

be undertaken using both inverted and epifluorescence microscopy. Using both 

techniques, phytoplankton biomass can be calculated using species-specific 

measurements of biovolume (Hillebrand et al., 1999) and specific carbon to volume 

relationships (e.g., Domingues et al., 2005). We acknowledge that this estimate of 

phytoplankton biomass has inherent weaknesses (see Lacouture et al., 2006 and 

references therein) but we consider this approach more accurate than the simple 

multiplication of chlorophyll a concentration by an average C:Chl ratio.  

In Portuguese waters, the combination of both inverted and epifluorescence 

microscopy was applied only in the Guadiana estuary (Rocha et al., 2002; Domingues 

et al., 2005, 2007; Domingues and Galvão, 2007) and the Ria Formosa coastal lagoon 

(Morais et al., 2003; Barbosa, 2006). This approach showed that pico- and 

nanophytoplankton are important contributors for total phytoplankton biomass and 

abundance in these systems. For instance, in the Ria Formosa coastal lagoon, 

picophytoplankton (<2 µm) accounts on average for 82% of the total abundance and 

approximately 13% of the community’s biomass, whilst nanophytoplankton (2-20 

µm) contributes to 15% and 41-51% of the community’s abundance and biomass, 

respectively (Barbosa, 2006). In the Guadiana estuary, the cyanobacteria summer 

bloom is mainly composed by picocyanobacteria and the nanoplanktonic genus 



2. Constraints on the use of phytoplankton as a biological quality element within the Water 
Framework Directive in Portuguese waters 

 

 25 

Microcystis (Domingues et al., 2005). In the saline lake of Quinta do Lago (Ria 

Formosa) picocyanobacteria and nanoflagellates are the dominant groups (Morais et 

al., 2003).  

 

2.3 Conclusions and future prospects 

 

In this viewpoint, we tried to show that the use of phytoplankton as a biological 

quality element in Portuguese waters will certainly pose several constrains, 

especially because existing data on phytoplankton in Portuguese aquatic ecosystems 

are scarce and the methodologies used do not allow the achievement of the Water 

Framework Directive aims for phytoplankton. A proper evaluation of phytoplankton 

community structure in Portugal is urgent, providing that phytoplankton is one of 

the biological quality elements upon which reference conditions of water quality 

should be based.  

Therefore, a solid phytoplankton monitoring program should be implemented for 

Portuguese water bodies using an adequate sampling strategy and microscopy 

techniques that allow the evaluation of composition, abundance and biomass of the 

whole phytoplankton community. However, microscopy techniques are time-

consuming and may not be cost-effective, so their incorporation in environmental 

monitoring programs may be somewhat unrealistic. Other techniques should then be 

considered as supplements for the evaluation of phytoplankton community. For 

instance, flow cytometry can be used for more frequent sampling (e.g., Dubelaar et 

al., 2004), whilst chemotaxonomic analysis (e.g., Ansotegui et al., 2003) of specific 

photosynthetic pigments using HPLC provide a good estimate of group-specific 

phytoplankton biomass. In addition, in costal zones remote sensing can also be an 

important aid to achieve different phytoplankton ecological indicators, providing 

highly resolved data both in time and space (see Platt and Sathyendranath, 2008). In 

situ instrumentation with moorings for fluorescence measurements can also provide 

early warnings for the occurrence of phytoplankton blooms. This type of in situ 

instrumentation is already available in the Guadiana, Tagus and Mondego estuaries 

(http://webserver.mohid.com/simpatico/). Moreover, although not referred by the 

WFD, a functional-based approach could also be used in monitoring programs. For 
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example, determination of phytoplankton primary production (phytoplankton 

growth) can be used as an indicator of increased growth, or eutrophication 

(Andersen et al., 2006). Although chlorophyll a concentration is frequently used as a 

key factor to predict the production of phytoplankton biomass, this approach is only 

applicable to aquatic systems that exhibit a significant relationship between 

phytoplankton biomass and production or growth rate. This type of relationship is 

usually considered an indicator of bottom-up control of phytoplankton growth (see 

Sin et al., 1999). However, when top-down control (e.g., grazing, viral lysis, 

advection) is prevalent, phytoplankton biomass and phytoplankton production or 

growth can be clearly uncoupled (e.g., Malone et al., 1988; Tillmann et al., 2000). 

Furthermore, the evaluation of biotic integrity/quality status should be 

accomplished using suitable phytoplankton-based multimetric indexes. The ability of 

these metrics to discriminate between impaired and least-impaired systems should 

be tested, in order to find the most suitable to specific aquatic systems (e.g., 

Buchanan et al., 2005; Lacouture et al., 2006; Devlin et al., 2007), and the inclusion of 

harmful phytoplankton species in these metrics should be considered. Since harmful 

algal blooms (HABs) in Portuguese waters can be clearly associated to natural 

phenomena, such as upwelling/downwelling events (e.g., GEOHAB, 2005 and 

references therein; Moita et al., 2006), the inclusion of HAB species in these metrics 

should be considered if there is evidence that these species are related to 

anthropogenic impact. Ultimately, this strategy will allow the definition of different 

target communities of phytoplankton, both on spatial and temporal levels that can 

act as specific impairment indicators. 
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Tidal variability of phytoplankton and environmental drivers in the 

freshwater reaches of the Guadiana estuary (SW Iberia) 

Rita B. Domingues, Tânia P. Anselmo, Ana B. Barbosa,  

Ulrich Sommer, Helena M. Galvão 

International Review of Hydrobiology 95: 352-369 (2010) 

 

Abstract 

The effects of different phases of semidiurnal and spring-neap tidal cycles on 

phytoplankton and environmental drivers were evaluated in a tidal, freshwater 

location of a mesotidal estuary (Guadiana estuary, SW Iberia). An Eulerian approach 

was used and sampling covered different seasons during 2008. Samples were 

collected during spring and neap tides, at high tide, mid-ebb, low tide and mid-

flood. Several physical-chemical variables were measured, as well as phytoplankton 

abundance and biomass.  

Salinity was higher at high-tide and suspended particulate matter was higher during 

spring tides and flood, due to higher vertical mixing and resuspension of bottom 

sediments. Chlorophyll a concentration during winter and summer neap tides was 

higher than during spring tides, whilst the abundance of pennate diatoms was higher 

during winter and Spring spring tides than during neap tides, probably reflecting 

differences in river discharge. Overall, tidally-induced differences detected in the 

freshwater tidal reaches of the Guadiana estuary were not as considerable as those 

observed in the lower estuary. However, the occurrence of tidally-induced variability 

in some seasons reflects that thorough sampling programs to study estuarine tidal 

dynamics should be conducted throughout the year. Occasional sampling will not 

reflect the typical variability of these highly dynamic systems. 

 

 

Keywords: semidiurnal tides, spring-neap tides, Portugal, Spain 
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3.1. Introduction 

 

Phytoplankton distribution patterns reflect the interplay between phytoplankton 

growth rates, commonly regulated by light, inorganic nutrients, temperature, and 

turbulence, and their loss rates, controlled by grazing, viral lyses, sinking, and 

advection (Cloern and Dufford, 2005). In estuaries, tidal flushing constitutes a 

relevant phytoplankton driving force, since it induces substantial horizontal and 

vertical mixing of the water column, as well as upstream and downstream 

displacement of water masses along the main longitudinal estuarine axis. While 

tidally-induced horizontal mixing and advection have more mechanical than 

physiological effects on phytoplankton (Legendre and Demers, 1984), vertical mixing 

can seriously affect phytoplankton physiology and growth due to its strong impact 

on the availability of key phytoplankton resources, nutrients and light (Demers et al., 

1979, 1986). Tidally-induced vertical mixing may also modulate phytoplankton loss 

rates either because it affects the resuspension of benthic microalgae into the water 

column (see MacIntyre and Cullen, 1996) or because it effectively controls the 

grazing impact of benthic filter feeders (Lucas and Cloern, 2002).  

Overall, tidal forcing is therefore responsible for short-term changes in 

phytoplankton biomass, composition, growth and production, occurring at daily and 

fortnightly time scales (Sinclair et al., 1981; Demers et al., 1986; Wetz et al., 2006). 

These tidally-induced phytoplankton alterations are particularly significant in 

shallow tidally-driven estuarine systems (Cloern, 1991; Wetz et al., 2006), and have 

been extensively addressed in mid- and lower estuarine reaches (e.g., Therriault and 

Lacroix, 1976; Duedall et al., 1977; Fortier et al., 1978; Demers et al., 1979; Fortier and 

Legendre, 1979; Lafleur et al., 1979; Riaux and Douvillé, 1980; Demers and Legendre, 

1981; Haas et al., 1981; Riaux, 1981; Litaker et al., 1987, 1993; Cloern et al., 1989; 

Dustan and Pinckney, 1989; Powell et al., 1989; Gianesella et al., 2000; Jouenne et al., 

2005; Helbling et al., 2010) characterized by marked longitudinal gradients in salinity 

and water column stratification (Sinclair et al., 1981; Cloern, 1991). On the contrary, 

only a limited number of studies have addressed phytoplankton tidal dynamics in 

the upper estuarine zones (Madariaga 1995, Trigueros and Orive, 1995; Lehman, 

2000; Lucas et al., 2006; see Table 3.I). Although these upper estuarine reaches 
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present smoother environmental gradients, they are usually relevant sources of 

nutrients and phytoplankton biomass to downriver estuarine reaches and adjacent 

coastal areas (Rocha et al., 2002; Domingues and Galvão, 2007), and clearly deserve 

further investigation. Freshwater tidal regions are extreme environments to 

phytoplankton, namely in turbid estuaries, since despite high nutrient 

concentrations, high turbidity usually leads to strong light limitation and low 

phytoplankton growth rates (Cole et al., 1992). Furthermore, phytoplankton losses 

due to freshwater discharges and downriver displacement are constant (Muylaert et 

al., 2000) and occasional saltwater intrusion may cause salinity stress and mortality 

(Morris et al., 1978). Overall, the effects of tidal forcing on estuarine phytoplankton 

differ over time and space, and are not always easy to predict (see Roden, 1994 and 

references therein). Furthermore, the low-frequency sampling that is usually 

employed in monitoring programs may incorrectly characterize maxima, minima, 

mean values and long-term trends (Lucas et al., 2006), given that many physical, 

chemical and biological processes occur on intradaily time-scales. 

The upper, permanently mixed, freshwater section of the Guadiana estuary (SE 

Portugal-SW Spain) is subjected to a strong tidal influence, but the extent of tidally-

induced variability in abiotic and biotic variables has never been examined. 

Published studies on phytoplankton dynamics in the Guadiana upper estuary (Rocha 

et al., 2002; Sobrino et al., 2004; Domingues et al., 2005, 2007; Domingues and Galvão, 

2007) have tried to systematically sample the same tidal phase, to avoid the 

interference of semidiurnal and fortnightly tidally-induced variability. Indeed, 

tidally-induced variability, usually neglected in routine sampling strategies in 

estuaries worldwide (see Li and Smayda, 2001), may potentially affect the analysis 

and interpretation of long-term trends in estuarine phytoplankton and related 

environmental variables.  
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Table 3.I – Comparison of published studies on tidally-induced variability of phytoplankton in upper/low salinity estuarine zones. 
 

Reference Estuary Zones 
sampled 

Objectives Tidal cycles 
evaluated 

Tidal differences 

Madariaga (1995) Urdaibai, 
Spain 

From mouth 
to upper limit 
of saltwater 
intrusion 

Analyse short-term 
environmental patterns in 
relation to physiological 
properties of phytoplankton 

Spring-neap  Higher phytoplankton biomass 
during neap tides 

Lehman (2000) San 
Francisco 
Bay, USA 

Low salinity 
zone (LSZ, 
salinity 0.6-
4.0) 

Characterize spatial and 
temporal variation of Chla, 
cell diameter, species 
composition in the LSZ 
during spring 

Spring-neap Maximum phytoplankton biomass 
during strong spring tide and 
strong neap tide 

Trigueros and 
Orive (2000) 

Urdaibai, 
Spain 

From mouth 
to upper limit 
of saltwater 
intrusion 

Assess longitudinal 
distribution of blooming 
phytoplankton species 
through the estuary during 
ebb 

Spring-neap 
and 
semidiurnal  

Advective seaward losses of 
bloom-forming diatoms during 
ebb were compensated by intense 
growth, allowing development of 
stable populations in the estuary 

Lucas et al. 
(2006) 

Sacramento-
San Joaquin 
River Delta, 
USA 

Freshwater 
tidal zone 

Investigate intradaily 
variability of specific 
conductance, water 
temperature and Chla 

Semidiurnal  

present study Guadiana, 
Portugal/ 
Spain 

Freshwater 
tidal zone 

Analyse tidally-induced 
variability of phytoplankton 
and environmental drivers 
along semidiurnal and 
spring-neap tidal cycles 

Spring-neap 
and 
semidiurnal 

Higher phytoplankton biomass 
during neap tides 
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The reduced number of published studies on freshwater/low salinity estuarine zones 

have addressed specific questions (see Table 3.I), but a global overview of tidally-

induced variability of phytoplankton and their environmental drivers in freshwater 

tidal systems is still needed. In addition, we are not aware of studies describing 

tidally-induced differences over spring-neap and semidiurnal tidal cycles in 

freshwater tidal zones of Mediterranean estuaries. Therefore, the main goal of this 

article is to analyse tidal variability of phytoplankton and their environmental 

drivers (salinity, temperature, nutrients, light), along semidiurnal and fortnightly 

time scales, in the freshwater tidal reaches (upper estuary) of the mesotidal Guadiana 

estuary. Since phytoplankton in this estuarine region usually reveals a relative 

horizontal homogeneity (Rocha et al., 2002; Domingues and Galvão, 2007), and 

persistent light limitation coupled to episodic nutrient limitation (Domingues et al., 

2005; Barbosa et al., 2010), we hypothesise that: (1) tidally-induced phytoplankton 

changes in the Guadiana upper estuary will be mostly driven by the spring-neap 

tidal cycles; and (2) phytoplankton will depict high biomass values during neap tides 

due to decreased vertical mixing and turbidity.  

 

3.2. Material and Methods 

 

3.2.1 Study site and sampling strategy 

 

The Guadiana River’s (drainage area 67,039 km2, length 810 km) estuary forms the 

border between SE Portugal and SW Spain. Located in a Mediterranean climate area, 

it is a mesotidal estuary with semidiurnal tides, partially stratified in its lower and 

middle sections (but depending on river flow, tidal phase and tidal amplitude, 

Oliveira et al., 2006) and always well mixed in the upper section. In respect to tidal 

amplitude, the estuary can be considered synchronous, given that tidal amplitude is 

constant at least up to 50 km from the mouth (Morales, 1995). Freshwater inputs to 

the estuarine zone used to vary sharply between dry and humid months (1995-2000: 

333.0 ± 1095.9 m3 s-1, http://snirh.pt), but in the last years the recently built Alqueva 

dam has promoted a more regular but reduced freshwater flow (2008: 14.2 ± 9.1 m3 s-

1). The upper estuary, or freshwater tidal zone, is usually located between Álamo (25 
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km from the river mouth) and extends upriver from Mértola (approx. 70 km from the 

river mouth) (Fig. 3.1).  

 
Figure 3.1 – Location of the sampling site, Alcoutim, in the Guadiana estuary (south-western Iberian 
Peninsula). 
 

Sampling for the evaluation of tidally-induced variability was conducted at station 

Alcoutim, located at approx. 38 km from the river’s mouth (Fig. 3.1). Sampling was 

undertaken throughout 2008, in the winter (February), spring (April), summer 

(August) and autumn (October); both spring (tidal amplitudes between 2.45 and 2.90 

m) and neap tides (tidal amplitudes between 0.86 and 2.08 m) were sampled for each 

season. For each sampling date, samples were collected approximately every three 

hours, at high tide (slack water), mid-ebb, low tide (slack water), and mid-flood. This 

sampling was part of a broader monitoring program held in several locations 

covering the upper (Mértola and Alcoutim), middle (Foz de Odeleite) and lower 

(VRSA) estuaries throughout 2008 (see Fig. 3.1). This information on longitudinal 

variability was considered only as an aid to interpret tidal variability. 
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3.2.2 Environmental variables 

 

Profiles of water temperature and salinity (measured as conductivity) were 

determined in situ using a YSI 556 MPS probe. Vertical profiles of photosynthetically 

active radiation (PAR) intensity were determined using a LI-COR radiometer and 

light extinction coefficient (ke, m-1) was calculated using an exponential function, Iz = 

I0 e–Ke.Z, where Iz is the light intensity at depth level Z (m) and I0 is the light intensity 

at the surface. Mean light intensity in the mixed layer (Im, µmol photons m-2 s-1) was 

calculated according to Im = Io (1-e(-Ke.Zm))(Ke.Zm)-1, where Io is the light intensity at 

the surface, ke (m-1) the light extinction coefficient and Zm (m) the depth of the mixed 

layer (Jumars, 1993). The mixed layer corresponded to the whole water column, since 

there was neither haline nor thermal stratification (see section 3.3 Results). 

Subsurface (approx. 0.5 m) water samples were collected for subsequent laboratorial 

analyses of dissolved inorganic macronutrients, suspended particulate matter, 

chlorophyll a concentration and phytoplankton composition, abundance and 

biomass. Samples for nutrient determination were collected and immediately filtered 

through cellulose acetate filters (Whatman, nominal pore diameter = 0.2 µm). 

Ammonium (NH4+), phosphate (PO43-) and silicate (SiO44-) were determined 

immediately after sample collection, whilst samples for nitrate (NO3-) and nitrite 

(NO2-) where frozen (-20ºC) until analysis. All nutrients were determined in 

triplicate, according to the spectrophotometric methods described by Grasshoff et al. 

(1983), using a spectrophotometer Hitachi U-2000 for ammonium, phosphate and 

silicate, and an autoanalyzer Skalar for nitrate and nitrite. Dissolved inorganic 

nitrogen (DIN) was calculated as the sum of nitrate, nitrite and ammonium. 

Concentration of suspended particulate matter (SPM) was determined 

gravimetrically. For each sample, the analysis was made in duplicate. 250 mL were 

filtered onto pre-combusted (4 hours at 450ºC) glass fibre filters (Whatman GF/F, 

nominal pore diameter = 0.7 µm), dried in a Memmert incubator at 50ºC for 24 hours 

and then weighed after cooling down to room temperature. Data on the Guadiana 

mean daily river flow, measured at Pulo do Lobo hydrometric station (85 km from 

the river’s mouth), was obtained from the Portuguese National Water Institute 

(http://snirh.pt). 
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3.2.3 Phytoplankton variables 

 

Chlorophyll a concentration was determined spectrophotometrically using glass fibre 

filters (Whatman GF/F, nominal pore diameter = 0.7 µm) (Parsons et al., 1984b). 

Chlorophyll a was extracted overnight at 4ºC with 90% acetone; after centrifugation, 

absorbance of the supernatant was measured in the spectrophotometer Hitachi U-

2000 at 750 and 665 nm, before and after addition of HCl 1 M. 

Epifluorescence and inverted microscopy were used to determine phytoplankton 

abundance and composition, following the methods of Haas (1982) and Utermöhl 

(1958), respectively. Samples for enumeration of pico- (<2 µm) and 

nanophytoplankton (2 - 20 µm) were preserved with glutardialdehyde (final 

concentration 2%) immediately after collection, stained with proflavine and filtered 

(1-5 mL, depending on the amount of suspended matter) onto black polycarbonate 

membrane filters (Whatman, nominal pore diameter = 0.45 µm). Preparations were 

made using glass slides and non-fluorescent immersion oil (Cargille type A), within 

24 h of sampling, and then frozen (-20ºC) in dark conditions, to minimize loss of 

autofluorescence. Enumeration was made at 787.5x magnification using an 

epifluorescence microscope (Leica DM LB). Samples for enumeration of 

microphytoplankton (>20 µm) were preserved with acid Lugol’s solution (final 

concentration approx. 0.003%) immediately after collection, settled in sedimentation 

chambers (2-10 mL, depending on the amount of suspended matter; sedimentation 

time = 24 hours) and observed at 400x magnification with an inverted microscope 

(Zeiss Axiovert S100). Phytoplankton cells were identified, whenever possible, to 

species level. A minimum of 50 random visual fields, at least 400 cells in total and 50 

cells of the most common genus were counted. Assuming that the cells were 

randomly distributed, the counting precision was ±10% (Venrick, 1978). 

 

3.2.4 Data analyses 

 

Horizontal profiles of salinity, SPM, light extinction coefficient, DIN concentration 

and chlorophyll a concentration along the main estuarine axis were created using 

Surfer 8.01 software (Golden Software Inc.), using kriging (linear variogram model) 
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as the gridding method. Basic statistics (mean, median, standard deviation), 

statistical tests, and correlation coefficients were performed using STATISTICA 6.0® 

software package. The strength of associations between variables was assessed using 

Spearman rank correlation coefficients (r). Differences across different tidal stages, 

both at semidiurnal and fortnightly time scales, were evaluated using non-

parametric tests. Differences between the four semidiurnal tidal stages were tested 

using a non-parametric Kruskall-Wallis analysis of variance on ranks, and a Tukey’s 

post-hoc test. In the case of fortnightly tidal variability, differences in median values 

between neap tides and spring tides were assessed using a Mann-Whitney rank sum 

test. All statistical analyses were considered at a significance level of 0.05.  

 

3.3. Results 

 

3.3.1 Longitudinal distribution of phytoplankton and environmental drivers 

 

Mean daily river flow at Pulo do Lobo hydrometric station throughout 2008 ranged 

between 1.8 m3 s-1 and 125.6 m3 s-1, and averaged 13.1 ± 9.1 m3 s-1 (Fig. 3.2). Salinity 

was always detectable in the lower and middle estuarine zones, but the upper 

estuary remained freshwater throughout the year (Fig. 3.3A). Suspended particulate 

matter (SPM) increased downriver, with lower values in the upper estuary (Mértola: 

12.9 ± 9.1 mg L-1; Alcoutim: 44.0 ± 15.7 mg L-1) and higher close to the river mouth 

(VRSA: 114.9 ± 28.4 mg L-1) (Fig. 3.3B). Light extinction coefficient in the upper and 

middle estuaries (2.98 ± 1.69 m-1) was higher than in the lower estuary (0.81 ± 0.32 m-

1) (data not shown). Consequently, mean light intensity in the mixed layer (Im) 

presented higher values in the lower estuary (176.0 ± 101.6 µmol photons m-2 s-1) than 

in the middle and upper estuaries (63.5 ± 81.0 µmol photons m-2 s-1) (Fig. 3.3C). The 

concentration of dissolved inorganic nitrogen (DIN) did not show a significant 

spatial variability within the upper and middle estuaries (Mértola: 29.1 ± 18.3 µM; 

Alcoutim: 30.4 ± 14.5 µM; Foz de Odeleite: 31.5 ± 10.1 µM) throughout 2008, but 

lower values were observed in the lower estuary (VRSA: 17.9 ± 12.9 µM) (Fig. 3.3D). 

Occasionally, DIN maxima were observed in Mértola (max 67.4 µM, Fig. 3.3D).  
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Figure 3.2 – Freshwater flow (m3 s-1) measured at Pulo do Lobo throughout 2008. Dotted (…..) vertical 
lines represent sampling on spring tides and dashed (- - -) vertical lines represent sampling dates 
during neap tides. 
 

Dissolved reactive silicate (DSi) and dissolved reactive phosphate (DRP) exhibited a 

similar spatial distribution along the main longitudinal estuarine axis (data not 

shown), with higher concentrations in the upper (Mértola: 46.4 ± 26.4 µM DSi and 2.3 

± 0.6 µM DRP; Alcoutim: 56.4 ± 32.6 µM DSi) and middle (Foz de Odeleite: 47.4 ± 30.8 

µM DSi) estuarine regions and slightly lower concentrations in the lower estuary 

(VRSA: 17.5 ± 12.0 µM DSi, and 1.7 ± 1.4 µM DRP). Chlorophyll a concentration 

(Chla), a proxy for phytoplankton biomass, ranged between undetectable values and 

16.0 µg L-1 and was higher in the upper estuary (Mértola: 5.2 ± 2.9 µg L-1; Alcoutim: 

8.3 ± 3.3 µg L-1), decreasing downriver (VRSA: 1.8 ± 1.5 µg L-1) (Fig. 3.3E). Chla 

exhibited a clear seasonality with the highest values during summer, namely in 

Alcoutim.  
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3.3.2 Tidal variability of environmental drivers 

 

Vertical profiles of water temperature in Alcoutim showed significant diel 

differences, with lower temperatures early in the morning and higher in the 

afternoon (Table 3.II). These differences were related to changes in air temperature 

rather than to semidiurnal tidal cycles. Salinity did not show significant differences 

between neap and spring tides. However, significant (p < 0.001) semidiurnal 

differences were evident throughout the year, except in the Spring, with higher 

salinity values during high tide (Fig. 3.4A, Table 3.II). Daily salinity ranges in 

Alcoutim attained a maximum during the autumn spring tide (1.19 to 6.74, for low-

tide and high-tide, respectively). Vertical profiles of temperature and salinity 

evidenced the absence of water column stratification in Alcoutim, with similar T 

(maximum differences between surface and bottom <0.5ºC) and S (maximum 

differences between surface and bottom <0.5) values at the surface and bottom. 

Light extinction coefficient (ke) did not vary significantly between the different tidal 

phases of the semidiurnal and fortnightly cycles (Fig. 3.4B). Suspended particulate 

matter (SPM) was significantly higher during spring tides than during neap tides in 

the Spring and Autumn (p < 0.05), whilst no significant differences were observed in 

the Winter and Summer (Fig. 3.4C, Table 3.II). In all the spring tides, SPM was higher 

during flood, whilst during neap tides SPM showed minimum values at low tide. 

Maximum daily SPM range in Alcoutim was measured during the autumn spring 

tide (50.2 mg L-1 and 129.2 mg L-1 for low tide and flood, respectively. SPM was 

positively correlated to light extinction coefficient (r = 0.656, p > 0.0001, n = 32). 

Nitrate and phosphate concentrations did not show any significant tidal differences 

along the spring-neap and semidiurnal tidal cycles (Table 3.II). Silicate concentration 

showed significant differences only in the Spring fortnightly cycle, with higher Si 

during the neap tide (p < 0.0001). 
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Fig. 3.3 
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Figure 3.3 (cont.) 
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Figure 3.3 – Horizontal profiles of (A) salinity, (B) suspended particulate matter (SPM, mg L-1), (C) 
mean light intensity in the mixed layer (Im, µmol photons m-2 s-1), (D) concentration of dissolved 
inorganic nitrogen (DIN, µM), and (E) chlorophyll a concentration (Chla, µg L-1), throughout 2008. 
Profiles were generated used kriging as the gridding method. Station Alcoutim is located 
approximately 38 km from the river mouth. 
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Figure 3.4 – (A) salinity (PSU), (B) light extinction coefficient (ke, m-1) and (C) concentration of 
suspended particulate matter (SPM, mg L-1) in Alcoutim along the spring-neap and semidiurnal tidal 
cycles.  
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Table 3.II – Surface (surf.) and bottom (bott.) values for water temperature (T, ºC) and salinity (S), 
subsurface suspended particulate matter concentration (SPM, mg L-1), light extinction coefficient (ke, 
m-1), and subsurface nutrient concentration (N – dissolved inorganic nitrogen; P – dissolved reactive 
phosphate; Si – dissolved reactive silicate; µM), measured in each phase of the different tidal cycles in 
Alcoutim, throughout 2008.  
 

T S Season Spring 
neap 

Semi-
diurnal surf. bott. surf. bott. 

SPM ke N P Si 

ebb 13.0 12.8 <0.3 <0.3 27.8 2.5 34.1 2.0 48.6 
LT 13.0 12.9 <0.3 <0.3 22.6 2.0 32.0 2.0 44.9 

flood 13.3 13.1 <0.3 <0.3 65.2 4.7 34.0 2.2 48.1 
spring 
7Feb 

HT 13.3 13.1 0.5 0.5 30.6 3.1 35.4 1.9 51.0 
ebb 13.8 13.5 <0.3 <0.3 38.4 3.1 30.6 2.2 45.4 
LT 14.0 13.7 <0.3 <0.3 21.2 2.8 29.1 2.7 39.3 

flood 13.9 13.7 <0.3 <0.3 37.0 2.8 29.9 2.2 37.3 

winter 

neap 
14Feb 

HT 13.6 13.3 0.5 0.5 34.4 3.5 31.5 2.6 42.2 
ebb 18.0 18.0 <0.3 <0.3 53.2 3.1 29.9 2.4 73.2 
LT 18.1 18.0 <0.3 <0.3 34 2.8 25.0 1.6 73.7 

flood 18.5 18.3 <0.3 <0.3 57.6 3.1 29.0 2.4 72.3 
spring 
21Apr 

HT 18.7 18.3 <0.3 <0.3 40.6 3.1 29.8 2.3 76.1 
ebb 17.6 17.5 <0.3 <0.3 24.6 2.8 24.2 1.9 104.6 
LT 17.1 17.1 <0.3 <0.3 26.2 2.0 27.3 2.3 101.8 

flood 17.1 17.1 <0.3 <0.3 39.2 3.1 24.6 2.3 99.2 

spring 

neap 
14Apr 

HT 17.4 17.3 <0.3 <0.3 30.6 2.8 24.4 2.0 103.4 
ebb 25.7 25.7 <0.3 <0.3 44.8 3.1 8.8 2.7 52.2 
LT 25.9 25.9 <0.3 <0.3 32.2 2.5 10.1 0.6 48.4 

flood 26.1 26.0 <0.3 <0.3 75.8 3.1 11.8 2.9 52.5 
spring 
31Jul 

HT 26.1 26.1 0.5 0.5 37.6 3.1 14.4 2.9 54.9 
ebb 26.9 26.9 0.5 0.5 52.8 3.5 11.8 2.8 57.0 
LT 27.2 27.2 <0.3 <0.3 36.2 4.0 9.1 2.7 59.3 

flood 27.3 27.3 0.4 0.4 54.6 4.7 8.3 2.8 50.8 

summer 

neap 
6Aug 

HT 26.6 26.6 0.7 0.8 48.6 3.5 8.4 2.9 57.8 
ebb 20.8 20.8 2.8 2.7 64.0 5.6 20.3 3.5 48.5 
LT 20.9 20.9 1.2 1.2 50.2 5.6 19.7 3.4 57.6 

flood 21.0 21.0 2.5 2.7 129.2 5.6 21.5 3.3 45.2 
spring 
14Oct 

HT 21.2 21.2 6.5 6.7 101.8 5.6 16.0 3.2 36.1 
ebb 22.2 22.2 2.4 2.4 40.2 2.5 22.3 3.8 47.8 
LT 22.3 22.2 1.5 1.6 28.0 3.1 23.5 3.6 45.5 

flood 22.0 22.0 2.7 2.9 37.0 5.6 23.7 3.5 43.9 

autumn 

neap 
7Oct 

HT 22.1 22.0 3.2 3.7 31.6 4.0 23.5 3.1 41.9 
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Figure 3.5 – (A) Chlorophyll a concentration (µg L-1) and (B) phytoplankton total abundance (x105 cells 
L-1) in Alcoutim along the spring-neap and semidiurnal tidal cycles.  
 

