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Abstract—This paper presents a methodology to implement 
PID (Proportional, Integral, Derivative) controllers in FPGAs 
(Field-Programmable Gate Arrays) using fixed-point numerical 
representation. The Matlab/Simulink environment is used for 
modeling, simulation and evaluation the performance provided 
by different fixed-point representations using a given control 
process. A static bit-width analyzer is used to give a specialized 
fixed-point representation for each operand/operator in the 
controller system. After bit-width analysis, a VHDL represen-
tation of the system is generated. Results show that the proposed 
methodology leads to shorten design cycles achieving important 
resource savings by employing specialized fixed-point repre-
sentations. 

I. INTRODUCTION 
HE PID (Proportional, Integral and Derivative) control-
ler is used in a wide variety of control systems due to its 

simple structure and robust performance. The popularity of 
this kind of controllers justifies the efforts about its design 
[1][2]. They are being widely used in robotics to control the 
positioning of cameras [3], wheels [4], manipulators [5], etc. 

In certain type of embedded systems, e.g. mobile robotics, 
we can find several PID controllers with concurrent execu-
tion. There may exists one PID control closed loop for each 
specialized needing control (e.g., as is the case with inde-
pendent joint control of individual servos [6]). Thus, the 
implementation of this kind of controllers with FPGAs 
(Field-Programmable Gate Arrays) may be important in order 
to diminish the number of devices and to satisfy sampling 
times requirements. All the PID controllers in the system may 
be integrated in a single FPGA device that will also contain 
other system components (System-on-Chip solution). 

A number of authors have considered the implementation 
of PID controllers using FPGAs [7][8], namely, in robotic 
applications [9][10][11]. Some efforts considered the sharing 
of some functional units for PID controller implementations 

(e.g., [
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12][8][10]). Implementations using a single architec-
ture, shared to perform different PID controllers, have also 
been considered [10]. Since with FPGAs we are not con-
strained to a specific number of bits to represent data such is 
the case when using e.g. microcontrollers, the implementa-
tion of PID controllers using FPGAs may permit to use in 
embedded systems more efficient, robust and stable control-
lers and auto-tuning schemes. Although the advantage to 
have high-levels of freedom for bit-width representation 
when using FPGAs, it imposes several design problems due 
to the large design space exploration, difficulties to convert 
floating- to fixed-point numbers and difficulties to design 
reconfigurable hardware, which requires hardware expertise. 

The area occupied in an FPGA for a given controller de-
pends on the numerical accuracy used. Thus, studies for 
stability evaluation and control measures performance when 
considering a given number of bits are very important. Since 
floating-point arithmetic is slower and requires more hard-
ware resources than fixed-point representations, the later is 
usually preferred. Due to its intrinsic nature (configurable 
fine-grained structures), FPGAs are suitable to employ only 
the required logic to implement the operators, which is not the 
case when using general and possibly over-dimensioned 
computing structures. 

An automated procedure in the development of PID con-
trollers has not paid the required attention, a rare exception is 
the work developed in [13]. Their approach includes Simu-
link and C++ for evaluation the accuracy of fixed-point rep-
resentations. They also include a tool that translates the C++ 
code to VHDL, ready for logic synthesis. However, steps for 
automation of the specific hardware design must include a 
structured exploration of the fixed-point representations. An 
almost fully automated approach would be of high impor-
tance, since usually hardware designers do not master control 
system design, and control system experts do not have the 
required skills to implement and evaluate the controllers 
using FPGAs.  

This paper presents a step towards a methodology for 
FPGA implementation of PID controllers. Our approach 
starts with modeling and simulation of the controlled system 
in Matlab/Simulink. The architecture in use implements PID 
controllers with fixed-point numerical representation, so, we 
need to evaluate the desired precision. In this approach the 
PID functional units are parameterized in order to adapt them 
to the number of bits needed for each operator/operand. Our 
methodology includes a static bit-width analyzer and the 
generation of VHDL code for the controller architecture. The 
results show both important reductions in size and im-
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provements in performance. We strongly believe the meth-
odology helps to shorten the design cycle needed when im-
plementing PID controllers in FPGAs. 

