1	NAA and STS effects on bract survival time, carbohydrate content,
2	respiration rate and carbohydrate balance of potted Bougainvillea
3	spectabilis Willd.
4	
5	Custódia M. L. Gago, José A. Monteiro [*]
6	
7	F.C.T., University of Algarve, 8005-139 Faro, Portugal
8	
9	*Corresponding author. Tel.: +351-289-800-966; fax: +351-289-818-419; e-mail
10	address: jmontei@ualg.pt
11	
12	
13	Abstract
14	
15	The aims of this work were to deepen the knowledge on the physiology of bract
16	abscission in Bougainvillea spectabilis 'Killie Campbell' plants, in what relates to
17	respiration and carbon balance. Using the effects induced by Silver Thiosulphate (STS)
18	and/or Naphtalene Acetic Acid (NAA, at high concentration: 500 mg.l ⁻¹) on bract
19	abscission under interior conditions, the relationship between bract survival time
20	(longevity) and, respiration rate or carbohydrate levels, was investigated.
21	Treatments that included NAA were the ones that reduced significantly bract
22	abscission. Unexpectedly, the higher the levels of bract soluble and total carbohydrates,
23	measured at day 10 postproduction (PP), the higher the abscission of bracts. These
24	results show, for the first time, that abscission can positively correlate with non
25	structural carbohydrates levels in the organ that abscise.

Bract respiration rate was significantly affected by treatment and postproduction 26 day (PP). Treatments that had higher bract respiration rates (WATER and STS) also had 27 higher levels of non structural carbohydrates in the bracts. Bract respiration rate 28 decreased from day 10 to day 17 PP by approximately 50% (on average of all 29 treatments) and was negatively correlated with bract survival time. 30 31 In the carbon balance per gram of bract dry weight, the treatments WATER and 32 STS, showed the largest decrease in the content of total carbohydrates and had the highest consumption of carbohydrates through respiration. So, these were the bracts that 33 needed to import a higher amount of carbohydrates per gram of bract dry weight. In the 34 35 carbon balance for the whole mass of bracts and adjacent stems in an average plant, the treatments WATER and STS continued to allow for the largest decreases in total 36 carbohydrate during postproduction. However, and contradicting the results per gram of 37 38 bract dry weight, the highest total consumption of carbohydrates by respiration was obtained for the NAA and STS+NAA treatments. It makes sense that bracts that last 39 40 longer have lower individual carbon consumption while, at the plant level, the increased number of remaining bracts causes a higher overall expenditure. 41 Respiration rate has been used as an indicator of flower longevity, this correlation 42 is here extended for the flower+bract system. Plants that had higher bract respiration 43 rates, most probably, had a higher flow of carbohydrates through the bracts (and 44 flowers), which, in the end, was sensed as a higher carbohydrate level. 45 46 *Keywords*: Ornamentals; Postproduction; Postharvest; Auxin; Longevity; Keeping 47 quality. 48 49

- 50 **1. Introduction**
- 51

Flower/bract drop in potted plants is a major problem leading to losses of quality 52 and, as consequence, loss of market value. The ability to control/predict flower/bract 53 abscission and enhance longevity of floricultural product is of great importance. 54 The abscission process is controlled by both external environmental conditions 55 and internal (genetically controlled development time and, energy availability) 56 mechanisms (Ascough et al., 2005). The respiration rate is considered a good indicator 57 of longevity, correlating negatively with organ longevity (Reid, 1985). In potted 58 chrysanthemum, cultivars with higher flower respiration rate during postproduction had 59 shorter flower longevities under interior conditions (Monteiro, 1991). Similar results 60 were obtained in potted miniature roses in the summer experiments but, the opposite 61 happened in autumn/winter: flowers with higher respiration rates had greater 62 longevities. It seems that environmental conditions imposed stringent restrictions on the 63 respiration of the flowers and, on the energy available for its development, the limiting 64 factor to their longevity (Monteiro, 1993). A low maintenance respiration may be 65 responsible for higher levels of efficiency at low irradiance, as was observed in 66 Brassaia actinophylla Endl., Nephrolepis exaltata (L.) Schott 'Bostoniensis' and 67 Epipremnum aureum (Linden & Andre) (Pass and Hartley, 1979). Respiration rate may 68 also sense the speed of genetically controlled development both in plants (Pearl, 1928) 69 and in animals (Adelman et al., 1988). 70 In the postproduction of flowering potted plants the main stress is low irradiance, 71

either acting through hormone mediated responses or, directly, through negative net
photosynthesis. Also, it is known that considerable amounts of carbohydrates are
necessary for the development/maintenance of the reproductive organs (Ho and Nichols,
1977; van Meeteren *et al.*, 1995; Waithaka *et al.*, 2001). The levels existing in these
organs as well as the amounts that can be obtained from other plant parts (or exogenous

supply) seem to affect flower/bract longevity.

Several positive correlations have been established between carbohydrates levels 78 and flower longevity, as in chrysanthemum (Monteiro, 1991), Christmas begonia (Fjeld, 79 1992) and asiatic hybrid lily tepals (detached flowers) (van der Meulen-Muisers et al., 80 2001). Lilium L. ('Bright Beauty', 'Fashion' and 'Orlito') flower longevity relies on the 81 carbohydrates translocated from other plant parts (van der Meulen-Muisers et al., 2001). 82 An exogenous supply of carbohydrates delays abscission, or flower wilting, prolonging 83 the longevity of some cut flowers like Strelitzia reginae Ait. (Halevy et al., 1978), 84 carnation (Halevy and Mayak, 1979), Delphinium hybrid 'Bellamosum' (Ichimura et 85 al., 2000) and Alstroemeria 'Rebecca' (Chanasut et al., 2003). The same effect was 86 described for potted miniature rose (Rosa hybrida 'Meijikatar') flowers (Monteiro et al., 87 2002). However, there are species in which the exogenous supply of carbohydrates does 88 not extend the life of flowers like hybrid Limonium (Ichimura, 1998), Celosia argentea 89 L. 'Forest Fire' and Helianthus maximilianii Schräd (Redman et al., 2002). 90 Ethylene and auxins have been involved in the abscission process. Two abscission 91 processes of floral organs have been shown: one ethylene dependent and the other 92 ethylene independent (Patterson and Bleecker, 2004). Ethylene seems to enhance 93 respiration rate in flowers, and commonly hastens the process of senescence and/or 94 abscission (Woltering, 1987; Borochov and Woodson, 1989). STS acts as an ethylene 95 inhibitor (sensing and action) (Veen, 1979; Reid, 1985) thus, counteracting ethylene 96 action. 97 The role of auxins seems less clear: they affect ethylene sensitivity and production 98 (Beyer and Morgan, 1971; McManus et al., 1998; Brown, 1997) and carbohydrate 99 partitioning (Zhao and Oosterhuis, 1998; Nahar and Ikeda, 2002). In tomato, auxin may 100

