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We implement a quantum approach which includes long range Coulomb interaction and investigate current
voltage characteristics and shot noise in double-barrier resonant diodes. The theory applies to the region of low
applied voltages up to the region of the current peak and considers the wide temperature range from zero to
room temperature. The shape of the current voltage characteristic is well reproduced and we confirm that even
in the presence of Coulomb interaction the shot noise can be suppressed with a Fano factor well below the
value of 0.5. This feature can be an indication of coherent tunneling since the standard sequential tunneling
predicts in general a Fano factor equal to or greater than the value 0.5. This giant suppression is a consequence
of Pauli principle as well as long range Coulomb interaction. The theory generalizes previous findings and is
compared with experiments.
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I. INTRODUCTION

Since its realization,1 the double-barrier resonant diode
(DBRD) proved to be an electron device of broad physical
interest because of its peculiar non-Ohmic current voltage
sI-Vd characteristic. Indeed, after a strong superOhmic in-
crease of current it exhibits a negative differential conduc-
tance and eventually histeresis effects.2 Even the shot noise
characteristics of DBRDs are of relevant interest in the sense
that suppressed as well as enhanced shot noise with respect
to the full Poissonian value has been observed(see Ref. 3 for
a review on the subject). These electrical and noise features
are controlled by the mechanism of carrier tunneling through
the double potential barriers. The microscopic interpretation
of these features is found to admit a coherent or a sequential
tunneling approach.3 The coherent approach4 consists in con-
sidering the whole device as a single quantum system char-
acterized by a transmission coefficient describing carrier
transport from one contact to the other. By contrast, the se-
quential approach5 consists in considering tunneling through
the diode as a two step process where carriers first transit
from one contact into the well, then from the well to the
other contact. The intriguing feature of these two approaches
is that from the existing literature it emerges that both of
them are capable to explain theI-V experimental data as well
as most of the shot noise characteristics. Therefore, to our
knowledge there is no way to distinguish between these two
transport regimes and the natural question whether the tun-
neling transport is coherent or sequential remains an un-
solved one.

The coherent approach to shot noise in DBRD has re-
ceived wide attention since the first experimental evidence

by Li et al.6 of shot noise suppression with a minimum value
of the Fano factorg=SI / s2qId=0.5, hereSI is the low fre-
quency spectral density of current fluctuations andq is the
absolute value of the unit charge responsible of current. Re-
markably, most of the coherent approaches developed so
far7–12 predict a maximum suppressiong=0.5. On the other
hand, there is experimental evidence of suppression below
this value,8,13,14down to values ofg=0.2513,14which, despite
being the result of spurious effects and/or measurements un-
certainty, are not yet entirely understood. To this purpose,
some authors obtained theoretical values of the Fano factor
just below the value of 0.5, Ref. 15 found 0.45 and Ref. 16
0.38, respectively. However, the physical interpretation of
these results remains mostly qualitative and quoting Ref. 3
this direction of research looks promising but certainly re-
quires more efforts. We remark that the theory of shot noise
in DBRDs under the sequential approach17–21,15,11,22–24pro-
vides a Fano factor of 0.5 as the minimum value of shot
noise suppression.

The aim of this paper is to develop a coherent theoretical
approach for current voltage and electronic noise in DBRDs
accounting for the Pauli principle and long range Coulomb
interaction going beyond existing models. To this purpose,
we implement the quantum approach proposed in Refs.
25,22,26. We anticipate that the main result of the present the-
oretical approach concerns the prediction that suppression of
shot noise with a Fano factor below 0.5 can be an indication
of coherent tunneling against sequential tunneling.

The content of the paper is organized as follows. Section
II presents the theoretical model. Section III provides the
analytical expressions for the calculation of the current volt-
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age characteristics in the low voltage region limited to the
first peak of the current. Section IV provides the analytical
expression for the electron noise corresponding to the current
voltage characteristics of Sec. III. Here, the Nyquist expres-
sion is recovered at vanishing applied voltage. At increasing
voltages suppressed shot noise is found in the region preced-
ing the current peak and enhanced shot noise at voltages just
above the current peak. Section V reports a comparison be-
tween theory and existing experiments. Major conclusions
are drawn in Sec. VI.

II. MODEL

The typical diode investigated here is the standard double
well structure depicted in Fig. 1. We denote byG=sGL

+GRd the resonant states width, by«r the energy of the reso-
nant level as measured from the center of the potential well
and byGL,R the partial widths due to the tunneling through
the left and the right barrier, respectively. We consider the
case of coherent tunneling in the presence of only one reso-
nant state and we assume that the diode has contacts with
unit square surfaces. For convenience, calculations are car-
ried out using the cgs system.

The kinetic model is developed by assuming that the elec-
tron distribution functions in the emitter and in the collector,
fa, are equilibrium-like, but with different electrochemical
potentialsFa:

fas«,Fad =
1

1 + expS« − Fa

kBT
D , s1d

herea=L stands for the left contact(the emitter), a=R for
the right contact(the collector), kB is the Boltzmann con-

stant,T is the bath temperature, and« is the carrier energy.
The full Hamiltonian of the structure is

H = HL + HR + Hres+ Htun, s2d

here

Ha = o
p'

o
pa

sEspad + p'
2 /2mdca

+spa,p'dcaspa,p'd

are the Hamiltonians of the right and left contacts,ca
+ andca

are the creation and annihilation operators of electrons in
contacta, p' andpa are the momentum components perpen-
dicular and parallel to the direction of the current, respec-
tively, m is the effective electron mass in the conduction
band, andEspad+p'

2 /2m is the electron energy in thea con-
tact

Hres= o
p'

sEr + p'
2 /2mda+sp'dasp'd

is the Hamiltonian of the resonant states,Er =«r −qu with u is
the voltage drop between the emitter and center of the quan-
tum well, −q is the electron charge,a+ anda are the creation
and annihilation operators of electrons in the resonant level,
and

Htun = o
p',a

FTaa+sp'do
pa

caspa,p'd + hcG
is the part of the Hamiltonian describing the electron tunnel-
ing andTa is the amplitude of tunneling between the reso-
nant state and theath contact.