 

3.3.3 Tidal variability of phytoplankton 

 

Chlorophyll a concentration (Chla) varied between 5.3 and 20.2 µg L-1, and no 

significant semidiurnal tidal differences were detected (Fig. 3.5A, Table 3.III). 

Fortnightly differences were found in the winter and summer (p < 0.05), with higher 

Chla values during neap tides. Total abundance of phytoplankton varied between 6.2 

x 104 and 7.4 x 107 cells L-1, with clear summer maxima, and did not exhibit 

significant tidal differences along the spring-neap and semidiurnal tidal cycles (Fig. 

3.5B, Table 3.III). Phytoplankton community was mainly composed by diatoms 

(solitary and chain-forming centric genera, and pennate benthic genera), green algae 

(mostly Scenedesmus, Monoraphidium and Pediastrum), and coccoid cyanobacteria. 

Furthermore, dinoflagellates (Kryptoperidinium foliaceum) and nano-cryptophytes 

were more abundant during summer and winter, respectively (data not shown). The 
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abundance of each phytoplanktonic group did not show any significant tidal 

differences along the spring-neap and semidiurnal tidal phases (Table 3.III). 

However, during winter and spring, the abundance of pennate diatoms was 

significantly higher during spring tides in relation to neap tides (p < 0.05; Fig. 3.6A). 

It is worth mentioning that during these seasons, mean river flow over an 8-day 

period preceding sampling dates was significantly higher during spring tides than 

during neap tides (p < 0.001; see Fig. 3.6B). 
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Table 3.III – Chlorophyll a concentration (Chla, µg L-1) and abundance of total and specific 
phytoplankton groups (x 105 cells L-1) measured in subsurface samples at each phase of the different 
tidal cycles at station Alcoutim, throughout 2008. TOT – total phytoplankton; DIA – diatoms; GA – 
green algae; CYA – cyanobacteria; nd – not detected. 
 

Season 
Spring
neap 

Semi-
diurnal 

Chla 
 

TOT DIA GA CYA 

ebb 6.9 12.29 4.01 3.29 nd 
LT 5.9 9.63 2.95 2.73 0.01 

flood 8.5 9.98 4.02 3.11 nd 
spring 
7Feb 

HT 6.4 13.14 1.12 3.48 nd 
ebb 10.7 6.64 2.73 0.95 0.02 
LT 12.3 7.06 1.39 1.17 nd 

flood 10.1 7.84 2.64 3.58 nd 

winter 

neap 
14Feb 

HT 8.5 2.44 1.28 1.16 nd 
ebb 10.1 7.08 6.24 0.73 nd 
LT 6.4 3.90 3.18 0.67 nd 

flood 8.0 10.21 6.97 0.33 nd 
spring 
21Apr 

HT 10.1 13.14 7.97 0.89 0.03 
ebb 8.0 6.24 5.35 0.78 nd 
LT 5.9 11.53 4.07 0.22 0.03 

flood 8.0 5.41 5.17 0.24 nd 

spring 

neap 
14Apr 

HT 10.7 8.87 7.20 1.48 nd 
ebb 11.2 221.93 2.75 0.29 2.14 
LT 12.3 735.00 6.27 nd 7.06 

flood 10.7 85.61 5.36 nd 0.66 
spring 
31Jul 

HT 10.7 251.47 5.13 0.89 2.35 
ebb 14.4 440.18 2.75 0.19 4.28 
LT 17.1 608.40 5.79 0.10 5.87 

flood 20.2 737.64 4.02 nd 7.30 

summer 

neap 
6Aug 

HT 17.1 591.73 7.19 nd 5.84 
ebb 6.4 213.66 0.19 0.74 2.04 
LT 6.4 141.57 0.14 nd 1.40 

flood 5.9 3.46 2.44 0.81 nd 
spring 
14Oct 

HT 5.9 0.62 0.62 nd nd 
ebb 6.4 1.88 0.75 1.13 nd 
LT 8.0 13.01 1.29 nd 0.07 

flood 5.3 10.35 0.37 nd 0.09 

autumn 

neap 
7Oct 

HT 6.4 12.57 1.41 1.18 0.07 
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3.4. Discussion 

 

3.4.1 Tidal variability of environmental drivers of phytoplankton 

 

Tidal variability of phytoplankton is modulated by tidally-induced changes in the 

availability of phytoplankton resources, dissolved inorganic nutrients and light, as 

well as changes associated to phytoplankton loss rates. Thus, the analysis of tidal 

dynamics of environmental drivers is relevant to understand and predict 

phytoplankton tidal behaviour. 

River flow has been recognized as a major influence on several physical-chemical 

variables such as nutrient loading, light availability and water column stratification, 

therefore affecting phytoplankton dynamics (Cloern et al., 1983; Mallin et al., 1993 

and references therein). In the Guadiana estuary, river flow exhibited low values 

throughout 2008 (13.1 ± 9.1 m3 s-1), comparable to those observed in extremely dry 

years (e.g., 2005: 18.6 ± 10.5 m3 s-1). Therefore, the influence of tidal cycles was 

probably more important than river flow in the regulation of estuarine dynamics 

throughout 2008. 

Short-term changes in salinity may occur in response to both tidal and river runoff 

variations, whilst strong salinity gradients may occur when river discharge increases 

after rain pulses (Madariaga, 1995). In the Guadiana upper estuary, salinity did not 

vary significantly within the spring-neap tidal cycles, but significant semidiurnal 

variability was observed. Salinity was usually higher at high tide, reflecting the 

intrusion of saltwater upriver. As the sampling station (Alcoutim) is located only a 

few km upstream from the transition zone between the middle (brackish) and upper 

(freshwater) estuarine zones, salinity may be detectable occasionally, depending on 

the tidal phase and river flow. For instance, salinity values surpassing 3 (max 5) were 

observed in Alcoutim during 1999 and during the Alqueva dam filling period (2002–

2003), indicating a pronounced saltwater intrusion under minimum river discharge 

conditions (<3 m3 s-1; Domingues et al., 2007; Barbosa et al., 2010). Throughout 2008, 

salinity in the upper limit of the estuary (Mértola) was always lower than 0.3, 

whereas in Alcoutim salinity reached a maximum value of 7, with mean salinity 

values <1. Furthermore, neither haline nor thermal stratification was observed at the 
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sampling station (see Table 3.II) thus reflecting a well mixed water column, 

independently of tidal stage or river flow. The absence of periodic stratification-

destratification was already observed in the Guadiana upper estuary (Rocha et al., 

2002; Domingues and Galvão, 2007). Conversely, haline stratification is commonly 

found in the lower estuary, with salinity differences between surface and bottom up 

to 10 (Domingues, unpublished data).  

Tidally-induced resuspension is considered a primary mechanism governing the 

variability of suspended particulate matter (SPM) and light in estuaries (Monbet, 

1992), at both semidiurnal and fortnightly scales. The combination of strong tidal 

currents and a shallow water column results in a particularly high sediment 

transport capacity (Lionard et al., 2008) in the freshwater tidal zone. Therefore, 

turbidity is typically high and consequently light, rather than nutrients, usually 

controls phytoplankton growth in these regions (Sin et al., 1999). In fact, it has been 

shown for phytoplankton primary production models that the most significant errors 

occur when the temporal pattern of light penetration, linked to the tidal cycle of 

solids settling and resuspension, is neglected (Desmit et al., 2005). Microcosm 

experiments recently carried out in the Guadiana upper estuary confirmed that 

phytoplankton is co-limited by nutrients (mainly nitrogen) during the productive 

period and by light throughout the year (see chapters 4 and 6). The positive 

correlation between SPM and light extinction coefficient (ke) indicated that, as in 

many other shallow water systems (e.g., May et al., 2003), light attenuation in 

Alcoutim was mainly controlled by SPM. However, ke did not always follow the 

same tidal variability as SPM, probably because light attenuation depends not only 

on the SPM concentration, but also on SPM composition. For instance, if SPM is 

mainly dominated by quartz, its effect on light attenuation will be lower than SPM 

dominated by clays, which play an important role in light absorption. In the lower 

Guadiana estuary, the highest SPM values were observed (114.9 ± 28.4 mg L-1), but 

the lowest light attenuation was determined (0.81 ± 0.32 m-1), given that suspended 

sediments in this estuarine region are mainly composed by quartz (Machado et al., 

2007). 
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Figure 3.6 - Box and whisker plots showing A) distribution of pennate diatoms and B) river flow 
(average of the 8 days preceding sampling) binned in different seasons (winter + spring, summer + 
autumn) along spring-neap tidal cycles. Median value is represented by the horizontal line within the 
box, 25th to 75th percentiles are denoted by box edges and 5th to 90th percentiles are depicted by the 
error bars. Different letters (a, b) above the bars represent significant differences. 
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Furthermore, significant differences in SPM were observed at a fortnightly scale, 

with higher SPM values during spring tides and lower during neap tides. This is a 

common observation in many coastal ecosystems (e.g., Koh et al., 2006; Bartholomä 

et al., 2009) and is primarily related to stronger tidal currents during spring tides 

and, consequently, higher resuspension of bottom sediments. In respect to the 

semidiurnal tidal cycle, flood and ebb tidal currents are usually associated to 

semidiurnal peaks of sediment erosion and transport (Monbet, 1992), thus promoting 

higher SPM concentrations. In the Guadiana estuary, flood currents are associated to 

peaks in the concentration of suspended sediments, due to the resuspension of fine 

sediments deposited during the preceding relatively long low tide slack (Garel et al., 

2009). Indeed, SPM was higher during flood than during low tide, and slightly 

higher during flood than during the other tidal phases.  

Considering the other environmental drivers of phytoplankton growth, no 

significant tidally-induced differences were found, neither on fortnightly nor on 

semidiurnal time scales. These results reflect the homogeneity of the water masses 

around the sampling station. In fact, tidal excursion in the Alcoutim area is only ca. 6 

km, considering an average velocity of 0.3 m s-1 (E. Garel, pers. comm.). Overall, tidal 

differences in phytoplankton and physical-chemical variables in the upper, 

freshwater estuary were trivial when compared to those observed in lower estuarine 

zones (e.g., Trigueros and Orive, 2000; Morais et al., 2009a) subjected to a stronger 

sea influence, sharper environmental gradients and higher tidal currents velocities 

(Garel et al., 2009). 

 

3.4.2 Tidal variability of phytoplankton 

 

The distribution of phytoplankton in specific semidiurnal tidal phases depends on 

the biological properties of the water masses that recurrently oscillate up- and 

downriver from the sampling site. Therefore, both the longitudinal distribution of 

phytoplankton along the main estuarine axis, namely in the vicinity of sampling 

stations, and the tidal excursion of the water mass along the semidiurnal tidal cycle 

will control phytoplankton distribution in specific estuarine locations. In general, 

higher phytoplankton biomass is usually associated to low tide, due to the advection 
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of phytoplankton-rich water masses from the upper estuary (Trigueros and Orive, 

2000; Wetz et al., 2006). However, maxima may also occur during any phase of the 

semidiurnal tidal cycle (e.g. Gianesella et al., 2000; Lehman, 2000; Aubry and Acri, 

2004). In the Guadiana upper estuary, the relative homogeneity of water masses 

upriver and downriver from Alcoutim, sustained by a maximum tidal excursion of 6 

km (E. Garel, pers. comm.), is probably responsible for the absence of significant 

differences in chlorophyll a concentration or phytoplankton abundance along the 

semidiurnal cycle. In fact, marked horizontal differences between Alcoutim and the 

locations upstream (Mértola) and downstream (Foz de Odeleite) were observed only 

episodically. The longitudinal gradients in the vicinity of the middle and lower 

estuarine regions, much stronger than those observed in the upper estuary (see Fig. 

3.3), will probably reverberate into a more marked tidal variability in the lower and 

middle estuaries. 

Considering the spring-neap tidal cycle, the occurrence of higher phytoplankton 

biomass during neap tides is usually reported for light-limited systems (e.g. 

Madariaga, 1995; Bustos-Serrano et al., 1996), due to the decrease in turbidity and the 

shallowing of the mixed layer that consequently lead to an increase in mean light 

intensity in the mixed layer (Cloern, 1996). In addition, neap tides are also associated 

to a reduced vertical turbulence and higher water levels during low-tide, therefore 

reducing the effect of benthic grazing upon phytoplankton (Lucas et al., 1999). 

Benthic grazing is in fact an important sink for phytoplankton, especially in shallow, 

well mixed water columns (Lucas and Cloern, 2002).  

In the Guadiana upper estuary, significant differences were found in chlorophyll a 

concentration between neap and spring tides only during winter and summer, with 

higher Chla values occurring at neap tides, as initially hypothesized. This pattern 

was not significantly related to any growth regulatory variable or to the typical 

shallowing of the mixed layer, given that the Guadiana upper estuary is always well 

mixed. The differences in Chla between spring and neap tides in each season can be 

associated to different factors. In the winter, mean (8 days before sampling) river 

flow was significantly higher in the spring tide than in the neap tide (p < 0.05); 

higher river flow can be responsible for higher turbulence, lower light, and thus, 

lower Chla; additionally, higher vertical mixing may have increased the effect of 
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benthic grazing upon phytoplankton (Lucas et al., 1999). In the summer, higher Chla 

values during neap tides may be related to a reduced effect of benthic grazing due a 

higher water level at low-tide. However, the effect of benthic grazing as a sink for 

phytoplankton has never been evaluated in the Guadiana estuary. Massive 

occurrence of the invasive Asian clam Corbicula fluminea and other freshwater 

bivalves have been reported for the upper estuary (Morais et al., 2009b), but their 

effect as a sink for phytoplankton biomass has never been addressed in this system. 

Indeed, studies on grazing and other mortality processes are crucial to understand 

the interactive effects of the environmental drivers and their tidally-induced 

alterations on phytoplankton dynamics. 

The abundances of the main phytoplankton groups did not show any clear patterns 

or significant differences between different phases of spring-neap and semidiurnal 

tidal cycles. Nevertheless, significant differences (p < 0.05) were found in pennate 

diatoms abundance in the winter and spring, with higher values during spring tides 

and lower during neap tides. This may probably be related to a higher vertical 

mixing induced by higher river flow during spring tides, leading to resuspension of 

microphytobenthic diatoms (Gianesella et al., 2000; Brunet and Lizon, 2003). 

 

3.5. Conclusions 

 

1. Overall, the water column within the Guadiana upper estuary was vertically and 

horizontally homogeneous, showing no evidence of haline or thermal water column 

stratification. 

2.  No significant tidally-induced differences were found for most physical-chemical 

variables in the upper estuary, either on semidiurnal and fortnightly time scales, 

reflecting the homogeneity of the water column up- and downriver from the 

sampling station. 

3. Tidally-induced differences in suspended particulate matter, with higher values 

during spring tides and flood, were related, respectively, to stronger tidal currents 

and resuspension of fine sediments deposited during the preceding long low tide 

slack. 
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4. Tidally-associated differences in chlorophyll a were observed seasonally (winter 

and summer), most likely due to short-term alterations in river flow and benthic 

grazing.  

5. Tidally-induced differences on SPM and Chla in the Guadiana upper estuary 

should be considered in the design of sampling programs, and integrated when 

comparing data collected at different tidal stages. 

6. Furthermore, these seasonal differences reflect that in order to study estuarine tidal 

dynamics, sampling must be conducted throughout the year. Occasional sampling 

will not reflect the typical variability of these highly dynamic systems. 
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Nutrient limitation of phytoplankton growth in the freshwater tidal 

zone of a turbid, Mediterranean estuary 

Rita B. Domingues, Tânia P. Anselmo, Ana B. Barbosa,  

Ulrich Sommer, Helena M. Galvão 

Estuarine, Coastal and Shelf Science (in press) 

Abstract 

Identification of the limiting nutrient(s) is a requirement for the rational management 

of eutrophication. Here, we present the first experimental analysis of nutrient 

limitation of phytoplankton growth and its seasonal variation in the Guadiana 

estuary (SE Portugal-SW Spain). Ten microcosm experiments were performed during 

2005 and 2008, using water samples collected in the freshwater tidal zone of the 

Guadiana estuary. Nitrate, phosphate and silicate were added in a single pulse, alone 

and in combinations. Experimental treatments were incubated for 4 days under 

controlled laboratory conditions. Phytoplankton response to nutrient enrichment 

was evaluated through changes in biomass (Chla), and abundance of specific 

phytoplankton groups. 

Overall, phytoplankton growth seemed to be nitrogen-limited throughout the 

productive period, especially green algae in 2005 and diatoms in 2008. In the summer 

2008, cyanobacteria and the harmful dinoflagellate Kryptoperidinium foliaceum 

responded to N enrichment in the absence of Si. Indeed, the presence of K. foliaceum 

was observed for the first time in the freshwater tidal reaches of the Guadiana 

estuary, where dinoflagellates were usually absent or rare. The significant increase 

on dinoflagellates and cyanobacteria growth in response to N enrichment in the 

absence of Si is alarming, because anthropogenic nutrient enrichments usually 

increase N and P, but not Si. Furthermore, relatively high N concentrations, up to 22 

µM, were found to be limiting to phytoplankton growth. These results should 

therefore be used as a management tool when establishing nutrient criteria and 

nutrient loading budgets to estuarine waters. 

 

Keywords: Water Framework Directive, phytoplankton, biomass, abundance, 

chlorophyll a, Portuguese waters 
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4.1 Introduction 

 

The development of human population centres in coastal areas and particularly in 

the catchment of estuaries has led to widespread eutrophication with its associated 

problems, such as harmful algal blooms and deterioration of water quality. In fact, 

eutrophication of estuaries has been pointed out as one of the most pressing 

problems of the 21st century (Turner and Rabalais, 2003). Nutrient availability is 

frequently referred as key factor regulating phytoplankton growth, biomass and 

species composition (Roelke et al., 1999 and references therein). Therefore, the role of 

nutrients, especially nitrogen and phosphorus, as limiting factors of phytoplankton is 

an important aspect for eutrophication mitigation and management (e.g., Conley, 

2000; Conley et al., 2009; Paerl, 2009). Knowledge of the limiting nutrient enables 

managers to draw up appropriate nutrient loading budgets for estuarine catchment 

areas and to respond to possible perturbations on an informed basis (Beardall et al., 

2001). A comprehensive understanding of how nutrients affect phytoplankton 

growth, diversity, and production, is therefore needed to properly assess the impact 

of nutrient enrichment and the efficiency of subsequent nutrient reduction strategies 

(Gobler et al., 2006).  

Generally, nitrogen (N) is considered limiting in marine systems (Ryther and 

Dunstan, 1971) and phosphorus (P) in freshwaters (Schindler, 1977), but these two 

deeply rooted dogmas have been questioned (e.g., Sterner, 2008). In estuaries, there is 

evidence of temporal and spatial changes in the limiting nutrient (D’Elia et al., 1986; 

Domingues et al., 2005; Fisher et al., 2006). A switch from P limitation in spring to N 

limitation during summer is often observed in estuarine systems (D’Elia et al., 1986; 

Pennock and Sharp, 1994; Fisher et al., 1999); dissolved silica (Si) may also be limiting 

to diatom growth (Gobler et al., 2006).  

Common approaches to determine the limiting nutrient include bioassays with test 

organisms, enrichment experiments with natural assemblages, elemental ratios and 

macromolecular composition, nutrient uptake kinetics, and several biochemical and 

molecular approaches (see Beardall et al., 2001). Nutrient enrichment experiments 

using natural phytoplankton as inoculum have been used (1) to identify the limiting 

nutrient by higher phytoplankton growth following enrichment with a particular 
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nutrient in relation to the control, and (2) to extrapolate the outcomes to natural 

ecosystems, i.e., to identify changes in phytoplankton composition, growth and 

succession following specific nutrient enrichment scenarios.  

However, extrapolation of bioassays results to natural systems is not 

straightforward. Enclosing phytoplankton in small volumes may isolate the cells 

from physical, chemical and biological factors experienced in situ and may also 

magnify their contact with others (Venrick et al., 1977). For instance, sedimentation, 

grazing and advection may be excluded, whilst nutrient cycling may be reduced 

(Loureiro et al., 2005b and references therein). Nevertheless, nutrient enrichment 

experiments provide valuable insights into nutrient and phytoplankton dynamics, 

and may accurately describe processes in natural phytoplankton communities 

(Loureiro et al., 2005b and references therein). Additionally, data obtained using 

nutrient enrichment experiments constitute an interesting management tool, as they 

provide quantitative measures of the phytoplankton response to altered nutrient 

regimes and potential shifts in community structure (Örnólfsdóttir et al., 2004).  

Freshwater tidal estuarine zones represent extreme environments to phytoplankton, 

characterized by salinity conditions similar to the river (<0.5), but subjected to a 

strong tidal influence. Tidal forcing may induce the resuspension of bottom 

sediments, which will result in increased turbidity, leading to strong light limitation 

and low phytoplankton growth rates, despite high nutrient concentrations (Cole et 

al., 1992; Muylaert et al., 1997). Furthermore, phytoplankton losses due to freshwater 

discharges and downriver displacement are constant (Muylaert et al., 2000), and 

occasional saltwater intrusion may cause salinity stress and mortality (Morris et al., 

1978). Nevertheless, freshwater tidal estuarine zones often support dense 

phytoplankton communities, with higher chlorophyll a concentrations than those 

found downstream (Muylaert et al., 2000 and references therein).  

In contrast to the high number of studies addressing nutrient limitation of 

phytoplankton growth in marine and brackish estuarine zones (e.g., D’Elia et al., 

1986; Harrison et al., 1990; Rudek et al., 1991; Pennock and Sharp, 1994; Roelke et al., 

1997; Richardson et al., 2001; Twomey and Thompson, 2001; Yin et al., 2001, 2004; 

Örnólfsdóttir et al., 2004; Wawrik et al., 2004; Gobler et al., 2006), only a reduced 
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number of studies deals with nutrient limitation in freshwater tidal estuarine zones 

(e.g., O’Donohue and Dennison, 1997; Thompson, 1998; Mallin et al. 1999; Tomasky 

et al., 1999; Ault et al., 2000; Smith and Kemp, 2003). Furthermore, we are not aware 

of studies that have addressed the effects of nutrient enrichment on freshwater tidal 

zones of mesotidal, Mediterranean estuaries, given that most Mediterranean 

estuaries, including those not located in the Mediterranean basin (e.g., Swan River, 

Australia), are microtidal. Considering that Mediterranean estuaries are located in an 

extremely vulnerable region to climate change (IPCC, 2001), eutrophication has been 

increasing in many hydrographic basins, and freshwater estuarine regions are 

important sources of nutrients and phytoplankton biomass to downriver estuarine 

reaches and adjacent coastal areas (Rocha et al., 2002; Domingues and Galvão, 2007), 

it is crucial to fully understand the effects of nutrients on phytoplankton growth and 

the consequences of nutrient enrichment in these sensitive and nutrient-rich regions.  

The freshwater tidal zone of the Guadiana estuary, or upper estuary, represents the 

largest estuarine region in length, extending from Álamo (25 km from the river’s 

mouth) up to the tidal limit (>70 km from the river’s mouth) (Morales, 1995) (Fig. 

4.1). Based on field observations of nutrient concentrations and ratios and species 

composition, the Guadiana upper estuary is usually considered co-limited by light 

and nutrients (Domingues et al., 2005, 2007), but the effect of either nutrients or light 

on phytoplankton growth was never tested. Furthermore, in the last years, due to 

water and sediment retention in the recently built Alqueva dam, phytoplankton 

biomass has been decreasing with decreasing turbidity, which may point to a shift 

from a light-limited environment towards a more nutrient-limited one (Barbosa et al., 

2010). The upper estuary has also been subjected to increasing human influences, 

including urban and agricultural runoffs, and, consequently, nutrient enrichment, 

that can affect phytoplankton community structure. Therefore, we performed 

nutrient enrichment bioassays containing natural phytoplankton populations from 

the freshwater tidal reaches of the Guadiana estuary to determine the limiting 

nutrient for phytoplankton growth and its seasonal variation, and to understand the 

effects of potential anthropogenic nutrient enrichments on phytoplankton 

community structure.  
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4.2. Material and Methods 

 

4.2.1 Study site 

 

The Guadiana River’s (drainage area 67,039 km2, length 810 km) estuary forms the 

southern border between Portugal and Spain. Located in a Mediterranean climate 

area, it is a mesotidal estuary, partially stratified in the lower and middle sections, 

but well mixed in the upper section. The upper estuary, or freshwater tidal zone, 

usually extends from Álamo (25 km from the river mouth) to Mértola (approx. 70 km 

from the river mouth), but depending on tidal stage and river flow (Fig. 4.1). 

Freshwater inputs to the estuarine zone used to vary sharply between dry and wet 

months (1995 - 2000: 333.0 ± 1095.9 m3 s-1, http://snirh.pt), but in the last years the 

recently built Alqueva dam has promoted a more regular and reduced freshwater 

flow (2008: 14.2 ± 9.1 m3 s-1). The estuary also receives reduced freshwater inputs 

from some tributaries, whilst other inputs include sewage, mainly near the mouth.  

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 – Map of the Guadiana estuary and sampling station (Alcoutim). 
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4.2.2 Sampling strategy 

 

Nutrient addition experiments were undertaken using water samples collected in the 

freshwater tidal reaches (upper estuary) of the Guadiana estuary (see Fig. 4.1). 

Samples for nutrient enrichment experiments were collected immediately after high 

tide, during neap tides. Samples were collected near the surface (approx. 0.5 m 

depth), assuming that the whole water column was well mixed (Domingues and 

Galvão, 2007; Morais et al., 2009a). Acid-cleaned polycarbonate bottles were used for 

sample collection and samples were kept in cold and dark conditions between 

collection and experiment set-up (approx. 2 hours). Vertical profiles of water 

temperature and photosynthetically active radiation (PAR) intensity were 

determined in situ using a YSI 556 MPS probe and a LI-COR radiometer, 

respectively. Light extinction coefficient (ke, m-1) was calculated using an exponential 

function, Iz = I0 e–Ke.Z, where Iz is the light intensity at depth level Z (m) and I0 is the 

light intensity at the surface. Mean light intensity in the mixed layer (Im, µmol 

photons m-2 s-1) was calculated as Im = Io (1-e(-Ke.Zm))(Ke.Zm)-1, where Io is the light 

intensity at the surface, ke (m-1) the light extinction coefficient and Zm (m) the depth 

of the mixed layer (Jumars, 1993). The mixed layer was taken as the whole water 

column, due to the absence of haline and thermal stratification.  

 

4.2.3 Nutrient addition experiments 

 

Two different sets of experiments were performed during 2005 and 2008. The 2005 

experiments served as a preliminary study to test and improve the methods. Ten 

experiments in total were performed, two per each representative season for 

phytoplankton growth: winter (February), spring (May), spring-summer transition 

(June), summer (August) and autumn (October). For each experiment, several 

treatments were prepared in duplicate. Nutrients were added, alone and in 

combinations, at day 0 in a single pulse, according to Table 4.I. Nitrogen was added 

as potassium nitrate (KNO3), phosphorus as potassium dihydrogen phosphate 

(KH2PO4) and silicium as sodium hexafluorosilicate (Na2SiF6). In 2005, the 

experimental treatments were incubated in 2 L polycarbonate bottles in an outdoor 
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tank filled with tap water to avoid extreme variations in temperature and covered 

with several layers of screen to simulate the light intensity in the mixed layer at time 

of sampling. In 2008, 1 L polycarbonate bottles were incubated inside a growth 

chamber under in situ temperature and in situ light-dark cycle at approx. 110 µmol 

photons m-2 s-1. This light intensity was higher than Im at the time of sampling, but 

since the daily variability of Im is significant, depending on atmospheric factors and 

tidal phase, and samples were collected in the morning, when irradiance is lower, the 

light intensity chosen for the incubations can be observed in situ, so the cells were not 

exposed to light intensities higher than those that they usually experience in their 

natural environment. 

 

Table 4.I – Experimental treatments with indication of concentrations (µM) of nutrients added during 
the 2005 and 2008 experiments. 
 

 Winter 
2005 

Others 
2005 

2008 

Control no 
additions 

no 
additions 

no 
additions 

N +150 +200 +150 
P +8.5 +3.1 +15 
Si +175 +150 +150 

NP +16.5 N 
+1.5 P 

+200 N 
+3.1 P 

+150 N 
+15 P 

SiN +37.5 Si 
+25 N 

+150 Si 
+200 N 

+150 N 
+150 Si 

SiP - +150 Si 
+3.1 P 

+150 Si 
+15 P 

NPSi - +200 N 
+150 Si 
+3.1 P 

+150 N 
+15 P 

+150 Si 
 

 

The bottles were opened daily and gently shaken twice a day. Sub-samples for 

nutrient determination were collected from each bottle at days 0, 1, 2, 4 (and day 6 in 

2005). Chlorophyll a and phytoplankton composition and abundance were evaluated 

at days 0, 1, 2, 4 and 6 in 2005. During the 2005 experiments, phytoplankton growth 

was exponential until day 4, and in many experiments, until day 6. Therefore, in 
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2008, due to logistic and financial reasons, chlorophyll and phytoplankton were 

evaluated only at days 0 and 4. In the winter and spring 2008 experiments, daily 

measurements of in vivo Chla fluorescence confirmed the exponential growth of 

phytoplankton until day 4 (determination coefficients of regression lines time vs. 

ln(Chla) ranging between 0.90 and 0.99). 

 

4.2.4 Laboratory analyses 

 

Samples for nutrient determination were collected and immediately filtered through 

cellulose acetate filters (Whatman, nominal pore diameter = 0.2 µm). Ammonium 

(NH4+), phosphate (PO43-) and silicate (SiO44-) were determined immediately after 

sample collection, whilst samples for nitrate (NO3-) and nitrite (NO2-) where frozen (-

20ºC) until analysis. All nutrients were determined in triplicate, according to the 

spectrophotometric methods described by Grasshoff et al. (1983), using a 

spectrophotometer Hitachi U-2000 for ammonium, phosphate and silicate, and an 

autoanalyzer Skalar for nitrate and nitrite. 

Chlorophyll a concentration was determined according to Parsons et al. (1984b), 

using glass fibre filters (Whatman GF/F, pore diameter = 0.7 µm). Chlorophyll a was 

extracted overnight at 4ºC with 90% acetone; after centrifugation, absorbance of the 

supernatant was measured spectrophotometrically (Hitachi U-2000) at 750 and 665 

nm, before and after addition of HCl 1 M. 