101 be responsible for a higher carbohydrate supply to early developing flower tissue (Pröls,

102	2004). Auxin direct effect on respiration is rarely mentioned. Sacalis and Nichols
103	(1980) showed that the effect of the auxin 2,4-D on the respiration rate of carnation
104	flower, depended on the concentration applied. Compared to water controls, CO_2
105	production was accelerated by uptake of 4, 20 and 100 mg of 2,4-D.1 ⁻¹ . However, 500
106	mg 2,4-D.l ⁻¹ suppressed CO_2 and ethylene evolution and retarded senescence. In small
107	fruits, some studies involving auxin application (15, 25 or 50 mg NAA.l ⁻¹), have shown
108	a reduction in dark respiration in the tissues of developing apples (Stopar et al., 2001)
109	and medlar (Amorós et al., 2004). In the whole plant level, depending on the dose and
110	time of application, auxins can either induce abscission or counteract it in citrus fruits
111	(Greenberg et al., 2006; Gupta and Kaur, 2007; Yuan and Carbaugh, 2007).
112	In young excised bougainvillea ('Purple Flower' and 'Taipei Red') bracts, Chang
113	and Chen (2001) reported ethylene production. Also, Xin and Lin (2005) showed a
114	climacteric ethylene production pattern in B. glabra and B. spectabilis during flower
115	opening and senescence. However, for B. spectabilis 'Killie Campbell', in the absence
116	of exogenous ethylene, STS alone is not very effective on counteracting bract abscission
117	(Gago et al., 2001; Meir et al., 2007) while NAA (500 ppm), at end of production,
118	substantially reduces bract abscission under interior conditions. In the presence of
119	exogenous ethylene, both STS and NAA are needed to control effectively bract
120	abscission (Gago et al., 2001). The auxin 2, 4, 5-TP, was shown to have the same effect
121	as NAA (Meir et al., 2007).
122	Thus, it seems probable that in bougainvillea under interior conditions, the
123	abscission process can be related to respiration rate and/or carbohydrate levels.
124	Regardless of the primary control of bract abscission (ethylene dependent or

independent), the knowledge of how it proceeds may help us devise strategies for its

126 control. The objective of this work is to deepen the knowledge on the physiology of

127	bougainvillea bract abscission, in what relates to respiration and carbon balance. Using
128	the variability induced by STS and/or NAA treatments, the respiration and carbohydrate
129	levels were assessed in several plant parts, to try to establish correlations with bract
130	abscission and to compute some simplified carbohydrate balances.
131	
132	2. Materials and methods
133	
134	2.1. General procedures
135	
136	Two postproduction experiments with Bougainvillea spectabilis 'Killie Campbell'
137	plants were done (beginning at: June 20, 2002 - experiment one, and August 25, 2003 -
138	experiment two), with completely randomized designs and five replications per
139	treatment.
140	Plants were grown in plastic greenhouses, using the normal procedures, at the
141	"Horto" of University of Algarve, Faro, until the beginning of the experiments. The
142	only environmental control provided was greenhouse ventilation when temperature
143	exceeded 24 °C. Temperature was monitored hourly with a temperature logger
144	(Testostor 175, Testo GmbH & Co., Lenzkirch, Germany). On both experiments, at the
145	beginning of the plant production period, i.e. the winter months (December/January) the
146	minimum temperature went down to 6°C and the maximum temperature rose to 21°C.
147	At the end of the production period (June/August) temperature ranged from a minimum
148	of 20°C to a maximum of 35°C.
149	At end of production, plants had approximately 60 cm height, at least ten bracts
150	completely developed and, at least one of them with an open flower (at anthesis). The
151	term bract, unless mentioned otherwise, refers to the bracts + flowers, i.e. an
152	inflorescence with 3 flowers and 3 bracts.

153	Treatments with STS were initiated during production, starting when bracts
154	became visible, and were applied every 15 days up to end of production. They consisted
155	of a 160 mg.l ⁻¹ spray of STS (2 g.l ⁻¹ of Argylene®; Argylene Biochem ApS,
156	Frederiksberg, Denmark). Treatments with NAA consisted of a single spray, at the end
157	of production (day 0 postproduction), using 500 mg.l ⁻¹ of NAA (30.30 g.l ⁻¹ of
158	Agritone® (0.45%NAA+1.2%NAA-amide; Etisa, Barcelona, Espanha)). Both types of
159	spray were done to wet uniformly the leaves and bracts, up to start of dripping.
160	Treatments performed were: a) STS, b) NAA, c) STS+NAA and d) WATER.
161	Once dry from the sprays, plants were sleeved, boxed in open card boxes - 10
162	plants per $30 \times 52 \times 50$ cm (height X length X width) box, and kept for three days under
163	simulated transport conditions (17±1°C, no light).
164	At day 3 postproduction (PP) plants were unboxed, removed from the sleeves and
165	placed under interior conditions [21 \pm 1°C and 12 µmol.m ⁻² .s ⁻¹ of cool white fluorescent
166	light (Philips,TLD, 58/830) 12 hr a day].
167	At end of production (day 0 PP), end of simulated shipping (day 3 PP) and, twice
168	a week, through the remaining of postproduction, the number of bracts remaining in the
169	plants was assessed (all bracts stages)
170	
171	
172	2.2. Respiration measurement
173	
174	At day 10 and day 17 PP, the measurement of dark respiration was made
175	separately for two plant parts: a) bracts: all the bracts and the small stems that support
176	them on each plant (TBS), b) leaves: all the leaves existing in the 20 cm of stem below
177	the bract zone and the respective small stems (TLS).