Following Ref. 25, the relation betweenGa and Ta is:
Ga=2puTau2ra where ra is the one dimensional density of
states, and the electron operatorsa andc in the Heisenberg
representation are given by

ast,p'd = o
a,pa

Ta

exph− ifEspad + p'
2 /2mgt/"j

Espad − Er + iG/2
caspa,p'd,

s3d

cast,pa,p'd = caspa,p'dexph− ifEspad + p'
2 /2mgt/"j

−
iTa

*

"
E
−`

t

dtast,p'd

3exph− ifEspad + p'
2 /2mgst − td/"j. s4d

The current operators for the left and right contactsIL,R
and for the total currentI are25

Iastd = −
iq

"
o

pa,p'

fTaa+st,p'dcast,pa,p'd − hcg, s5d

I = hIL − s1 − hdIR, s6d

whereh=u/V, V being the total applied voltage(see Fig. 1).
From Eqs.(3)–(5) we obtain the expressions for current

operators similar to that obtained in Ref. 22:

FIG. 1. Sketch of the band profile of the double-barrier structure
considered here. The bottom of the conduction band in the emitter
in the well and in the collector coincides atV=0.
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Iastd =
q

2p"
o
p'

o
b,pb

o
g,pg

expfisEb − Egdt/"g

3 Abg
a sEb,Egdcb

+spb,p'dcgspg,p'd, s7d

whereEa=Espad and the full expression forAbg
a sEb ,Egd is

reported in the Appendix. From Eqs.(6) and (7) and the
expression ofAb,g

a sEb ,Egd from the Appendix, we find the
usual expression for the average current

kIl = kILl = − kIRl

=
qm

2p2"3E
−gL

`

d«zDs«zdE
0

`

d«'ffLs«,FLd − fRs«,FRdg,

s8d

where «'=p'
2 /2m is the kinetic energy of the transverse

motion, «=s«z+«'d, gLsuLd is the energy gap between the
bottom of the conduction band and the first quantized level
in the well before the left barrier(see Fig. 1), Ds«zd the
transparency of the double barrier given by

Ds«zd =
GLGR

s«z − «r + qud2 + G2/4
.

In our model, we suppose that in the emitter there are no
electron states with energy below −gL and that electron states
with energy higher than this value are three dimensional.

To take into account Coulomb effects, we introduce the
expression for the operator of the electron charge in the
quantum well, that from Eq.(3) is found to be given by

QQWstd = − qo
p'

a+st,p'dast,p'd

= − qo
p'

o
a,pa

o
b,pb

Ta
* Tb expfisEa − Ebdt/"g

sEa − Er − iG/2dsEb − Er + iG/2d

3 ca
+spa,p'dcbspb,p'd. s9d

From Eq. (9) the average electron charge in the quantum
well is found to be

kQQWl = −
qm

2p2"23E
−gL

`

d«zDs«zdE
0

`

d«'GR
−1fLs«,FLd

+ E
−qV

`

d«zDs«zdE
0

`

d«'GL
−1fRs«,FRd4 . s10d

III. CURRENT VOLTAGE CHARACTERISTICS

The current voltage characteristic is determined from Eq.
(8) once the dependence ofDs«zd and gL on the applied
voltage is given. To calculate the transparency explicitly, we
must finduLsVd andusVd as functions ofV. To this purpose,
we consider the Poisson equation for the electrical potential
w in the structure of Fig. 1. In the emitter, the Poisson equa-
tion can be written in the form

w9 =
4pq

k
FNcF1/2SFL + qw

kBT
D − nG s11d

with

n = NcF1/2S FL

kBT
D ,

the electron concentration in the emitter,Nc is the effective
density of states of the conduction band,F1/2sxd the Fermi-
Dirac integral of index 1/2,27 and k is the static dielectric
constant of the material. We note that the effect of size quan-
tization on the electron distribution in the emitter is ne-
glected. By integrating Eq.(11) and taking into account that
ws−`d=w8s−`d=0, we find the relation betweenwL8 and uL

on the left border of the left barrier

wL8 =Î8pkBT

k

3FNcF3/2SFL + quL

kBT
D − NcF3/2S FL

kBT
D −

q

kBT
nuLG1/2

.

s12d

HereF3/2 is the Fermi-Dirac integral of index 3/2.27 To sim-
plify the task, we suppose that the barriers are undoped and
that the charge in the quantum well is placed at its middle
plane, so that we can write

u = uL + wL8sdL + dQW/2d s13d

and

uR = u + SwL8 −
4p

k
QDsdR + dQW/2d, s14d

with dL, dR, dQW the widths of, respectively, the left battier,
the right barrier, and the quantum well;Q=sqNQW

+ −QQWd is
the charge in the quantum well; andNQW

+ is the number of
charged donors in the quantum well. Furthermore, we sup-
pose that the electron concentration in the collector is the
same of that in the emitter, hence,FR=sFL−qVd and the
Poisson equation in the collector takes the form given by Eq.
(11) with the changeFL→FR. By integrating this equation
with the conditionws`d=V, w8s`d=0, in analogy with Eq.
(12) we obtain

−
k

4p
wL8 + Q +

k

4p
Î8pkBT

k
FNcF3/2SFL + quR − qV

kBT
D

− NcF3/2SFL − qV

kBT
D −

qn

kBT
suR − VdG1/2

= 0. s15d

Equation (15) relatesuR to V. We remark that it is more
convenient to considerV andkIl as functions ofu because in
this case they are single valued functions even forI −V char-
acteristics ofZ type. Since the first and the third term in the
left hand side of Eq.(15) are the charge of the emitterQL and
of the collectorQR, respectively, Eq.(15) expresses the elec-
troneutrality condition of the device. We note, that to derive
Eq. (15) we have assumed that the width of the depletion
region in the collector region(see Fig. 1) is smaller than that
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between the right barrier and the highly doped region in the
collector. As typical in DBRDs, from both sides of the bar-
riers there are spacers with doping level of the order of
1016–1017 cm−3 and with widths in the range between 10 and
500 nm.8,28 If the low doped region in the collector is fully
depleted, then Eq.(13) must be substituted with

V = uR + wR8L −
2pqnL2

k
, s16d

whereL is the width of the spacer in the collector, andwR8
=swL8−4pQQW/kd. In the derivation of Eq.(16), the voltage
drop in the highly doped collector region is neglected.