This paper is structured as follows. The next section pre-
sents a brief introduction to PID control. Section 3 describes 
the proposed methodology and section 4 presents some re-
sults. Finally, section 5 presents some conclusions and future 
work.  

II. PID CONTROLLERS 
A typical closed loop system using a PID controller is shown 
in Fig. 1(a). The control system usually requires units to 
interface it to the environment. For instance, a converter to 
PWM (Pulse-Width Modulation) may be needed when con-
trolling DC motors. 

The digital PID controller can be described by the fol-
lowing difference equation (1): 
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Where the coefficients a0, a1, and a2 are evaluated by the 
expressions: 
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The Kc, Ti and Td, are PID parameters for tuning, and Ts is 

the sampling period in seconds. There are several methods for 
evaluating the PID parameters, generally called PID tuning 
methods [1]. 

When controlling time-invariant processes, the PID pa-
rameters can be constants and evaluated off-line, so, the PID 
architecture may use fixed values for the a0, a1 and a2 coef-
ficients. Otherwise, for time-variant processes there is a need 
to update those parameters; in this case the PID architecture 
has Kc, Ti and Td as parameters that can be automatically 
updated during runtime by auto-tuning algorithms. 

Fig. 1(b) shows a simple PID architecture with the a0, a1 
and a2 coefficients. This architecture uses three adders, three 
multipliers and three registers. The arithmetic operations may 
have saturation behavior so that whenever the magnitude of 
the result of an operation is not represented by the output 
representation (overflow), the result outputted is the largest or 
the smallest represented value.    

A complete implementation of the PID controller with 
auto-tuning requires a component responsible for the 
auto-tuning algorithm, whose complexity largely depends on 
the auto-tuning algorithm used. The auto-tuning feature is 
required in most control systems for mobile robotics due to 
the changes that may occur in the environment and/or system. 
Those modifications usually need the retuning of parameters 
to still have a stable control system with acceptable per-
formance criteria’s. 

In general, it could be useful that a controller implementa-
tion accommodates both type of numerical representation: 
fixed- and floating-point. In FPGA implementations a 
fixed-point with specialized format for different blocks of the 

architecture might be preferred. However, the evaluation of 
the number of bits for integer and fractional parts of each 
operand in the system is a very time consuming procedure. 

In this paper we propose a methodology for design and 
implementation of PID controllers in FPGA with exploitation 
of the number of bits for fixed-point representations. 
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Fig. 1. (a) Typical control loop with a PID controller; (b) PID architecture 
(simplified version without including the circuitry to calculate a0, a1, and  
a2). 

III. PROPOSED METHODOLOGY 
Fig. 2 shows the proposed methodology, where the Mat-
lab/Simulink [14] environment is used for modeling and 
simulation. The methodology starts by simulating the control 
system (when working with a time-invariant process, the PID 
parameters are firstly tuned using Matlab/Simulink) using 
floating point numerical representations (IEEE 754 double 
format). Terminated this first step with success (i.e., control 
stability), the same control system model is simulated with 
fixed-point representation using the fixed-point toolbox in-
cluded in the Matlab/Simulink [14] environment. At this time 
we can compare the system responses obtained from simula-
tions with floating- and fixed-point representations. We can 
also check the influence of using different number of bits in 
the system stability. Note that, in this step, the number of bits 
for each part, integer and fractional, is uniform for all op-
erators and operands of the system. In this step we also ex-



 
 

 

plore the fixed-point representation of the PID parameters 
needed to avoid system instability. 

This step furnishes the minimum integer and fractional bits 
required by the uniform fixed-point representation. Those 
minimums will be used by the static bit-width analyzer to 
optimize the fixed-point representations with specialized 
formats for different components of the architecture.  
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Fig. 2. Proposed methodology. 

The test of the system is performed with a reference signal, 
ref (Fig. 1a), composed by a set of steps with arbitrary am-
plitudes and durations (first signal in Fig. 3). This reference 
can be established before the test, or generated randomly. As 
an example, we present in Fig. 3 the system output for dif-
ferent representations. Although not shown, in this type of 
systems beyond a certain limit the system gets unstable and 
oscillations are present on the response. 