178	CO ₂ -exchange measurements were made in a closed system, using an IRGA
179	(model CI-301 (CI-301PS) CID Inc., Vancouver, WA 98682 USA) equipped with a 4
180	liters chamber. Attached bracts or leaves were conveniently enclosed in the chamber
181	and the chamber was flushed with outside air to bring the CO ₂ levels to approximately
182	360 ppm. The system was then changed to a closed circuit and the measurements done
183	in absolute mode. Ten consecutive measurements at 25 s intervals were taken for the
184	rate of CO ₂ increment, and the average of these measurements recorded.
185	Bracts, stems adjacent to the bracts, leaves and stems adjacent to the leaves, were
186	harvested separately, dried and their dry weight (DW) assessed. Bract + adjacent stem
187	respiration rate (BS) and leaf + adjacent stem respiration rate (LS) were expressed per
188	gram of bract and leaf dry weight, respectively.
189	
190	2.3. Carbohydrate assessment
191	
192	At days 10 and 17 PP, after 4 hours of exposure to light, samples for bracts, leaves
193	and stems were taken separately. Samples consisted of: a) bracts: all the bracts existing
194	in the plant, b) leaves: all the leaves existing in the 20 cm of stem below the bract zone,
195	c) stems: the 20 cm of stem below the bract zone, where the leaves were previously
196	harvested.
197	Some plants sprayed with WATER and STS lost all the bracts before day 10 and
198	day 17 PP, respectively, reducing the number of replications.
199	All fresh plant material was weighed and immediately frozen in liquid nitrogen,
200	being then dried in a ventilated oven at 80°C. When completely dry, they were ground
201	in a mill (MF 10 basic, IKA ®, Werke) and then re-dried in the same oven for a short
202	period. After proper homogenization, a 0.1g sub-sample for each plant part was used for

	203	carbohydrate extraction.	Total non structural	carbohydrates were	assessed (soluble
--	-----	--------------------------	----------------------	--------------------	-------------------

- sugars and starch separately) using the phenol-sulphuric method (Dubois *et al.*, 1956)
- following the procedure described by Stamps (1984).
- 206
- 207 2.4. Calculations
- 208 2.4.1. Bract respiration
- 209
- 210 Due to the way respiration was measured, it was not possible to separate, directly,
- 211 bract respiration, from respiration of the adjacent stem. To allow for this separation, a
- 212 linear model was used:
- 213 TBS=a+Bdw×br+Sdw×sr+t×DPP
- TBS total respiration in bracts + adjacent stems (mg CO_2 .h⁻¹)
- a constant
- 216 Bdw bract dry weight (g)
- 217 **br** bract respiration (mg CO_2 .g⁻¹ bract dry weight.h⁻¹)
- 218 Sdw stem dry weight (g)
- 219 **sr** stem respiration (mg $CO_2.g^{-1}$ stem dry weight.h⁻¹)
- 220 **t** change in respiration rate per day (mg CO_2 .day⁻¹.h⁻¹)
- 221 DPP day postproduction for the measurement
- 222

223 **2.4.2. Carbon balance**

224

A simplified carbon balance was computed using respiration and carbohydrate

- data. For that purpose it was assumed: (1) that the plants, or their organs, did not
- 227 photosynthesize (either in the complete dark or with the low light intensities of 12

 μ mol.m⁻².s⁻¹) during PP (no published information exists on bougainvillea

229 photosynthesis at low irradiances) and, (2) that respiration rate was constant through the

whole 24 hr period (i.e. during the dark or the low light intensity period). Mean daily

respiration was considered as the average of day 10 and day 17 PP.

232 For the different treatments, three different types of carbon balance were calculated,

between day 10 and day 17 PP, as shown in Table 1.

234

235 2.5. Statistical analysis

Bract abscission data was analyzed using survival analysis (Kleinbaum and Klein, 236 1995). The survival time started at the beginning of the postproduction period and ended 237 when bract abscission was observed. An observation was censored when the bract was 238 239 still on the plant by the end of the experiment. Survival times were analyzed using the Kaplan-Meier technique (Kleinbaum and Klein, 1995), producing the empirical survival 240 curves for the four postproduction treatments. The difference in survival times between 241 the treatments were tested with the log-rank test. A disadvantage of this method is that 242 the effects of the explanatory factors (covariates) cannot be quantified (Wubs et al., 243 244 2007).

For carbohydrate levels and respiration rate a 3-way factorial was used
(experiment × day PP × treatment). When needed, means were compared using

247 Duncan's New Multiple Range Test at *P*=0.05. Linear regressions were also run when

appropriate. Softwares used for the statistical treatments were SAS (SAS Institute

249 Inc., Cary, NC, USA) and SPSS (SPSS Inc., Chicago, USA).

250

251

252 **3. Results**

254 **3.1. Bracts survival time**

235	
256	Plants sprayed with NAA and STS+NAA did not differ in their bracts' survival
257	time (29.57 and 29.85 days, respectively; at P=0.997), but had a significantly higher
258	survival time than bracts treated with WATER or STS (at P<0.0001). Bracts sprayed
259	with STS survived longer (11.18 days) than bracts sprayed with WATER (10.11 days;
260	at $P \le 0.0001$). Bracts treated with WATER and STS abscised more intensively in the
261	first 11 days of postproduction period. In that period, plants treated with STS and
262	WATER had similar fractions of surviving bracts. At day 15 PP, plants treated with
263	WATER or STS had less than 5% or 15% of surviving bracts, respectively. On the same
264	PP day, plants sprayed with NAA or STS+NAA had more than 80% of surviving bracts
265	(Fig. 1).
266	
267	
268	3.2. Carbohydrates
269	
270	Bracts
271	Bract carbohydrate levels (starch, soluble and total carbohydrates) were significantly
272	affected by PP treatments (at P=0.022, P=0.0001 and P=0.0001, respectively) and the
273	PP day (at <i>P</i> =0.0431, <i>P</i> =0.0001 and <i>P</i> =0.0001, respectively). The levels of soluble and
274	total carbohydrates were also affected by experiment (at $P=0.0210$ and $P=0.0172$,
275	respectively), with the higher values in the 2003 experiment. Since bract starch and total
276	carbohydrates presented an interaction between treatment and PP day, data are
277	presented by treatment and PP day for all types of carbohydrates assessed (Fig. 2). On

278	day 10 PP, bracts sprayed with STS and WATER had the highest levels of total
279	carbohydrates, while the differences among treatments in soluble carbohydrates and
280	starch were less marked. At day 17 PP, STS treated bracts still had the highest soluble
281	and total carbohydrates levels, but WATER treated bracts had levels similar to the
282	bracts sprayed with NAA or STS+NAA. At this time bract starch content was similar in
283	all treatments. Between days 10 and 17 PP, bracts sprayed with WATER and
284	STS+NAA reduced the content of soluble (at <i>P</i> =0.0123 and <i>P</i> =0.0041, respectively)
285	and total carbohydrates (at $P=0.0083$ and $P=0.0025$, respectively) and, only bracts
286	treated with STS reduced the level of starch (at $P=0.0151$).
287	The higher the levels of soluble and total carbohydrates (Fig. 3), measured at day
288	10 PP, the shorter the bract survival time. However, the higher the percentage of starch
289	in the bracts, measured at day 17 PP, the longer the bracts survive (Fig. 3).
290	
291	Leaves
292	Leaf soluble and total carbohydrate levels were significantly affected by an
293	interaction between treatments and experiments: in 2002, no differences were found
294	among the levels of carbohydrates (soluble and total) of the different treatments (Fig. 4
295	A), while in 2003, plants sprayed with WATER and NAA presented higher levels of
296	leaf soluble and total carbohydrates (Fig. 4 B).
297	Experiment affected the levels of soluble sugars (at $P=0.001$), total non structural
298	carbohydrates (at $P=0.001$) and percentage of starch (at $P=0.0198$).
299	Day of carbohydrate assessment (i.e. day PP) affected the levels of starch, soluble