IV. NOISE

To calculate the spectral density of current fluctuations at
zero frequency under fixed voltage we use the expression25

SIs0d =E
−`

`

dtkdIs0ddIstd + dIstddIs0dl. s17d

We anticipate that the total current fluctuation consists of two
sources. The first comes from the fluctuation of population
states in the contacts and the second from the fluctuation of
the electron charge in the quantum well.22 This last leads to
fluctuations of the voltage drop between the emitter and the
quantum well,du. Accordingly, the operator of current fluc-
tuations is given by22

dIstd = dI2std +
]kIl
]u

dustd, s18d

wheredI2std is the current fluctuation operator under fixedu
due to the population fluctuations in the contacts. Analo-
gously we can introduce the operator of charge fluctuation

dQQWstd = dQQW2std − CQWdustd, s19d

where CQW is the differential capacitance of the quantum
well

CQW = −
]kQQWl

]u
.

From the condition of charge neutrality, the charge fluctua-
tions in the emitterdQe, in the collectordQc, and in the
quantum welldQQW satisfy

dQe + dQc + dQQW = 0. s20d

The charge fluctuation in the emitter and collector can be
expressed throughduL,R as

dQe = − CeduL, dQc = − CcduR, s21d

whereCe,c=−]Qe,c/]uL,RsV=constd are, respectively, the dif-
ferential capacitance of the charge in the accumulation re-
gion of the emitter and in the depletion region of the collec-
tor whose expressions are detailed in the Appendix[we note
that when Eq.(16) is valid Cc=k / s4pLd]. By taking in ac-
count thatwL8=−4pQe/k, from Eq. (13) we find

du = duLs1 + Ce/C1d, C1 =
k

4psdL + dQW/2d
. s22d

Analogously, by taking into account thatwL8−4pQ/k
=4pQc/k, from Eq.(14) the relation betweendu andduR is
found to be

du = duRs1 + Cc/C2d, C2 =
k

4psdR + dQW/2d
. s23d

From Eqs.(21)–(23), Eq. (20) is rewritten in the form

dQQW = dusCL + CRd, CL,R =
Ce,cC1,2

sCe,c + C1,2d
, s24d

whereCL, sCRd is the capacitance between the emitter(col-
lector) and the center of the quantum well, respectively.
From Eq.(24) it is clear thatCL,R can be considered as two
capacitances in seriesC1,2 andCe,c. If we neglect the accu-
mulation and depletion regions(i.e., Ce,c→`) and neglect
the quantum well width(i.e., dQW→0) then CL,R coincide
with those used in Ref. 22. From Eqs.(19) and (24), the
relation betweendu anddQQW2 is found to be

dustd =
dQQW2std

CL + CR + CQW
. s25d

From Eqs.(17), (18), and(25), SIs0d is found to be given by
the sum of three terms as

SIs0d = S1 + S2 + S3.

The first,S1, is the correlator ofdI2; the second,S2, is pro-
portional to the cross correlator betweendI2 anddQQW2; the
third, S3, is proportional to the correlator ofdQQW2. They are
given explicitely by

S1 =E
−`

`

dtkdI2s0ddI2std + dI2stddI2s0dl, s26d

S2 = JE
−`

`

dtkdI2s0ddQQW2std + dI2stddQQW2s0d

+ dQQW2s0ddI2std + dQQW2stddI2s0dl, s27d

S3 = J2E
−`

`

dtkdQQW2s0ddQQW2std + dQQW2stddQQW2s0dl,

s28d

where

J =
1

CL + CR + CQW

]kIl
]u

plays the role of a differential resistance-capacitance rate.
By using the definitions fordIa2std:
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dIa2std =
q

2p"
o
p'

o
b,pb

o
g,pg

expfisEb − Egdt/"gAbg
a sEb,Egd

3 fcb
+spb,p'dcgspg,p'd − kcb

+spb,p'dcgspg,p'dlg
s29d

for dQQW2std:

dQQW2std = − qo
p'

o
a,pa

o
b,pb

fca
+spa,p'dcbspb,p'd

− kca
+spa,p'dcbspb,p'dlg

3
Ta

* Tb expfisEa − Ebdt/"g
sEa − Er − iG/2dsEb − Er + iG/2d

s30d

and the property22

kca
+spa,p'dcbspb,p'dcg

+spg,p'8 dcdspd,p'8 dl

− kca
+spa,p'dcbspb,p'dlkcg

+spg,p'8 dcdspd,p'8 dl

= daddpapd
dbgdpbpg

dp'p
'8

fasEa + p'
2 /2m,Fad

3f1 − fbsEb + p'
2 /2m,Fbdg s31d

it is possible to find forSi i =1,2,3 theexpressions

S1 =
q2m

p2"3E
−gL

`

d«zE
0

`

d«'hDffLs1 − fRd + + fRs1 − fLdg

− D2sfL − fRd2j, s32d

S2 = − l
q2m

p2"3E
−gL

`

d«zE
0

`

d«'D2H2GL

G
fLs1 − fLd

−
2GR

G
fRs1 − fRd +

sGR − GLd
G

ffLs1 − fRd + fRs1 − fLdgJ ,

s33d

S3 = l2 q2m

p2"3E
−gL

`

d«zE
0

`

d«'D2HGL
2

G2 fLs1 − fLd

+
GLGR

G2 ffLs1 − fRd + fRs1 − fLdgJ
3l2 q2m

p2"3 E
−qV

`

d«zE
0

`

d«'D2GR
2

G2 fRs1 − fRd. s34d

Here we used the notationfL,R= fL,Rs« ,FL,Rd and

l =
"G

GLGR

1

sCL + CR + CQWd
]kIl
]u

,

where −̀ ,l,` is a dimensionless parameter describing
Coulomb interaction.