Epifluorescence and inverted microscopy were used to determine phytoplankton 

abundance and composition, following the methods of Haas (1982) and Utermöhl 

(1958), respectively. Samples for enumeration of pico- (<2 µm) and 

nanophytoplankton (2 - 20 µm) were preserved with glutardialdehyde (final 

concentration 2%) immediately after collection, stained with proflavine and filtered 

(1-5 mL, depending on the amount of suspended matter) onto black polycarbonate 

membrane filters (Whatman, nominal pore diameter = 0.45 µm). Preparations were 

made with glass slides and non-fluorescent immersion oil (Cargille type A), within 

24 h of sampling, and then frozen (-20ºC) in dark conditions, to minimize loss of 

autofluorescence. Enumeration was made at 787.5x magnification using a Leica DM 

LB epifluorescence microscope. Samples for enumeration of microphytoplankton 
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(>20 µm) were preserved with acid Lugol’s solution (final concentration approx. 

0.003%) immediately after collection, settled in sedimentation chambers (2 - 10 mL, 

depending on the amount of suspended matter; sedimentation time = 24 hours) and 

observed at 400x magnification with a Zeiss Axiovert S100 inverted microscope. 

Phytoplankton cells were identified, whenever possible, to species level. A minimum 

of 50 random visual fields, at least 400 cells in total and 50 cells of the most common 

genus were counted. Assuming that the cells were randomly distributed, the 

counting precision was ±10% (Venrick, 1978). 

 

4.2.5 Data analyses 

 

Data analyses were performed using GraphPad Prism 5 software. For each 

experimental treatment, nutrient concentrations, chlorophyll a and phytoplankton 

abundances were statistically compared within replicates of the same treatment 

using a t-test or a Mann-Whitney rank sum test when the Kolmogorov-Smirnov 

normality test failed. Since no significant differences were found between replicates, 

all values were combined for the subsequent data analysis. Nutrient net consumption 

rates for each treatment were estimated as the slope of a linear or exponential 

function adjusted to the data points. It is important to stress that what we determine 

in fact were nutrient disappearance rates, that integrate not only uptake rates 

(inward transport through the cell membrane), but also excretion and nutrient 

regeneration. Community net growth rate and specific net growth rate of different 

phytoplankton groups (µ, d-1) were estimated as the slope of ln N(t) versus time (4 

days), where N(t) is chlorophyll a concentration or phytoplankton abundance at day 

t, respectively, assuming exponential growth (confirmed by in vivo Chla 

fluorescence). Slopes and standard errors of the estimated regression lines were then 

compared to assess significant differences between consumption/growth rates of the 

controls and the treatments. 
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4.3. Results 

 

4.3.1 Initial conditions 

 

In the 2005 and 2008 experiments, nitrogen was the potential limiting nutrient in the 

beginning of all the experiments (Table 4.II). N:P ratio was always <16, and Si:N was 

always >1. Initial concentration of dissolved inorganic nitrogen (DIN) was higher in 

the 2008 experiments, but always <40 µM. In 2005, initial N did not surpassed 24 µM. 

Mean light intensity in the mixed layer (Im) at the time of sampling was higher 

during 2005 (74 - 183 µmol photons m-2 s-1) than 2008 (9 - 105 µmol photons m-2 s-1) 

(Table 4.II).  

Phytoplankton community was mainly composed of diatoms, green algae and 

cyanobacteria in the 2005 experiments, whilst in 2008 cyanobacteria were only 

detected in the summer and dinoflagellates were frequently observed. 

Phytoplankton abundance and chlorophyll a in the beginning of the experiments 

were higher in 2005 than in 2008. Initial abundances and chlorophyll a concentration 

are presented in Table 4.III. 

 

Table 4.II – Initial nutrient concentrations (µM) and molar ratios, potential limiting nutrient according 
to the Redfield ratio (Redfield et al., 1963) and mean light intensity in the mixed layer (Im, µmol 
photons m-2 s-1) at the time of sampling during 2005 and 2008 (SS trans. – spring-summer transition). 
 

 DIN Si P N:P Si:N 
Potential 

Limitation 
Im 

2005 
Winter 23.9 67.7 1.9 12.6 2.8 N 93 
Spring 2.0 4.7 1.6 1.3 2.3 N 74 

SS trans. 19.8 27.0 2.0 9.9 1.4 N 183 
Summer 5.6 13.5 1.1 5.1 2.4 N 165 
Autumn 13.0 51.1 3.0 4.3 3.9 N 92 

2008 
Winter 39.5 125.6 2.6 15.2 3.2 N 32 
Spring 21.6 63.9 2.7 8.0 3.0 N 63 

SS trans. 20.0 42.8 2.2 9.1 2.1 N 87 
Summer 3.8 59.7 2.5 1.5 15.7 N 105 
Autumn 23.4 48.2 3.0 7.8 2.1 N 9 
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Table 4.III – Phytoplankton abundance (x105 cells L-1) and chlorophyll a concentration (µg L-1) at the 
time of sampling in 2005 and 2008. DI – diatoms; GA – green algae; DINO – dinoflagellates; CYA – 
cyanobacteria; Chla – chlorophyll a concentration; nd – not detected. 

 
 DI GA DINO CYA Chla 

2005 
Winter 68 13 nd nd 4.3 
Spring 320 690 nd 240 14.9 

SS trans. 17 140 nd 740 9.1 
Summer 8.9  160 nd 720 41.6 
Autumn 11 60 nd 590 2.1 

2008 
Winter 0.63 0.19 nd nd 1.1 
Spring 49 0.19 2.8 nd 19.7 

SS trans. 3.1 0.47 0.47 nd 13.9 
Summer 2.5 1.8 0.29 960 6.9 
Autumn 1.3 0.19 0.74 nd 8.0 

 
 

4.3.2 Nutrient uptake rates 

 

Significant nutrient consumption occurred in all the experiments, except in the 

autumn 2008 experiment, when no significant nutrient consumptions in the nutrient-

enriched treatments in relation to the control were observed. Nitrate net 

consumption rates in all N-enriched treatments (N, NP, SiN, NPSi) were significantly 

higher than in the controls in the winter, spring, spring-summer transition and 

summer experiments. Nitrate consumption rates in the N-enriched treatments varied 

between 6.3 and 20.5 µM d-1, whilst rates in the controls ranged between 1.1 and 4.8 

µM d-1 (Figs. 4.2A, 4.3A, 4.4A, 4.5A). The highest nitrate net consumption rates were 

observed in the summer experiment (9.7 - 19.6 µM d-1; control 1.2 µM d-1), and the 

lowest in the winter experiment (7.2 - 10.3 µM d-1; control 1.1 µM d-1).  

Silicate net consumption was observed in the winter, spring and summer 2008 

experiments. Si consumption in the Si-enriched treatments varied between 29.3 and 

42.7 µM d-1, whilst consumption in the controls varied between 9.4 and 14.1 µM d-1 

(Figs. 4.2A, 4.3A, 4.5A). In the spring-summer transition and autumn experiments, no 

significant consumptions in relation to the controls were observed.  
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Figure 4.2 - A) Nitrate (N), silicate (Si) and phosphate (P) net consumption rates (µM d-1), B) 
phytoplankton community net growth rates (d-1) based on chlorophyll a concentrations, and C) 
specific net growth rates (d-1) of diatoms and green algae based on abundance during the 2008 winter 
experiment. Vertical lines represent ± 1 S.D. Significant differences in the treatments in relation to the 
control are denoted by * (p < 0.05) or ** (p < 0.01) over the correspondent bar. 
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Significant phosphate net consumptions were observed only in the winter (3.3 - 3.9 

µM d-1; control 0.2 µM d-1: Fig. 4.2A) and spring (0.8 - 1.6 µM d-1; control 0.5 µM d-1: 

Fig. 4.3A) 2008 experiments. In the spring-summer transition, summer and autumn 

experiments, phosphate net consumption rates in the P-enriched treatments were not 

significantly different from the controls (Figs. 4.4A, 4.5A, 4.6A). 

 

4.3.3 Phytoplankton growth rates  

 

The response of phytoplankton to nutrient enrichment was evaluated by means of 

changes in chlorophyll a concentration, used as a proxy for community biomass, and 

changes in the abundance of specific phytoplankton groups. Different responses of 

the phytoplankton community were observed throughout the 2008 experiments. In 

the winter, no trends could be deduced due to high variability within experimental 

treatments (Fig. 4.2B) and in the spring-summer transition no significant differences 

between the experimental treatments and the controls were observed (Fig. 4.4B). In 

the spring, summer and autumn 2008 experiments, significant responses of the 

phytoplankton community to nitrate additions were observed. In the spring (0.22 - 

0.46 d-1, Fig. 4.3B) and summer (0.39 - 0.69 d-1, Fig. 4.5B), community net growth rates 

were significantly higher than in the controls (0.09 d-1 and -0.01 d-1, respectively). In 

the autumn, community net growth rates were also significantly higher (0.39-0.47 d-1) 

than in the control (0.29 d-1) in the N-enriched treatments except in treatment SiN 

(Fig. 4.6B). 
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Figure 4.3 - A) Nitrate (N), silicate (Si) and phosphate (P) net consumption rates (µM d-1, n = 8 for each 
bar), B) phytoplankton community net growth rate (d-1) based on chlorophyll a concentrations, and C) 
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specific net growth rates (d-1) of diatoms, green algae and dinoflagellates based on abundance during 
the 2008 spring experiment. Vertical lines represent ± 1 S.D. Significant differences in the treatments in 
relation to the control are denoted by * (p < 0.05) or ** (p < 0.01) over the correspondent bar. 
 

Considering each functional group separately and the two sets of experiments, 2005 

and 2008, green algae (Class Chlorophyceae) and diatoms (Class Bacillariophyceae) 

were present in basically all the experiments. Green algae responded positively to 

nitrate enrichment in the spring (Fig. 4.7B), spring-summer transition (Fig. 4.7C) and 

summer (Fig. 4.7D) 2005 experiments, and also in the summer 2008 experiment (Fig. 

4.5B). The most common genera in these experiments were Scenedesmus, Pediastrum 

and Monoraphidium. Net growth rates of green algae in the N-enriched treatments 

varied between 0.25 and 1.23 d-1, whilst rates in the control ranged between 0.10 and 

0.43 d-1. In the winter 2008 experiment, green algae, composed mainly by 

Scenedesmus, was favoured in the treatment NP. 

The responses of diatoms to nutrient enrichment were not consistent throughout the 

2005 and 2008 experiments. During 2005, net growth rates of diatoms were 

significantly higher than the controls in the spring, spring-summer transition and 

summer experiments. No responses were observed in the winter and autumn. In the 

spring 2005 experiment, diatoms showed negative growth rates in the treatments, 

except in treatment NPSi, where growth rate (0.07 d-1) was significantly higher than 

the control (-0.11 d-1) (Fig. 4.7B). In the summer 2005, positive responses were also 

observed only in treatment NPSi (0.52 d-1) in relation to the control (0.26 d-1) (Fig. 

4.7D). In the spring-summer transition 2005, growth rates of diatoms in treatments 

with simultaneous addition of N and P (NP, NPSi) were significantly higher (0.41 

and 0.14 d-1) than the control (0.05 d-1) (Fig. 4.7C). During 2008, positive responses of 

diatoms were observed in the spring, summer and winter experiments. 

In the spring, specific net growth rates of micro- (>20 µm) and nano-sized (2 - 20 µm) 

centric diatoms in treatments NP and NPSi (0.38 - 0.77 d-1) were significantly higher 

than in the control (-0.33 d-1). In the summer, diatoms, mainly represented by nano-

sized centric diatoms and pennate diatoms belonging to the family Naviculaceae, 

responded significantly in all N-enriched treatments (0.92 - 1.11 d-1) in relation to the 

control (0.74 d-1) (Fig. 4.5 C). In the autumn, however, net growth rate of diatoms was 
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significantly higher than the control (1.15 d-1) only in treatment NPSi (1.32 d-1) (Fig. 

4.6C). 
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Figure 4.4 – 2008 Spring-summer transition experiment. For legend see Fig. 4.3. 
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Figure 4.5 - A) Nitrate (N), silicate (Si) and phosphate (P) net consumption rates (µM d-1), B) 
phytoplankton community net growth rate (d-1) based on chlorophyll a concentrations, and C) specific 
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net growth rates (d-1) of diatoms, green algae, dinoflagellates and cyanobacteria based on abundance 
during the 2008 summer experiment. Vertical lines represent ± 1 S.D. Significant differences in the 
treatments in relation to the control are denoted by * (p < 0.05) or ** (p < 0.01) over the correspondent 
bar. 
 

Coccoid picocyanobacteria in the summer 2008 experiment showed negative growth 

rates in all treatments, including the control. However, net growth rates of coccoid 

picocyanobacteria in treatments N and NP (-0.30 d-1) were significantly higher than 

growth rates in the control (-0.55 d-1), but SiN and NPSi additions did not induce a 

significant response on cyanobacteria net growth rates (Fig. 4.5C).   

Dinoflagellates were present in the spring, summer and autumn 2008 experiments 

and were mainly represented by Kryptoperidinium foliaceum. In the spring, although 

not significantly different from the control (-0.02 d-1) due to its high standard error, 

net growth rates of K. foliaceum were higher in the nutrient-enriched treatments, 

especially treatment NP (0.32 d-1) (Fig. 4.3C). In the summer, net growth rates of the 

dinoflagellate K. foliaceum in all N-enriched treatments (0.77 – 1.17 d-1) were also 

significantly higher than growth rates in the control (0.22 d-1). Additionally, net 

growth rates of K. foliaceum in treatments enriched with N but not Si (N and NP) 

were significantly higher (p < 0.05) than those in treatments enriched with both N 

and Si (SiN and NPSi) (Fig. 4.5C). In the autumn experiment, dinoflagellates showed 

positive responses to nutrient enrichment in all treatments (0.68 – 0.78 d-1) except NP 

and SiP, in relation to the control (0.52 d-1) (Fig. 4.6C).  
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Figure 4.6 – 2008 Autumn experiment. For legend see Fig. 4.3. 
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Fig. 4.7 (cont.) 

 
Figure 4.7 – Specific net growth rates (d-1) of different phytoplankton groups during the 2005 nutrient 
enrichments experiments. A) winter, B) spring, C) spring-summer transition, D) summer and E) 
autumn. Vertical lines represent ± 1 S.D. Significant differences in experimental treatments in respect 
to the control are denoted by * (p < 0.05) or ** (p < 0.01) over the correspondent bar. Cyanobacteria 
occurred during the summer experiment, but due to technical reasons, those data are not shown. 
 

 

 

 

 

 

 

Summer 2005

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

control N P Si NP SiN SiP NPSi

S
pe

ci
fic

 n
et

 g
ro

w
th

 r
at

e 
(d

-1
)

diatoms

green algae

D

* **

**
**

**

Autumn 2005

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

control N P Si NP SiN SiP NPSi

S
pe

ci
fic

 n
et

 g
ro

w
th

 r
at

e 
(d

-1
)

diatoms

green algae

cyanobacteria

E



Rita B. Domingues 
 

78 
 

4.4. Discussion 

 

4.4.1 Methodological concerns 

 

Despite providing significant information on the effects of nutrient availability on 

phytoplankton growth and community structure, nutrient enrichment bioassays do 

not constitute a straightforward methodology when it comes to interpreting and 

extrapolating the results to natural systems. Firstly, incubating phytoplankton in 

bottles isolates the cells from many of the physical, chemical and biological factors 

they normally experience and may magnify their contact with others (Venrick et al., 

1977). Natural processes such as water column mixing and nutrient inputs from 

autochthonous and allochthonous sources will be excluded, whilst other processes 

such as grazing may be enhanced. For instance, phytoplankton growth and 

accumulation of biomass inside nutrient enriched enclosures may not be 

extrapolated to a natural system where the water residence time is low and the cells 

are advected from the estuary before biomass can accumulate. Tomasky et al. (1999) 

found evidence of increased phytoplankton biomass in response to nutrient 

additions in experimental enclosures, but argued that such increases may not be 

apparent in the river itself, where phytoplankton is not enclosed and water renewal 

rates are high. The water residence time in the freshwater tidal zone of the Guadiana 

estuary varies with tidal stage and river flow, but it is long enough to allow the 

accumulation of phytoplankton biomass and the development of blooms, especially 

during spring, summer and autumn (e.g., Domingues et al., 2005). Furthermore, 

water masses around the sampling station are relatively homogenous when 

compared to the lower estuary, and tidal excursion in the Alcoutim area is only ca. 6 

km (Domingues et al., 2010, see Chapter 3). Therefore, advection of phytoplankton 

from the upper estuary will occur only under conditions of extremely high river 

discharge, which are usually not observed in the Guadiana estuary, due to restrictive 

damming and dry climate. 

The incubation conditions may also affect the outcomes of these experiments. For 

instance, we may eliminate variables that could affect the response of phytoplankton 

to nutrient enrichment (e.g., incubate light-limited cells under saturating light-
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intensities, so that light limitation would be eliminated), but by doing so, we are 

obviously setting artificial conditions that are not found in the natural environment; 

the responses of phytoplankton in such conditions would have to be extrapolated 

with extreme caution. The Guadiana estuary is highly turbid, particularly in its 

middle and upper sections, and phytoplankton growth is most likely light-limited. 

Exposure to saturating light intensities or light intensities higher than the mean light 

intensity in the mixed layer would have alleviated light limitation and we could have 

observed the effects of nutrient enrichments without the interference of this 

important limiting factor. However, the results would have indicate us just the 

potential effects of nutrient enrichments under an artificial light environment, and 

not the actual effects of nutrients on a phytoplankton community already affected by 

low light availability. Therefore, not only PAR intensity, but also temperature and 

light-dark cycle were kept as close to natural conditions as possible during the 4-day 

incubations. Obviously, a better approach would have been to incubate the 

experimental treatments in situ, under natural light intensities, light-dark cycles, 

temperature and turbulence (e.g., Xu et al., 2010), but due to the distance between 

our lab and the sampling station (approx. 100 km), that option was disregarded. 

Ault et al. (2000) argued that increases in growth rate in response to nutrient 

enrichment over the course of an experiment do not necessarily mean that 

phytoplankton growth was nutrient-limited at the time of sampling. Whilst there is a 

continuous supply of nutrients from different sources in the natural system, nutrient 

concentrations in enrichment bioassays will tend to decrease over time as a result of 

cellular uptake, since there is no additional nutrient inputs to the bottles. Therefore, a 

certain nutrient that was not limiting at the beginning of the experiment may become 

limiting after a few days of incubation. This problem may be overcome by following 

nutrient disappearance in the bottles on a daily or hourly basis. If a nutrient is not 

limiting at the time of sampling/beginning of the experiment, nutrient consumption 

in the enriched treatments after nutrient addition will not be different from 

consumption in the controls. Comparing nutrient disappearance to phytoplankton 

growth will also give a rough insight on the occurrence of other processes such as 
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nutrient luxury consumption or nutrient consumption by cells other than 

phytoplankton (e.g., heterotrophic bacteria) in the bottles.  

Finally, one of the most deeply-rooted concerns of in vitro studies are the “bottle 

effects” that may be apparent over long incubation times and are thought to arise 

from factors such as contamination from the bottle walls or microbial growth on the 

walls (Marra, 2009). Several recent studies have found no evidence for substantial 

bottle effects (e.g., Williams et al., 2004; Hammes et al., 2010), concluding that 

anomalies are most likely caused by other factors (P.J. le B. Williams, pers. comm.). In 

our experiments, the incubation time (4 days) and the volume of sample (1 L) were 

similar to other enrichment bioassays where no bottle effects were described. In 

reality, the volume of samples and incubation times found in the literature vary 

tremendously, from small volumes and short incubations (e.g., 50 mL, 48 hours: Yin 

et al., 2001), to large volumes and long incubations (e.g., 10 L, 10 days: Balode et al., 

1998), but also small volumes and long incubations (e.g., 150 mL, 2 weeks: Pollingher 

et al., 1988), and large volumes and short incubation times (e.g., 2 L, 24 hours: 

Örnólfsdóttir et al., 2004). A rough analysis of nutrient enrichment experiments 

found in the literature indicates that volumes of 1 - 2 L and incubation times of 2 - 5 

days are the general norm (e.g., Rudek et al., 1991; Gobler et al., 2006; Xu et al., 2010).  

 

4.4.2 Effects of nutrient enrichment on phytoplankton 

 

Overall, net growth of phytoplankton in the Guadiana upper estuary seemed to be 

nitrogen limited on several occasions. The clearest case of potential N-limitation 

occurred during spring and summer 2008, when initial DIN concentrations were 22 

and 4 µM, respectively, corresponding to N:P ratios of 8.2 and 1.6. Increased nitrogen 

net consumption rates in all N-enriched treatments in these experiments were 

associated to significant increases in community biomass (Figs. 4.3B, 4.5B) and in the 

abundance of specific phytoplankton groups (Figs. 4.3C, 4.5C), undoubtedly 

implying growth limitation by nitrogen. Nitrogen limitation of phytoplankton 

growth is commonly observed in other estuarine systems, especially during summer 

(D’Elia et al., 1985; Rudek et al., 1991; Pennock and Sharp, 1994), but limiting DIN 

concentrations are usually lower than those described for the Guadiana upper 
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estuary (e.g., 0.58 - 8.79 µM, Long Island Sound: Gobler et al., 2006; 0.32 - 2.91 µM, 

Galveston Bay: Örnólfsdóttir et al., 2004; 0.33 - 10 µM, Wilson Inlet: Twomey and 

Thompson, 2001). However, different responses have been observed in freshwater 

tidal estuarine areas. For instance, nitrate concentrations ranging between ~15 and 

>40 µM were apparently not limiting to phytoplankton growth in the freshwaters of 

Childs River (Tomasky et al., 1999); also, phosphorus, rather than nitrogen, was the 

limiting nutrient for phytoplankton growth during summer in Logan River 

(O’Donohue and Dennison, 1997). In the upper Port Adelaide River estuary, Si was 

the potential limiting nutrient to phytoplankton, whilst N and P had no effect on 

growth rates (Ault et al., 2000). In the freshwater reaches of the Cape Fear Estuary, no 

responses to nutrient enrichment were observed due to light limitation (Mallin et al., 

1999). Therefore, no patterns in nutrient limitation can be inferred from these 

freshwater tidal estuarine zones. However, these systems are located in regions with 

distinct hydrographic and climatic characteristics, which is probably the cause for the 

different responses observed. Studies on nutrient enrichment effects on 

Mediterranean freshwater tidal estuaries are pressing, given their ecological 

importance and susceptibility to climate change.   

Considering specific phytoplankton groups, diatoms (class Bacillariophyceae) and 

green algae (class Chlorophyceae) were the most abundant in the upper estuary, in 

agreement with observations in other Mediterranean climate estuaries, such as the 

Swan River estuary (Thompson, 1998) and the Ebro River estuary (Pérez et al., 2009). 

Green algae showed different responses to nutrient enrichment in 2005 and 2008. 

During the 2005 experiments, green algae net growth rate increased significantly in 

all N-enriched treatments throughout the productive period (spring, spring-summer 

transition and summer experiments, Figs. 4.7B, 4.7C, 4.7D), whilst in 2008, green 

algae responded to N-additions only in the summer experiment (Fig. 4.5C). Initial 

nitrate (NO3--N) concentrations ranged between 2.0 and 19.8 µM in these 

experiments, corresponding to N:P ratios from 1.3 to 9.9. These values are clearly 

below the optimum N:P ratio of 30 for Scenedesmus (Rhee, 1978), the most abundant 

green algae genus in the freshwater tidal reaches of the Guadiana estuary. In the 

other experiments, nitrate concentrations were >20 µM. Therefore, NO3--N <20 µM 
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seemed to be limiting for green algae growth. In the autumn 2005 experiment, NO3- -

N concentration was lower than 20 µM, but still green algae did not respond to N 

addition, probably due to light limitation and/or low water temperature. Light 

intensity during incubation was approx. 92 µmol photons m-2 s-1, which is lower than 

typical saturating light intensities (Ik) described for green algae. In fact, green algae 

are usually “sun” species that achieve their maximum photosynthetic rate at higher 

light intensities than “shade” algae, such as dinoflagellates (e.g.,, Raven and 

Richardson, 1986). For instance, Senger and Fleishhacker (1978) refer a Ik for 

Scenedesmus obliquus ranging from 122 to 400 µmol photons m-2 s-1. 

Diatoms were the main component of phytoplankton community in all the 

experiments, although seasonal differences in specific composition were observed. 

Micro-sized, solitary centric diatoms were more abundant in the winter experiments, 

whilst the other experiments were dominated by nano-sized, solitary or chain-

forming centric diatoms. Overall, diatom growth was occasionally limited by 

nitrogen during the productive period. Potential N-limitation of diatom growth was 

evident in the summer 2008 (Fig. 4.5C). Potential co-limitation by N and P also 

occurred in the spring-summer transition 2005 (Fig. 4.7C) and spring 2008 (Fig. 4.3C). 

In the spring 2008, the most abundant diatoms were unidentified centric diatoms <20 

µm, which have higher maximum growth rates than larger diatoms (Sarthou et al., 

2005) and are more efficient in nutrient uptake due to a higher surface to volume 

ratio (Eppley et al., 1969). According to Tang’s (1995) allometric model, the 

maximum potential growth rate for diatoms of this size at in situ temperature (20ºC) 

is 1.82 d-1, which is only slightly higher than net growth rates measured in treatments 

NP (1.74 d-1) and NPSi (1.61 d-1). These results show that diatoms were co-limited by 

N and P, and the increased nutrient uptake resulted in biomass accumulation. 

Dinoflagellates were present in the spring, summer and autumn 2008 experiments, 

and were mainly represented by the harmful species Kryptoperidinium foliaceum 

(Stein) Lindemann 1924. K. foliaceum is a small, lightly armoured dinoflagellate 

responsible for red tides in many brackish ecosystems (Kempton et al., 2002; 

Figueroa et al., 2009). Blooms of K. foliaceum appear to be monospecific and cell 

density can reach 3.5 x 108 cells L-1 (Kempton et al., 2002). During this study, K. 

foliaceum was observed for the first time in the freshwater tidal reaches of the 
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Guadiana estuary, where dinoflagellates were usually absent or rare. Indeed, no 

dinoflagellates were observed in the 2005 samples. After N addition, this species’ 

abundance increased from 2.9 x 104 cells L-1 to 3.9 x 106 cells L-1 in the summer 

experiment (Fig. 4.5C), corresponding to an in situ net growth rate of 1.17 d-1 at 25ºC, 

equivalent to a doubling time of 14 h. This growth rate is much higher than 

instantaneous growth rates observed in unialgal cultures (0.16 d-1 at 23ºC: Figueroa et 

al., 2009) and maximum potential growth rates estimated by allometric models (0.78 

d-1 at 25ºC, Tang, 1995). Furthermore, net growth rates of K. foliaceum in all 

treatments amended with N but not Si (N, NP) were significantly higher than net 

growth rates in treatments enriched with N and Si simultaneously (SiN, NPSi). This 

response is worthy of further investigation, given that anthropogenic nutrient inputs 

are typically of N and P, but not Si. In another Mediterranean climate estuary, the 

Swan River estuary (Australia), dinoflagellate summer blooms have also been 

supported by nitrogen inputs (Thompson, 1998). 

Cyanobacteria are usually responsible for summer to early-autumn blooms in the 

Guadiana estuary (Barbosa et al., 2010), due to their preference for high water 

temperature and low turbulence. Low N:P ratios will also give a competitive 

advantage to cyanobacteria (Tilman et al., 1986). Experiments recently carried out in 

the Guadiana estuary clearly showed that cyanobacteria growth rate increased after 

ammonium additions, but did not respond to nitrate-alone additions (see Chapter 5). 

During the 2008 experiments, cyanobacteria occurred only in the summer and their 

abundance decreased in all treatments after 4-day incubation (Fig. 4.5C), most likely 

due to a strong top-down control exerted by phagotrophic protists. Nevertheless, net 

growth rates of cyanobacteria in treatments N and NP were significantly higher than 

net growth rates in the control and in treatments enriched simultaneously with N 

and Si (SiN and NPSi), suggesting that they may have responded more intensively to 

N addition, than to combined N and Si, as observed for the dinoflagellate K. 

foliaceum. Other studies have shown increases on cyanobacteria abundance in 

response to all forms of N additions (Moisander et al., 2009), to P and ammonium 

additions (Zohary et al., 2005), and to N and P additions (Sipura et al., 2005). 

Additionally, the higher net growth rates of cyanobacteria in treatments N and NP 
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may have also been the indirect effect of increased growth of heterotrophic bacteria 

due to N additions and, consequently, an increase on grazing activity of 

heterotrophic bacteria by phagotrophic protists, alleviating the grazing pressure on 

cyanobacteria. The preference of planktonic protozoa for heterotrophic bacteria 

rather than cyanobacteria has already been reviewed (e.g., Caron et al., 1991).  

Phytoplankton growth responded significantly to nutrient enrichment in most 

experiments. However, increased nutrient net consumption rates without 

simultaneous increase in phytoplankton net growth were also observed on several 

occasions. In the winter 2008, N, P and Si net consumption rates were significantly 

higher in all N-, P- and Si-enriched treatments, respectively, but no apparent 

stimulation of phytoplankton was observed (Fig. 4.2A). During the spring and 

summer 2008 experiments, the same was observed for Si, and in the spring-summer 

transition with N additions (Figs. 4.3A, 4.4A, 4.5A). These responses may be 

explained by various hypothesis, including: (a) nutrient uptake by cells other than 

phytoplankton (e.g. heterotrophic bacteria, algae growing on the bottle walls), (b) 

phytoplankton removal by grazers or other mortality sources (e.g., viral lyses), or (c) 

luxury consumption that will later result in delayed biomass growth (Dortch et al., 

1984; Krom et al., 2005; Glover et al., 2007). Luxury consumption of N and P is a well 

known strategy of phytoplankton to cope with a variable nutrient regime, using 

transient nutrient enrichment to build-up an intracellular storage pool (Sommer, 

1985, 1989) that can be used for growth after depletion of the external nutrient 

supply. It has also been hypothesized that diatoms can incorporate nitrate by non-

nutritional mechanisms, and then release it as nitrite, ammonium or dissolved 

organic nitrogen (Lomas and Glibert, 1999). This N uptake would therefore not result 

in biomass increases. Si accumulation may also occur in diatoms, although internal 

pools of Si are usually small, given that Si uptake occurs only during cell wall 

synthesis (Martin-Jézéquel et al., 2000). Luxury uptake of Si can therefore result in 

thicker cell walls. Since other Si-consuming organisms (e.g., choanoflagellates, 

silicoflagellates) were not observed in the samples, Si luxury consumption by 

diatoms was most likely responsible for the significant Si uptake that occurred in all 

Si-enriched treatments in the winter, spring and summer 2008 experiments (Figs. 