301 experiment. The starch content at day 10 PP (17 mg glucose.g $^{-1}$ DW) was higher than at

day 17 PP (9 mg glucose.g⁻¹DW). The reverse happened with the soluble carbohydrates

303	having 33 mg glucose.g ⁻¹ DW, at day 10 PP, and 36 mg glucose.g ⁻¹ DW, at day 17 PP.
304	Total carbohydrates did not differ between days 10 and 17 PP, but the percentage of
305	starch in leaves decreased from 25% to 20% (at P=0,0119). No effect of treatment or
306	experiment could be found in the levels of leaf starch. Also, the percentage of starch in
307	leaves was not affected by postproduction treatment but was affected by the experiment.
308	Overall, the percentage of starch (average of the 4 postproduction treatments) was
309	higher in the plants of the 2002 experiment (24.4%) than in plants of the 2003
310	experiment (20.64%). No correlations were found between the levels of leaf non
311	structural carbohydrates and bract abscission.
312	
313	3.3. Respiration
314	3.3.1. Bracts
315	
316	Bract respiration rate (BS) was significantly affected by treatment and day PP (at
317	P=0.0074 and $P=0.0011$, respectively). Plants sprayed with WATER presented the
318	highest bract respiration rate, followed by intermediate values on plants treated with
319	STS and STS+NAA and, the lowest respiration rates occurred on bracts sprayed with
320	NAA (Fig. 5 A).
321	Respiration rate decreased from day 10 to day 17 PP (Fig. 5 B) by approximately
322	50% (on average of all treatments).
323	
324	Separation of bract from stem respiration
325	At all postproduction treatments TBS was reasonably explained by bract and stem
326	dry weights and by postproduction day (Table 2). Estimated bract respiration rate (br)
327	presented slightly lower values in plants sprayed with NAA. Also, stem respiration rate

328	(sr) presented lower values in plants treated with NAA but, these values were very close
329	to the values computed for WATER, STS and STS+NAA treatments. In all
330	postproduction treatments sr was lower than br: less than 50% in WATER, NAA and
331	STS. Only in STS+NAA, sr was about 70% of br (Table 2).
332	When compared to the WATER control, STS alone lowered the model constant
333	(a) and, the treatments with NAA (with or without STS) presented the highest values.
334	Similar results were obtained for t , the decrease of respiration rate by day PP.
335	
336	
337	Relationship between bract respiration and bract survival time (longevity)
338	Bract respiration, as measured together with the adjacent stems (BS) on days 10
339	and 17 PP, or estimated (br), negatively correlated with bract longevity. However, it
340	was BS at day 17 PP, who showed the best correlation (Fig. 6).
341	
342	Relationship between bract respiration and carbohydrate levels
343	Using the carbohydrate data and pooling the data for the two experiments, and for
344	days 10 and 17 PP, the treatments that had a higher estimated bract respiration rate (br)
345	were those with more non structural carbohydrates in the bracts: starch, soluble and
346	total (Fig. 7).
347	
348	Bract carbon balance
349	Considering the carbon balance per gram of bract dry weight (br), the treatments
350	WATER and STS, showed the largest decrease in the content of total carbohydrates and
351	had the highest consumption of carbohydrates through respiration (Table 3). So, these
352	were the bracts that imported an higher amount of carbohydrates per gram of dry

weight. Plants treated with NAA or STS+NAA presented similar values of br, but the
decrease in total carbohydrates was higher in the STS+NAA treatment.

356	In the carbon balance for the whole mass of bracts and adjacent stems in an
357	average plant (Table 4), the treatments WATER and STS continued to allow for the
358	largest decreases in total carbohydrate. However, and contradicting the results per gram
359	of bract DW, the highest total consumption of carbohydrates by respiration appeared in
360	the NAA and STS+NAA treatments. Most probably, the more bracts remained in a
361	plant, the greater the expenditure of carbohydrates. Indeed, between days 10 and 17 PP,
362	in the plants treated with WATER and STS, bract dry weight was only 40% of the
363	whole mass of bracts and adjacent stems, whereas in the NAA and STS+NAA
364	treatments, bracts represented about 60%.
365	
366	3.3.2. Leaf
367	
368	The respiration rate in leaves + adjacent stem (LS), in the dark, was not affected
369	by postproduction treatment, but was significantly influenced by experiment (at
370	P=0.0025) and by postproduction day (at $P=0.0107$), and there was an interaction
371	between these two effects (at $P=0.0503$).
372	All treatments decreased their LS from day 10 to day 17 PP (data not shown). No
373	correlations could be established between the abscission of leaves (data not shown) and
374	their respiration rate. Variability was considerable. Also, leaf respiration was measured
375	in the upper part of the plant (the 20 cm of stem below the area of bracts), while the
376	leaves that fell the most, were in the lower part.

377	In the 2003 experiment, at day 17 PP, a higher LS, was related to a lower level of
378	leaf total carbohydrates, on that day [LS = $2.197 - 0.0309 \times$ total carbohydrates (mg
379	glucose.g ⁻¹ leaf DW); R ² =0.893 e P =0.0552]. However, it was not possible to establish
380	this correlation for 2002.
381	The carbon balance of the whole mass of leaves assessed and their adjacent stems
382	was performed (Table 5) for the two experiments. More than differences among
383	treatments there were differences between experiments (data not shown). In 2002, the
384	decrease in the content of total carbohydrates, from day 10 to day 17 PP was high and
385	superior to the respiration needs, leading to some export. In 2003, comparing with 2002,
386	there was a higher consumption by respiration, and a smaller decrease in the
387	carbohydrate content of the leaves, leading to a computed import of carbohydrates.
388	These results suggest that the different treatments did not influence substantially
389	the carbon balance in the leaves, and may suggest that the plants in the two experiments
390	had different leaf age. Unfortunately, photosynthetic rates were not measured and it is
391	unknown if it had any role in the balance. Percent of dry weight of leaves in the total
392	weight of leaves and adjacent stems differed with experiment: 52% in 2002 and 30% in
393	2003.
394	
395	
396	4. Discussion
397	
398	In this work, the pattern of bract abscission obtained by STS and/or NAA
399	treatments was similar to the results presented by Gago et al. (2001). Clearly the
400	treatments that prolong bract survival time or, what is the same, reduce bract abscission
401	(Fig.1) are the ones that include NAA.