Equations(32)–(34) are the central result of this paper.
We note thatSIs0d does not depend onh. When thel=0, i.e.,

Coulomb interaction is negligible,SIs0d=S1 and the result of
Ref. 29 is recovered.

As an internal check we prove thatSIs0d satisfies the Ny-
quist theorem.30 Indeed, at zero applied voltagefL= fR, from
the expression(8) for the total current it follows that
]kIl /]u=0, and therefore,l=0. Accordingly, the differential
conductanceG at zero voltage is

G =
q2m

2p"3kBT
E
0

`

d«zDE
0

`

d«'fLs1 − fLd. s35d

We here used the property that forV=0 ]fR/]qV= fLs1
− fLd / skBTd. According to Eq.(32), SI at zero voltage is

SIs0d =
2q2m

p"3 E
0

`

d«zDE
0

`

d«'fLs1 − fLd. s36d

Equations(35) and (36) imply SIs0d=4kBTG, which repre-
sents the Nyquist theorem.

Let us now show thatSIs0d→` on the border of the in-
stability region wheredkIl /dV→`. To this purpose, we note
that dI /dV can be decomposed as

dkIl
dV

=
]kIl
]V

+
]kIl
]u

du

dV
. s37d

By writing the condition of charge neutrality as

− CeduL + dQQW + CcsdV− duRd = 0 s38d

by taking into account Eqs.(22) and (23) and that

dQQW = − CQWdu+
]NQW

]V
dV, s39d

we obtain

du

dV
= SCc +

]QQW

]V
DsCL + CR + CQWd−1. s40d

By using Eq.(8) for kIl, we see that]kIl /]uL and ]kIl /]V
entering Eq. (37) are always finite. This implies that
dkIl /dV→` only if the sumsCL+CR+CQWd→0. We remark
that also the denominator ofl is proportional tosCL+CR

+CQWd; thus, l, and in turnSIs0d go to infinity simulta-
neously withdI /dV. Note thatCL,R are always positive and
CQW becomes negative when the resonant state approaches
gL, that is when the number of electrons in the quantum well
decreases at increasingu.

V. RESULTS AND DISCUSSION

In this section we present the theoretical results for the
two relevant cases of low temperatures(i.e., Tø4.2 K) and
high temperatures(i.e., T@G which here corresponds toT
ù77 K), the former being appropriate to investigate the in-
fluence on shot noise of the Pauli principle and the latter of
long range Coulomb interaction. Then, theoretical results are
compared with experiments.
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A. Low temperature

We investigate the condition of high applied voltages,
when qV.FR, because more close to experiments.(We re-
call that typical magnitudes for the relevant parameters of
DBRDs are: forG less than a few milli-electron-volts, forFL
less than 100 meV, and for the voltage at the peak current
around 0.5 V.) Because of the above, from Eq.(8) the ex-
pression for the current becomes

kIl =
qm

2p2"3E
−gL

FL

d«sFL − «dDs«d =
qmGLGR

4p2"2 Bsf,jd, s41d

where

Bsf,jd = 2sf + jdfarctansf + jd − arctansjdg

− lnF1 + sf + jd2

1 + j2 G ,

and for convenience we define dimensionless chemical po-
tential f and voltage dropj as

f =
2sFL + gLd

G
, j =

2squ− «r − gLd
G

.

The expression for the noise spectral density becomes

SIs0d =
q2m

p2"3E
−gL

FL

d«sFL − «dDs«df1 − Ds«dg

+
q2m

p2"3Fl
sGL − GRd

G
+ l2GLGR

G2 GE
−gL

FL

d«sFL − «dDs«d2.

s42d

For the Fano factor,g=SIs0d /2qkIl, Eqs.(41) and(42) yield

g = 1 −
4GLGR

G2 F1 − l
sGL − GRd

G
− l2GLGR

G2 GAsf,jd
Bsf,jd

,

s43d

where

A = sf + jdF f + j

1 + sf + jd2 + arctansf + jd −
j

1 + j2 − arctansjdG
+

1

1 + sf + jd2 −
1

1 + j2 ,

We note thatl depends onf and j through CL,R, CQW,
]kIl /]u which are given by Eq.(24) and by

CQW =
q2m

p2"2

GL

G
Hsf,jd,

]kIl
]u

=
q2mGLGR

p2"3G
Hsf,jd, s44d

Hsf,jd = Farctansf + jd − arctansjd −
f

j2 + 1
G

+
G2

4GLGR

]gL

]qu
fDs− gLd.

If f @1 and the resonant level is located below the the Fermi
level of the emitter far from its bordersFL and −gL, i.e., j
!−1, f +j@1, then Asf ,jd /Bsf ,jd<1/2 and Eq.(43) re-
covers the expression given in Ref. 22:

g =
GL

2 + GR
2 + 2LsGR − GLd + 2L2

G2 s45d

with

L = −
lGLGR

G
.

As it will be shown later, whenf @1 the values taken byg in
Eq. (45) are practically constant and correspond to the pla-
teau exhibited by the dependencegsf ,jd. On this plateau,
gù1/2 [the minimum is reached whenL=sGL−GRd /2].
Note that on the plateau

CQW <
q2mGL

p"2G
, l <

q2m

p"2

1

CL + CR + CQW
,

G

GL

and the expression in the braces of Eq.(43) is positive.
Therefore, on the plateau 1ùgù1/2 and shot noise en-
hancement is impossible.