4.2C, 4.3C, 4.5C), that did not result in biomass accumulation.  
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4.4.3 Implications for eutrophication 

 

Nitrogen was the potentially limiting nutrient to phytoplankton growth throughout 

the productive period (spring-summer), at ambient N concentrations lower than 22 

µM. Nitrogen concentrations up to 20 µM (Bishop et al., 1984) and 57 µM (Xu et al., 

2010) have been shown to limit phytoplankton growth. In addition, a recent review 

on nitrate uptake data by phytoplankton suggests that nitrate concentrations above 

20 µM stimulate uptake rates in both unialgal cultures and natural phytoplankton 

communities (Collos et al., 2005). Many studies have been using half-saturation 

constants for nutrient uptake and/or growth as a threshold to evaluate nutrient 

limitation of phytoplankton in natural communities (e.g., Domingues et al., 2005). 

Therefore, had we considered half-saturation constants (KS) for nitrate uptake 

described in the literature (e.g. 0.02 – 10.2 µM, Sarthou et al., 2005) and nutrient 

limitation criteria that use both nutrient concentrations and ratios (Fisher et al., 1988; 

Justic et al., 1995), we would have concluded that N was generally not limiting in the 

Guadiana upper estuary. These contradictory results clearly show that nutrient 

enrichment experiments are a solid strategy to evaluate nutrient limitation of 

phytoplankton growth over specific periods and ecosystems, although the outcomes 

of such experiments require careful analysis and interpretation. Conversely, half-

saturation constants are obtained under laboratorial, steady-state conditions, and 

vary over time, space, inter- and intra-specifically. Therefore, application of criteria 

based on KS to assess nutrient limitation of natural phytoplankton communities 

should be done cautiously.  

The response of dinoflagellates and cyanobacteria during the summer experiment is 

worthy of further investigation. The harmful dinoflagellate Kryptoperidinium foliaceum 

and coccoid picocyanobacteria showed significantly higher net growth rates in 

response to N additions (treatments N and NP) in the absence of Si. Anthropogenic 

nutrient inputs are typically of high N and P, but not Si, given that the chemical 

weathering of silicates on land is the main process that supplies dissolved and 

particulate silicate to rivers (Ittekkot et al., 2000). Therefore, increased anthropogenic 

N supply to the Guadiana estuary may promote the development of this harmful 
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dinoflagellate species and cyanobacteria. Although the Guadiana estuary is not 

impacted by intense human pressure and it is still in a good state in respect to 

eutrophication, increased urban development on its margins, especially in the lower 

estuary, will probably be responsible for increased nutrient inputs in a near future. 

Furthermore, the recently reported increasing trend in light availability in the 

Guadiana estuary, a result of increased retention of suspended matter behind the 

recently constructed Alqueva dam (Barbosa et al., 2010), will most likely increase the 

sensitivity of this estuary to nutrient enrichment, namely during spring and summer. 

Our results should, therefore, be used as a management tool when establishing 

nutrient criteria and nutrient loading budgets. Furthermore, acclimation of 

phytoplankton to elevated nutrient levels have not yet received as much attention as 

acclimation to temperature or PAR (Collos et al., 2005), but in view of the current 

eutrophication trend, this subject is pertinent.  
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Effects of ammonium and nitrate on phytoplankton growth in the 

freshwater tidal zone of a turbid, Mediterranean estuary 

Rita B. Domingues, Tânia P. Anselmo, Ana B. Barbosa,  

Ulrich Sommer, Helena M. Galvão 

Aquatic Sciences (accepted) 

Abstract 

Nitrate and ammonium are the most important nitrogen sources for phytoplankton 

growth. Differential utilization of inorganic nitrogenous compounds by 

phytoplankton has been observed and may have significant impacts on primary 

productivity on local scales. We used enrichment experiments with natural 

phytoplankton populations from the freshwater tidal zone of the Guadiana estuary, a 

coastal ecosystem increasingly subjected to anthropogenic influences, to study the 

influence of nitrate and ammonium on N-consumption and phytoplankton growth. 

In addition, we used combined additions of nitrate and ammonium to understand 

the inhibitory effect of ammonium over nitrate uptake. Phytoplankton response was 

evaluated in terms of biomass and abundance, using inverted and epifluorescence 

microscopy.  

Ammonium concentrations in the freshwater tidal reaches of the Guadiana estuary 

throughout the sampling period were too low to exert an inhibitory effect on nitrate 

uptake or a toxic effect on phytoplankton growth. Nitrate has clearly been the main 

nitrogen source for phytoplankton in the study site. Overall, nitrogen seemed to 

become limiting at concentrations lower than 20 µM and N-limitation was 

particularly significant during summer. A trend of decreasing nitrate uptake with 

increasing ammonium concentrations and uptake suggested an overall preference for 

ammonium. However, preference for ammonium was group-specific, and it was 

observed mainly in green algae and cyanobacteria. In fact, cyanobacteria relied only 

on ammonium as their N-source. On the contrary, diatoms preferred nitrate, and did 

not respond to ammonium additions. The increasing eutrophication in the Guadiana 

estuary and particularly increased inputs of nitrogen as ammonium may result in a 

shift on phytoplankton community composition, towards dominance of 

cyanobacteria and green algae. 

 

Keywords: Water Framework Directive, phytoplankton, biomass, abundance, 

chlorophyll a, Portuguese waters 



Rita B. Domingues 
 

90 
 

5.1 Introduction 

 

Uptake and assimilation of nitrate (NO3-) and ammonium (NH4+) by aquatic primary 

producers are important biochemical processes that result in the conversion of 

inorganic nitrogen into organic compounds within the cell. The differential 

utilisation of these inorganic nitrogenous compounds by phytoplankton has been the 

subject of a significant number of studies for many decades, but a consensus on the 

interactions between ammonium and nitrate has still not been reached. According to 

Dortch (1990), the classical apparent negative effect of ammonium on nitrate uptake 

can be divided into two distinct processes, both strongly influenced by 

environmental conditions: a) preference for ammonium, and b) inhibition of nitrate 

uptake by ammonium. The relative preference for ammonium is manifested in a 

higher maximum velocity and lower half-saturation constant for ammonium uptake, 

in relation to nitrate (Dortch, 1990). It is also related to the lower energetic costs 

associated to ammonium assimilation in relation to nitrate assimilation (Dugdale et 

al., 2007). Therefore, in the presence of high ammonium concentrations, 

phytoplankton productivity could be as high or even higher if the cells are using 

NH4+ rather than NO3- (Dugdale et al., 2007). Inhibition of nitrate uptake resulting 

directly from ammonium does occur, but it is a highly variable phenomenon, 

depending on environmental conditions, such as nitrogen and light availability, and 

species composition, and it is not as strong as usually considered (Dortch, 1990). 

Conversely, it has been suggested that ammonium can exert a strong negative 

influence on phytoplankton production above a relatively low concentration (around 

10 µM) (Yoshiyama and Sharp, 2006), contradicting the advantage to phytoplankton 

of preference for ammonium over nitrate. 

The differential utilization of inorganic nitrogenous compounds by phytoplankton 

may have significant impacts on primary productivity on local scales. For instance, in 

San Francisco Bay, high ammonium concentrations resulting from agricultural 

drainage and sewage treatment plants can prevent the development of the spring 

phytoplankton bloom, due to inhibition of nitrate uptake (Dugdale et al., 2007). In 

this system, nitrate only becomes available to phytoplankton when ammonium 

concentrations are reduced to less than 4 µM, through dilution by precipitation and 
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runoff, enabling a rapid uptake of NO3- and consequent phytoplankton growth 

(Dugdale et al., 2007). 

The interactions between nitrate and ammonium uptake have been extensively 

studied in cultures and marine/brackish environments (e.g., Dortch et al., 1984; 

Quéguiner et al., 1986; Sanders et al., 1987; Zehr et al., 1989; Glibert and Garside, 

1992; Tamminen, 1995; Yin et al., 1998; Torres-Valdés and Purdie, 2006; Wilkerson et 

al., 2006; Dugdale et al., 2007; Tada et al., 2009), where simultaneous utilization of 

NH4+ and NO3- has been observed (Dortch, 1990), as well as preference for 

ammonium and/or repression of nitrate uptake (Blasco and Conway, 1982 and 

references therein). However, studies on freshwater tidal estuarine zones are rare 

(e.g., Carpenter and Dunham, 1985; Pennock, 1987; Twomey et al., 2005), despite 

their importance as sources of nutrients and phytoplankton to downriver estuarine 

reaches and adjacent coastal areas (Rocha et al., 2002; Domingues and Galvão, 2007). 

In view of increasing human influences on estuaries and coastal zones, which include 

urban and agricultural runoffs and, consequently, nutrient enrichment, the analyses 

of nutrient interactions and uptake by phytoplankton are particularly needed in 

sensitive and extreme ecosystems such as freshwater tidal estuarine zones. 

Furthermore, knowledge on nitrate/ammonium interactions represents an important 

contribution towards the understanding of new versus regenerated production. 

Considering that new production of phytoplankton is coupled to the transfer of fixed 

carbon at surface waters to its vertical exportation and burial in sediments, this is a 

crucial topic due to the increasing concern over the implications of global warming 

(Dugdale and Goering, 1967; Flynn et al., 1997). 

Therefore, this study aims to evaluate the effect of nitrate and ammonium on 

phytoplankton growth, and the effect of variable ammonium concentrations on 

phytoplankton growth and nitrate uptake. This is a pertinent subject given the 

increased urban pressure on the Guadiana margins, with associated increase of 

ammonium inputs and reduced nitrate inputs due to water and sediment retention 

behind the recently built Alqueva dam.  
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5.2 Materials and Methods 

 

5.2.1 Study site 

 

The Guadiana River’s (drainage area 67,039 km2, length 810 km) estuary forms the 

border between Portugal and Spain. Located in a temperate Mediterranean climate 

area, it is a mesotidal, partially stratified estuary in its lower and middle sections and 

well mixed in the upper section. The upper, freshwater tidal section represents the 

largest estuarine region in length, extending approx. from Álamo (25 km from the 

river’s mouth) up to the tidal limit (>70 km from the river’s mouth) (Morales, 1995). 

Freshwater inputs to the estuarine zone used to vary sharply between dry and 

humid months (1995 - 2000: 333.0 ± 1095.9 m3s-1, http://snirh.pt), but the recently 

built Alqueva dam has promoted a more regular freshwater flow throughout the 

year. The estuary also receives reduced freshwater inputs from some tributaries, 

whilst other inputs include sewage, mainly near the mouth. 

 

5.2.2 Sampling strategy 

 

Nutrient addition experiments were undertaken using water samples collected in the 

freshwater tidal reaches (upper estuary) of the Guadiana estuary (see Fig. 4.1, 

Chapter 4). Throughout 2008, abiotic and biotic variables were analysed fortnightly 

at the sampling station, Alcoutim, as part of a broader sampling program that 

covered the whole Guadiana estuary. Samples for nitrate and ammonium 

enrichment experiments were collected near the surface (approx. 0.5 m depth), 

assuming that the whole water column was well mixed (Domingues and Galvão, 

2007; Morais et al. 2009a), during neap tides, immediately after high tide. Acid-

cleaned 1 L polycarbonate bottles were used for sample collection and samples were 

kept in cold and dark conditions between collection and experiment set-up (approx. 

2 hours).  

Vertical profiles of photosynthetically active radiation (PAR) intensity were 

determined using a LI-COR radiometer. Light extinction coefficient (ke, m-1) was 

calculated using an exponential function, Iz = I0 e–Ke.Z, where Iz is the light intensity at 
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depth level Z (m) and I0 is the light intensity at the surface. Mean light intensity in 

the mixed layer (Im, µmol photons m-2 s-1) was calculated according to Im = Io (1-e(-

Ke.Zm))(Ke.Zm)-1, where Zm (m) is the depth of the mixed layer (Jumars, 1993). The 

mixed layer corresponded to the whole water column, since there was neither haline 

nor thermal stratification (Domingues and Galvão, 2007; Morais et al., 2009a). Daily 

freshwater flow throughout 2008, measured at Pulo do Lobo hydrometric station, 85 

km from the river mouth, was obtained from the Portuguese National Water Institute 

public database (http://snirh.pt). 

 

5.2.3 Nitrate and ammonium addition experiments 

 

Two different sets of experiments were performed during 2005 and 2008. The 2005 

experiments served as a preliminary study to test and improve the methods. 

Experiments were conducted in representative seasons for phytoplankton growth: 

winter (February, only in 2008), spring (May), spring-summer transition (June), 

summer (August) and autumn (October). For each experiment, eight experimental 

treatments were prepared in duplicate and ran for 4 days (6 days in 2005). Potassium 

nitrate (KNO3) and ammonium chloride (NH4Cl) were added to the experimental 

treatments at day 0, in a single pulse, according to Table 5.I. Ammonium was added 

in different concentrations (from 1 to 100 µM) to the experimental treatments whilst 

nitrate was added at the same concentration (100 µM). During 2005, the experimental 

treatments were incubated in 2 L polycarbonate bottles in an outdoor tank filled with 

tap water to avoid extreme variations in temperature and covered with several layers 

of screen to simulate the light intensity in the mixed layer at the time of sampling. 

During 2008, 1 L polycarbonate bottles were incubated inside a growth chamber 

under in situ temperature and in situ light-dark cycle at approx. 110 µmol photons m-

2 s-1, which is slightly higher than Im at time of sampling. However, phytoplankton 

cells are exposed to this light intensity throughout the day in their natural 

environment, given that sampling was conducted in the early morning when solar 

irradiance is lower. The bottles were opened daily and gently shaken twice a day. 

Consumption of NO3- and NH4+ were determined by following their disappearance 
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from solution (e.g., Suttle and Harrison, 1988) at days 0, 1, 2, and 4. Chlorophyll a 

and phytoplankton composition and abundance were evaluated at days 0, 1, 2, 4 and 

6 in 2005. During the 2005 experiments, phytoplankton growth was exponential until 

day 4, and in many experimental treatments, until day 6. Therefore, in 2008, due to 

logistic and financial reasons, chlorophyll and phytoplankton were evaluated only at 

days 0 and 4. In the winter and spring 2008 experiments, daily measurements of in 

vivo Chla fluorescence, confirmed exponential growth of phytoplankton until day 4 

(data not shown). 

 

Table 5.I – Concentrations (µM) of nutrients added to the experimental treatments in 2005 and 2008. 
Nitrate was added as potassium nitrate (KNO3) and ammonium as ammonium chloride (NH4Cl). 
 

2005 2008  
NO3- NH4+ NO3- NH4+ 

Control - - - - 
NIT 200 - 100 - 
AMM - 200 - 100 
1AMM + NIT - - 100 1 
10 AMM + NIT - - 100 10 
20 AMM + NIT - - 100 20 
50 AMM + NIT - - 100 50 
100 AMM + NIT - - 100 100 

 
 

5.2.4 Laboratory analyses 

 

Subsurface (approx. 0.5 m) water samples for determination of dissolved inorganic 

macronutrients were collected and immediately filtered through cellulose acetate 

filters (Whatman, pore diameter = 0.2 µm). Ammonium (NH4+) was determined 

immediately after sample collection, whilst samples for nitrate (NO3-) where frozen (-

20ºC) until analysis. All nutrients were determined in triplicate, according to the 

spectrophotometric methods described by Grasshoff et al. (1983), using a 

spectrophotometer Hitachi U-2000 for ammonium and an autoanalyzer Skalar for 

nitrate. 

Chlorophyll a concentration was measured according to Parsons et al. (1984b), using 

glass fibre filters (Whatman GF/F, pore diameter = 0.7 µm). Chlorophyll a was 

extracted overnight at 4ºC with 90% acetone; after centrifugation, absorbance of the 
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supernatant was measured spectrophotometrically (Hitachi U-2000) at 750 and 665 

nm, before and after addition of HCl 1 M. 

Epifluorescence and inverted microscopy were used to determine phytoplankton 

abundance and composition, following the methods of Haas (1982) and Utermöhl 

(1958), respectively. Samples for enumeration of cyanobacteria were preserved with 

glutardialdehyde (final concentration 2%), stained with proflavine and filtered onto 

black polycarbonate membrane filters (Whatman, pore diameter = 0.45 µm). 

Preparations were made within 24 hours of sampling, using glass slides and non-

fluorescent immersion oil (Cargille type A), and then frozen (-20ºC) in dark 

conditions, to minimize loss of autofluorescence. Enumeration was made at 787.5x 

magnification using an epifluorescence microscope (Leica DM LB). Samples for 

enumeration of other phytoplankton groups were preserved with acid Lugol’s 

solution, settled in sedimentation chambers and observed at 400x magnification 

using an inverted microscope (Zeiss Axiovert 100). A minimum of 50 random visual 

fields, at least 400 cells in total and 50 cells of the most common genus were counted. 

Assuming that the cells were randomly distributed, the counting precision was ±10% 

(Venrick, 1978).  

 

5.2.5 Relative preference index 

 

The relative preference index (RPI) for nitrate (NO3-RPI) utilization was calculated 

according to McCarthy et al. (1977) as: 

 

0
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)40()40(
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where Nit0, Nit4, Amm0 and Amm4 are nitrate (Nit) and ammonium (Amm) 

concentrations at days 0 and 4. RPI values higher than 1 indicate preference for 

nitrate, whilst RPI < 1 indicate preference for ammonium. 
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5.2.6 Statistical analyses 

 

For each experimental treatment, nutrient concentrations, chlorophyll a and 

phytoplankton abundances within duplicates were statistically compared using a t-

test or a Mann-Whitney rank sum test when the Kolmogorov-Smirnov normality test 

failed. Since no significant differences were found between replicates, all values were 

combined for the subsequent data analysis. Nutrient net consumption rates and 

phytoplankton net growth rates were estimated using GraphPad Prism 5 software. 

Nutrient net consumption rates for each treatment were estimated as the slope of a 

linear or exponential function adjusted to the data points (n = 8). Phytoplankton 

community net growth rate and group specific net growth rates for each 

experimental treatment (n = 4) (µ, d-1) were estimated as the slope of ln N(t) versus 

time (4 days), where N(t) represents chlorophyll a concentration or phytoplankton 

abundance at day t, respectively, assuming exponential growth (confirmed by in vivo 

Chla fluorescence). Slopes and associated standard errors were then compared across 

experimental treatments to assess significant differences between nutrient 

consumption and phytoplankton growth rates of the controls and the treatments. 

In respect to nutrient consumption, we actually determined nutrient disappearance 

rates that result from different processes such as uptake, excretion, nutrient 

regeneration, etc., and which can be different from uptake rates (inward nutrient 

transport through the cell membrane). For nitrate, it is probable that disappearance 

rates were similar to uptake rates, given that it is unlikely that nitrification had 

occurred inside the microcosms. On the contrary, ammonium in the medium may 

increase as a result of animal excretions and bacterial decomposition of organic 

nitrogenous compounds (Toscas, 2008). However, given that ammonium 

concentrations decreased in most treatments throughout the experiments, it is 

unlikely that significant ammonium enrichments to the medium had occurred 

during the experiments.  
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5.3 Results 

 

5.3.1 Ambient nitrogen and chlorophyll concentration 

 

Mean river flow at Pulo do Lobo was 18.5 ± 15.8 m3 s-1 in 2005 and 14.2 ± 9.1 m3 s-1 in 

2008 (Fig. 5.2). Nitrate concentration in the upper estuary was lower in 2005 than 

2008, with mean values of 9.5 ± 7.1 µM and 24.2 ± 12.7 µM, respectively. Throughout 

2008, nitrate concentration was always above 10 µM, except for three sampling dates 

in the summer. Three maxima occurred in March (52.5 µM), June (43.7 µM) and 

December 2008 (36.6 µM) (Fig. 5.2). Nitrate was the predominant nitrogen form 

during both years. During 2008, river flow was positively correlated to nitrate 

concentration (r = 0.5, p < 0.01, n = 31). Ammonium concentration during 2005 and 

2008 showed similar means (2.5 ± 0.1 µM and 2.7 ± 2.2 µM, respectively) and never 

surpassed 9 µM (Fig. 5.2). Throughout the two years, ammonium concentration was 

mostly <3 µM. Ammonium represented, on average, 26.5%±23.8% and 12%±18% of 

the total dissolved inorganic nitrogen (ammonium+nitrate) in 2005 and 2008, 

respectively.  

Chlorophyll a concentration was higher during 2005 (2.1 - 41.6 µg L-1) than 2008 (1.1 - 

17.1 µg L-1); the highest values were observed in the summer and the lowest in the 

winter (Fig. 5.2). No significant relationships were found between chlorophyll a and 

nitrogenous nutrients. 
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Figure 5.2 – Variation of chlorophyll a concentration (µg L-1), river flow (m3 s-1), nitrate and 
ammonium concentration (µM) in Alcoutim throughout 2005 and 2008. 
 

5.3.2 Nitrate and ammonium addition experiments 

 

In the winter 2008 experiment, nitrate uptake was significantly lower in the nitrate-

enriched treatments (0.1 - 0.8 µM d-1), in relation to the control (1.6 µM d-1). 

Ammonium net consumption rates were significantly higher than in the control (0.5 

µM d-1) in the ammonium-enriched treatments, and increased with increasing 

ammonium concentrations (0.7 - 10.8 µM d-1) (Fig. 5.4A). Community net growth 

rates in all ammonium-enriched treatments (0.32 - 0.36 d-1) were significantly higher 

than the control (0.19 d-1) (Fig. 5.4B). Green algae showed significantly higher net 

growth rates in relation to the control (0.04 d-1) in the ammonium-enriched 

treatments (0.19-0.55 d-1), except treatments with the lowest ammonium 

concentrations (1AMM+NIT and 10AMM+NIT) (Fig. 5.4C). Nitrate-only additions 

had no effect on growth rates. Diatoms did not respond to nitrogen addition. 

 

 

 

 

 

 



5. Effects of ammonium and nitrate on phytoplankton growth in the  
freshwater tidal zone of a turbid, Mediterranean estuary 

 

99 
 

Fig. 5.3 
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Figure 5.3 (previous page) – Specific net growth rates (d-1) of different phytoplankton groups during 
the 2005 nutrient enrichments experiments. A) spring, B) spring-summer transition, C) summer and 
D) autumn. Vertical lines represent ± 1 S.D. Significant differences between the treatments and the 
control are denoted by * (p < 0.05) or ** (p < 0.01) over the correspondent bar. 
 

During spring 2005, green algae responded significantly to N (as nitrate and as 

ammonium) enrichment in relation to the control (0.10 d-1), with growth rates 

ranging between 0.25 and 0.32 d-1 in treatments NIT and AMM, respectively (Fig. 

5.3A). Diatoms, on the contrary, showed negative growth rates in all the treatments. 

Cyanobacteria responded significantly to ammonium addition (AMM, 0.88 d-1) in 

relation to the control (0.42 d-1) (Fig. 5.3A). During spring 2008, nitrate uptake in the 

only nitrate-enriched treatment (NIT, 7.7 µM d-1) was not significantly different from 

the control (7.3 µM d-1), but in the ammonium-enriched treatments, nitrate uptake 

decreased significantly with increasing ammonium concentrations, from 7.0 to 0.5 

µM d-1 in treatments 1AMM+NIT and 100AMM+NIT, respectively. In contrast, 

ammonium uptake increased significantly in relation to the control (0.0 µM d-1) with 

increasing ammonium concentrations, from 0.3 to 8.3 µM d-1 in treatments 

1AMM+NIT and 100AMM+NIT, respectively (Fig. 5.5A). Community net growth 

rate in the spring experiment was significantly higher than the control (0.45 d-1) only 

in treatments with intermediate concentrations of ammonium (treatments 

10AMM+NIT and 20AMM+NIT, 0.57 d-1), and was lower than the control in 

treatment AMM (0.44 d-1) (Fig. 5.5B). Diatoms did not show significant differences in 

net growth rates in the enriched treatments in relation to the control (1.15 d-1), except 

in treatments enriched with 100 µM ammonium (AMM and 100AMM+NIT), where 

their net growth rate decreased (0.99 and 0.93 d-1). Green algae, on the contrary, 

showed significant increases in net growth rate in relation to the control (0.78 d-1) in 

some of the ammonium enriched treatments (AMM, 20AMM+NIT and 

100AMM+NIT), with net growth rates varying from 0.91 to 0.97 d-1. Net growth rates 

of dinoflagellates in the enriched treatments were not significantly different from the 

control, and varied between 0.58 and 0.74 d-1 (Fig. 5.5C).  
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Figure 5.4 - A) Nitrate (NO3-) and ammonium (NH4+) net consumption rates (µM d-1), B) community 
net growth rate (d-1), and C) specific net growth rates (d-1) of diatoms and green algae during the 2008 
winter experiment. Vertical lines represent ± 1 S.D. Significant differences in the treatments in relation 
to the control are denoted by * (p < 0.05) or ** (p < 0.01) over the correspondent bar. 
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In the spring-summer transition 2005 experiment, only green algae responded 

significantly to both nitrate (0.54 d-1) and ammonium (0.50 d-1) additions in relation 

to the control (0.16 d-1) (Fig. 5.3B). The 2008 experiment was characterized by 

significantly higher ammonium net consumption rates in all ammonium-enriched 

treatments (2.4-21.4 µM d-1), in relation to the control (0.1 µM d-1). As in the other 

experiments, ammonium net consumption rate increased with increasing ammonium 

additions. Nitrate net consumption rate decreased with increasing ammonium 

concentrations, from 7.0 µM d-1 in the control to 0.5 µM d-1 in treatment AMM. In 

treatments enriched only with nitrate (NIT) and with low ammonium concentrations 

(1AMM-NIT, 10AMM+NIT), nitrate uptake did not vary significantly in relation to 

the control (Fig. 5.6A). Community net growth rates of phytoplankton in the 

nitrogen-amended treatments (0.38-0.47 d-1) basically did not vary in relation to the 

control (0.44 d-1) (Fig. 5.6B). Net growth rates of diatoms (1.00-1.14 d-1) and green 

algae (0.73-0.83 d-1) in the nitrogen-amended treatments were not significantly 

different from the control (1.08 and 0.84 d-1, respectively). Dinoflagellates differed 

from the control (0.14 d-1) only in treatment AMM, where net growth rate was 

significantly lower and negative (-0.07 d-1) (Fig. 5.6C).  

During the summer 2005 experiment, green algae responded significantly to nutrient 

enrichment, with higher growth rates in treatments NIT (1.00 d-1) and AMM (1.09 d-1) 

than in the control (0.43 d-1). Diatoms showed a significant and negative growth rate 

in treatment AMM (-0.13 d-1) in relation to the control (0.26 d-1) (Fig. 5.3C). In the 

summer 2008 experiment, nitrate net consumption rates were significantly higher in 

all nitrate-enriched treatments (11.4-35.1 µM d-1), in relation to the control (3.6 µM d-

1), although rates decreased with increasing ammonium concentrations. In contrast, 

ammonium net consumption rates increased in the ammonium-enriched treatments, 

and were significantly higher (2.5-19.0 µM d-1) than in the control (0.4 µM d-1) (Fig. 

5.7A). Community net growth rates in all nitrogen-enriched treatments (0.23-0.32 d-1) 

were significantly higher than the control (0.04 d-1) (Fig. 5.7B). Green algae increased 

in all nitrogen-enriched treatments in relation to the control (0.73 d-1), with net 

growth rates varying from 1.06 to 1.29 d-1. On the contrary, net growth rates of 

diatoms decreased in the treatments with higher ammonium concentrations (AMM, 

50AMM+NIT and 100AMM+NIT), with net growth rates from 0.61 to 0.76 d-1 and 
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0.99 d-1 in the control. Cyanobacteria net growth rates increased with increasing 

ammonium concentrations, from 0.49 d-1 in treatment 1AMM+NIT to 1.29 and 1.39 d-

1 in treatments 100AMM+NIT and AMM, respectively, whilst in the control 

cyanobacteria net growth rate was 0.17 d-1. Dinoflagellates showed negative net 

growth rates in treatments enriched with 100 µM ammonium (AMM and 

100AMM+NIT, -0.31 and -0.08 d-1), but increased in relation to the control (0.13 d-1) in 

treatment 50AMM+NIT (0.23 d-1) (Fig. 5.7C).  

In the autumn 2005, only cyanobacteria showed higher growth rates in treatment 

AMM (0.65 d-1) in relation to the control (0.35 d-1) (Fig. 5.3D). During 2008, 

ammonium net consumption rates in all ammonium-enriched treatments (0.5-10.3 

µM d-1) were significantly higher than in the control (0.1 µM d-1), and increased with 

increasing ammonium concentrations. Nitrate net consumption rate in treatment 

enriched only with 100 µM ammonium (AMM, 0.06 µM d-1) was significantly lower 

than in the control (4.9 µM d-1), but in the other treatments no significant differences 

were found in relation to the control (Fig. 5.8A). Community net growth rates in the 

nitrogen-enriched treatments (0.47-0.59 d-1) did not show significant differences in 

relation to the control (0.50 d-1), except in treatment AMM, where net growth rate 

was significantly higher (0.62 d-1) (Fig. 5.8B). Likewise, diatoms net growth rate was 

significantly higher in treatment AMM (1.63 d-1) in relation to the control (1.42 d-1) 

(Fig. 5.8C).  

Overall, the relative preference index for nitrate in relation to ammonium 

concentration (Fig. 5.9) showed that nitrate was not the preferred nitrogen source in 

the experiments (RPI < 1) and the preference for nitrate decreased with increasing 

ammonium concentrations, except in the summer, when NO3- RPI values were 

always close to 1 for all ammonium concentrations.  
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Figure 5.5 - A) Nitrate (NO3-) and ammonium (NH4+) net consumption rates (µM d-1), B) community 
net growth rate (d-1), and C) specific net growth rates (d-1) of diatoms, green algae and dinoflagellates 
during the 2008 spring experiment. Vertical lines represent ± 1 S.D. Significant differences in the 
treatments in relation to the control are denoted by * (p < 0.05) or ** (p < 0.01) over the correspondent 
bar. 
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Figure 5.6 – 2008 spring-summer transition experiment. For legend see Fig. 5.5. 
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Figure 5.7 - A) Nitrate (NO3-) and ammonium (NH4+) net consumption rates (µM d-1), B) community 
net growth rate (d-1), and C) specific net growth rates (d-1) of diatoms, green algae, dinoflagellates and 
cyanobacteria during the 2008 summer experiment. Vertical lines represent ± 1 S.D. Significant 
differences in the treatments in relation to the control are denoted by * (p < 0.05) or ** (p < 0.01) over 
the correspondent bar. 
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Figure 5.8 - A) Nitrate (NO3-) and ammonium (NH4+) net consumption rates (µM d-1), B) community 
net growth rate (d-1), and C) specific net growth rates (d-1) of diatoms during the 2008 winter 
experiment. Vertical lines represent ± 1 S.D. Significant differences in the treatments in relation to the 
control are denoted by * (p < 0.05) or ** (p < 0.01) over the correspondent bar. 
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Figure 5.9 – Relative preference index (RPI) for nitrate uptake as a function of ammonium 
concentration, for each treatment and each experiment. 
 