In bougainvillea bracts, the content of soluble sugars was always much higher than the starch content (Fig. 2), suggesting that these are places of transit or consumption of carbohydrates. Previously, Zhao and Oosterhuis (2000) showed the importance of cotton bracts in the adjustment of the transport of photoassimilates to the flower parts. To determine whether bougainvillea bracts have or not a function on carbohydrates supply to the flower, bract and flower carbohydrates should have been quantified separately, which unfortunately was not done.

As it was expected, STS and/or NAA treatments induced variability in the 409 carbohydrate levels of several plant parts. It was possible to establish correlations 410 411 between bract abscission rate and carbohydrate levels in some plant parts (bracts and stems (data not shown)), however, in an unexpected way. Bracts which showed higher 412 413 contents of soluble and total sugars, initially, were those that had the lowest longevity 414 (Fig. 3). These results differ from those presented so far in the literature, where examples exist of positive correlations between the levels of flower non structural 415 416 carbohydrates and its longevity as well as of negative correlations between the carbohydrate content of an organ and its abscission. Begonia inflorescences with higher 417 contents of sucrose and starch had greater longevities (Fjeld, 1992). The stress caused 418 by low light intensities (80% reduction in light level) influenced the photoassimilates 419 availability to flower/fruit development in pepper: cultivars with higher flower and/or 420 fruit abscission had lower content of non structural carbohydrates (Wien et al, 1989). 421 Bracts have intermediate characteristics between leaves and petals and little 422 research has been done on these plant organs. In this study, when referring to bracts, 423 flowers are also included, and it is unknown in bougainvillea, despite their abscission as 424 a whole, to what extent these two organs behave in a similar way. As far as 425 carbohydrate levels and abscission are concerned, these two organs may have different 426

physiologies, and the different dry weights or different carbohydrate levels, may mask 427 the individual effects. Nevertheless, whatever the prevalence is, these results show, for 428 the first time that longevity can negatively correlate with non structural carbohydrates 429 levels in the organ. However, bracts with higher percentages of starch, at day 17 PP, had 430 lower abscission rates (Fig. 3). An increased starch percentage may mean that there is 431 'excess' of carbohydrates (as of higher transit, higher import, and/or lower 432 433 consumption) in a sink organ as we assume bracts to be. An higher priority for storage, is also possible in a source or storage organ. 434

The carbohydrates content may not be a reliable estimate of their availability: it 435 436 does not reflect the rate of utilization, the proportion that is not available or the rate of import from other plant parts. An higher content of soluble sugars (or total 437 carbohydrates) may have different explanations such as: an higher rate of 438 439 import/production for a reduced or constant consumption; a constant rate of import/production together with a lower consumption,... Nevertheless, a more active 440 metabolism, with an higher rate of consumption and an higher rate of 441 import/production, i.e. an higher flow of carbohydrates through the organ, may also be 442 sensed as an actual, higher content of carbohydrates. 443 444 Both bract and leaf respiration rate decreased, between days 10 and 17 PP. This

decline in respiration rate may be due to a lack of carbohydrates available or, a
reduction in metabolic activity. Decreases in respiration rate (decreased metabolic
activity) induced by low irradiance have been shown in leaves (Noguchi *et al.*, 2001),
where this decrease is essential to maintain a positive (or less negative) balance of
carbohydrates. Inflorescence/flower respiration under interior conditions is also known
to decrease during postproduction, as it was reported for chrysanthemum (Monteiro,
1991). No previous information, specific for bracts under interior conditions, exists.

However, according to what is known for flowers and leaves, the decrease in bractrespiration rate was expected.

Bract respiration rate (**br** as estimated or BS as assessed) negatively correlated with bract survival time. In general biology, it is common that species or organs with higher respiratory rates have shorter longevities (Cevallos and Reid, 2000) and respiration rate has been suggested as an indicator of flower longevity (Kuc and Workman, 1964; Reid, 1985; Monteiro, 1991). Here, this correlation is extended for the flower+bract system.

This study is consistent with previous works in which respiration rate is 460 461 negatively correlated with the longevity of the floral organs (Monteiro, 1991; Monteiro, 1993; Grossi et al., 2003). In the previous studies, the causes of variation that 462 influenced the respiratory rates were often the genetic differences (different cultivars), 463 464 treatments that directly affect the speed of chemical reactions (such as temperature), or substances such as STS that prevent ethylene action. Here, for the first time, it is shown 465 that the effect of NAA, in the maintenance of bracts of plants kept at low irradiance, is 466 accompanied by a decrease in the respiratory rate per gram of brac. This type of 467 response was previously found in apple (Stopar et al., 2001) and medlar growing fruits 468 (Amorós et al., 2004). 469

The meaning of the positive correlation between bract respiration rate and carbohydrate level in the bracts is not so clear. We expected carbohydrate levels to be lower in the treatments where their consumption was higher and the opposite happened. It is possible that, if carbohydrate availability was a limiting factor, higher amounts of available carbohydrates in the bracts allowed for higher respiration rates. However, it does not make much sense that increased carbohydrate availability (although inducing increased respiration rate) goes together with shorter bract longevity. In potted

miniature roses (Monteiro *et al.*, 2001), when a lack of carbohydrate availability existed,
flower longevity decreased and if the limitation was overcome, the flower respiration
rate increased simultaneously with flower longevity. We are more prone to the
hypothesis that, in the plants that had higher bract respiration rates, there was an higher
flow of carbohydrates through the bracts (and flowers), which, in the end, was sensed as
an higher carbohydrate level.

Rather interesting are the completely different results found in the two carbon 483 balances performed: a) per gram of bract dry weight and b) for the whole mass of bracts 484 plus adjacent stems in the average plant. Comparing the treatments with delayed bract 485 486 abscission (the ones including NAA) with the others: in the balances per gram of bract dry weight, the former had the lowest carbon consumptions, while in the balances for 487 the whole mass of bracts and adjacent stems in the average plant, these same treatments 488 489 had the highest carbon consumptions. These differences were mainly due to the higher number of bracts present in the plants during the postproduction period. It makes sense 490 491 that bracts that last longer have lower individual carbon consumption while, at the plant level, the increased number of bracts remaining in the plant, causes a higher overall 492 expenditure. It is clear that treatments allowing for longer bract persistence are the ones 493 494 that, in a whole plant basis, spend more carbon for overall floral organ maintenance. This is in accordance with the lower levels of starch found in the stems (data not shown) 495 of plants from the treatments with NAA, strengthening the hypothesis that 496 bracts+flowers are mainly places of consumption. 497 Plants sprayed with NAA had modified carbon partitioning rates to the bracts. The 498 importance of the carbohydrate levels for the control of bract abscission in 499 bougainvillea is still unknown. Nevertheless, recent works have been stressing the 500 importance of some carbohydrate molecules (mainly glucose), interacting with plant 501

hormones (ABA, auxin, ethylene, ...) in the regulation of plant growth and development(Sheen, 2010).