Now we demonstrate that at voltage values for which the
resonant level is close to the band edge of the emitter the
Fano factor can drop below the value 1/2. To this purpose,
let us first consider the simplified model where we takek
=12.9 (GaAs), CL=CR=k /4pd, d=5 nm and neglect the
term proportional to]gL /]u in the expression forHsf ,jd.
Figure 2 reports the dependencies of current and Fano factor
on j for the two valuesf =100 [Fig. 2(a)], f =10 [Fig. 2(b)]
whenGL=GR and in the presence(continuous curves) or ab-
sence(dotted curves) of Coulomb interaction. The figure
shows that for large value of the ratio the resonant width
sf =100d, gsjd exhibits a wide plateau region whereg
<0.55 followed by a minimum withgmin<0.464. By further
increasing the value offsf =1000d the plateau region is found
to widen andgmin<0.49. Note that, as it follows from Eq.
(42), the Coulomb interaction always increases the noise if
GL=GR. With the decrease off [see Fig. 2(b) where f =10],
the plateau region becomes narrower andgmin is found to
decrease. The decrease of the value ofgmin is due to two
complementary reasons. The first is associated with the de-
creasing of the strength of Coulomb interaction. The second
is associated with the increase of the effective barrier trans-
parency near to the current peak and in turn with the further
suppression of partition noise. For the ideal casef !1, at the
peak current the transparencyD→1 and in turngmin→0.

Why does Coulomb interaction increase the shot noise if
GL=GR? To answer this question, we analyze the noise con-
tribution due to electrons with energies implyingD→1. The
part of S1 corresponding to these electrons is zero, while the
part of S3 is finite. We remind that the termS1 describes
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partition noise, thus it is proportional toDs1−Dd and for
D=1 at zero frequency there is no noise associated with the
fluctuation of dI2. However, even forD=1 there is charge
fluctuation in the quantum well due to the random character
of electron escape from the well(random time delay of
charge). The probability of this escape is proportional toG
and this is the reason whyS3 decreases with the increase of
G. Therefore, Coulomb interaction enhances current noise
due to the random time delay of the charge in the quantum
well, and which represents the quantum property of the elec-
tron motion in the RTD.

The effects due to the asymmetry of the diode barriers
when GL=0.25G and GL=0.75G are shown in Fig. 3 which
reports the dependencies of current and Fano factor onj for
the two valuesf =100, f =10. We note, that without Coulomb
interaction(i.e., l=0) these dependencies are the same for
GL=0.25G andGL=0.75G. From this figure it is clear that on
the plateau Coulomb interaction decreases the noise forGL
=0.25G while increases the noise forGL=0.75G. This asym-

metry is due to the cross correlation termS2 which on the
plateau is positive forGL.GR and negative forGL,GR. The
physical reason of this asymmetry stems from the following
fact. If GL.GR, then the charge situated in the quantum well
is characterized by an escaping probability to the emitter
which is greater than that to the collector. By contrast, when
GL,GR the opposite happens. Of course, whenGL=GR the
escaping probability to the emitter and to the collector is the
same andS2=0. We note the important role played by the
Pauli principle for the possibility ofS2 to be positive. From
Eq. (33) it is clear that iffL!1 andfR=0 thenS2,0 for any
value of the ratioGL /GR. From Fig. 3 one can also see that
gmin=0.457,0.5 for GL=0.75G and f =100 [see Fig. 3(a)]
and for both values ofGL when f =10 [see Fig. 3(b)].

We conclude, that for the simple model considered here
both the increase ofG and the decrease ofFL decreasesgmin
which value drops below 0.5 forGL.GR. We further note,
that there is bias when]kIl /]u=0 and l changes of sign.
Under this bias, forGL=GR the curves of the Fano factor with
and without Coulomb interaction touch each other(see Fig.
2) while for GLÞGR they cross(see Fig. 3).

To confirm the possibility of evidencing the giant suppres-
sion gmin,0.5 in a real structure, Fig. 4 presents the calcu-

FIG. 2. Dependence of the Fano factor and of the current on the
electrical potential in dimensionless unitsj=2squ−«r −gLd /G with
f =100(a) and f =10 (b) for the symmetrical structureGL=GR. Here
f =2sFL+gLd /G and I0=qmGLGR/ s2p2"3d. Continuous (dashed)
curves correspond to the presence(absence) of Coulomb
interaction.

FIG. 3. Dependence of the Fano factor and the current on the
electrical potential for asymmetric structures withf =100 (a) and
f =10 (b). The dimesionless units are the same of Fig. 2.
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lations performed with a set of parameters related to the ex-
periments in Ref. 8 atT=4.2 K and where both a symmetric
(continuous curve) and an asymmetric(dashed curve) are
considered. The structure parameters aren=231016 cm−3,
dL=dR=dQW=5 nm, squared area of contacts 50mm2 and
L=50 nm,m=0.067m0, with m0 the free electron mass and
k=12.9. In the symmetric structure, the only two fitting pa-
rameters areGL=0.5G=0.48 meV and«r =104 meV. Their
values control the location and the amplitude of the current
peak, respectively, and are chosen by optimizing the agree-
ment between the experimental and calculatedI-V character-
istics at 77 K. For the asymmetric structure there are three
parameters and we takeGL=0.25G, G=1.22 meV, «r
=112 meV to preserve the location of the current peak at the
same voltage. The functiongLsuLd is calculated by solving
the Schrödinger equation for a potential which:(i) for x,0
follows from the Poisson equation without accounting for
quantization effects;(ii ) for x.0 corresponds to the solid
solution Al0.42Ga0.58As with zero electric field inside, as was
done in Ref. 8. For these values, the dependencegLsuLd is
found to be almost linear and well approximated by:gLsuLd
<0.28squL−110kBTd−14kBT. The details of the solution of
the Schrödinger equation are reported in the Appendix. Cal-
culations givegmin=0.43 in reasonable agreement with the
value of 0.35 found in experiments.8 From Fig. 4 we see that
both theI-V and the noise characteristics are sensitive to the
asymmetry of the structure, as expected. In any case, the
main features of both characteristics are preserved.

We conclude, that the main reason for shot noise suppres-
sion in RTDs at temperatures below about 4.2 K is essen-
tially related to the Pauli principle and, because of the coher-
ent tunneling regime, near to the current peak the Fano factor
can take values significantly lower than 0.5(giant shot-noise
suppression).