 

5.4 Discussion 

 

5.4.1 Ammonium and nitrate availability in the Guadiana estuary 

 

In the Guadiana estuary, ammonium concentrations ranged between undetectable 

values and 8.6 µM, but remained mostly below 3 µM throughout 2005 and 2008, 

which can be considered low concentrations, comparing to other estuaries (e.g., <0.2-

41.5 µM, Southampton Water: Torres-Valdés & Purdie, 2006; >2 µM, Delaware 

Estuary: Yoshiyama & Sharp, 2006; >4 µM, San Francisco Bay: Dugdale et al., 2007). It 

has been extensively suggested that ammonium concentrations higher than a certain 

threshold, usually around 1-4 µM, inhibit nitrate uptake (see Dortch, 1990), or that 

nitrate only becomes available to phytoplankton when ammonium concentration is 

<4 µM (Dugdale et al., 2007). Therefore, the inhibitory effect of the low ammonium 

concentrations on nitrate uptake was most likely minimal in the Guadiana estuary, as 

was the potential toxic/inhibitory effect of ammonium on phytoplankton 

production. Nitrate concentrations were significantly higher than ammonium 

throughout the two years. It is therefore probable that phytoplankton communities in 

the Guadiana upper estuary are primarily fuelled by nitrate, in contrast to other 

estuarine systems where ammonium is the dominant form of nitrogen taken up (e.g., 
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Twomey et al., 2005; Torres-Valdés & Purdie, 2006). The dominance of micro- and 

larger nano-sized (>10 µm) phytoplankton species in the Guadiana estuary (e.g., 

Domingues et al., 2005, 2007) is most likely a consequence of this nutritional 

environment dominated by nitrate, given that smaller cells (<10 µm) usually prefer 

ammonium as their N-source (Probyn, 1985; Wafar et al., 2004; Maguer et al., 2009). 

Indeed, in estuaries such as San Francisco Bay, larger phytoplankton blooms depend 

mostly on nitrate whilst smaller phytoplankton blooms are fuelled by ammonium 

(Wilkerson et al., 2006).  

Nitrate has been the main source of nitrogen for phytoplankton in the Guadiana 

estuary. Significant and negative correlations between nitrate and phytoplankton 

biomass (Barbosa et al., 2010) further support the pivotal role of nitrate on bloom 

development in the freshwater tidal reaches of this estuarine system. In the last years, 

and probably due to the regularisation of freshwater flow by the Alqueva dam that 

started in 2004, nitrate availability has been lower than before (1996-2003 annual 

means between 56.2 and 73.6 µM; 2005 annual mean = 9.5 µM; 2008 annual mean = 

23.7 µM). The decrease in the availability of nitrate and other nutrients together with 

a lower turbidity and higher light availability is expected to promote a shift from a 

potentially light-limited environment to a more nutrient-limited one in the 

freshwater tidal reaches of the Guadiana estuary (Barbosa et al., 2010).  

 

5.4.2 Effects of ammonium on nitrate uptake 

 

In general, nitrate net consumption rates decreased with increasing ammonium 

concentrations and uptake, which could be attributed to inhibition of nitrate uptake 

by ammonium. Ammonium concentrations higher than 2 µM (Pennock, 1987) or 4 

µM (Dugdale et al., 2007) are known to suppress nitrate uptake in estuarine systems. 

Although initial ammonium concentrations were low (between undetectable values 

and 4 µM), ammonium additions in the treatments (up to 100 µM) were high enough 

to exert an inhibitory effect on nitrate uptake. In the summer, however, nitrate 

uptake in treatment 100AMM+NIT was still significantly higher than uptake in the 

control, which reflects a preference for ammonium, but not a suppression/inhibition 
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of nitrate uptake. Nitrate uptake that occurs only when ammonium concentrations 

are low is a frequently observed phenomenon in enrichment experiments (e.g., 

Balode et al., 1998), thus following the classical dogma of preference for ammonium 

over nitrate. 

 

5.4.3 Effects of ammonium and nitrate on the phytoplankton community 

 

The phytoplankton community from the freshwater tidal reaches of the Guadiana 

estuary responded differentially to nitrate additions throughout 2008. Firstly, in the 

summer experiment nitrate added alone promoted a significantly higher net 

consumption rate than in the control, resulting in significant increases in the 

community biomass. Phytoplankton growth rates in all the N-enriched treatments 

were significantly higher than in the control, indicating that the community was 

indeed N-limited, when initial nitrate concentration was 15.5 µM, and that the 

nitrogenous nutrients were used for growth, not for storing in internal pools.  

A second response type was observed in the other experiments throughout 2008, 

with initial nitrate concentrations ranging between 22.2 and 35.4 µM. Nitrate-alone 

additions had no significant effects on uptake and growth rates. Nitrate was most 

likely not limiting, otherwise, cells would have taken up the available nitrate. 

Previous nutrient enrichment experiments carried out in the Guadiana estuary have 

shown that nitrogen, added as nitrate, became limiting when ambient concentrations 

were <20-24 µM; the present experiments indicate that nitrate concentrations >20 µM 

were not limiting to phytoplankton growth. However, ammonium net consumption 

rates increased significantly in all the ammonium-enriched treatments throughout 

2008. Besides the significant increases in net consumption rates only (spring-summer 

transition and autumn 2008), which could be attributed to luxury consumption or 

consumption by cells other than phytoplankton (e.g., heterotrophic bacteria), 

significant increases in uptake and community biomass were also observed (winter 

2008), indicating growth limitation by N. Considering the specific composition of the 

phytoplankton community, it is clear that ammonium was the preferred N-source for 

both green algae and cyanobacteria (see below), so it is probable that these 

ammonium-preferring groups were N-limited and the nitrate-preferring groups were 
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not. Therefore, nutrient limitation should be evaluated in terms of specific groups or 

even species, rather than the whole phytoplankton community, composed of 

different species with highly diverse nutritional requirements. 

Increased ammonium uptake that did not result in cell growth was observed in the 

spring-summer transition and autumn experiments. The accumulation of nitrogen in 

transient or permanent internal pools is a common response to N-pulses that will 

induce cells to take up nitrogen faster than they can assimilate it, and therefore 

storing it. The ability to store nitrogen is a way by which phytoplankton growth is 

buffered from the effects of a changing, and sometimes growth-limiting, nitrogen 

supply in the environment (Dortch, 1982). 

Overall, ammonium seemed to be the preferred nitrogenous nutrient by 

phytoplankton, according to the Relative Preference Index, which is also a common 

observation in other estuarine systems (e.g., McCarthy et al., 1977; Carpenter & 

Dunham, 1985; Balode et al., 1998). Only when ammonium concentrations were 

undetectable, was nitrate the preferred nutrient, with RPI values slightly higher than 

1.  

 

5.4.4 Effects of ammonium and nitrate on specific phytoplankton groups 

 

Green algae showed the most consistent responses to nitrate and ammonium 

additions. Throughout 2005 (except in the autumn) and in the winter, spring and 

summer 2008, green algae responded significantly to ammonium additions, with 

initial DIN concentrations ranging between 2.0 and 37.4 µM. Green algae also 

responded positively to nitrate additions during 2005 and in the summer 2008, when 

DIN concentrations were <20 µM. Whenever nitrate concentrations were higher than 

approx. 20 µM, green algae relied only on ammonium as their N-source. Although a 

preference for ammonium seemed to exist, green algae could grow efficiently on 

both N-sources under N-limitation (nitrate < 20 µM), most likely due to a reduced 

internal pool of regulatory N-compounds at the beginning of the experiments, as a 

result of the low DIN concentration in the medium. Indeed, nutrient uptake rates are 

determined not only by the external nutrient concentrations, but also by the 
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intracellular pools of regulatory compounds (Dortch et al., 1984). A highly N-starved 

cell would therefore take up and assimilate or store any form of nitrogen added to 

the medium. Other studies, however, indicate that green algae, namely Scenedesmus, 

Ankistrodesmus and Selenastrum, may reach similar densities growing on both nitrate 

and ammonium, under non-limiting conditions (Taub, 2009). Furthermore, both 

green algae and cyanobacteria are able to use organic N-sources, such as urea, in an 

extremely efficient manner (Balode et al., 1998). 

Nitrate uptake is a light-dependent process, i.e., nitrate uptake will occur only if light 

intensity is high enough to support the consumption of reductive power necessary to 

assimilate nitrate (e.g., Hyenstrand et al., 2000). Since light limitation in the 2008 

experiments was alleviated during incubation, and light intensity throughout 2005 

was relatively high, green algae were most likely energetically able to take up both 

ions. Therefore, green algae demonstrated a preference for ammonium when nitrate 

was plentiful, but were able to use both N-sources when nitrate concentration was at 

limiting concentrations. Furthermore, the competition for nitrogen between green 

algae and other phytoplankton groups, namely cyanobacteria, probably played an 

important role on the specific responses to N enrichments. Green algae are 

commonly favoured by high N:P ratios and cyanobacteria by low N:P ratios (see 

Domingues et al., 2005). It is likely that the increased N:P ratios induced by nitrogen 

additions have favoured green algae throughout the experiments. 

Cyanobacteria growth rates increased with increasing ammonium concentrations, 

indicating N-limitation. However, no response was observed to nitrate-only 

additions (NIT), in both set of experiments (2005 and 2008). Cyanobacteria growth 

rates can even decrease following nitrate additions (see Chapter 4). Although 

cyanobacteria usually have a preference for ammonium (Dokulil & Teubner, 2000), 

they can take up a variety of N-sources, such as nitrate, nitrite, ammonium, urea, 

and, in some cases, atmospheric nitrogen and amino acids such as arginine and 

glutamine (Flores & Herrero, 2005). In these experiments, ammonium seemed to be 

the preferred N-source, whilst nitrate apparently was not taken up, even under N-

deficiency. Although ammonium concentrations higher than 100 µM can inhibit 

nitrate uptake in some cyanobacteria (Incharoensakdi & Wangsupa, 2003), NH4+ in 
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the beginning of the experiments (<4 µM) was too low to exert any inhibitory effect 

on nitrate uptake.  

Diatoms did not respond in most treatments, which could be attributed to co-

limitation by N and P, as suggested previously (see Chapter 4) for the freshwater 

tidal reaches of the Guadiana estuary during spring/early summer 2008. In addition, 

growth rates of diatoms in the spring and summer 2008 even decreased significantly 

in the treatments with ammonium concentration >50 µM, suggesting a 

toxic/inhibitory effect of ammonium on this group. Inhibition of diatom growth has 

been observed at different ammonium concentrations, for instance, >35 µM for 

benthic diatoms (Admiraal, 1977) and >200 µM for Pseudonitzschia pungens 

(Hillebrand & Sommer, 1996). However, stimulatory effects of ammonium upon 

diatoms have also been observed, with increases on diatom abundance following 

ammonium additions and no responses to nitrate additions (Takeda et al., 1995), and 

higher growth rates when ammonium was the N-source (Tada et al., 2009). 

Dinoflagellates, mainly represented by the harmful species Kryptoperidinium 

foliaceum, were clearly inhibited in the treatments with the highest ammonium 

concentrations (100 µM). However, the effect of ammonium on the growth of 

dinoflagellates may vary tremendously. For instance, inhibition of growth has been 

observed in cultures at concentrations >20 µM-N NH4+ for Ceratium furca (Baek et al., 

2008) and >50 µM-N NH4+ for Alexandrium tamarense (Leong & Taguchi, 2004). On 

the other hand, Alexandrium minimum had the highest growth rates at 25 µM-N NH4+, 

and started to decrease at concentrations >50 µM-N NH4+ (Chang & McLean, 2007). 

Overall, growth of K. foliaceum in the freshwater tidal zone of the Guadiana estuary 

seemed strongly dependent on the form and concentration of N. It reached extremely 

high growth rates in nitrate-enriched waters (see Chapter 4) and was inhibited by 

high concentrations of ammonium.  
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5.5 Conclusions 

 

In the freshwater tidal reaches of the Guadiana estuary, ammonium concentrations 

throughout the studied years were most likely too low to exert any inhibitory effect 

on nitrate uptake or a toxic effect on phytoplankton growth. Indeed, nitrate has been 

the main nitrogen source for phytoplankton in the Guadiana upper estuary. 

Considering the nutrient enrichment experiments that have been undertaken with 

natural phytoplankton assemblages (this Chapter and Chapter 4), nitrogen seems to 

become limiting at nitrate concentrations lower than approx. 20 µM. The interactions 

between nitrate and ammonium, namely a decrease on nitrate consumption with 

increasing ammonium concentrations and increasing ammonium consumption, 

pointed towards an overall preference of phytoplankton for ammonium. However, 

preference for ammonium is group-specific. Green algae and cyanobacteria seemed 

to prefer ammonium, whilst nitrate was preferred by diatoms and dinoflagellates. 

Indeed, green algae showed the most prominent responses to nitrogen additions. 

Ammonium was clearly preferred, but nitrate was also used by green algae under 

severe N-limitation (<20 µM). Cyanobacteria, in contrast, relied only on ammonium 

as their N-source. Diatoms and dinoflagellates showed no positive responses to 

ammonium additions, using only nitrate as their nitrogen source. Lastly, future 

scenarios of water and sediment retention in dams leading to reduced nitrate inputs 

to the estuary and increases in anthropogenic-derived ammonium inputs to the 

Guadiana estuary, will most likely promote a shift on phytoplankton community 

composition towards dominance of small-sized, ammonium-preferring groups such 

as green algae and cyanobacteria, which can have significant impacts on higher 

trophic levels and water quality.  
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freshwater tidal zone of the turbid Guadiana estuary 
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Abstract 

Light is usually the main driver of phytoplankton growth in turbid estuaries, but it 

has received far less attention than nutrients as a bottom-up factor. Here, we present 

the first experimental analysis of light limitation of phytoplankton growth and 

production and its seasonal variability in the freshwater tidal reaches of the turbid 

Guadiana estuary. 

Natural phytoplankton communities were exposed to different photosynthetically 

active radiation (PAR) intensities. Short-term incubations with addition of 14HCO3- 

were used to estimate photosynthetic parameters and long-term incubations allowed 

the evaluation of the effects of light on phytoplankton composition and growth. 

Light limitation of phytoplankton growth occurred throughout the year in the 

freshwater tidal reaches of the Guadiana estuary and no photoinhibition was 

observed at least up to 615 µmol photons m-2 s-1. In the summer, co-limitation by 

nutrients prevented a positive response of phytoplankton to light enrichment. 

Diatoms were the most light-limited group, whilst cyanobacteria were the only 

group acclimated to low light conditions. Green algae and dinoflagellates responded 

positively to higher PAR exposures. High saturating irradiances, high light-saturated 

rates of primary production and low photosynthetic efficiencies suggest that 

phytoplankton community was not acclimated to the low light conditions that 

prevail in the Guadiana estuary.  

 

Keywords: phytoplankton, light limitation, primary production, photosynthetic 

parameters, Guadiana estuary 
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6.1. Introduction 

 

In turbid environments, light availability plays a fundamental role as the energy 

source for phytoplankton growth (Alpine and Cloern, 1992; Grobbelaar, 1990; Cloern, 

1996; Kocum et al., 2002), and it also affects phytoplankton community structure and 

algal competition (Reynolds, 1998; Litchman, 1998; Huisman et al., 1999). 

Phytoplankton primary productivity in estuaries can be higher in comparison with 

nearby coastal areas, but due to light limitation, this potential is seldom reached 

(Kromkamp and Peene, 1995). Indeed, in turbid, nutrient-rich estuaries, 

phytoplankton primary production is directly proportional to light availability 

(Underwood and Kromkamp, 1999 and references therein), which in turn is 

controlled by turbidity (Cloern, 1987). Light-limited phytoplankton growth can occur 

throughout the whole year (e.g., Irigoien and Castel, 1997) or seasonally (e.g., Fisher 

et al., 1999, Kocum et al., 2002), and it can be spatially restricted to specific estuarine 

areas (e.g., maximum turbidity zones, freshwater tidal estuarine zones). 

Furthermore, the euphotic zone in such turbid environments is usually shallow when 

compared to the mixing depth, so phytoplankton cells spend a small amount of time 

in the light; photoinhibition in these environments is thus rare (Grobbelaar, 1995).  

Despite its paramount importance for phytoplankton production, light has received 

far less attention as a selective factor than nutrient availability (Huisman et al., 1999), 

which has classically been considered the most important factor regulating 

phytoplankton growth (e.g., Roelke et al., 1999 and references therein). The first 

studies on phytoplankton dynamics in the Guadiana estuary, a turbid, mesotidal 

Mediterranean estuarine system, identified nutrients as the main regulators of 

phytoplankton succession (Rocha et al., 2002; Domingues et al., 2005), but growing 

evidence on the importance of light has been reported (Domingues and Galvão, 2007; 

Domingues et al., 2007). Indeed, long-term field data indicates that phytoplankton 

growth in the Guadiana estuary, especially in the upper estuary, is most likely light-

limited (Barbosa et al., 2010). The upper estuary, or freshwater tidal zone, is subjected 

to a strong tidal influence that induces the resuspension of bottom sediments, 

resulting in increased turbidity and strong light limitation of phytoplankton growth 

(Muylaert et al., 1997). Nutrient limitation in the Guadiana upper estuary occurs 
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mainly during the productive period (spring and summer), but co-limitation by light 

availability is a definite possibility (see Chapter 4). However, decreasing 

phytoplankton biomass coupled to decreasing turbidity and increasing light 

availability has been recently reported for the Guadiana estuary (Barbosa et al., 2010). 

Given that understanding how light (and other environmental drivers) regulates 

phytoplankton growth and production allows the prediction of ecosystem responses 

to environmental changes (see Cloern and Dufford, 2005; Smetacek and Cloern, 

2008), the study presented here aims to evaluate the effects of light availability on 

phytoplankton abundance, composition and growth. Specifically, we intend to 

understand the occurrence and intensity of light limitation of phytoplankton growth 

throughout the seasonal cycle, and the role played by potential physiological 

adaptations to a low-light environment. To accomplish these goals we performed 

light enrichment bioassays with longer incubations times (days) to evaluate changes 

in phytoplankton abundance and composition, and bioassays with shorter 

incubation times (hours) to evaluate the effect on primary production. We 

hypothesized that phytoplankton growth in the freshwater tidal zone of the 

Guadiana estuary is light-limited throughout the year, and that phytoplankton is 

physiologically adapted to low-light conditions. 

 

6.2. Materials and Methods 

 

6.2.1 Study site and sampling strategy 

 

The Guadiana River is one of the largest Iberian rivers, with a drainage area of 67,039 

km2, arising in Spain and draining between SE Portugal and SW Spain (see Fig. 4.1, 

Chapter 4). The river flows for 810 km; its last 70 km, located in a Mediterranean 

climate area, are influenced by semidiurnal, mesotidal tides, corresponding to the 

estuarine zone. The Guadiana estuary is partially stratified in its lower and middle 

sections and well mixed in the upper section. The upper estuary, or freshwater tidal 

zone, is usually located between Álamo (25 km from the river mouth) and Mértola 

(approx. 70 km from the river mouth), but the lower limit is subjected to changes, 
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depending on tidal stage and river flow (Fig. 4.1, Chapter 4). In the last years, intense 

damming has promoted a more regular but reduced  river flow (2009: 16.0 ± 21.4 m3 

s-1), contrasting with sharp variations between dry and humid months (1995 - 2000: 

333.0 ± 1095.9 m3 s-1, http://snirh.pt) that used to occur before the Alqueva dam 

construction (140 km from the mouth). 

Sampling campaigns were performed in Alcoutim, located in the upper estuary (Fig. 

4.1, Chapter 4), during 2008 and 2009. Vertical profiles of photosynthetically active 

radiation (PAR) intensity were determined using a LI-COR radiometer and the light 

extinction coefficient (ke, m-1) was calculated using an exponential function (eq. 6.1): 
ZK

Z
eeII −= 0     (eq. 6.1) 

where Iz is the light intensity at depth level Z (m) and I0 is the light intensity at the 

surface. Mean light intensity in the mixed layer (Im, µmol photons m-2 s-1) was 

calculated according to (eq. 6.2): 
1)(

0 ))(1( −−−= me
ZK

m ZKeII e    (eq. 6.2) 

where Io is the light intensity at the surface, ke (m-1) the light extinction coefficient 

and Zm (m) the depth of the mixed layer (Jumars, 1993). The mixed layer in Alcoutim 

corresponded to the whole water column, since there was neither haline nor thermal 

stratification (Domingues and Galvão, 2007; Morais et al., 2009a). Vertical profiles of 

salinity and water temperature were determined in situ using a YSI 556 MPS probe, 

and were used to determine the depth of the mixed layer. 

 

6.2.2 Short-term bioassays: photosynthesis-irradiance curves 

 

We used the Steeman-Nielsen method (1952) to determine phytoplankton primary 

production in water samples collected in Alcoutim throughout 2008. Fifty mL 

aliquots were added to polycarbonate flasks and 100 µL (2 µCi) of 14C-HCO3- were 

added to each flask. The sample flasks were incubated in triplicate under different 

light intensities (approx. 5, 83, 117, 302, 515 and 615 µmol photons m-2 s-1) for 2 hours. 

Three dark flasks were also incubated and processed as the sample flasks. 

Incorporation of 14C was stopped with 1 mL formaldehyde, and the samples were 

filtered onto nitrate cellulose filters (nominal pore diameter = 0.45 µm), which were 

placed inside 10 mL high-density polyethylene scintillation vials. The vials were 
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subsequently placed inside a fume hood with HCl, to allow the release of inorganic 

carbon attached to the cells. 10 ml of scintillation liquid (Universol) was added to 

each vial, put in 4ºC overnight, and 14C activity was measured on a scintillation 

counter (Beckman). Primary production was calculated as (eq. 6.3): 

RxN

xDxWxCARbRs
PP

)( −=    (eq. 6.3) 

where PP is phytoplankton primary production (mg C L-1 h-1), Rs (dpm) is the 

activity in the sample, Rb (dpm) is the mean activity of the dark flasks, D (=1.05) is 

the isotopic discrimination, W (mg C L-1) is the amount of dissolved inorganic carbon 

in the sample (obtained through alkalinity), CA is a correction factor (total sample 

volume/filtered volume), R (dpm) is the total activity of the 14C added to each flask, 

and N (hours) is the incubation time. Alkalinity was determined by titration with 

HCl for non-freshwater samples (S > 1 PSU) (Parsons et al., 1984b). A stepwise 

titration (Gran, 1950, 1952; Andersen, 2002) was used to determine alkalinity in 

freshwater samples (S < 1 PSU). Carbonate alkalinity was then converted to 

dissolved inorganic carbon and subsequently used in primary production 

determinations. 

Primary production (PP, mg C L1- h-1) was converted to biomass-specific primary 

production (PB = PP/Chla, mg C (mg Chla)-1 h-1). The photosynthetic parameters 

were estimated using nonlinear regression fitting of equation 6.4 (Platt et al., 1980): 

))/.exp(1( S
B

PARS
BB PEPP α−−=   (eq. 6.4) 

where PBS is the light-saturated rate of biomass-specific primary production (mg C 

(mg Chla)-1 h-1), α is the initial slope of the photosynthesis-irradiance curve (mg C 

(mg Chla)-1 h-1 (µmol photons m-2 s-1)-1) and EPAR is the PAR irradiance during 

incubation (µmol photons m-2 s-1). The saturating irradiance (ES, µmol photons m-2 s-

1) was determined as PBS/ α.  

It is to be noted that P-E curves are intended to reflect the physiological state of 

phytoplankton community at the time of sampling. During transportation to the lab 

(< 2 hours), light-shade adaptation could have occurred and cells could have been 

acclimated to lower light conditions at the beginning of the 14C incubations. 

Considering the photosynthetic parameters obtained, in particular high saturating 
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irradiances, which are used to estimate the light history of the cells (Falkowski, 1983), 

it is unlikely that light-shade adaptation had occurred between sample collection and 

incubation, and that the P-E curves obtained truly reflect the physiological state of 

the cells at the time of collection. 

 

6.2.3 Long-term bioassays: light-enriched microcosms 

 

Light enrichment microcosm experiments were undertaken throughout 2009, to 

investigate the effects of light enrichments on representative phytoplankton 

communities from different seasons: winter (February), spring (April), spring-

summer transition (June), summer (August) and autumn (October). Water samples 

were collected in Alcoutim into acid-cleaned 1 L polycarbonate bottles, during neap 

tides, immediately after high tide, near the water surface (approx. 0.5 m depth), 

assuming that the whole water column was well mixed. Samples were kept in cold 

and dark conditions between collection and experiment set-up (approx. 2 hours). The 

bottles were incubated for 4 days in a growth chamber under in situ temperature and 

a natural light-dark cycle (Table 6.I). Three different treatments and a control 

treatment were performed in duplicate as follows: control (≈ Im), I1 (70 - 90 µmol 

photons m-2 s-1), I2 (120 - 130 µmol photons m-2 s-1) and I3 (225 - 300 µmol photons m-2 

s-1) (Table 6.I). The bottles were opened daily and gently shaken twice a day. Sub-

samples for nutrient determination were collected from each bottle at days 0, 1, 2 and 

4. Chlorophyll a and phytoplankton composition and abundance were evaluated at 

the beginning and at the end of the experiments. In vivo fluorescence measurements 

undertaken daily in other microcosms experiments showed that phytoplankton 

growth during incubation was exponential until day 4 and in many cases until day 6 

(see Chapter 4). Therefore, due to logistic and financial reasons, chlorophyll and 

phytoplankton were evaluated only at the beginning and end of these experiments. 

Changes in abundance and biomass (chlorophyll a) of phytoplankton in the 

treatment bottles relative to the controls were interpreted as responses to light 

enrichment. 
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Table 6.I - Incubation conditions of the long-term light enrichment treatments in different seasons (SS – spring-summer transition). L:D – duration of light:dark 
cycles (hours); TL:TD – temperature during light:temperature during dark (ºC); light intensities of treatments control, I1, I2 and I3 (µmol photons m-2 s-1); nutrient 
concentrations (µM) at day 0 (N – nitrate; P – phosphate; Si – silicate). 
 

 L:D TL:TD control I1 I2 I3 N P Si 

Winter 10h:14h 13.5:12.5 50 90 120 225 79.6 2.4 81.5 

Spring 13h:11h 18.5:18.0 50 90 120 225 33.2 2.3 29.0 

SS 15h:9h 25.0:24.0 50 70 130 300 17.2 2.4 11.4 

Summer 14h:10h 25.5:24.5 50 70 130 300 11.0 5.9 100.8 

Autumn 11h:13h 23.5:22.5 50 90 120 225 17.9 3.3 69.4 
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6.2.4 Laboratorial analyses 

 

Samples for nutrient determination were filtered through cellulose acetate filters 

(Whatman, pore diameter = 0.2 µm). Phosphate (PO43-) and silicate (SiO44-) were 

determined immediately after sample collection, whilst samples for nitrate (NO3-) 

where frozen (-20ºC) until analysis. All nutrients were determined in triplicate, 

according to the spectrophotometric methods described by Grasshoff et al. (1983), 

using a spectrophotometer Hitachi U-2000 for phosphate and silicate, and an 

autoanalyzer Skalar for nitrate. Given that ammonium and nitrite concentrations in 

the sampling station are usually low (Domingues et al., 2005, 2007) and nitrate is the 

main nitrogen source for phytoplankton (see Chapter 5), ammonium and nitrite were 

not analysed. 

Chlorophyll a concentration was determined according to Parsons et al. (1984b), 

using glass fibre filters (Whatman GF/F, pore diameter = 0.7 µm). Chlorophyll a was 

extracted overnight at 4ºC with 90% acetone; after centrifugation, absorbance of the 

supernatant was measured spectrophotometrically (Hitachi U-2000) at 750 and 665 

nm, before and after addition of HCl 1 M. 

Epifluorescence and inverted microscopy were used to determine phytoplankton 

abundance and composition, following the methods of Haas (1982) and Utermöhl 

(1958), respectively. Samples for enumeration of cyanobacteria were preserved with 

glutardialdehyde (final concentration 2%) immediately after collection, stained with 

proflavine and filtered (1 - 5 mL, depending on the amount of suspended matter) 

onto black polycarbonate membrane filters (Whatman, nominal pore diameter = 0.45 

µm). Preparations were made with glass slides and non-fluorescent immersion oil 

(Cargille type A), within 24 h of sampling, and then frozen (-20ºC) in dark conditions, 

to minimize loss of autofluorescence. Enumeration was made at 787.5x magnification 

using a Leica DM LB epifluorescence microscope. Samples for enumeration of 

diatoms, green algae and dinoflagellates (>20 µm) were preserved with acid Lugol’s 

solution (final concentration approx. 0.003%) immediately after collection, settled in 

sedimentation chambers (2 - 10 mL, depending on the amount of suspended matter; 

sedimentation time = 24 hours) and observed at 400x magnification with a Zeiss 

Axiovert S100 inverted microscope. Phytoplankton cells were identified, whenever 
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possible, to genus level. A minimum of 50 random visual fields, at least 400 cells in 

total and 50 cells of the most common genus were counted. Assuming that the cells 

were randomly distributed, the counting precision was ±10% (Venrick, 1978). 

 

6.2.5 Statistical analyses 

 

Statistical analyses were performed using the GraphPad Prism 5 software. For each 

experimental treatment, nutrient concentration, chlorophyll a and phytoplankton 

abundance were statistically compared within duplicates of the same treatment using 

a t-test or a Mann-Whitney rank sum test when the Kolmogorov-Smirnov normality 

test failed. Since no significant differences were found between replicates, all values 

were combined for the subsequent data analyses. Nutrient net consumption rates 

(disappearance rates) for each treatment (n = 8) were estimated as the slope of a 

linear or exponential function adjusted to the data points. Community net growth 

rate and specific net growth rate of different phytoplankton groups (n = 4) (µ, d-1) 

were estimated as the slope of ln N(t) versus time (4 days), where N(t) is chlorophyll 

a concentration or phytoplankton abundance at day t, respectively, assuming 

exponential growth (confirmed by in vivo Chla fluorescence). Slopes and standard 

errors of the estimated regression lines were then compared to assess significant 

differences between consumption/growth rates of the controls and the treatments. 