No differences in respiratory rates of leaves, induced by postproduction 504 treatments were detected but, plants of the two experiments seemed to be in different 505 stages of their development. In 2002, the leaves may have provided energy for 506 development and maintenance of bracts, which did not seem to happen in 2003 (Table 507 5). Probably, these differences may be associated with differences in leaf age and/or 508 different conditions of plant production: Stahl and McCree (1988) reported that in 509 Sorghum bicolor, the two components of respiration in the dark, maintenance 510 511 respiration and growth respiration decrease with age of the leaf. 512 Acknowledgements 513 514 This research was supported by a grant Praxis XXI/BD/15640/98 and the project PBIC/C/2286/95, both from Fundação para a Ciência e Tecnologia. We also thank 515 516 CDCTPV/University of Algarve (including Projecto de unidade I&D: CDCTPV 2003-517 2005, POCTI/POCI, 2010) for the support and facilities. 518 519 References 520 521 Adelman R., Saul R. L., Ames B. N., 1988. Oxidative damage to DNA: Relation to 522 species metabolic rate and life span. Proc. Natl. Acad. Sci. 85, 2706-2708. 523

- 524 Amorós A., Zapata P., Pretel M. T., Botella M. A., Almansa M. S., Serrano M., 2004.
- Role of naphthalene acetic acid and phenothiol treatments on increasing fruit size
- and advancing fruit maturity in loquat. Sci. Hortic. 101, 387-398.

- 527 Ascough G. D., Nogemane N., Mtshall N. P., van Staden J., 2005. Flower abscission:
- 528 environmental control, internal regulation and physiological responses of plants.
- 529 South African J. Bot. 71 (3 & 4), 287-301.
- Beyer Jr. E. M., Morgan P. W., 1971. Abscission: The role of ethylene modification of
 auxin transport. Plant Physiol. 48, 208-212.
- 532 Borochov A., Woodson W., 1989. Physiology and biochemistry of flower petal
- senescence. Hortic. Rev. 11, 15-43.
- Brown K. M., 1997. Ethylene and abscission. Physiol. Plant. 100, 567-576.
- 535 Cevallos J. C., Reid M. S., 2000. Effects of temperature on the respiration and vase life
- of *Narcissus* flowers. Acta Hortic 517, 335-341.
- 537 Chang Y.-S., Chen H.-C., 2001. Variability between silver thiosulfate and 1-
- naphthaleneacetic acid applications in prolonging bract longevity of potted
- 539 bougainvillea. Sci. Hortic. 87, 217-224.
- 540 Chanasut U., Rogers H. J., Leverentz M. K., Griffiths G., Thomas B., Wagstaff C.,
- 541 Stead A. D., 2003. Increasing flower longevity in *Alstroemeria*. Postharvest Biol.
 542 Technol. 29, 324-332.
- 543 Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F., 1956. Colorimetric
- method for determination of sugars and related substances. Analytical chemistry 3
 (28), 350-356.
- 546 Fjeld T., 1992. Effects of temperature and irradiance level on carbohydrates content and
- keeping quality of Christmas begonia (*Begonia × cheimantha* Everett). Sci. Hortic.
 50, 219-228.
- 549 Gago, C. M. L., Monteiro, J. A., Rodrigues, M. H., 2001. Bougainvillea postproduction:
- 550 NAA and STS control of bract abscission is subject to exogenous ethylene. Acta
- 551 Hortic. 543, 47-53.

- 552 Greenberg J., Kaplan I., Fainzack M., Egozi Y., Giladi B., 2006. Effects of auxins
- sprays on yield, fruit size, fruit splitting and the incidence of creasing of 'Nova'
 mandarin. Acta Hortic. 727, 249-254.
- 555 Grossi J. A.S., Pemberton H. B., Baker J. T., 2003. Leaf photosynthesis, flower
- respiration and flower longevity of pot roses influenced by cultivar and growing
- environment. Acta Hortic. 624, 329-334.
- Gupta M., Kaur H., 2007. Effect of growth regulators on pre-harvest fruit drop in plum
 (*Prunus salicina* L.) cv. Satluj Purple. Indian J. Hortic. 64(3), 278-281.
- 560 Halevy A. H., Kofranek A. M., Besemer S. T., 1978. Post-harvest handling methods for
- Bird-of-paradise flowers (*Strelitzia reginae* Ait.). J. Am. Soc. Hortic. Sci. 103, 165169.
- Halevy A. H., Mayak S., 1979. Senescence and post-harvest physiology of cut flowers part 1. Hortic. Rev. 1, 204-236.
- ⁵⁶⁵ Ho L. C., Nichols R., 1977. Translocation of ¹⁴C-sucrose in relation to changes in
- carbohydrate content in rose corollas cut at different stages of development. Ann.
- 567 Bot. 41, 227-242.
- Ichimura K., 1998. Improvement of postharvest life in several cut flowers by addition of
 sucrose. Jpn. Agric. Res. Q. 32, 275-280.
- 570 Ichimura K., Katsumort K., Goto R., 2000. Soluble carbohydrates in *Delphinium* and
- their influence on sepal abscission in cut flowers. Physiol. Plant. 108, 307-313.
- Kleinbaum D. G., Klein M., 1995. Suvival Analysis: A self-learning text. Springer.
 Second edition.
- 574 Kuc R., Workman M., 1964. The relation of maturity to the respiration and keeping
- 575 quality of cut carnations and chrysanthemums. Proceedings of American Society of
- 576 Horticultural Science 84, 575-581.