B. High temperature

We now discuss the case of high temperatures whenkBT
@G, which in the present case refers toTù77 K. Again, we
consider applied voltages high enough to neglect the contri-
bution to the current and noise of the electron flux moving

from the collector to the emitter. Since the energy scale for
the change ofDs«d is significantly less than that offLs«d, all
the integrals in the expressions for the current and the noise
spectral density can be calculated analytically. To perform
the calculations, first of all we note that

E
0

`

d«'fLs«d = kBT lnF1 + expSFL − «z

kBT
DG = kBTFLs«zd,

s46d

E
0

`

d«'fLs«d2 = kBTHFLs«zd − F1 + expSFL − «z

kBT
DG−1J

= kBTF2Ls«zd s47d

and

E
−gL

`

d«zDs«zdFL,2Ls«zd <
2GLGR

G
FL,2LsbdD1sjd, s48d

E
−gL

`

d«zDs«zd2FL,2Ls«zd <
4GL

2GR
2

G3 FL,2LsbdD2sjd, s49d

hereb is the maximum value betweens«r −qud and −gL:

D1sjd =
p

2
− arctansjd, D2sjd = D1 −

j

j2 + 1
.

By using Eqs.(46)–(49), we can write the following expres-
sions, respectively for the current, the noise spectral density
and the Fano factor

kIl =
qmkBTGLGR

p2"3G
FLsbdD1sjd, s50d

SIs0d =
2q2mkBTGLGR

p2"3G
XD1sjdFsbd

−
2GLGRD2sjd

G2 HF2Lsbd + lFFLsbd −
2GL

G
F2LsbdG

− l2GL

G
FFLsjd −

GL

G
F2LsbdGJC , s51d

g = 1 −
2GLGRD2sjd

G2D1sjd HFsbd + lF1 −
2GL

G
FsbdG

− l2GL

G
F1 −

GL

G
FsbdGJ , s52d

hereFsbd=F2Lsbd /FLsbd. Analogously, we derive the ex-
pressions for CQW and ], I . /]u. Since in this case
], I . /]u=GRCQW/", we obtain

FIG. 4. Dependence of the current and Fano factor on the ap-
plied voltage for the structure of Ref. 8 atT=4.2 K. Values ofGL,R

and«r are chosen from the fitting of the current volatage character-
istic at 77 K.
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l =
GCQW

GLsCL + CR + CQWd
s53d

and l,G /GL in the stable region wheresCL+CR

+CQWd.0.
We now estimate the possible minimum value forg. From

Eq. (52) it is clear that to obtaingmin it is necessary that

l =
G

2GL
F1 −

2GL

G
FsbdGF1 −

GL

G
FsbdG−1

. s54d

We note, that this value ofl lies in the range of possible
values characterizing the stable region. By substituting Eq.
(54) into Eq. (52) we find

gmin = 1 −
GR

2G

D2sjd
D1sjdF1 −

GL

G
FsbdG−1

. s55d

Now we analyze two limiting cases.
The first is the case when the occupation factor of the

state with energyb is much smaller than unity. ThenFsbd
<0 and

gmin = 1 −
GR

2G

D2sjd
D1sjd

. s56d

Since the maximum value ofD2sjd /D1sjd equals 1.217sj
=j0=−0.802d, from Eq. (56) we find thatgmin,0.5 when
GR.0.821G, and that the expression(54) holds nearj=j0.

The second limiting case is when the probability of occu-
pation of an electron state with energyb is close to unity and
Fsbd<1. In this case

gmin = 1 −
D2sjd
2D1sjd

s57d

and gmin,0.5 when the expression(54) holds in any point
wherej,0, since thereD2sjd /D1sjd.1.

In concluding this subsection, we emphasize that, for
RTD theory predicts values of the Fano factor below 0.5 also
at high temperatures.

C. Comparison of theory with experiments

We compare theory with two sets of experiments per-
formed on DBRDs with barriers sufficiently narrow to ex-
pect that coherent tunneling is of importance. The first set
refers to pioneer experiments of Brown8 which are detailed
at 77 K with indications at 300 K. The second set refers to
recent experiments at 300 K reported in Refs. 31 and 32. In
both cases the comparison is limited to the voltage region up
to the peak current since theory neglects energy levels in the
quantum well higher than the first one.

Figure 5 reports the comparison between experiments per-
formed in Ref. 8 and present calculations at 77 K. Numerical
results make use of the same parameters in Fig. 4 for the
symmetric structure. For the used values, the dependence
gLsuLd is found to be almost linear and well approximated
by: gLsuLd<0.44squL−1.5kBTd−0.07kBT for 77 K.

From Fig. 5(a) we see that present calculations well re-
produce theI-V characteristic including the current peak.

From Fig. 5(b) we see that the calculated Fano factor repro-
duces both the suppression and enhanced behaviors. How-
ever, its minimum value is of 0.65 against the experimental
value of 0.35. By choosing appropriate values ofGL,R the
theoretical model can be forced to fit the experimental Fano
factor at the expense of overestimating theI-V characteristics
for about one order of magnitude. This result corrects previ-
ous findings of the same authors,32 where the contribution of
charge fluctuations to the total noise was underestimated
with respect to the present approach. In this context, we note
that Ref. 16 presented a theoretical calculations of the same
experiments8 at 77 K. The results of these calculations were
found to be in excellent agreement with experimental data
except for the region of instability. On the borders of this
region the noise tends to infinity and, as a consequence, there
were no measurements of noise in this region. However, con-
trary to such an experimental evidence, the theoretical
calculations16 provided finite values of the noise and the the
absence of the instability region, which makes the theoretical
approach at least suspect.

To provide a physical insight of the physical reason for
shot-noise suppression, Fig. 6 reports the results of the cal-
culations associated with the presence(continuous curves)
and the absence(dotted lines) of Coulomb interaction. From
Fig. 6(a) we see that at 77 K the Coulomb part contributes to
suppress shot noise in the whole region of applied voltage,

FIG. 5. Calculated(solid) and measured(dashed) dependencies
of current and Fano factor on the applied voltage for the structure of
8 and 77 K. The parameters are the same used for Fig. 4 in the case
of the symmetric structure.