In this specific case, the control process is a discrete time 
invariant model obtained by sampling and hold (ZOH – Zero 
Order Hold), with a given frequency, a continuous process 
chosen from the test set used by Åström and Hägglund [1] as 
examples of representative plants for the dynamics of typical 
industrial processes; it is a third order process with multiple 
poles. 

Concluded this step with uniform fixed-point representa-
tions, we can explore different numbers of bits for each op-
erator/operand of the architecture. Without tools to help the 
exploration, this specialized analysis is very time-consuming 
because a large number of combinations of bits for integer 
and fractional parts is required. Due to this fact, our meth-
odology includes a step where a static analysis of the number 
of bits is performed. 
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Fig. 3. System response: (a) reference signal; (b) floating-point response; (c) 
uniform fixed-point (<18,7>: 18 bits of integer part and 7 bits of fraction) 
response and specialized fixed-point response. 

Although optimal schemes have been considered (e.g., 
[15], [16] and [17]) we included in our tool a mix of a simple 
static analyzer and bit-width information collected from 
simulations with uniform fixed-point representations. 

The static analyzer is a Java application that computes the 
bit-widths over a dataflow graph (DFG) representation of the 
PID controller architecture (each node represent an operator, 
register or variable, and each edge an operand). The analyzer 
iteratively traverses the DFG doing forward and backward 
propagations and error calculations. We use static value range 
propagation [18] also known as data-range propagation to 
determine amplitude data-ranges. Value range propagation 
has been successfully used before [19][20]. Static bit-width 
analysis has been an active focus of research. We based our 
analyzer in the work presented in [20]. 

We start with minimum values and update the range values 
according to the operator of the DFG node. The analyzer uses 
information from the user such as input/output representa-
tions, maximum integer bit-widths (necessary when dealing 
with feedback cycles), maximum fractional bit-widths, and 
maximum absolute errors in input/outputs. The maximum 
integer bit-widths are collected after achieving the minimum 
uniform fixed-point representation by simulation.  

Fig. 4 shows the algorithm used for static bit-width analy-
sis. The stop condition of the iterative procedure is triggered 
when both propagations do not impose changes on the value 
range analysis, or the maximum number of iterations is 
reached, or the errors are below a certain value defined by the 
user. An error analysis use error models for each operation on 
the DFG such as the one presented in [20]. The error calcu-
lation step assumes all the operation outputs are truncated to 
the precision used. A step is responsible to perturb fractional 
parts (adding each time one bit to DFG edges recognized as 
the main sources of errors). We have plans to study the effect 
of other heuristics on perturbing fractional parts (adding and 
subtracting bits) since our method may not achieve 
close-to-optimal solutions. Notice, however, that studies are 
needed to evaluate techniques to check, without simulations, 



 
 

 

if the stability of the system is maintained after quantization. 
 
Inputs: DFG representing the design annotated with the 

word-lengths for all inputs and outputs; 
Output: DFG with edges labeled with fixed-point representations; 
 

1. Simulate the system using floating-point representations. 
Output the maximum ranges of the variables in the PID 
controller. They are used as a starting point for the next 
step;  

2. Find the minimum uniform fixed-point representation for 
the design that maintains the stability of the system and 
producing acceptable response errors (this is currently done 
by simulation and comparison to floating-point responses); 

3. Define as the maximum bits for integer and fractional part 
the ones obtained in 2; 

4. Specify maximum acceptable output errors; 

5. do { 
6. do forward propagation until a fixed-point is reached; 

7. do backward propagation until a fixed-point is reached; 

8. do error analysis; 

9. if (errors not acceptable)  
10.   perturb fractional parts; 

11. } while (changes in forward- or back-propagation or the 
number of iterations reaches the limit or error not 
acceptable); 

Fig. 4. Bit-width analysis algorithm. 

The PID controller includes a cycle related to the integra-
tion part. This traditionally imposes difficulties for static 
bit-width analysis and usually requires the use of simulation 
data to quantify the bits needed for that PID section. The 
problem here is different to the bit-width analysis performed 
to algorithms (described in a programming language). There 
in the presence of statically unbound loops a tool may decide 
to assign the worst case bit-widths (the ones related to the 
data types used in the program) [20]. In our case the worst 
case bit-widths are not known before simulation and the loop 
will be iterating forever. 