577	McManus M. T., Thompson D. S., Merriman C., Lyne L., Osborne D. J., 1998. Trans
578	differentiation of mature cortical cells to functional abscission cells in bean. Plant
579	Physiol. 116, 891-899.
580	Meir S., Salim S., Chernov Z., Philosoph-Hadas S., 2007. Quality improvement of cut
581	flowers and potted plants with postharvest treatments based on various cytokinins
582	and auxins. Acta Hortic. 755, 143-156.
583	Monteiro J. A., 1991. Potted chrysanthemum postproduction longevity: carbon
584	exchange rates, dry matter and nonstrutural carbohydrates. M. S. Thesis, University
585	of Florida. Gainesville.
586	Monteiro J. A., 1993. Postproduction longevity of potted miniature rose: flower
587	respiration, exogenous sugar and environmental factors during production. PhD
588	Thesis, University of Florida. Gainesville.
589	Monteiro J. A., Nell T. A., Barret J. E., 2001. Postproduction of potted miniature rose:
590	flower respiration and single flower longevity. J. Am. Soc. Hortic. Sci. 126(1),
591	134-139.
592	Monteiro J. A., Nell T. A., Barret J. E., 2002. Effects of exogenous sucrose on
593	carbohydrate levels, flower respiration and longevity of potted miniature rose
594	(Rosa Hybrida) flowers during postproduction. Postharvest Biol. Technol. 26, 221-
595	229.
596	Nahar B. S., Ikeda T., 2002. Effect of different concentrations of Figaron on production
597	and abscission of reproductive organs, growth, and yield in soybean (Glycine max
598	L.). Field Crops Research 78, 41-50.
599	Noguchi K., Nakajima N., Terashima I., 2001. Acclimation of leaf respiratory
600	proprieties in Alocasia odora following reciprocal transfers of plants between high-
601	and low-light environments. Plant, Cell and Environment 24, 831-839.

- Pass R. G., Hartley D. E., 1979. Net photosynthesis of three foliage plants under low
- 603 irradiation levels. J. Am. Soc. Hortic. Sci. 104, 745-748.
- ⁶⁰⁴ Patterson, S.E., Bleecker, A.B., 2004. Ethylene-dependent and independent processes
- associated with floral organ abscission in *Arabidopsis*. Plant Physiol. 134, 194-203.
- Pearl R., 1928. Experiments on longevity. Quarterly Rev. Biol. 3, 391-407.
- Pröls, R., 2004. Regulation and function of extracellular invertases of tomato. PhD
- 608 Dissertation, Julius-Maximilians-Universität, Würzburg.
- 609 Redman, P. B., Dole J. M., Maneess N. O., Anderson J. A., 2002. Postharvest handling
- of nine specialty cut flower species. Sci. Hortic. 92, 293-303.
- Reid M. S., 1985. Ethylene and abscission. HortScience 20 (1), 45-50.
- 612 Sacalis, J., R. Nichols, 1980. Effects of 2,4-D uptake on petal senescence in cut
- carnation flowers. HortScience 15(4), 499–500.
- 614 Sheen, J., 2010. Discover and connect cellular signaling. Plant Physiol. 154, 562-566.
- 615 Stahl R. S., McCree K. J., 1988. Ontogenetic changes in the respiration coefficients of
- grain sorghum. Crop Science 28, 111-113.
- 617 Stamps R. H., 1984. Production temperature effects on anatomy, morphology,
- 618 physiology and post harvest longevity of leatherleaf fern (*Rumorha adiantiformis*
- 619 Forst. Ching). Ph. D. Dissertation, University of Florida, Gainesville.
- 620 Stopar M., Resnik M., Pongrac V. Z., 2001. Non structural carbohydrate status and CO₂
- 621 exchange rate of apple fruitlets at the time of abscission influenced by shade, NAA
- 622 or BA. Sci. Hortic. 87, 65-76.
- van der Meulen-Muisers J. J. M., van Oeveren J. C., van der Plas L. H. W., van Tuyl.,
- 624 2001. Postharvest flower development in Asiatic hybrid lilies as related to tepal
- 625 carbohydrate status. Postharvest Biol. Technol. 21, 201-211.
- van Meeteren U., van Gelder H., van Peppel A. C., 1995. Aspects of carbohydrate
- balance during floret opening in freesia. Acta Hortic. 405: 117-122.

- Veen H., 1979. Effects of silver on ethylene synthesis and action in cut carnations.
- 629 Planta 145, 467-470.
- 630Xin L., Lin Z., 2005. Ethylene production and Polyamines in *Bougainvillea glabra*.
- 631 Acta Hortic. Sinica 32(4), 722-724.
- Waithaka K., Dodge L. L., Reid M. S., 2001. Carbohydrate traffic during opening of
 gladiolus florets. Acta Hortic. 543, 217–221.
- Wien H. C., Turner A. D., Zhang Y., 1989. Hormonal basis for low light intensity-
- 635 induced flower bud abscission of pepper. J. Am. Soc. Hortic. Sci. 114 (6), 981-985.
- 636 Woltering E. J., 1987. Effects of ethylene on ornamental pot plants: a classification. Sci.
- 637 Hortic. 31, 283-294.
- Wubs A. M., Heuvelink E., Marcelis L. F. M., Hemerik L., 2007. Survival analysis of
 flower and fruit abortion in sweet pepper. Acta Hortic. 761, 617-624.
- 40 Yuan R. C., Carbaugh D. H., 2007. Effects of NAA, AVG, and 1-MCP on ethylene
- biosynthesis, preharvest fruit drop, fruit maturity, and quality of 'Golden Supreme'
 and 'Golden Delicious' apples. HortScience 42(1), 101-105.
- ⁶⁴³ Zhao D., Oosterhuis D. M., 1998. Physiologic and yield responses of shaded cotton to
- the plant growth regulator PGR-IV. J. Plant Growth Regul. 17, 47-52.
- ⁶⁴⁵ Zhao D., Oosterhuis D. M., 2000. Dynamics of non structural carbohydrates in
- developing leaves bracts and floral buds of cotton. Env. Exp. Bot. 43, 185-195.
- 647
- 648

Table 1 – Carbon balance calculations, for the different treatments, between day 10 and day 17 PP: (a) per gram of bract dry weight (using the estimate of bract respiration, br), (b) for the whole mass of bracts and adjacent stems existing in the average plant (using measured values, TBS), (c) for the whole mass of leaves and stems in the 20 cm below the bract zone, for the average plant (using measured values, TLS).

Assessment	Calculation
Variation in carbohydrate	Δ Total carbohydrates (mg glucose) *= Total
levels from day 10 PP to day	carbohydrates at day 17* - Total carbohydrates at day
17 PP	10*
Carbohydrate consumption	Total consumption of carbohydrates (mg
through respiration for the 7	glucose)*=(R**×24 h×7 days)/1.47
day period	
Imported carbohydrates,	Total carbohydrate import *(mg glucose) = Total
calculated from the	consumption of carbohydrates $+ \Delta$ Total
consumption of carbohydrates	carbohydrates
and the variation of	
carbohydrates levels between	
day 10 and 17 PP	
Daily carbohydrate import	Daily import carbohydrates*(mg glucose.day ⁻¹) =
	Total carbohydrate import/7 days

*on bracts (a), expressed on mg glucose per gram of bract dry weight; on bracts + adjacent stems (b), expressed on mg glucose for the average plant;

on total leaves + adjacent stem in the 20 cm below bracts (c), expressed on mg glucose for the average plant.