 

6.3. Results 

 

In general, exposure to higher PAR intensities increased net growth rates and 

primary production of phytoplankton and no photoinhibition was observed. 

Saturating irradiances (ES) estimated through nonlinear fitting of equation 4 varied 

between 316.7 and 2252 µmol photons m-2 s-1 (mean 745.1 ± 643.1) (Fig. 6.2). Mean 

light-saturated rate of biomass-specific primary production (PBS) was 9.77 ± 4.88 mg 

C (mg Chl)-1 h-1, with the highest value in April (20.52 mg C (mg Chl)-1 h-1) and the 

lowest in December (4.53 mg C (mg Chl)-1 h-1).  
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Fig. 6.2 
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Figure 6.2 (previous page) – Photosynthesis-irradiance (P-E) curves for 14C incubations under PAR 
from water samples collected in Alcoutim throughout 2008. Nonlinear regressions were obtained by 

fitting values to equation 4. Equation represented is ))/exp(1( SPARS
BB EEPP −−= . 

 

No seasonal patterns of photosynthetic parameters variability were found. 

Significant relationships between photosynthetic parameters and water temperature, 

surface irradiance, mean light intensity in the mixed layer and light extinction 

coefficient were also not found. From 2008 through 2009, mean light intensity in the 

mixed layer (Im) was 28.26 ± 16.67 µmol photons m-2 s-1 and varied between 0.99 and 

63.03 µmol photons m-2 s-1(Fig. 6.3). Light extinction coefficient (Ke) followed the 

same pattern of variability as Im, with a mean value of 3.20 ± 1.37 and a ranging 

between 0.92 – 6.73 µmol photons m-2 s-1 (Fig. 6.3). No seasonal trends were observed 

for Im and Ke throughout the sampling period. 

 

 

 
 
 

 

 

 

 

 

 

 

 

Figure 6.3 – Temporal variation of mean light intensity in the mixed layer (Im, µmol photons m-2 s-1) 
and light extinction coefficient (ke, m-1) in Alcoutim from 2008 through 2009. 
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Figure 6.4 (previous page) - A) Nitrate (N), phosphate (P) and silicate (Si) net consumption rates (µM 
d-1), B) phytoplankton community net growth rates (d-1) based on chlorophyll a concentrations, and C) 
specific net growth rates (d-1) of diatoms and green algae based on abundance during the light 
enrichment experiment carried out in winter 2009. Control, I1, I2 and I3 correspond to PAR exposures 
of 50, 70, 120 and 225 µmol photons m-2 s-1, respectively (see Table 6.I). Vertical lines represent ± 1 S.D. 
Significant differences in the treatments in relation to the control are denoted by * (p < 0.05) or ** (p < 
0.01) over the correspondent bar. 
 

The most prominent responses to light enrichment were observed during the winter 

experiment. Although nutrient net consumption rates did not show, in general, 

significant differences in relation to the control (Fig. 6.4A), both the community net 

growth rate (0.40 - 0.47 d-1, Fig. 6.4B) and diatoms net growth rate (0.51 - 0.65 d-1, Fig. 

6.4C) were significantly higher in relation to the control (0.26 d-1 and 0.36 d-1, 

respectively). 

In the spring experiment, both nitrate (7.0 - 7.8 µM d-1) and silicate (6.9 - 7.5 µM d-1) 

net consumption rates in all the enriched treatments were significantly higher than 

rates in the control (N – 3.0 µM d-1; Si – 4.7 µM d-1, Fig. 6.5A). Community net growth 

rate (Fig. 6.5B) was significantly higher in treatments I1 (0.39 d-1) and I2 (0.38 d-1), but 

treatment I3 (0.29 d-1) was not different from the control (0.31 d-1). Diatoms net 

growth rate increased significantly in all light-enriched treatments (0.73 - 0.81 d-1) in 

relation to the control (0.21 d-1). Dinoflagellates also showed positive responses to 

light enrichment, mainly when exposed to the higher light intensity (Fig. 6.5C). 

During the spring-summer transition experiment, nitrate (4.7 - 5.0 µM d-1), phosphate 

(0.3 - 0.4 µM d-1) and silicate (2.0 - 2.3 µM d-1) net consumption rates were 

significantly higher in all the light-enriched treatments in relation to the control (N - 

0.6 µM d-1; P - 0.1 µM d-1; Si - 0.7 µM d-1; Fig. 6.6A). However, significant increases in 

the community net growth rate in relation to the control (0.09 d-1) were only 

observed in treatment I1 (0.21 d-1) (Fig. 6.6B). In treatment I3 (higher light), net growth 

rate decreased significantly (-0.1 d-1). Considering specific phytoplankton groups 

(Fig. 6.6C), net growth rates in the light-enriched treatments of diatoms (0.2 - 0.4 d-1) 

and dinoflagellates (0.3 - 0.4 d-1) increased significantly in all the light-enriched 

treatments in relation to the control (diatoms: -0.2 d-1; dinoflagellates: 0.7 d-1). 
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Figure 6.5 (previous page) - A) Nitrate (N), phosphate (P) and silicate (Si) net consumption rates (µM 
d-1), B) phytoplankton community net growth rates (d-1) based on chlorophyll a concentrations, and C) 
specific net growth rates (d-1) of diatoms, green algae and dinoflagellates based on abundance during 
the light enrichment experiment carried out in spring 2009. Control, I1, I2 and I3 correspond to PAR 
exposures of 50, 70, 120 and 225 µmol photons m-2 s-1, respectively (see Table 6.I). Vertical lines 
represent ± 1 S.D. Significant differences in the treatments in relation to the control are denoted by * (p 
< 0.05) or ** (p < 0.01) over the correspondent bar. 
 

Cyanobacteria growth rates displayed a high variability within replicates, so no 

trends can be deduced. 

In the summer experiment, net consumption rates of nitrate (2.9 - 3.3 µM d-1) and 

phosphate (1.1 - 1.2 µM d-1) increased significantly in relation to the control (N – 1.1 

µM d-1; P – 0.8 µM d-1) in all the treatments exposed to higher light intensities (Fig. 

6.7A). Silicate consumption in treatment I1 (20.2 µM d-1) was also higher than in the 

control (25.1 µM d-1). Community net growth rate (Fig. 6.7B) in treatment I1 (0.4 d-1) 

was significantly higher than in the control (0.3 d-1), but growth rate in the treatment 

subjected to the highest light intensity (I3), growth rate was lower (0.2 d-1) than the 

control. Only cyanobacteria responded to light enrichment in the summer 

experiments, with higher net growth rates when subjected to a slightly higher light 

than Im (treatment I1, 0.3 d-1; control 0.2 d-1), but showing with negative growth rates 

under higher light intensities (treatments I2 and I3, -0.9 and -0.3 d-1, respectively) (Fig. 

6.7C). 

During the autumn experiment, net consumption rates of nitrate (3.9 - 4.3 µM d-1), 

phosphate (0.5 - 0.7 µM d-1) and silicate (11.6 - 11.8 µM d-1) were significantly higher 

in all the treatments exposed to higher light intensities than in the control (N – 1.6 

µM d-1; P – 0.3 µM d-1; Si – 3.1 µM d-1) (Fig. 6.8A). Community net growth rate also 

showed positive responses in relation to the control (0.3 d-1) in treatments I1 (0.5 d-1) 

and I2 (0.4 d-1), but not in treatment I3 (Fig. 6.8B). Considering specific phytoplankton 

groups (Fig. 6.8C), diatoms showed significantly higher net growth rates in all the 

light-enriched treatments (0.9 - 1.4 d-1) in relation to the control (0.5 d-1). Green algae 

net growth rates were also higher in all the treatments in relation to the control (-0.02 

d-1), although significantly higher growth rates were only found in treatment I3 (0.6 d-

1).  
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Figure 6.6 (previous page) - A) Nitrate (N), phosphate (P) and silicate (Si) net consumption rates (µM 
d-1), B) phytoplankton community net growth rates (d-1) based on chlorophyll a concentrations, and C) 
specific net growth rates (d-1) of diatoms, green algae, dinoflagellates and cyanobacteria based on 
abundance during the light enrichment experiment carried out in the spring-summer transition 2009. 
Control, I1, I2 and I3 correspond to PAR exposures of 50, 70, 130 and 300 µmol photons m-2 s-1, 
respectively (see Table 6.I). Vertical lines represent ± 1 S.D. Significant differences in the treatments in 
relation to the control are denoted by * (p < 0.05) or ** (p < 0.01) over the correspondent bar. 
 

6.4. Discussion 

 

Phytoplankton production and net growth were clearly limited by light availability 

in the freshwater tidal zone of the Guadiana estuary. Phytoplankton growth was 

enhanced by PAR exposures ranging from 70 to 300 µmol photons m-2 s-1 and 

primary production was not photoinhibited at least up to 615 µmol photons m-2 s-1.  

Light limitation in nutrient-rich systems may either regulate the maximum attainable 

biomass in the system or stimulate physiological acclimation to low light conditions 

(Pennock and Sharp, 1986 and references therein). In most turbid systems, 

phytoplankton seems to be physiologically acclimated to low light, exhibiting a low 

light-saturated rate of biomass-specific primary production (PBS), low saturating 

irradiance (ES) and high photosynthetic efficiency (αS). However, this trend is not 

straightforward. PBS values are affected by nutrient concentration, temperature, cell 

size and light history (Falkowski, 1981 and references therein). Although minimum 

PBS values are characteristic of high latitudes and maximum PBS are typically found 

in tropical and subtropical waters (Finenko et al., 2002), a wide range of variability in 

photosynthetic parameters can be found in highly variable environments such as 

estuaries. In the Guadiana upper estuary, light-saturated rates of primary production 

were high (3.9 - 20.5 mg C (mg Chl)-1 h-1, mean 9.11 ± 4.97 mg C (mg Chl)-1 h-1) and 

comparable to rates in other turbid estuaries such as San Antonio Bay (3.0 - 22.9 mg 

C (mg Chl)-1 h-1: MacIntyre and Cullen, 1996) or the Neuse River estuary (0.14 – 33.9  
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Figure 6.7 (previous page) – A) Nitrate (N), phosphate (P) and silicate (Si) net consumption rates (µM 
d-1), B) phytoplankton community net growth rates (d-1) based on chlorophyll a concentrations, and C) 
specific net growth rates (d-1) of diatoms, green algae, dinoflagellates and cyanobacteria based on 
abundance during the light enrichment experiment carried out in the summer 2009. Control, I1, I2 and 
I3 correspond to PAR exposures of 50, 70, 130 and 300 µmol photons m-2 s-1, respectively (see Table 6.I). 
Vertical lines represent ± 1 S.D. Significant differences in the treatments in relation to the control are 
denoted by * (p < 0.05) or ** (p < 0.01) over the correspondent bar. 
 

mg C (mg Chl)-1 h-1: Boyer et al., 1993), but also comparable to those found in clearer 

waters such as the Hudson estuary (4.0 - 22.0 mg C (mg Chl)-1 h-1: Malone and Neale, 

1981) or the Gulf of Mexico (1.8 - 22.1 mg C (mg Chl)-1 h-1: Lohrenz et al., 1994). 

On the other hand, PBS values in the Guadiana were higher than those estimated for 

other turbid systems, such as the Bay of Brest (1.61 - 8.88 mg C (mg Chl)-1 h-1: Claquin 

et al., 2010), the Black Sea (1 - 11 mg C (mg Chl)-1 h-1: Finenko et al., 2002), the Pas 

estuary (0.6 - 15.0 mg C (mg Chl)-1 h-1: Pérez and Canteras, 1993) or the Tagus estuary 

(1.0 - 8.4 mg C (mg Chl)-1 h-1: Gameiro, 2009). In these turbid environments, low PBS 

and ES and high αS values suggest that phytoplankton is acclimated to low light 

conditions. Furthermore, the occurrence of photoinhibition at low irradiances, as 

described for the Tagus estuary for PAR exposures of approx. 150 – 300 µmol 

photons m-2 s-1, is another indicator of low light adapted phytoplankton cells 

(Gameiro, 2009). Nevertheless, photoinhibition of estuarine phytoplankton 

communities is seldom reported, given that the mixing depth usually exceeds the 

euphotic depth, and therefore cells spend considerable periods of time in the dark 

(Grobbelaar, 1995).  

No relationships were found between photosynthetic parameters and the mean light 

intensity in the mixed layer. Mesotidal, semidiurnal tides and river runoff promote a 

continuous vertical mixing of the water column in the upper estuarine section, which 

is probably faster than phytoplankton photoacclimation rates. The same conclusions 

were drawn for the Delaware estuary, a turbid, nutrient-rich estuary regulated by 

light, where photoacclimation plays a minor role on the system’s overall productivity 

(Pennock and Sharp, 1986). On the contrary, photoacclimation rates faster than 

mixing can be observed in other systems such as in the NE Mediterranean Sea  
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Figure 6.8 (previous page) – A) Nitrate (N), phosphate (P) and silicate (Si) net consumption rates (µM 
d-1), B) phytoplankton community net growth rates (d-1) based on chlorophyll a concentrations, and C) 
specific net growth rates (d-1) of diatoms and green algae based on abundance during the light 
enrichment experiment carried out in the autumn 2009. Control, I1, I2 and I3 correspond to PAR 
exposures of 50, 90, 120 and 225 µmol photons m-2 s-1, respectively (see Table 6.I). Vertical lines 
represent ± 1 S.D. Significant differences in the treatments in relation to the control are denoted by * (p 
< 0.05) or ** (p < 0.01) over the correspondent bar. 
 

(Morán and Estrada, 1995). The effect of vertical mixing on photosynthesis is actually 

highly variable. Vertical mixing can enhance, reduce or have no effect on 

productivity (MacIntyre and Geider, 1996 and references therein). The long-term 

light enrichment experiments confirmed that phytoplankton is not acclimated to low-

light conditions in the freshwater tidal reaches of the Guadiana estuary. Positive 

responses of phytoplankton community to light enrichment were obvious in all 

experiments, especially in the winter. In this experiment, initial phytoplankton 

community was undoubtedly light-limited, and light enrichment resulted in 

significant increases in chlorophyll a and diatom abundance, under all PAR 

exposures (90 - 225 µmol photons m-2 s-1). Light usually regulates phytoplankton 

growth during the winter in many other estuarine and coastal systems (e.g., Pennock 

and Sharp, 1994; Maldonado et al., 1999; Ogilvie et al., 2003). Low phytoplankton 

biomass and abundance in the Guadiana estuary during this period (Domingues and 

Galvão, 2007; Domingues et al., 2007) can thus be attributed to light limitation, given 

that nutrient concentrations are usually not limiting (see Chapter 4). 

In the other experiments, different responses were observed under different PAR 

intensities. Exposure to 70 - 90 µmol photons m-2 s-1 (I1) promoted significant 

increases in biomass in all experiments, accompanied by significant increases in net 

growth rates of specific phytoplankton groups, usually diatoms. However, different 

responses in the community net growth rates (chlorophyll a concentration) and in net 

growth rates of specific phytoplankton groups (abundance) were observed under 

exposure to 120 - 130 µmol photons m-2 s-1 (I2) and 225 - 300 µmol photons m-2 s-1 (I3). 

Indeed, a decoupling between Chla concentration and phytoplankton abundance 

was observed, with decreasing Chla and increasing abundance of specific groups 

with increasing PAR intensities. Photoinhibition was not observed during the 14C 

incubations, even for higher light intensities (up to 600 µmol photons m-2 s-1), and 
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phytoplankton abundance and nutrient consumption under I2 and I3 were 

significantly higher in most of the experiments. Therefore, the decrease in Chla 

concentration under higher light intensities may be attributed to a dilution of 

chlorophyll content by enhanced cell division or carbon production (Post et al., 1984). 

Indeed, chlorophyll a concentration depends on the physiological state of the cell, 

and it usually decreases with increasing light and nutrient stress (e.g., Zonneveld, 

1998; Kruskopf and Flynn, 2005). These results clearly show that the use of 

chlorophyll a concentration as a proxy for phytoplankton biomass is not 

straightforward and may not reflect the variability of phytoplankton communities in 

natural systems (see Domingues et al., 2008, Chapter 2), especially in low-light 

environments (Buchanan et al., 2005). Furthermore, the highest PAR intensities used 

for the short-term (615 µmol photons m-2 s-1) and the long-term (300 µmol photons m-

2 s-1) experiments are within the range of saturating light intensities described for 

estuarine phytoplankton, from 100 to 800 µmol photons m-2 s-1 (e.g., Fisher et al., 

1982; Pennock and Sharp, 1986; Madariaga, 1995; Tillmann et al., 2000; Macedo et al., 

2001; Kocum et al., 2002; Oviatt et al., 2002). Therefore, the occurrence of 

photoinhibition in the freshwater tidal reaches of the Guadiana estuary is unlikely. 

Considering specific phytoplankton groups, diatoms showed the most prominent 

responses to light enrichment throughout the year. Except in the summer 

experiment, diatom net growth rates increased significantly in relation to the control 

under PAR exposures ranging between 70 and 300 µmol photons m-2 s-1, 

simultaneously with significant increases in nutrient consumption, mainly Si. These 

results clearly show that diatom growth was light-limited. In the summer, no 

positive response was observed on net growth rates or on nutrient net consumption 

rates, most likely due to a strong nutrient limitation. Indeed, diatom growth 

limitation by nitrogen is evident in the Guadiana upper estuary especially in the 

spring and summer, when nitrate concentrations are lower than 20 µM (see Chapter 

4). Furthermore, mean light intensity in the mixed layer did not show the 

characteristic seasonality of temperate latitudes, with higher light availability in the 

summer and lower in the winter, most likely due to the river flow regulation 

imposed by the Alqueva dam that results in a more constant river flow throughout 

the year. Im in Alcoutim varied between 0.99 – 63.03 µmol photons m-2 s-1, which is 
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lower than typical saturating irradiances described for diatoms (~30 to ~300 µmol 

photons m-2 s-1: e.g., Blanchemain and Grizeau, 1996; Popovich and Gayoso, 1999; 

Fietz and Nicklisch, 2002). 

Contrary to the other phytoplankton groups, picocyanobacteria growth rates 

increased only under exposure to 70 µmol photons m-2 s-1 (I1), whilst higher PAR 

intensities (130 and 300 µmol photons m-2 s-1) promoted a significant decrease in 

growth rates, suggesting photoinhibition. Indeed, cyanobacteria usually display low 

saturating irradiances, between 20 and 100 µmol photons m-2 s-1 (Andersson et al., 

1994; Phlips and Badylak, 1996; Timmermans et al., 2005) and photoinhibition of 

picocyanobacteria has been observed for PAR irradiances between 60 and 300 µmol 

photons m-2 s-1 (Platt et al., 1983; Phlips and Badylak, 1996). These results suggest 

that cyanobacteria were the only group well acclimated to low light conditions in the 

Guadiana estuary.  

Although not statistically significant, due to high variability within replicates, net 

growth rates of green algae increased with increasing irradiance, and the highest 

PAR exposures in the spring-summer transition (300 µmol photons m-2 s-1) and 

autumn (225 µmol photons m-2 s-1) experiments promoted significant increases on 

green algae net growth rates. Indeed, green algae are described as “sun” species 

(Raven and Richardson, 1986), but saturating irradiances vary greatly (e.g., ~60 - 400 

µmol photons m-2 s-1 for Scenedesmus spp.: Senger and Fleishhacker, 1978; Flameling 

and Kromkamp, 1997). Dinoflagellates showed similar responses to those of green 

algae, although they were only observed during the productive period (from spring 

through summer). Only the highest PAR exposures (120-300 µmol photons m-2 s-1) 

promoted significant positive responses of dinoflagellates. In the summer, however, 

nutrient limitation was probably too strong (see Chapter 4) and no changes in 

growth rates were observed under higher PAR exposures. Dinoflagellates are usually 

described as “shade” species (Raven and Richardson, 1986) and saturating 

irradiances for several dinoflagellate species grown in cultures vary between 70 and 

114 µmol photons m-2 s-1 (Yamaguchi et al., 1997; Kim et al., 2004; Nagasoe et al., 

2006; Matsubara et al., 2007). Our results, however, indicate that saturating 

irradiances of dinoflagellates in the freshwater tidal reaches of the Guadiana estuary 
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are most likely higher. The most abundant species in the Guadiana estuary, 

Kryptoperidinium foliaceum, is usually grown in cultures at 90 µmol photons m-2 s-1 

(Figueroa et al., 2009; Domingues, unpublished data), but algae from a natural 

environment, not adapted to constant light conditions, will most likely exhibit a wide 

range of photosynthetic parameters. It is likely that saturating irradiances will vary 

intra- and inter-specifically, temporally and spatially. Additionally, the range of 

saturating intensities described for estuarine phytoplankton communities (100 - 800 

µmol photons m-2 s-1, see above) are higher than those described for algal species 

grown under controlled laboratorial conditions. This reflects that natural 

communities living in such unstable environments as turbid estuaries, rather than 

being adapted to low light conditions, are able to grow under a wide range of 

conditions and respond positively to variable light and nutrient conditions. 

In conclusion, phytoplankton growth in the freshwater tidal reaches of the Guadiana 

estuary was light-limited throughout the year. In the summer, co-limitation by 

nitrogen masked the response to light enrichment. High rates of light-saturated 

primary production, high saturating irradiances and low photosynthetic efficiencies 

suggest that phytoplankton is not acclimated to low light conditions. 
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Environmental drivers of phytoplankton in a turbid estuary:  

nutrient versus light limitation 

Rita B. Domingues, Ana B. Barbosa, Ulrich Sommer, Helena M. Galvão 

(submitted) 

Abstract 
 
Nutrients and light are typically considered the most important drivers of 
phytoplankton growth in estuaries. Given that phytoplankton plays a critical role in 
estuarine ecosystems, a comprehensive understanding of how phytoplankton is 
regulated is needed to properly assess the impacts of eutrophication and other 
natural or human-induced perturbations. The main goal of this work is to 
understand the relative importance of light and nutrients on phytoplankton 
succession and production in the Guadiana estuary, a sensitive and relatively 
pristine estuary, where anthropogenic pressures have been increasing in the last 
years. Sampling campaigns were conducted fortnightly during 2007 and 2008 in four 
locations covering the upper, middle and lower estuarine regions. Several abiotic and 
biotic variables were determined, including light availability, nutrient concentration 
and chlorophyll a concentration. Phytoplankton composition, abundance and 
biomass (biovolume) were determined using both epifluorescence and inverted 
microscopy.  
Throughout 2007 and 2008, river flow controlled nitrate inputs and suspended 
particulate matter into the estuarine zone. Nitrogen was limiting to phytoplankton 
growth during 2008, with nitrate concentrations mostly <20 µM; in addition, 
phytoplankton abundance and biomass were significantly lower in 2008, although 
the same seasonal pattern was observed. The typical phytoplankton succession of 
temperate freshwater systems was observed in the upper and middle estuaries, with 
a diatom bloom in late spring/early summer, followed by a green algae bloom and 
finally a cyanobacteria summer bloom. Diatoms were the main component of 
phytoplankton biomass, whilst cyanobacteria dominated the community in terms of 
abundance. Light limitation probably occurred throughout the sampling period, but 
phytoplankton from the more turbid zones did not seem to be adapted to low light 
conditions. Primary production was in fact higher in the turbid regions, suggesting 
that phytoplankton growth was not regulated only by light, as described for other 
turbid estuaries; instead, nutrient availability probably played an equally important 
role in phytoplankton regulation in this turbid estuarine system. 
 
Keywords: phytoplankton, nutrients, light, regulation, primary production, 
Guadiana estuary 
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7.1. Introduction 

 

Estuaries have long been recognized as areas of high potential primary production, 

due to a significant riverine supply of nutrients, but the combination of other factors 

such as high turbidity and rapid flushing times may limit phytoplankton growth and 

therefore prevent the achievement of this potential (Joint and Pomroy, 1981). 

Nutrients and light are usually the most important bottom-up factors regulating 

phytoplankton growth, and their effects on estuarine phytoplankton dynamics have 

been addressed for a long time (e.g., Fisher et al., 1992; Mallin and Paerl, 1992). 

Nutrient availability has frequently outweighed all other factors as the main limiting 

factor of phytoplankton growth (Roelke et al., 1999 and references therein). Whilst in 

marine and freshwater systems nitrogen (N) and phosphorus (P), respectively, are 

widely accepted as the limiting nutrients, there is evidence of spatial and temporal 

variability of the limiting nutrient in estuaries, from P limitation in the winter, to 

silicon (Si) limitation of diatoms in the spring and N limitation in the summer (Fisher 

et al., 1999). These deeply-rooted dogmas have been questioned (Sterner, 2008), and 

in reality, the limiting nutrient may be species- or group-specific, given that the 

nutritional requirements of phytoplankton vary intra- and inter-specifically 

(Carpenter and Guillard, 1971).  

Light availability has not yet received the same attention as nutrients as an 

environmental driver of phytoplankton, but in turbid ecosystems, light is of 

paramount importance (Cole and Cloern, 1984; Kromkamp and Peene, 1995; Kocum 

et al., 2002) and it may affect nutrient uptake (Litchman et al., 2004). Light 

availability in estuaries is regulated by turbidity, which in turn is mostly a 

consequence of suspended particulate matter. In addition, phytoplankton in turbid 

and nutrient-rich estuaries is more controlled by variations in SPM rather than the 

seasonal irradiance cycle (Adolf et al., 2006).  

Both nutrient and light availability are highly variable within estuarine systems on 

temporal and spatial scales. A general seasonal pattern of phytoplankton growth 

limitation is limitation by light in the winter and by nitrogen in the summer. Spatial 

patterns may also occur, with P-limitation at the freshwater end and N-limitation at 
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the seaward end (Kocum et al., 2002 and references therein). The estuarine turbidity 

maximum zone may also be permanently light-limited (Irigoien and Castel, 1997). 

Estuaries are valuable environments, both ecologically and economically 

(Underwood and Kromkamp, 1999), which have been increasingly subjected to 

eutrophication. The understanding of ecosystem functioning is thus imperative to 

predict, mitigate and/or prevent the adverse effects caused by anthropogenic 

pressures. Given that phytoplankton is a critical player in any aquatic ecosystem, due 

to its ecological function of primary production, a comprehensive understanding of 

how phytoplankton is regulated is needed to properly assess the impacts of 

eutrophication and other natural or human-induced perturbations. 

The Guadiana estuary is located in a highly vulnerable region to climate change 

(IPCC, 2001) and it has been increasingly subjected to human disturbances, namely 

urban development. In addition, the large Alqueva dam restricts a significant 

amount of freshwater, promoting significant impacts on the estuarine ecosystem 

downriver. Phytoplankton succession in the Guadiana estuary, especially in the 

freshwater tidal zone, has been classically considered nutrient-regulated (Rocha et 

al., 2002), but the low light availability probably plays an important role on 

phytoplankton growth (Domingues et al., 2005). Recently, a trend of decreasing 

turbidity and decreasing chlorophyll has been observed for the Guadiana estuary, 

suggesting a shift from a potentially light-limited environment to a more nutrient-

limited one (Barbosa, et al., 2010). The main goal of this study is, therefore, to 

understand the relative importance of light and nutrients on phytoplankton 

succession and production in the Guadiana estuary. To accomplish this goal, 

sampling campaigns along the estuarine salinity gradient were carried out, and 

several environmental drivers of phytoplankton were analysed, as well as 

phytoplankton composition, abundance and biomass. Additionally, we present the 

first estimates of primary production for this estuarine system. 
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7.2. Materials and Methods 

 

7.2.1 Study site and sampling strategy 

 

The Guadiana River arises in Spain, flows for 810 km and drains between SE 

Portugal and SW Spain (Fig. 7.1). Its last 70 km correspond to the estuarine zone, 

located in a Mediterranean climate area. The estuary is influenced by semidiurnal, 

mesotidal tides, and is usually partially stratified in its lower and middle sections, 

depending on river flow and tidal stage, and well mixed in the upper section. In the 

last years, intense damming has promoted a more regular but reduced river flow 

(2007-9: 22.2 ± 18.6 m3s-1), contrasting with sharp variations between dry and humid 

months (1995-2000: 333.0 ± 1095.9 m3s-1, http://snirh.pt) that used to occur before the 

Alqueva dam construction, 140 km from the river’s  mouth. 

Sampling campaigns were performed fortnightly during 2007 and 2008 in four 

representative sampling stations in the Guadiana estuary: Mértola (70 km from river 

mouth) and Alcoutim (38 km) in the upper estuary; Foz de Odeleite (22 km, hereafter 

Odeleite) in the middle estuary; and Vila Real de Santo António (2 km from mouth, 

hereafter VRSA) in the lower estuary (Fig. 7.1). 
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Figure 7.1 – Map of the Guadiana estuary and location of the sampling stations. 
 

7.2.2 Physical-chemical variables 

 

Data on daily river flow at Pulo do Lobo (85 km from river mouth), daily rainfall at 

Alcoutim and hourly solar radiation at São Brás de Alportel (50 km eastwards from 

Alcoutim) were obtained from the Portuguese National Water Institute public 

database (http://snirh.pt). Vertical profiles of water temperature and salinity were 

determined in situ using a YSI 556 MPS probe. Vertical profiles of photosynthetically 

active radiation (PAR) intensity were determined using a LI-COR radiometer and 

light extinction coefficient (ke, m-1) was calculated using an exponential function (eq. 

7.1): 
ZK

Z
eeII −= 0     (eq. 7.1) 

 

where Iz is the light intensity at depth level Z (m) and I0 is the light intensity at the 

surface. Hourly solar irradiance (W m-2) was used to estimate the mean daily 

photosynthetically active radiation (PAR) at the surface (I0), considering that PAR 

constitutes 45% of the total radiation reaching the water surface and a 4% reflection 

at the surface (Baker and Frouin, 1987). I0 values were converted to µmol photons m-2 
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s-1 multiplying by 4.587 mmol photons s-1 W-1 (Morel and Smith, 1974). Mean light 

intensity in the mixed layer for each sampling date (Im, µmol photons m-2 s-1) was 

subsequently calculated according to: 

 
1)(

0 ))(1( −−−= me
ZK

m ZKeII e    (eq. 7.2) 

 

where Zm (m) the depth of the mixed layer (Jumars, 1993). The mixed layer at 

stations Mértola, Alcoutim and Odeleite corresponded to the whole water column, 

since neither haline nor thermal stratification was observed. The mixing layer at 

VRSA was determined as the surface layer where salinity variations were <0.5 PSU. 

Euphotic zone depth (Zeu, m) was calculated as 4.61/ke, assuming that irradiance at 

the bottom was 1% of surface irradiance. The ratio mixing depth:euphotic depth 

(Zmix:Zeu) was calculated as proposed by Cloern (1987). It is generally considered that 

when Zmix:Zeu values are higher than 5, i.e., the mixing depth is five times deeper 

than the euphotic depth, the development of phytoplankton blooms will be 

prevented, given that the cells will remain long periods below the euphotic zone. 