COHERENT APPROACH TO TRANSPORT AND NOISE IN… PHYSICAL REVIEW B 70, 115321(2004)

115321-9



and that the Pauli part becomes noticeable near the current
peak. Furthermore, while the Pauli contribution leads sys-
tematically to suppression, the Coulomb contribution be-
comes responsible of enhanced shot noise at voltages near to
0.57 V where the instability region is approached. From Fig.
6(b) we see that at 4.2 K the predominance of Pauli over
Coulomb interaction in suppressing shot noise is confirmed.
Again, Coulomb effects are found to be responsible of en-
hanced shot noise around above the current peak, in agree-
ment with experiments.8

Figure 7 reports the current voltage characteristic and the
Fano factor for the same structure of Fig. 5 at 300 K. Here
the solution of the Schrödinger equation provides:gLsuLd
=0.53squL−1.5kBTd+0.7kBT. Calculations show, that even
by increasing the temperature, the main features of transport
and noise already shown at 77 K are preserved. However, the
current peak and the minimum of the Fano factor become
less pronounced at increasing the temperature. These trends
are in agreement with experimental results8 which claim a
reduction of the peak-current value of about 1 mA and an
increase of the minimum of the Fano factor when going from
77 to 300 K. However, even at 300 K present calculations
give a Fano Factor for about a factor of 2 greater than that
found by experiments.

A recent set of experiments31,32 carried out at 300 K on a
DBRD with barriers thinner than those of Ref. 8, thus more
adequate to check coherent tunneling at high temperature, is
reported in Fig. 8 together with theoretical calculations. The
structure consisted of two 2 nm AlAs layers separated by
6 nm InGaAs quantum well.33,31 Measurements were carried

out at 300 K using a noise figure meter(XK5-49), that al-
lows to measure simultaneously noise figure and power gain
of two-port networks in the 50V feed circuit. Simulta-
neously with the noise theI-V curve was measured. The
diode was mounted in the break of a microstrip line, with
one electrode been grounded, and another one bonded to the
ends of a microstrip line. Noise measurements at frequencies
60 and 200 MHz showed the same results within an experi-
mental uncertainty at worst of 20%, thus indicating that 1/f
noise contribution is negligible. Numerical results makes use
of the following values for the parameters entering the
model: «r =87 meV, GR=GL=1.08 meV, n=531016cm−3,
dL=dR=2 nm, dQW=6 nm, L=50 nm, gLsuLd=0.445squL

−1.5kBTd+0.451kBT, m=0.045m0. Also here the only two
fitting parameters are«r andG=0.5GL,R, all other parameters
being provided by the experimental conditions, Fig. 8(a) re-
ports theI-V characteristic which shows a region of positive
differential conductance(pdc) up to about 0.7 V followed by
an instability region. In the same pdc region, the Fano factor
is found to exhibit a suppression with a minimum value of
about 0.4 at around 0.65 V[see Fig. 8(b)]. As for the case at
77 K, from Fig. 8(a) we see that present calculations well
reproduce theI-V characteristic including the current peak.
From Fig. 8(b) we see that the calculated Fano factor repro-
duces both the suppression and enhanced behaviors. How-
ever, the minimum value of the Fano factor is found to be of
0.75 against the experimental value of 0.40. By choosing
larger values ofGL,R the theoretical model can be forced to fit
the Fano factor at the expenses of overestimating theI-V
characteristic for about one order of magnitude. This result

FIG. 6. Calculated dependencies of the Fano factor with(con-
tinuous curves) and without(dashed curves) Coulomb interaction at
4.2 and 77 K. Other parameters are as in Fig. 5.

FIG. 7. Dependencies of current and Fano factor on applied
voltage atT=300 K. Other parameters are as in Fig. 5.
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corrects previous findings of the same authors,32 where the
contribution of charge fluctuations to the total noise was un-
derestimated. Thus, the comparison between theory and ex-
periments at temperatures above about 77 K provides quali-
tative agreement but is not able to explain the drop of the
Fano factor below 0.5 found in experiments.

VI. CONCLUSIONS

We have implemented a quantum mechanical approach to
investigate DBRDs transport and noise characteristics within
the coherent tunneling regime that includes both the Pauli
principle and long range Coulomb interaction. The expres-
sion for the current voltage and noise characteristics gener-
alize previous findings.25,22,26 In agreement with expecta-
tions, at increasing voltages theory predicts a current
characteristic which exhibits a peak followed by an instabil-
ity region and that before the current peak shot noise is sup-
pressed because of the Pauli principle and/or Coulomb inter-
action. In addition, the theory confirms shot noise
enhancement well above the full Poissonian value at the cur-
rent peak as a consequence of the positive feedback between
tunneling and space charge.

At low temperatures below about 4.2 K, the suppression
of shot noise starts in concomitance with the sharp increase
of the current associated with the alignment within the value
of G of the Fermi level in the emitter with the resonant level
in the quantum well. Accordingly, the Fano factor is found to
exhibit a minimum near the current peak. Remarkably, the
value of this minimum can be significantly below the value

0.5 of the full Poissonian value. This giant suppression of
shot noise is an indication of coherent tunneling since the
standard sequential tunneling can predict suppression but at
most with a Fano factor not less than 0.5. At 4.2 K, for a
realistic DBRD structure we find a minumum value of the
Fano factor of 0.44 that is in agreement with experiments.8

At temperatures above about 77 K, we have found that co-
herent tunneling still predict that shot noise can be sup-
pressed well below the value of 0.5. This giant suppression
has been evidenced by experiments performed at 77 and
300 K. However, the present theory is not able to explain
this noise feature with the same set of parameter values able
to explain the I-V characteristics. Probably other causes
could lead to the suppression and further efforts are needed
to provide a better interpretation of experiments.