**(a) R= br; (b) R= TBS; (c) R= TLS

Table 2 – Linear model TBR= \mathbf{a} +Bdw× \mathbf{br} +Sdw× \mathbf{sr} + \mathbf{t} ×DPP, for each postproduction treatment: significance level (*P*), determination coefficient (R²) and estimated parameters (**a**, **br**, **sr** and **t**). Each value was obtained using data from the two experiments.

	Postproduction treatments				
	WATER	STS	NAA	STS+NAA	
Р	0.0002	0.0008	0.0016	0.0012	
R^2	0.8778	0.7135	0.6530	0.6687	
a	1.2384	0.4374	1.4728	1.885	
\mathbf{br}^{*1}	0.6539	0.8815	0.3456	0.3552	
\mathbf{sr}^{*2}	0.2370	0.2906	0.0168	0.2486	
t *3	-0.0787	-0.0335	-0.0824	-0.1142	

*¹ mg CO₂.h⁻¹.g⁻¹ bract DW,*² mg CO₂.h⁻¹.g⁻¹ stem DW, *³ mg CO₂.day⁻¹.h⁻¹

Table

Table 3 – Different treatments carbon balance, between days 10 and 17 PP, per gram of bract dry weight. The balance was computed using data from the 2002 and 2003 experiments. Bract respiration rate (br) was estimated from assessed values of bract+adjacent stem respiration rates.

Carbon balance -per g of bract dry weight-						
Postproduction			Total	Total	Daily	
treatment	$\Delta total_{B}^{*}$ br** consump		consumption	import*	import***	
			by br *			
WATER	-22.120	0.446	74.885	52.765	7.538	
STS	-10.131	0.601	100.949	90.819	12.974	
NAA	-3.294	0.236	39.578	36.284	5.183	
STS+NAA	-8.291	0.242	40.677	32.386	4.627	

 $\Delta Total_{B}=Variation in bract carbohydrate levels$ *(mg glucose.g⁻¹ bract dry weight);**(mg glucose.g⁻¹ bract dry weight. h⁻¹);*** (mg glucose.g⁻¹ bract dry weight.day⁻¹).

Table

Table 4 – Different treatments carbon balance, between day 10 and 17 PP, for the whole mass of bracts and adjacent stems of an average plant. The balance was computed using data from the 2002 and 2003 experiments.

Carbon balance, whole mass of bracts and adjacent stems, in an average plant -						
Postproduction			Total	Total	Daily	
treatments	$\Delta Total_{B+S}*$	TBS**	consumption	import*	import***	
			by TBS*			
WATER	-40.350	0.455	76.512	36.162	5.166	
STS	-22.636	0.390	65.591	42.955	6.136	
NAA	-5.609	0.541	90.912	85.303	12.186	
STS+NAA	-10.639	0.636	106.838	96.198	13.743	

 Δ Total_{B+S} = Variation in the bract+adjacent stem carbohydrate levels; TBS= total (bract+ adjacent stems) respiration rate.

*(mg glucose. average plant⁻¹); **(mg glucose. average plant⁻¹. h⁻¹); *** (mg glucose. average plant⁻¹. day⁻¹).

Table 5 – Different treatments carbon balance by experiment, between days 10 and 17 PP, for the whole mass of leaves+adjacent stems in the 20 cm below the bract zone.

	Postproduction			Total	Total	Daily
	treatment	$\Delta Total_{L+S}*$	TLS**	consumption	import*	import
				by TLS*		***
2002	WATER	-50.703	0.213	35.855	-14.849	-2.121
Experiment	STS	-45.199	0.150	25.220	-19.979	-2.854
	NAA	-54.856	0.218	36.631	-18.225	-2.603
	STS+NAA	-65.279	0.280	47.114	-18.165	-2.595
2003	WATER	-22.996	0.260	43.727	20.731	2.962
Experiment	STS	-8.933	0.330	55.500	46.567	6.652
	NAA	-24.288	0.351	59.003	34.715	4.959
	STS+NAA	-17.553	0.496	83.341	65.788	9.398

Carbon balance, whole mass of leaves and adjacent stems, in an average plant

 Δ Total_{L+S} =Variation in the leaf+adjacent stems carbohydrate levels.

TLS= leaf+adjacent stems respiration rate for the 20 cm below bract zone. *(mg glucose.average plant⁻¹); **(mg glucose.average plant⁻¹. h⁻¹); ***(mg glucose.average plant⁻¹. day⁻¹).

Fig. 1 – Kaplan-Meier estimates survival functions describing probability that a bract survive to time (t), in plants sprayed with WATER, STS, NAA and STS+NAA.

Fig. 2- Bracts starch, soluble and total non-structural carbohydrates for the different treatments (WATER, STS, NAA and STS+NAA) and the two postproduction days (days 10 and 17 PP). Bars are the means for the two experiments and, bars with different letters, within each day PP and carbohydrate type, are significantly different for Duncan's New Multiple Range Test, at P=0.05.

Fig. 3 - Linear regressions between bract survival time and bract non structural carbohydrate levels (total and soluble, measured at day 10 PP), and between bract survival time and bract starch percentage (measured at day 17 PP).

Fig. 4 – Leaf non structural carbohydrates: soluble and total for the different treatments (WATER, STS, NAA and STS+NAA). Experiment of 2002 (A) and 2003 (B): Bars are means of two postproduction days (days 10 and 17 PP) and bars with different letters, within each carbohydrate type, are significantly different for Duncan's New Multiple Range Test, at P=0.05.

Fig. 5- Respiration rate of bract+stem (BS): (A) for the different postproduction treatments (WATER, STS, NAA and STS+NAA). Bars are means of two postproduction days (days 10 and 17 PP) and two experiments (2002 and 2003); (B) for postproduction days 10 and 17. Bars are means of four postproduction treatments (WATER, STS, NAA and STS+NAA) and two experiments (2002 and 2003). Bars with the same letter, are not significantly different for Duncan's New Multiple Range Test, at P=0.05.

Fig. 6 - Linear regressions between bract survival time and bract respiration rate (measured together with the adjacent stems (BS) on days 10 and 17 PP, or estimated (**br**)).