Light penetration in the water column was also measured with a Secchi disc (DS, m) 

and light extinction coefficient was calculated as ke = C/Ds, where C is a constant (C 

= 1.4 for euphotic depths ≥5 m: Holmes, 1970; C = 1.7 for euphotic depths <5 m: 

Poole and Atkins, 1929). An empirical relationship between Secchi disk 

measurements and light extinction coefficient (estimated using light data measured 

with the radiometer) was estimated using nonlinear regression. 

Sub-superficial (approx. 0.5 m) water samples for determination of dissolved 

inorganic macronutrients were collected and immediately filtered through cellulose 

acetate filters (Whatman, nominal pore diameter = 0.2 µm) to acid-cleaned vials. 

Ammonium (NH4+), phosphate (PO43-) and silicate (SiO44-) were determined 

immediately upon arrival to the lab, whilst samples for nitrate (NO3-) and nitrite 

(NO2-) where frozen (-20ºC) until analysis. All nutrients were determined in 

triplicate, according to the spectrophotometric methods described by Grasshoff et al. 

(1983), using a spectrophotometer Hitachi U-2000 for ammonium, phosphate and 

silicate, and an autoanalyzer Skalar for nitrate and nitrite.  
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Concentration of suspended particulate matter (SPM) was determined 

gravimetrically. For each sample, the analysis was made in duplicate. 250 mL were 

filtered onto pre-combusted (4 hours at 450ºC) glass fibre filters (Whatman GF/F, 

nominal pore diameter = 0.7 µm), dried at 50ºC for 24 hours and then weighed after 

cooling down to room temperature. Afterwards, the filters were combusted again to 

determine the concentration of particulate organic matter (POM). 

 

7.2.3 Phytoplankton composition, abundance and biomass 

 

Chlorophyll a concentration was determined spectrophotometrically using glass fibre 

filters (Whatman GF/F, nominal pore diameter = 0.7 µm). Chlorophyll a was 

extracted overnight at 4ºC with 90% acetone; after centrifugation, absorbance of the 

supernatant was measured in the spectrophotometer Hitachi U-2000 at 750 and 665 

nm, before and after addition of HCl 1 M (Parsons et al., 1984). 

Phytoplankton composition, abundance and biomass were determined using 

epifluorescence (Haas, 1982) and inverted microscopy (Utermöhl, 1958). Samples for 

enumeration of pico- (<2 µm) and nanophytoplankton (2 - 20 µm) were preserved 

with glutardialdehyde (final concentration 2%) immediately after collection, stained 

with proflavine and filtered (1 - 5 mL, depending on the amount of suspended 

matter) onto black polycarbonate membrane filters (Whatman, nominal pore 

diameter = 0.45 µm). Preparations were made within 24 h of sampling using glass 

slides and non-fluorescent immersion oil (Cargille type A), and then frozen (-20ºC) in 

dark conditions, to minimize loss of autofluorescence. Enumeration was made at 

787.5x magnification using an epifluorescence microscope (Leica DM LB). Samples 

for enumeration of microphytoplankton (>20 µm) were preserved with acid Lugol’s 

solution (final concentration approx. 0.003%) immediately after collection, settled in 

sedimentation chambers (2-10 mL, depending on the amount of suspended matter; 

sedimentation time = 24 hours) and observed at 400x magnification with an inverted 

microscope (Zeiss Axiovert S100). Phytoplankton cells were identified, whenever 

possible, to species level. A minimum of 50 random visual fields, at least 400 cells in 

total and 50 cells of the most common genus were counted. Assuming that the cells 

were randomly distributed, the counting precision was ±10% (Venrick, 1978). 
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7.2.4 Primary production 

 

The Steeman-Nielsen method (1952) was used to determine phytoplankton primary 

production in water samples collected throughout 2008. 50 mL aliquots were added 

to polycarbonate flasks and 100 µL (2 µCi) of 14C-HCO3- were added to each flask. 

The sample flasks were incubated in triplicate under different light intensities 

(approx. 5, 83, 117, 302, 515 and 615 µmol photons m-2 s-1) for 2 hours. Three dark 

flasks were also incubated and processed as the sample flasks. Incorporation of 14C 

was stopped with 1 mL formaldehyde, and the samples were filtered onto nitrate 

cellulose filters (nominal pore diameter = 0.45 µm), which were placed inside 20 mL 

high-density polyethylene scintillation vials. The vials were subsequently placed 

inside a fume hood with HCl, to allow the release of inorganic carbon attached to the 

cells. 10 ml of scintillation liquid (Universol) were added to each vial, put in 4ºC 

overnight, and 14C activity was subsequently measured on a scintillation counter 

(Beckman). Primary production was calculated as: 

 

RxN

xDxWxCARbRs
PP

)( −=    (eq. 7.3) 

 

where PP is phytoplankton primary production (mg C L-1 h-1), Rs (dpm) is the 

activity in the sample, Rb (dpm) is the mean activity of the dark flasks, D (=1.05) is 

the isotopic discrimination, W (mg C L-1) is the amount of dissolved inorganic carbon 

in the sample (obtained through alkalinity), CA is a correction factor (total sample 

volume/filtered volume), R (dpm) is the total activity of the 14C added to each flask, 

and N (hours) is the incubation time. Alkalinity was determined by titration with 

HCl for non-freshwater samples (S > 1 PSU) (Parsons et al., 1984). A stepwise 

titration (Gran, 1950, 1952; Andersen, 2002) was used to determine alkalinity in 

freshwater samples (S < 1 PSU). Carbonate alkalinity was then converted to 

dissolved inorganic carbon and subsequently used in primary production 

determinations. 



7. Environmental drivers of phytoplankton in a turbid estuary: nutrient versus light limitation 

 

151 
 

Primary production (PP, mg C L1- h-1) was converted to biomass-specific primary 

production (PB = PP/Chla, mg C (mg Chla)-1 h-1). The photosynthetic parameters 

were estimated using nonlinear regression fitting of equation 7.4 (Platt et al., 1980): 

 

))/.exp(1( S
B

PARS
BB PEPP α−−=   (eq. 7.4) 

 

where PBS is the light-saturated rate of biomass-specific primary production (mg C 

(mg Chla)-1 h-1), α is the initial slope of the photosynthesis-irradiance curve (mg C 

(mg Chla)-1 h-1 (µmol photons m-2 s-1)-1) and EPAR is the PAR irradiance during 

incubation (µmol photons m-2 s-1). The saturating irradiance (ES, µmol photons m-2 s-

1) was determined as PBS/ α.  

Daily areal primary production (mg C m-2 d-1) in the euphotic zone was also 

calculated for each sampling day using 0.1 m compartments. Volumetric primary 

production (mg C m-3 d-1) was obtained dividing daily areal primary production by 

the euphotic depth. Volumetric production was then divided by chlorophyll a 

concentration to obtain the production to biomass ratio (P/B ratio). 

 

7.2.5 Data analyses 

 

Horizontal profiles abiotic and biotic variables were created using Surfer 8.01 

software, using kriging (linear variogram model) as the gridding method. The 

occurrence of spatial differences was determined using analyses of variance 

(ANOVA) for normally distributed data and a Kruskall-Wallis ANOVA on ranks for 

other data. Normality of the data was assessed with a Kolmogorov-Smirnov test. 

Temporal variability was assessed using an unpaired t-test or a Mann-Whitney rank 

sum test, depending on the normality of the data. The strength of associations 

between variables was measured with Pearson’s or Spearman’s correlation, 

depending on the normality of the data. 

ANOSIM, a multivariate technique was applied to examine the existence of 

significant inter-annual, seasonal and spatial patterns of environmental variables (Im, 

Ke, Zm:Zeu, SPM, NO3-, PO43-, SiO44-), using the software Primer 5.2.1 (Primer-E Ltd.). 

The factors considered were: “Year” (2007, 2008, 2009); “Season” (spring = March, 
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April, May; summer = June, July, August, September; autumn = October, November; 

winter = January, February, December); and “Station” (Mértola, Alcoutim, Odeleite, 

VRSA). The similarity matrix was created after log(x+1) transformation of data and 

setting Euclidean distance as the similarity measure. 

 

7.3. Results 

 

7.3.1 Physical-chemical environment 

 

Daily freshwater flow at Pulo do Lobo hydrometric station varied between 1.8 m3 s-1 

(July 2008) and 125.1 m3 s-1 (February 2008) from 2007 through 2008, with a mean 

value of 25.2 ± 16.2 m3 s-1 (Fig. 7.2). Freshwater flow during the sampling period 

showed significant interannual variability, with higher values in 2007 (35.6 ± 14.5 m3 

s-1) and lower in 2008 (14.2 ± 9.1 m3 s-1). Overall, minimum values were measured in 

the summer months and maximum values during winter. Daily rainfall in Alcoutim 

from 2007 through 2008 varied between 0.0 and 57.20 mm, with a mean value of 1.19 

± 4.68 mm (Fig. 7.2). No interannual differences were found between 2007 and 2008. 

However, river flow and rainfall were positively correlated in 2007 (r2 = 0.112, p < 

0.05, n = 365), but not in 2008. 
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Figure 7.2 – Daily mean freshwater flow at Pulo do Lobo hydrometric station and daily rainfall (mm d-

1) in Alcoutim from 2007 through 2008 (data obtained from http://snirh.pt). 
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Surface water temperature did not show significant spatial variability, although 

water temperature in the upper estuary (Mértola: 19.8 ± 4.8ºC, range 10.8 – 27.7ºC) 

displayed a larger range of values in relation to the lower estuary (VRSA: 19.1 ± 

3.8ºC, range 12.7 – 25.3ºC). Water temperature seasonality was the expected for 

temperate regions, with higher values during summer (max 27.7ºC) and lower in the 

winter (min 10.7ºC). Salinity varied significantly among sampling stations. VRSA, in 

the lower estuary, registered the highest salinity (26.8 ± 6.9, range 11.6 – 37.3), while 

the lowest salinity values were measured in the upper estuary (Mértola and 

Alcoutim: 0.2 – 4.3). Significant interannual differences in salinity were also observed 

in the Guadiana estuary, with lower salinity values during 2007 (6.7 ± 10.4) in 

relation to 2008 (9.6 ± 12.8).  

Mean light intensity in the mixed layer (Im) showed significantly lower values (p < 

0.001) in the middle estuary (Odeleite) and in the transition zone between the middle 

and the upper estuaries (Alcoutim) (Fig. 7.3A, Table 7.I). No significant inter-annual 

differences on Im were found, but seasonal differences were detected, with lower Im 

values in the winter. Im varied between 4.3 µmol photons m-2 s-1 (middle estuary) and 

499.6 µmol photons m-2 s-1 (lower estuary) (Table 7.I). Light extinction coefficient (ke, 

Fig. 7.3B) and the ratio mixing depth to euphotic depth (Zmix:Zeu, Fig. 7.3C) were 

significantly higher in the middle estuary (max ke = 9.5 m-1, Zmix:Zeu = 20.5) and 

lower in the lower estuary (min ke = 0.2 m-1, Zmix:Zeu = 0.1). Zmix:Zeu at stations 

Odeleite (middle estuary) and Alcoutim (upper estuary) was, on average, higher 

than 5 (Table 7.I). The following empirical exponential relationship between Secchi 

depth (m) and ke (m-1) (obtained with the radiometer) was estimated through 

nonlinear regression: ke = 6.683 exp(-1.507DS) (Fig. 7.4).  
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Figure 7.3 – Horizontal profiles of (A) mean light intensity in the mixed layer (Im, µmol photons m-2 s-

1), (B) light extinction coefficient (ke, m-1), and (C) ratio mixing-depth to euphotic depth (Zm:Zeu) in the 
Guadiana estuary from 2007 through 2008.  
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Table 7.I – Mean values ± 1 standard deviation (mean ± SD), minimum (min) and maximum (max) values for mean light intensity in the mixed layer (Im, µmol 
photons m-2 s-1), light extinction coefficient (ke, m-1), mixing depth to euphotic depth ratio (Zm:Zeu), concentration of suspended particulate matter (SPM, mg L-1), 
concentration of particulate organic matter (POM, mg L-1), contribution of POM to SPM (%), concentration (µM) of ammonium (NH4+), nitrate (NO3-), silicate (SiO44-) 
and orthophosphate (PO43-), N:P and Si:N ratios in the sampling stations from 2007 through 2008 (nd = below detection limit). 
 
  mean ± SD min max mean ± SD Min max mean ± SD min max 

  Im (µmol photons m-2 s-1) ke (m-1) Zm:Zeu 
Mértola  91.5 ± 58.3 14.8 342.2 1.7 ± 1.2 0.4 6.8 2.2 ± 1.6 0.6 8.7 

Alcoutim  39.6 ± 14.4 6.2 61.1 3.0 ± 1.4 1.2 8.6 6.0 ± 2.9 2.5 17.6 
Odeleite  26.2 ± 21.0 4.3 98.7 3.9 ± 2.0 0.6 9.5 8.4 ± 4.4 1.3 20.5 

VRSA  174.6 ± 89.6 21.1 499.6 1.0 ± 0.6 0.2 3.3 1.0 ± 0.5 0.1 2.2 
  SPM (mg L-1) POM (mg L-1) %POM/SPM 

Mértola  15.2 ± 11.2 4.6 59.8 4.6 ± 2.6 0.0 10.6 42.1 ± 29.6 1.9 100.0 
Alcoutim  35.9 ± 16.8 10.8 89.6 8.0 ± 6.1 0.4 31.4 24.6 ± 19.6 1.7 100.0 
Odeleite  75.4 ± 31.3 25.0 141.2 14.4 ± 6.7 1.0 38.8 20.8 ± 11.0 2.6 65.9 

VRSA  102.8 ± 28.2 42.2 185.6 29.8 ± 8.5 7.2 49.0 29.4 ± 6.8 17.1 49.9 
  NH4+ NO3- PO43- 

Mértola  5.7 ± 9.5 nd 57.4 28.5 ± 23.1 0.1 99.0 1.9 ± 0.8 0.1 4.3 
Alcoutim  3.1 ± 5.5 nd 33.6 32.8 ± 20.5 nd 93.6 2.2 ± 0.7 0.1 4.1 
Odeleite  3.2 ± 4.3 nd 26.2 29.9 ± 16.9 3.6 80.8 1.9 ± 0.7 0.1 3.2 

VRSA  6.7 ± 7.7 0.7 39.1 14.1 ± 15.3 0.5 86.0 1.3 ± 1.2 nd 6.8 
  SiO44- N:P Si:N 

Mértola  35.5 ± 23.9 1.3 100.8 20.6 ± 16.9 2.2 62.9 1.6 ± 1.6 0.0 6.8 
Alcoutim  44.2 ± 30.8 3.3 125.7 18.8 ± 14.5 0.1 51.4 1.6 ± 1.3 0.0 5.8 
Odeleite  36.8 ± 28.1 0.8 95.1 20.4 ± 15.1 5.4 56.7 1.4 ± 1.0 0.0 3.7 

VRSA  14.6 ± 11.1 1.4 56.7 21.5 ± 21.5 5.5 98.7 1.0 ± 0.8 0.0 2.9 
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Figure 7.4 – Empirical exponential relationship between Secchi depth (DS, m) and light extinction 
coefficient (ke, m-1), obtained through nonlinear regression (y0 = 6.683 ± 0.4143; slope = 1.507 ± 0.1257; 
n = 194; R2 = 0.5614). 
 

Suspended particulate matter did not follow an inverse pattern in relation to light 

availability, presenting the highest values in the lower estuary (max 185.6 mg L-1), 

where Im was also the highest, and decreasing upriver (min 4.6 mg L-1 in Mértola) 

(Fig. 7.5A, Table 7.I). Significant correlations were obtained between SPM and light 

extinction coefficient in the upper (Mértola: r = 0.7470, p < 0.001; Alcoutim: r = 

0.7252, p < 0.001) and middle estuaries (r = 0.5567, p < 0.001), but no relationship was 

found for the lower estuary (p > 0.05).  

Most SPM was of inorganic origin. Particulate organic matter concentration 

presented the highest values in the lower estuary (29.8 ± 8.5 mg L-1, range 7.2 – 49.0 

mg L-1) and the lowest concentrations in the upper estuary (Mértola: 4.6 ± 2.6 mg L-1, 

range 0.0 – 10.6 mg L-1) (Fig. 7.5B, Table 7.I). Mean contribution of POM to SPM 

varied between 42.1% ± 29.6% (range 1.9% - 100%) in Mértola and 20.8% ± 11.0% 

(range 2.6% - 65.9%) in Odeleite. Overall, POM contribution to SPM was higher in 

Mértola and VRSA (29.4% ± 6.8%, range 17.1% - 49.9%) than in the other stations (Fig. 

7.5C, Table 7.I).  
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Figure 7.5 – Horizontal profiles of A) suspended particulate matter concentration (SPM, mg L-1), B) 
particulate organic matter concentration (POM, mg L-1) and C) contribution of POM to total SPM (%) 
in the Guadiana estuary from 2007 through 2008. 
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Except for ammonium, spatial and seasonal variability in nutrient concentration was 

consistent throughout the sampling period. Spatially, higher nutrient concentrations 

were determined in the upper estuary, decreasing downriver. Seasonally, higher 

nutrient concentrations were detected in the winter and spring and lower in the 

summer. Throughout the sampling period, nitrate concentration varied between 14.1 

± 15.3 µM in VRSA and 32.8 ± 20.5 µM in Alcoutim and spatial variability was 

detected, with higher values in the upper estuary (Mértola: 28.5 ± 23.1 µM) and lower 

in the lower estuary (Fig. 7.6A, Table 7.I). Nitrate also varied interannually, with 

higher concentrations in 2007 (35.6 ± 23.9 µM) in relation to 2008 (18.8 ± 12.4 µM). 

Ammonium (NH4+) varied between undetectable values and 57.4 µM, and presented 

higher values in Mértola (5.7 ± 9.5 µM) and VRSA (6.7 ± 7.7 µM), and lower in the 

other stations. Maxima in ammonium concentration were detected occasionally in all 

sampling stations, but neither seasonal nor interannual variability was evident (Table 

7.I). Overall, nitrate was the main component of total dissolved inorganic nitrogen 

(DIN), with contributions ranging from 64.7% ± 24.7% in VRSA to 88.4% ± 18.8% in 

Alcoutim. Ammonium contribution to DIN varied between 11.6% ± 18.8% in 

Alcoutim and 35.3% ± 24.7% in VRSA. Phosphate and silicate showed significantly 

higher values in the upper estuary (P: 2.2 ± 0.7 µM; Si: 44.2 ± 30.8 µM) in relation to 

the lower estuary (P: 1.3 ± 1.2 µM; Si: 14.6 ± 11.1 µM), but no significant interannual 

differences were observed (Fig. 7.6B, 7.6C; Table 7.I). 

Nutrient ratios (N:P and Si:N) did not show significant spatial differences along the 

Guadiana estuary. Mean N:P ratio varied between 19.0 ± 14.7 in Alcoutim and 21.9 ± 

21.8 in VRSA and ranged between 0.1 and 99.0. Interannual differences were detected 

in N:P ratio, with higher values, usually >16, during 2007 and lower values, mostly 

<16, during 2008. Si:N ratio showed the opposite behaviour, with values lower than 1 

during 2007 and higher than 1 during 2008. Mean Si:N varied between 1.0 ± 0.8 in 

VRSA and 1.6 ± 1.6 in Mértola, with a minimum of 0.0 and a maximum of 6.8 (Table 

7.I). 
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Figure 7.6 – Horizontal profiles of A) nitrate (NO3-), B) phosphate (PO43-) and C) silicate (SiO44-) 
concentration (µM) in the Guadiana estuary from 2007 through 2008. 
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Overall, significant spatial differences were observed in the distribution of 

environmental variables, as revealed by ANOSIM. R-values were the highest 

between the upper and the lower estuaries (R-values: 0.968 and 0.971), indicating a 

high dissimilarity between these locations. Year (R = 0.089) and Season (R = 0.052) 

presented R values close to 0, indicating a high degree of inter-annual and seasonal 

similarity.  

 

7.3.2 Phytoplankton 

 

Chlorophyll a concentration varied between undetectable values and 16.0 µg L-1., 

with significantly higher values in Alcoutim (6.7 ± 3.0 µg L-1) and lower in VRSA (1.6 

± 1.4 µg L-1). Overall, higher values were observed in the summer (Fig. 7.7A, Table 

7.II). Total phytoplankton abundance from 2007 through 2008 varied between 0.04 x 

105 and 1390 x 105 cells L-1 (Fig. 7.8A, Table 7.II). Although slightly higher in Mértola, 

phytoplankton abundance did not show significant spatial differences throughout 

the sampling period. Total phytoplankton biomass varied between 0.1 and 3162 µg C 

L-1 (Fig. 7.8B, Table 7.II). Significantly lower biomass values were determined in the 

lower estuary in relation to the middle and upper estuarine sections. The ratio carbon 

to chlorophyll a (C:Chl) ranged between 1.1 and 586.9 mg C mg Chl-1. The highest 

values were determined in the summer and a clear decrease on C:Chl from the upper 

(86.7 ± 160.4 mg C mg Chl-1) to the lower estuary (37.7 ± 49.9 mg C mg Chl-1) was 

observed (Fig. 7.7B, Table 7.II). 
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Figure 7.7 – Horizontal profiles of A) chlorophyll a concentration (µg L-1) and B) carbon to chlorophyll 
ratio in the Guadiana estuary from 2007 through 2008. 
 

Diatoms, green algae and cyanobacteria were the most important phytoplankton 

groups. Diatoms were the main component of the phytoplankton community in 

terms of biomass, representing, on average, from 33% (VRSA) to 73% (Odeleite) of 

the total biomass. Except for the lower estuary, cyanobacteria were, on average, the 

most abundant group, with contributions to total phytoplankton abundance ranging 

between 51% (Alcoutim) and 85% (Odeleite). Seasonally, diatoms were more 

abundant in the spring/early summer, reaching a maximum abundance of 72.4 x 105 

cells L-1 in the spring 2007 in Odeleite and maximum biomass of 3,150 µg C L-1 in the 

spring 2008 in Alcoutim (Figs. 7.9A, 7.10A, Table 7.II). Green algae presented the 

highest abundances in late spring/early summer, with a maximum of 31.4 x 105 cells 
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L-1 in the upper estuary, whilst biomass reached 940 µg C L-1 in late spring 2008 in 

Alcoutim (Figs. 7.9B, 7.10B, Table 7.II). Cyanobacteria dominated in terms of 

abundance during summer months in all the sampling stations. Maximum 

cyanobacteria abundance and biomass were 1260 x 105 cells L-1 and 41 µg C L-1, 

respectively, in August 2007 in Mértola (Figs.7.9C, 7.10C, Table 7.II).  

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8 – Horizontal profiles of A) total phytoplankton abundance (x105 cells L-1) and B) total 
phytoplankton biomass (µg L-1) in the Guadiana estuary from 2007 through 2008.  
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Table 7.II - Mean values ± 1 standard deviation (mean ± SD), minimum (min) and maximum (max) 
values of chlorophyll a concentration (Chla, µg L-1), ratio carbon to chlorophyll a (C:Chl, mg C mg Chl-

1), abundance (x 105 cells L-1) and biomass (µg C L-1) of the phytoplankton community and of specific 
groups (diatoms, green algae and cyanobacteria) in the sampling stations from 2007 through 2008 (nd 
= not detected). 
 

 mean ± SD min max mean ± SD min max 
 Chla C:Chl 

Mértola 4.8 ± 3.0 nd 11.7 86.7 ± 160.4 3.4 586.9 
Alcoutim 6.7 ± 3.8 nd 16.0 56.6 ± 102.4 1.1 453.8 
Odeleite 4.6 ± 2.7 nd 10.1 47.4 ± 75.4 2.5 342.3 

VRSA 1.6 ± 1.4 nd 6.4 37.7 ± 49.9 1.1 180.6 
 Phytoplankton abundance Phytoplankton biomass 

Mértola 241 ± 387 1.85 1390 191 ± 280 20 1585 
Alcoutim 134 ± 208 0.17 997 270 ± 555 5 3162 
Odeleite 114 ± 211 0.19 1020 139 ± 195 0.1 839 

VRSA 137 ± 152 0.04 661 47 ± 70 0.3 326 
 Diatom abundance Diatom biomass 

Mértola 2.04 ± 2.83 0.1 12.30 119 ± 268 1.1 157 
Alcoutim 4.41 ± 6.35 nd 33.8 221 ± 521 nd 3150 
Odeleite 4.32 ± 11.7 nd 72.4 110 ± 178  nd 790 

VRSA 0.27 ± 0.49 nd 2.73 28.2 ± 66.4 nd 326 
 Green algae abundance Green algae biomass 

Mértola 3.71 ± 6.40 nd 31.4 13.3 ± 41.5 nd 245 
Alcoutim 1.93 ± 2.71 nd 10.7 26.8 ± 150 nd 940 
Odeleite 2.50 ± 5.20 nd 21.0 2.7 ± 6.3 nd 33.7 

VRSA 0.33 ± 0.99 nd 5.26 1.1 ± 3.9 nd 326 
 Cyanobacteria abundance Cyanobacteria biomass 

Mértola 223 ± 371 nd 1260 5.6 ± 10.5 nd 40.7 
Alcoutim 123 ± 205 nd 973 2.6 ± 6.7 nd 39.4 
Odeleite 103 ± 209 nd 1000 1.1 ± 2.4 nd 11.8 

VRSA 133 ± 150 nd 654 1.5 ± 1.8 nd 7.7 
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Figure 7.9 – Horizontal profiles of abundance (x105 cells L-1) of specific phytoplankton groups in the 
Guadiana estuary from 2007 through 2008: A) diatoms, B) green algae and C) cyanobacteria. 
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Figure 7.10 – Horizontal profiles of biomass (µg L-1) of specific phytoplankton groups in the Guadiana 
estuary from 2007 through 2008: A) diatoms, B) green algae and C) cyanobacteria. 
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7.3.3 Primary production 

 

Photosynthesis-irradiance (P-E) curves obtained from 14C incubations show that the 

rate of photosynthesis normalized to chlorophyll (PB) was significantly higher 

upriver (Mértola) than in the other sampling stations (Fig. 7.11, Table 7.III). 

Maximum values were observed in the summer, when the estimated light-saturated 

rate of photosynthesis (PBS) reached 69 mg C (mg Chl)-1 h-1. In the other stations, PBS 

did not surpass 20 mg C (mg Chl)-1 h-1 and remained mostly below 10 mg C (mg 

Chl)-1 h-1 throughout the year (Fig. 7.11, Table 7.III). Saturating irradiances (ES) also 

presented higher values in the upper estuary (Alcoutim: max 2252 µmol photons m-2 

s-1) and lower downriver (VRSA: max 443 µmol photons m-2 s-1) (Fig. 7.11, Table 

7.III). Overall, a decreasing trend from the upper to the lower estuary was observed 

for the photosynthetic rate and saturating irradiance. 

Likewise, areal primary production in the Guadiana estuary was higher in the upper 

estuary (22.3 – 1138.8 mg C m-2 d-1) and lower in the middle (9.6 – 446.4 mg C m-2 d-1) 

and lower estuaries (42.9 – 824.6 mg C m-2 d-1). The highest values of primary 

production were detected during summer (Fig. 7.12A, Table 7.IV). Volumetric 

primary production was higher in the stations with the shallowest euphotic depths, 

Alcoutim (23.2 - 443.3 mg C m-3 d-1) and Odeleite (16.1 – 353.4 mg C m-3 d-1), and 

lower in VRSA (9.4 – 91.8 mg C m-3 d-1), where euphotic depth was the highest (Fig. 

7.12B, Table 7.IV). The average production to biomass (P/B) ratio was similar in all 

sampling stations (26.0 ± 28.9 mg C mg Chl-1 d-1, 27.3 ± 15.9 mg C mg Chl-1 d-1, 25.9 ± 

14.6 mg C mg Chl-1 d-1 and 24.6 ± 20.0 mg C mg Chl-1 d-1 in Mértola, Alcoutim, 

Odeleite and VRSA, respectively), but P/B in Alcoutim and Odeleite was slightly 

higher than in the other stations throughout 2008 (Fig. 7.12C, Table 7.IV). 
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Figure 7.11 – Photosynthesis-irradiance (P-E) curves for 14C incubations under PAR from water 
samples collected in several sampling stations in the Guadiana estuary throughout 2008. Nonlinear 
regressions were obtained by fitting values to equation 7.4. 
 
 
Table 7.III - Photosynthetic parameters of phytoplankton from the Guadiana estuary, estimated using 
nonlinear regression fitting of equation 4. Values presented are mean ± 1 standard deviation, 
minimum and maximum values of light-saturated rate of photosynthesis (PBS, mg C (mg Chl)-1 h-1), 
saturating irradiance (ES, µmol photons m-2 s-1), and range of determination coefficients (R2) for the 
nonlinear regressions (n = 13 – 18). 
 

 upper estuary middle estuary lower estuary 
 Mértola Alcoutim Odeleite VRSA 

mean ± 1 SD 16.00 ± 23.93 9.11 ± 4.97 7.31 ± 4.26 5.62 ± 4.74 
min 0.54 3.89 0.44 0.73 PBS 

max 69.57 20.52 13.52 13.45 
mean ± 1 SD 801.3 ± 469.7 662.6 ± 650.6 471.1 ± 499.9 244.7 ± 106.4 

min 344.3 2.2 10.4 109.7 ES 

max 1795.0 2252.0 1731.0 442.8 
R2 0.6392 – 0.9163 0.8793 – 0.9848 0.6331 – 0.9894 0.7163 – 0.9263 
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Figure 7.12 – A) Daily areal primary production (mg C m-2 d-1), B) daily volumetric primary 
production (mg C m-3 d-1) and C) P/B ratio (mg C mg Chl-1 d-1) along the Guadiana estuary 
throughout 2008. 
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Table IV – Daily areal primary production (areal PP, mg C m-2 d-1), daily volumetric primary 
production (volume PP, mg C m-3 d-1) and production to biomass ratio (P/B, mg C mg Chl-1 d-1) in the 
Guadiana estuary throughout 2008. 
 