The physical reason why shot noise suppression is ex-
pected to be more effective for coherent than for sequential
tunneling is as follows. Starting from the fact that the two
mechanisms responsible for shot noise suppression are the
Pauli principle and Coulomb interaction, we note that both
act simultaneously for coherent and sequential tunneling. Let
us consider the first mechanism, which is the most relevant at
low temperatures, in the case when the Fermi energy is suf-
ficiently small so that all the electrons exhibit the same trans-
parency. Then, coherent transport admits a transparency near
equal to unity, which impliesg=s1−Dd.0 according to
Lesovik findings.34 For sequential transport the total trans-
parency is always less than unity because of the finite value
of the differential rates controlling the relaxation of carrier
number fluctuations inside the two terminal device through
the contacts. As a consequence, under coherent transport for
the possible case of full transparency(i.e., D=1) there is no
noise. By contrast, under sequential transport the presence of
scattering inside the quantum well always introduces noise.
This example illustrates why the Pauli principle is more ef-
ficient in suppressing shot noise under coherent than sequen-
tial transport. By considering Coulomb interaction, which is
more relevant at high temperatures, we recall that in the ab-
sence of collisions it provides giant shot noise suppression36

as in the vacuum tubes37 because electron reflection in this
case is due only to Coulomb interaction. It is clear that the
presence of scattering provides additional random mecha-
nisms for electrons returning to the emitter and, therefore,
provides an additional source of noise. Even this example
shows that Coulomb interaction is more efficient in suppress-
ing shot noise under coherent than sequential transport. We
finally want to stress that the main reason of the difference
between these approaches stems from the fact that the se-
quential tunneling is based on a master equation35,11for treat-
ing fluctuations of carrier numbers inside the quantum well.
As a consequence, its intrinsic limit coincides with that of
two independent resistors(or vacuum diodes) connected in
series and each of them exhibiting full shot noise. This sys-
tem yields a maximum suppression of shot noise down to the
value of 0.5. By contrast, partition noise, inherent to a quan-
tum coherent formalism, can be fully suppressed down to
zero in the presence of a fully transparent barrier and weak
Coulomb interaction like in vacuum diodes.

FIG. 8. Experimental and calculated dependencies of current(a)
and Fano factor(b) on applied voltage for the structure in Refs. 31
and 32 atT=300 K.
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APPENDIX

Here we detail the calculations to evaluate the current
operator, the differential capacitances of the DBRDs and the
solution of the Schrödinger equation for the voltage depen-
dence of the first electron level in the emitter.

A. Current operators

By using Eqs.(3)–(5) and (7), the explicit expression for
Ab,g

a sEb ,Egd is the following:

Ab,g
a sEb,Egd = − 2piF TaTb

* BagsEgd
Eb − Er − iG/2

−
Ta

* TgBab
* sEbd

Eg − Er + iG/2
G ,

sA1d

where

BabsEbd = Sdab − ip
Ta

* Tbra

Eb − Er + iG/2
D . sA2d

From earlier, we note the following properties:

ALL
L sE,EdrL = ARR

R sE,EdrR = − ARR
L sE,EdrR

= − ALL
R sE,EdrL = DsEd sA3d

and

ALR
L sE,EdARL

L sE,EdrLrR = ALR
R sE,EdARL

R sE,EdrLrR

= DsEdf1 − DsEdg. sA4d

Equations(A3) and (A4) are useful for current and noise
calculations.

B. Capacitances

By recalling thatQL=−kwL8 /4p from Eq. (12) we have

CesuLd = qFNcF1/2SFL + quL

kBT
D − nGÎ k

8pkBT

3 FNcF3/2SFL + quL

kBT
D

− NcF3/2S FL

kBT
D −

q

kBT
nuLG−1/2

. sB1d

If the electron accumulation is relevant(i.e., quL.kBT) then
we can write

CesuLd < q

NcF1/2SFL + quL

kBT
D

Î8pkBT

kk0
NcF3/2SFL + quL

kBT
D . sB2d

By substituting forQR the value given in Eq.(15), for Cc we
find

Cc = qFn − NcF1/2SFL + quL − qV

kBT
DGÎ k

8pkBT

3FNcF3/2SFL + quR − qV

kBT
D

− NcF3/2SFL − qV

kBT
D −

qn

kBT
suR − VdG−1/2

. sB3d

If qsV−uRd / skBTd.1, then we have the usual expression for
the capacitance of the depletion region

Cc <Î qkn

8psV − uRd
. sB4d

C. Energy of the first electron level in the emitter

The one dimensional Schrödinger equation for an electron
moving in the potential −qwsxd can be written in the follow-
ing form:

dy

dx
+ y2 +

2m

"2 sqw + «d = 0, sC1d

here y=C8 /C, C is the electron wave function and« the
electron energy. Sincedw /dx in the emitter is function ofw
[see Eqs.(11) and(12)], instead ofx it is convenient to usew
asvariable quantity so that

dy

dw

dw

dx
+ y2 +

2m

"2 sqw + «d = 0, sC2d

where

dw

dx
=Î8pkBT

k
FNcF3/2SFL + qw

kBT
D

− NcF3/2S FL

kBT
D −

q

kBT
nwG1/2

. sC3d

The potentialw in the emitter takes values in the range from
0 far from the barrierssx→−`d to uL on the border of the
left barrier. We note that far from the barriers the potential
falls exponentially w,expsx/lDd when qw!kBT, where
lD is the Debye screening length. For localized state the
electron wave functionC,expsk1xd for x→−`, where
k1=Î−2m« /" and, thus, we have as boundary condition
ysw=0d=k1. Since we suppose that the field in the barrier
is absent, the electron wave function in the barrier is
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C,exps−k2xd where k2=Î2msDEc−quL−«d /" and DEc is
the conduction band offset on the barrier border. By using
the conditions of continuity of the wave function and of
its derivative, we obtain the second boundary condition

ysw=uLd=−k2. Equations(C2) and (C3) together with the
boundary conditions allow us to find the energy of the first
electron level in the potential well of the emitter by numeri-
cal calculations.
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