Mértola Alcoutim  
Areal PP Volume PP P/B Areal PP Volume PP P/B 

28 Jan 22.3 7.4 0.9    
27 Feb 14.9 21.3 19.4    
15 Apr 613.0 174.9 17.3 231.6 165.4 18.2 
28 Apr    560.7 233.6 36.5 
28 May 608.2 160.1 25.0 358.0 298.3 32.8 
26 Jun       
24 Jul 1138.8 108.5 20.5 560.7 311.5 25.3 

25 Aug 867.8 142.3 88.9 975.1 443.3 43.9 
22 Sep 125.1 36.8 9.9 431.8 254.0 47.9 
19 Nov    90.3 64.5 10.1 
18 Dec    34.8 23.2 3.4 

Odeleite VRSA  
Areal PP Volume PP P/B Areal PP Volume PP P/B 

28 Jan 9.6 16.1 2.1    
27 Feb       
15 Apr 92.3 71.0 14.8 150.7 27.4 54.8 
28 Apr 406.1 238.9 26.3 164.5 27.0 54.0 
28 May 163.1 203.8 47.4 154.0 32.8 5.1 
26 Jun 403.2 310.1 38.8 824.6 56.9 17.8 
24 Jul 282.7 353.4 41.6 569.2 91.8 28.7 

25 Aug 433.5 173.4 29.4 307.4 35.3 13.1 
22 Sep 148.1 57.0 17.8    
19 Nov 446.4 79.7 13.5 65.9 9.4 18.8 
18 Dec 39.1 30.0 4.0 42.9 14.3 4.5 
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7.4. Discussion  

 

7.4.1 Hydrological conditions 

 

The interactions between river flow and tidal regime have significant impacts on the 

availability of light, nutrients and other resources. River flow in the Guadiana 

estuary usually displays significant inter-annual variability, given that the climate in 

southeast Portugal/southwest Spain alternates between dry and wet years and water 

retention in dams further impacts the amount of freshwater reaching the estuarine 

zone. River flow in the Guadiana estuary used to be characterized by winter maxima 

above 2,000 m3 s-1, but during and after the construction of the Alqueva dam, 

freshwater flow decreased significantly, especially during winter (Barbosa et al., 

2010). From 2007 through 2008 winter maxima did not surpass 125 m3 s-1. Significant 

interannual variability in river flow was observed, with higher values during 2007. 

However, daily rainfall during 2007 was not higher than during 2008, and whilst 

rainfall and river flow were positively correlated during 2007, no correlation was 

found in 2008, indicating a clear regulation of river flow by the dam. Regarding 

temperature and salinity, both variables were within the range of values described 

for the Guadiana estuary. Salinity in the upper estuary, by definition a freshwater 

zone, reached 4.3 in the summer in Alcoutim. Oligohaline conditions had already 

been observed in this location in previous years, in association with decreased 

freshwater flow (e.g., Domingues et al., 2007). 

 

7.4.2 Variability of light and nutrients 

 

The occurrence of spatial and temporal variability of light availability in the 

Guadiana estuary was evident throughout the sampling period and it has already 

been related to variability in turbidity (Domingues and Galvão, 2007), which in turn 

is controlled by suspended particulate matter. Suspended particulate matter (SPM) in 

estuaries is mainly driven by river flow, waves, wind, tidal regime and water 

residence time (see Guinder et al., 2009 and references therein). In the Guadiana 

estuary, the main source of SPM is the river itself, so seasonal variability in SPM is 
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observed, with higher values during periods of high river discharge (autumn and 

winter). Like in many turbid estuaries, light attenuation in the water column is 

mainly controlled by SPM (e.g., Cloern, 1987; Guinder et al., 2009), but only in the 

upper and middle estuarine sections. In the lower estuary the highest SPM values 

(42.2 – 185.6 mg L-1) and the lowest light extinction coefficients (0.2 – 3.3 m-1) were 

measured simultaneously, reflecting the dependence of light attenuation on the 

chemical composition of the suspended material. Indeed, suspended sediments in 

this region are mainly composed by quartz, which do not contribute to light 

attenuation in the water column, whilst in the middle and upper estuaries SPM is 

mostly dominated by clays (Machado et al., 2007), which play an important role in 

light absorption. In other estuarine systems, the lowest SPM concentrations are 

usually measured in the lower estuarine reaches (Calliari et al., 2005), given that SPM 

is generally of riverine origin. Both SPM and the light extinction coefficient were 

within the range of values previously described for the Guadiana estuary (e.g., 

Domingues et al., 2007; Domingues and Galvão, 2007) and for other turbid estuaries 

such as the Westerschelde (Kromkamp et al., 1995), the Colne (Kocum et al., 2002), 

Río de la Plata (Calliari et al., 2005) and Bahía Blanca (Guinder et al., 2009).  

The high productivity usually associated with estuarine ecosystems is in part 

attributed to the occurrence of high concentrations of organic matter that sustain 

heterotrophic communities (Cloern, 1987). Organic matter may enter or be created in 

estuaries from industrial and urban effluents, natural vegetation, biological material 

processing and other diffuse sources (Boyes and Elliott, 2006). In the Guadiana 

estuary, the concentration of particulate organic matter (POM) was particularly high 

in the lower estuary (29.8 ± 8.5 mg L-1, range 7.2 – 49.0 mg L-1), where the 

anthropogenic influence is the highest. These values are higher than those described 

for other estuaries, such as Bahía Blanca estuary (max 24.3 mg L-1: Guinder et al., 

2009) and Río de la Plata estuary (means 5.3 – 11.2 mg L-1: Calliari et al., 2005). POM 

values in the middle (14.4 ± 6.7 mg L-1) and upper estuaries (Mértola: 4.6 ± 2.6 mg L-1; 

Alcoutim 8.0 ± 6.1 mg L-1), where the anthropogenic pressure is much lower, were 

significantly lower than in VRSA. This pattern in POM variability reflects the 

importance of allochthonous sources of organic matter in the Guadiana estuary. In 

addition, no correlations were found between POM and phytoplankton biomass, 
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indicating that phytoplankton represents a negligible fraction of POM. 

Phytoplankton may account for only a small fraction of the total organic matter, but 

its contribution to bioavailable organic matter can be much higher (Sobczak et al., 

2002). This fact was observed in the Sacramento-San Joaquin River delta and 

evidenced the strong food-chain linkage between phytoplankton and the pelagic 

food web (Sobczak et al., 2002). 

The availability of photosynthetically active radiation (PAR) in the Guadiana estuary 

throughout the sampling period was lower in the middle estuary (Odeleite) and in 

the transition zone between the middle and upper estuaries (Alcoutim), where the 

estuarine turbidity maximum is usually located. Mean light intensity in the mixed 

layer (Im) in these locations did not surpass 100 µmol photons m-2 s-1. Although this 

value is higher than Riley’s critical value of 42 µmol photons m-2 s-1 below which net 

growth of phytoplankton does not occur (Riley, 1957), it is much lower than 

saturating light intensities referred for estuarine phytoplankton communities (100 - 

800 µmol photons m-2 s-1: e.g., Fisher et al., 1982; Pennock and Sharp, 1986; 

Madariaga, 1995; Tillmann et al., 2000; Macedo et al., 2001; Kocum et al., 2002; Oviatt 

et al., 2002). Therefore, the occurrence of light-limited growth of phytoplankton in 

these locations is a strong possibility. Furthermore, the mixing depth in Alcoutim 

and Odeleite was generally more than 5 times the euphotic depth, suggesting that net 

growth of phytoplankton could not be sustained (Cloern, 1987). In well mixed 

estuaries such as the Guadiana, Zmix:Zeu follows the contours of bathymetry (Cloern, 

1987), as in the Colne estuary, where the highest Zmix:Zeu was measured in the 

deeper, clearer waters in the lower estuary, and not in the turbid, shallow freshwater 

reaches (Kocum et al., 2002). Therefore, the higher Zmix:Zeu measured in Alcoutim 

and Odeleite may be the result of the higher mixing depth in these locations (9.4 and 

9.9 m, respectively), in relation to Mértola (5.9 m) and VRSA (1.0 - 5.0 m). However, 

the highest turbidity was measured in Odeleite, decreasing upriver, so it is not clear 

if Zmix:Zeu ratios are controlled by bathymetry, turbidity or both (Domingues and 

Galvão, 2007). Considering both Im and Zmix:Zeu, it is probable that phytoplankton 

growth was potentially light-limited in Alcoutim and Odeleite, but not in Mértola 

and VRSA. However, considering the saturating light intensities described for 

estuarine phytoplankton, from 100 to 800 µmol photons m-2 s-, it is possible that 
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growth was light-limited in the whole estuary. Permanent light limitation in 

Alcoutim was confirmed by light enrichment experiments, under PAR exposures 

ranging between 90 and 225 µmol photons m-2 s-1 (see Chapter 6). 

Furthermore, the determination of the mean light intensity in the mixed layer poses 

some methodological problems. The light extinction coefficient (Ke) and the depth of 

the mixed layer (Zmix), two variables necessary to calculate Im, are usually considered 

constant throughout the day and in the same sampling station, respectively, but in 

reality Ke varies along the day with tidal phase and river flow (e.g., Kromkamp et al., 

1995), and Zmix varies along the channel’s cross-section and also with tidal phase. Ke 

is mainly regulated by SPM concentration, which may vary significantly along the 

semidiurnal tidal cycle. In the Guadiana estuary, significantly higher SPM values 

were measured during flood and lower SPM occurred during low tide (Domingues 

et al., 2010), which may promote a wide range of Ke values over the semidiurnal 

cycle. For instance, during a winter 2008 spring tide, Ke values ranged between 2.0 m-

1 during low tide and 4.7 m-1 6 hours later, during flood (Domingues et al., 2010). 

Considering Zmix = 9.4 m and I0 = 1500 µmol photons m-2 s-1, Im calculation based on 

Ke = 2.0 m-1 would be 80 µmol photons m-2 s-1, whilst using Ke = 4.7 m-1, Im is 34 µmol 

photons m-2 s-1. Furthermore, Im is usually calculated using the light intensity profiles 

measured during sampling; if sampling is conducted in the early morning when 

incident solar radiation is lower, Im will be lower than if measurements were taken in 

the afternoon; likewise, sampling around noon will result in higher Im values. Since 

these isolated estimates are taken as a proxy for the whole day, the mean light 

availability in the mixed layer over the light period may be severely under- or 

overestimated. For instance, the isolated measurement we made on December 18th in 

Alcoutim at 10 A.M. with I0 = 162 µmol photons m-2 s-1 and Ke = 3.1 m-1 resulted in Im 

= 5.6 µmol photons m-2 s-1. Considering the whole light period (11 hours) and the 

incident solar radiation for each hour (obtained in http://snirh.pt) that ranged 

between 6 and 890 µmol photons m-2 s-1, mean daily Im would be 12 µmol photons m-

2 s-1, which is twice the Im value obtained with our isolated measurement in the 

morning. 

The spatial and seasonal variability of nutrient concentrations observed during 2007 

and 2008 were the typical for the Guadiana estuary. The occurrence of higher 
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nutrient concentrations in the upper estuary, and during periods of higher river 

discharge (autumn and winter), suggests that the main nutrient source is the river 

itself (Domingues and Galvão, 2007) and supports the small influence of 

anthropogenic nutrient sources. Only in the lower estuary the effect of anthropogenic 

pressures was detected, with the highest POM and ammonium concentrations. 

Indeed, nutrient concentrations in the Guadiana estuary (NO3- 0.0 - 99.0 µM, PO43- 0.0 

- 6.8 µM) during 2007 and 2008 were lower than those found in eutrophic or slightly 

eutrophic estuaries such as the Scheldt, Netherlands (DIN 70 - 600 µM, PO43- 3 - 20 

µM: Kromkamp and Peene, 1995), the Colne, UK (NO3- 5.75 – 564 µM: Kocum et al., 

2002), the Rhine, Netherlands (mean NO3- 270 µM, mean PO43- 11 µM: Schaub and 

Gieskes, 1991), the Pearl, China (mean NO3- 80 µM: Yin et al., 2001), the Gironde, 

France (mean NO3- 140 µM: Cabeçadas et al., 1999), or the Tagus, Portugal (DIN 0.2 – 

182.4 µM, PO43- 0.1 – 19.1 µM: Gameiro et al., 2010). Nutrient concentrations in the 

Guadiana during 2007 and 2008 were also lower than during the period 1996 - 2005 

(NO3- 0.0 – 250.3 µM: Barbosa et al., 2010), probably as a consequence of increased 

water and sediment retention in the Alqueva dam. Conversely, nitrate concentrations 

in the Guadiana were more close to those found in oligotrophic estuaries such as the 

Conwy, UK (NO3- 27.7 ± 8.1 µM: Dong et al., 2006), reflecting the relatively 

preserved/pristine nature of the Guadiana estuary (Vasconcelos et al., 2007). Whilst 

nitrate and silicate availability has been positively correlated to river flow and 

rainfall, as in other estuaries (e.g., Mallin et al., 1991), the lack of seasonal or inter-

annual patterns in phosphate and ammonium concentrations reflects the dependency 

of NH4+ and PO43- availability on biological sources and sedimentary fluxes (Barbosa 

et al., 2010). 

 

7.4.3. Variability of phytoplankton composition and production 

 

Phytoplankton in the Guadiana estuary, particularly in the freshwater tidal zone, 

usually exhibits a marked seasonal succession, clearly related to nutrient availability. 

In the spring, with high N:P and high Si, a diatom bloom occurs, followed by a 

decrease in Si concentration and the development of green algae. Finally, with low 

N:P and low Si, cyanobacteria dominate the community throughout the summer 
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(Rocha et al., 2002; Domingues et al., 2005). In terms of biomass, this cycle is a 

unimodal one, with spring maxima corresponding to the diatom bloom, which is 

typical of other temperate estuaries (e.g., Andersson et al., 1994; Dugdale et al., 2007). 

During 2007 and 2008, phytoplankton exhibited a unimodal cycle with a biomass 

maximum in late spring/early summer, slightly later than usually observed in the 

Guadiana estuary (e.g., Domingues et al., 2005). Diatoms were the main component 

of biomass throughout the year in all the sampling stations, as in other temperate 

estuaries (e.g., Popovich and Marcovecchio, 2008), whilst cyanobacteria dominated in 

terms of cell numbers in the summer, especially in the upper and middle estuaries.  

Diatoms bloomed in the middle and upper estuaries in late spring/early summer, 

and reached a maximum abundance of 7.2 x 106 cells L-1. Maximum diatom 

abundances in previous years were higher (see Domingues et al., 2005, 2007; 

Domingues and Galvão, 2007; Barbosa et al., 2010) and this decrease throughout the 

last years has been accompanied by a decrease in river flow, especially during winter 

due to the flow regulation by the Alqueva dam, and consequently a decrease in 

nutrient concentrations, particularly silicon and nitrogen (see Barbosa et al., 2010). In 

2007, nitrate concentrations before and during the diatom bloom (May - June) in the 

upper and middle estuaries were higher than the critical value of 20 µM referred in 

Chapter 4, below which nitrate becomes limiting to phytoplankton growth. In 

addition, Zmix:Zeu was lower than the critical value of 5 in the upper estuary, but 

higher than 8 in the middle estuary, where the diatom bloom was more pronounced. 

The onset of the green algae bloom that followed the diatom bloom in early summer 

also occurred under high Zmix:Zeu in the middle estuary and high nitrate 

concentrations. Therefore, it is clear that phytoplankton blooms may develop in the 

Guadiana estuary even when the mixed layer is more than 5 times the euphotic layer. 

Two hypothesis may explain this: importation of phytoplankton from areas with 

lower Zmix:Zeu and/or adaptation of phytoplankton to low light levels (see Irigoien 

and Castel, 1997 and references therein). The importation of phytoplankton from the 

upper estuary is a strong possibility, given that the phytoplankton identified in the 

samples were mostly freshwater species, and the maintenance of a regular river flow 

by the Alqueva dam results in a constant supply of freshwater to the estuarine zone. 

On the contrary, the adaptation of phytoplankton to low light availability is unlikely, 
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given that high rates of light-saturated photosynthesis (PBS) and high saturating light 

intensities (ES) were observed. High PBS and high ES values are usually found in cells 

adapted to clear waters, but also in other turbid estuaries such as San Antonio Bay 

(3.0 - 22.9 mg C (mg Chl)-1 h-1: MacIntyre and Cullen, 1996) or the Neuse River 

estuary (0.14 – 33.9 mg C (mg Chl)-1 h-1: Boyer et al., 1993). On the contrary, in other 

turbid environments such as the Tagus estuary (1.0 - 8.4 mg C (mg Chl)-1 h-1: 

Gameiro, 2009), low PBS and ES values and the occurrence of photoinhibition at low 

irradiances (150 – 300 µmol photons m-2 s-1) suggest that phytoplankton is acclimated 

to low light conditions. However, the ecological interpretation of P-E responses may 

be difficult; ideally, P-E curves should provide information on the photosynthetic 

state of the sample at the moment of collection. But unless incubation time is only a 

few minutes, some acclimation of cells will always happen during incubation 

(Sakshaug et al., 1997). Overall, both the P-E curves and light enrichment 

experiments carried out in Alcoutim (see Chapter 6) suggest that phytoplankton 

growth is light-limited in the middle and upper estuaries. 

During 2008, the same seasonal pattern in phytoplankton succession was observed, 

but diatom and green algae abundance were significantly lower than during 2007. 

No significant interannual differences were observed in light availability, but nitrate 

concentration in 2008 was significantly lower than in 2007, and in many occasions, 

nitrate was <20 µM, so phytoplankton growth was most likely N-limited. Nutrient 

and light enrichment experiments carried out throughout 2008 and 2009 confirmed 

that phytoplankton growth was light-limited throughout the year and that diatom 

and green algae growth was nitrogen-limited during the productive period (see 

Chapters 4 and 6). Comparing nutrient concentrations and light availability in the 

Guadiana estuary in the last years (see Barbosa et al., 2010) it is possible that light 

limitation had always occurred in the middle and upper estuaries, but has now been 

surpassed by nitrogen limitation that started only recently, due to a reduction in 

river flow and consequently a decrease on nutrient inputs to the estuarine zone. This 

shift from a light-limited environment to a more nutrient-limited one had already 

been predicted for the Guadiana upper estuary (Barbosa et al., 2010).  

Picocyanobacteria showed the same pattern as in previous years, blooming in the 

summer in the upper, middle and lower estuaries with a maximum abundance of 1.3 
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x 108 cells L-1, similar to previous years (Domingues and Galvão, 2007). The summer 

dominance of picocyanobacteria under N-limitation in polyhaline regions has also 

been observed in other estuaries such as Chesapeake Bay (e.g., Fisher et al., 1988; 

Malone et al., 1991). However, no signal of the cyanobacteria summer blooms was 

observed on neither total biomass nor chlorophyll a, given that cyanobacteria 

population was mostly composed of coccoid pico-sized cells. The reduced 

contribution of cyanobacteria to total biomass and the regular presence of toxic 

cyanobacteria genera had already been observed in the Guadiana estuary 

(Domingues et al., 2005), but cyanobacteria blooms would not have been detected 

using chlorophyll a as a proxy for phytoplankton biomass (see Domingues et al., 

2008, Chapter 2).  

Indeed, the use of chlorophyll a concentration as a substitute for phytoplankton 

biomass is deeply-rooted, but its application is not straightforward, because it may 

overlook blooms of pico- and small nanophytoplankton and overestimate the 

importance of microphytoplankton (Domingues et al., 2008, see Chapter 2). A carbon 

to chlorophyll a (C:Chl) ratio, typically between 30 and 50 (e.g., Legendre et al., 1999) 

is usually applied to convert chlorophyll into biomass. However, C:Chl is highly 

variable intra- and inter-specifically and it also depends on the physiological state of 

the cell (Chan, 1980; Zonneveld, 1998; Kruskopf and Flynn, 2005; Putland and 

Iverson, 2007). Therefore, C:Chl may exhibit a wide temporal and spatial variability, 

which will complicate the use of chlorophyll a concentration as a proxy for 

phytoplankton biomass (see Domingues et al., 2008, Chapter 2). Indeed, C:Chl in the 

Guadiana estuary showed significant temporal and spatial variability, ranging 

between 1.1 and 586.9 mg C mg Chl-1. The higher C:Chl values observed in the 

summer were probably the result of higher light and lower nutrient availability in 

the water column that promoted a decrease in the cellular chlorophyll a content and 

thus higher C:Chl values (e.g., Zonneveld, 1998; Kruskopf and Flynn, 2005). In 

addition, a significant spatial gradient was found, with higher C:Chl values in the 

upper estuary, decreasing downriver, reflecting the higher phytoplankton biomass 

found in the freshwater tidal zone. Unlike other turbid estuaries, where 

phytoplankton biomass decreases in the landward direction where turbidity is 

higher (e.g., Calliari et al., 2005; Popovich and Marcovecchio, 2008), phytoplankton 
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biomass and chlorophyll a concentration in the Guadiana estuary were higher in 

Alcoutim, close to the estuarine turbidity maximum, which was probably a 

consequence of the occurrence of larger phytoplankton cells. Indeed, biomass 

maxima in Alcoutim were due to the resuspension of large pennate diatoms 

(Navicula and Pleurosigma) from the bottom. 

Overall, the middle and upper estuaries could be considered relatively homogeneous 

in terms of phytoplankton and environmental variables. The main differences were 

found in the lower estuary, where nutrient concentration, particularly N and Si, and 

phytoplankton abundance and biomass were significantly lower, evidencing a 

reduced riverine influence but a much stronger impact of coastal waters. This pattern 

is observed in other lower estuarine zones, such as in the Colne estuary (Kocum et 

al., 2002) or the Bahía Blanca estuary (Popovich and Marcovecchio, 2008). 

Daily areal primary production in the Guadiana estuary varied between ≈10 and 

≈1,140 mg C m-2 d-1, the lowest values in the winter and the highest in the summer, 

concurrent with higher water temperature and light availability. Overall, primary 

production is highly variable across estuaries: mean production values range from 20 

- 40 mg C m-2 d-1 (e.g., van Es, 1977; Kocum et al., 2002) up to 2,000 – 4,000 mg C m-2 

d-1 (e.g., Malone et al., 1996; Thompson, 1998; Adolf et al., 2006), and the same 

estuary may alternate between low and high productivities (e.g., 90 – 1800 mg C m-2 

d-1: Mortazavi et al., 2000; 5 – 1,880 mg C m-2 d-1: Azevedo et al., 2006).  

A clear horizontal gradient on areal primary production was also observed, with 

higher values in the upper estuary and lower in the middle and lower estuaries, 

contrary to most turbid estuarine systems, where production is higher in the less 

turbid regions (e.g., Pennock and Sharp, 1986; Mallin et al., 1991). In the Neuse River 

lower estuary, for instance, downstream and upstream effluents and agricultural 

runoff and a shallow, well-mixed water column, contribute to a much higher 

productivity (60.9 – 2,766.4 mg C m-2 d-1: Mallin et al., 1991) than in the Guadiana 

lower estuary (42.9 – 824.6 mg C m-2 d-1). The higher levels of primary production in 

the turbid upper estuary may be due to the importation of cells from less turbid 

riverine locations upriver, but also due to higher nutrient concentrations in this 

region. Indeed, whilst light is considered the major regulator of phytoplankton 

growth in turbid estuaries with elevated nutrient inputs (Cloern, 1987; Alpine and 
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Cloern, 1988; Kocum et al., 2002), nutrients in the Guadiana estuary, particularly 

nitrogen, are not plentiful and may in fact limit phytoplankton growth, especially 

during spring and summer (see Chapter 4). Therefore, light and nutrients are equally 

important in phytoplankton regulation, and the occurrence of higher primary 

productivity in the upper estuary, contrary to the pattern for most turbid estuaries, is 

a consequence of the higher nutrient concentrations in this region in relation to the 

lower estuary. 

Volumetric primary production and the production to biomass (P/B) ratio showed a 

different pattern in relation to areal production, with higher values in Odeleite and 

Alcoutim, the locations with the lowest euphotic depths, lowest light availability and 

highest Zmix:Zeu ratios. P/B ratio normalizes production across the range of 

phytoplankton biomass and is a realistic physiological indicator (Platt and Filion, 

1973; Yoshiyama and Sharp, 2006). The higher P/B values in these locations suggest 

that the phytoplankton communities from these turbid regions are more efficient in 

utilizing the available resources, even under constant light limitation and occasional 

nutrient limitation. 
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8.1 The problems 

 

This work aimed to understand how phytoplankton composition and growth in the 

Guadiana estuary is regulated by environmental drivers. Both sampling campaigns 

and laboratorial experiments were conducted to answer to six main questions: 

 

a) How can phytoplankton be used as a biological quality element in coastal 

ecosystems (Chapter 2)? 

 

b) How are phytoplankton and their environmental drivers affected by semidiurnal 

and spring-neap tidal cycles in the freshwater tidal zone of the Guadiana estuary 

(Chapter 3)? 

 

c) Which is(are) the limiting nutrient(s) for phytoplankton growth in the freshwater 

tidal zone of the Guadiana estuary and how does(do) it(they) vary with the seasonal 

cycle (Chapter 4)? 

 

d) How does ammonium affect nitrate uptake and phytoplankton growth and 

composition in the freshwater tidal zone of the Guadiana estuary (Chapter 5)? 

 

e) Does light limitation occur in the Guadiana upper estuary throughout the seasonal 

cycle and is phytoplankton adapted to a low light environment (Chapter 6)? 

 

f) Overall, how important is nutrient and light availability for phytoplankton 

succession and production in the Guadiana estuary (Chapter 7)? 
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8.2 The answers 

 

In Chapter 2 we demonstrated that the use of phytoplankton as a biological quality 

element to assess the ecological status of coastal ecosystems will pose some 

constraints. The major problem encountered is related to the deeply-rooted used of 

chlorophyll a concentration as a proxy for phytoplankton biomass and even 

phytoplankton abundance, because chlorophyll a content within the cell may vary 

tremendously with the cells’ physiological state. Indeed, a wide range of carbon to 

chlorophyll (C:Chl) ratios can be found in aquatic ecosystems, and the Guadiana 

estuary was no exception (C:Chl range 1.1 - 586.9 mg C mg Chl-1: see Chapter 7). In 

addition, the use of chlorophyll a as a substitute of biomass may overlook blooms of 

pico- and small nanophytoplankton and overestimate the importance of large 

microphytoplankton. For instance, in the Guadiana estuary, cyanobacteria represent 

the major fraction of phytoplankton total abundance during the productive period; 

however, due to their small size, there is usually no signal of cyanobacteria blooms in 

chlorophyll a concentration. Given that microscopy techniques are time-consuming 

and require a well-trained observer, their use in monitoring programs is not cost-

effective. Alternatively, we proposed the use of other techniques, such as remote 

sensing and chemotaxonomic analysis, as supplements in phytoplankton monitoring 

programs. 

Tidally-induced variability of phytoplankton and their environmental drivers in the 

freshwater tidal zone of the Guadiana estuary were analysed in Chapter 3. We 

observed that the water was vertically and horizontally homogeneous, showing no 

evidence of haline or thermal water column stratification, and no significant tidally-

induced differences were found for most physical-chemical variables. Some tidally-

induced differences were observed in suspended particulate matter concentration 

and chlorophyll a concentration, related to seasonal and fortnightly variability in 

river flow and tidal currents, respectively. Overall, the differences detected were not 

as considerable as those observed in the lower estuary. However, the occurrence of 

tidally-induced variability in some seasons reflects that thorough sampling programs 

to study estuarine tidal dynamics should be conducted throughout the year; 

occasional sampling will not reflect the typical variability of these systems. 
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On an annual scale, nutrient and light availability in the Guadiana estuary, 

particularly in the freshwater tidal zone, were mostly regulated by river flow 

(Chapter 7). River flow controlled nutrient, particularly nitrogen, and suspended 

particulate matter (SPM) inputs into the estuarine zone. SPM was, in turn, the main 

regulator of light extinction in the middle and upper estuaries zones, controlling, 

therefore, light availability. Comparison of light and nutrient availability with other 

estuaries suggested that both light and nutrient limitation occurred throughout the 

year or seasonally, especially in the more turbid estuarine regions. 

Nutrient (Chaptes 4 and 5) and light (Chapter 6) enrichment experiments confirmed 

the occurrence of resource limitation in the freshwater tidal reaches of the Guadiana 

estuary. In addition, enrichment experiments proved to be a solid strategy to infer on 

nutrient and light limitation of phytoplankton growth, although the interpretation of 

the outcomes of such experiments may not always be straightforward. Overall, 

phytoplankton in the Guadiana upper estuary was light-limited throughout the year 

and nitrogen-limited during the productive period.  

Diatoms and green algae were the most nutrient-limited phytoplankton, responding 

significantly to nitrogen additions. Although nitrate was the main nitrogenous 

source for phytoplankton in the Guadiana estuary, an overall preference for 

ammonium was observed. Indeed, nitrate consumption decreased with increasing 

ammonium concentrations and uptake. However, different groups demonstrated 

different preferences in relation to their nitrogen source. Green algae and 

cyanobacteria preferred ammonium, whilst diatoms preferred nitrate. Increased 

anthropogenic inputs of ammonium and increased water and sediment retention 

behind dams, leading to reduced nitrate inputs to the estuarine zone, will possibly 

promote a shift on phytoplankton community composition towards the dominance 

of small-sized, ammonium-preferring groups. 

Regarding light limitation, phytoplankton community was not acclimated to the low 

light conditions that prevail in the Guadiana upper estuary and light limitation 

occurred throughout the year. Diatoms were the most light-limited group, whilst 

cyanobacteria seemed to be more acclimated to low light. Contrary to other turbid 

estuaries, primary production was higher in the more turbid regions, where light 

availability was the lowest, but nutrient concentrations, although occasionally 



Rita B. Domingues 
 

186 
 

limiting, were the highest. Therefore, phytoplankton in such turbid regions were the 

most efficient in using limiting resources.  

 

8.3 The future 

 

By the end of any research project, some questions were answered but many others 

are raised. This work was no exception, and several questions on phytoplankton 

dynamics in the Guadiana estuary remain unsolved. The interactive effects of light 

and nutrients on phytoplankton growth is one of the most immediate concerns. 

Although we concluded that both resources were limiting for phytoplankton, only 

simultaneous manipulations of light and nutrients can detect which one is the most 

limiting resource. In addition, the role of top-down processes has never been 

addressed in the Guadiana estuary. Considering that phytoplankton dynamics is 

regulated by interactions between bottom-up and top-down processes, this line of 

research is relevant to understand and predict phytoplankton variability. Finally, 

considering the predicted changes in global climate and the fact that the Guadiana 

estuary is located in a highly sensitive area to climate change, the evaluation of 

potential increases in CO2, ultraviolet radiation and temperature on phytoplankton 

and ecosystem dynamics is pressing. The interactions between these atmospheric 

variables and other environmental variables, such as nutrient and PAR availability, is 

a pertinent subject that remains poorly studied in the world’s ecosystems (Beardall et 

al., 2009). Furthermore, most studies on the effects of increased UV radiation and 

CO2 on phytoplankton have been conducted with unialgal cultures; the impacts on 

natural phytoplankton communities are still poorly recognized (Sobrino et al., 2009).  
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