Our backward propagation does not propagate from outer 
DFG nodes to cyclic DFG regions, since that would cause 
precision problems due to truncation. In this case cyclic DFG 
regions are identified and their DFG nodes annotated ac-
cordingly. 

With this step accomplished we have a specialized number 
of bits for each operator/operand. The values obtained are 
then exported to Matlab/Simulink model for validation using 
the “quantizer” and “quantize” functions included in Filter 
Design Toolbox [14]. 

The VHDL generator (gray box in Fig. 2) is responsible, 
based on a VHDL library of operators, for the generation of 
the VHDL structure to be synthesized (in this work, XST - 
Xilinx® Synthesis Technology tool - included in the Xilinx 
ISE 7.1i environment, is used). Each functional unit (FU) 

from the operator library was described using the VHDL 
parameterization facilities allowing the generation of FUs 
completely specialized. The library also includes versions of 
the FUs with saturation. Those versions, however, require 
more resources and therefore its use must be evaluated before 
a decision. At the moment, the tool generates the architecture 
with FUs with or without saturation (it seems us statically 
difficult to evaluate the necessity to use of this type of units). 

The simulation results obtained with the generated VHDL 
(in this work, the ModelSim® simulator was used) are then 
compared with the results obtained form Matlab/Simulink 
simulations. 

Note that, integration of the VHDL simulator inside the 
Matlab/Simulink [14] model should be considered and can be 
helpful for validation of the architecture, before its imple-
mentation in FPGA. 

IV. EXPERIMENTAL RESULTS 
In this section we show how we evaluated the proposed 
methodology and the results achieved. The continuous plant 
from which we obtained the equivalent discrete one has the 
following transfer function: G(s) = 1/(s+1)3. The sampling 
period Ts was empirically chosen based on the magnitude of 
the poles time constants, for this case we used Ts = 10 ms. 

We consider reference and input/output signals repre-
sented with 10 bits for integer part (two’s complement rep-
resentation) and 0 bits for fractional part (<10,0>). 

We show results for three implementations of PID con-
trollers:  
- Example A: considers the PID structure where a0, a1 

and a2 are furnished as inputs (see equation (1)); 
- Example B: considers the PID structure where Kc, Ti 

and Td are furnished as inputs (a0, a1 and a2 are calcu-
lated internally by the hardware circuitry); 

- Example C: considers an auto-tuning scheme that adapts 
the Kc, Ti and Td values according to the responses. 

Based on step response of the Ziegler-Nichols rule [1], we 
obtained the Kc, Ti and Td parameters for example B, from 
which we evaluate the a0, a1, a2 coefficients for example A. 
For example C we have adapted the Ziegler-Nichols [1] 
tuning rule based on step response. 

The circuits for the PID controllers have been obtained by 
logic synthesis and place and route using Xilinx ISE 7.1i, 
from the VHDL representation generated by the static ana-
lyzer. We use a Xilinx Spartan-3 xc3s1000-ft256-5 FPGA 
[21]. The results presented herein are estimations directly 
obtained from Xilinx ISE 7.1i. 

When considering specialized fixed-point representations, 
there are 12 and 22 points to be defined to a certain precision 
for the Examples A and B, respectively. Each variable needs 
two parts (integer and fraction) to specify using for each part 
bit-width values from 0 to a MAX value. 

Table I shows the number of functional units used to im-
plement the Examples A and B. In the table MUL, ADD, 
REG, SUB, DIV, SHL, INC, NEG and LIM identify, re-



 
 

 

spectively, multipliers, adders, registers, subtractors, divid-
ers, shift by one, increment by one, negation units, and lim-
iters. 

TABLE I 
NUMBER OF FUNCTIONAL UNITS FOR EACH EXAMPLE 

 MUL ADD REG SUB DIV SHL INC NEG LIM
Ex. A 3 3 8 1 - - - - 1 
Ex. B 6 3 9 2 2 1 2 1 1 

 
Example A 
The floating-point values of the a0, a1 and a2 coefficients 

are: 223.1538, -441.4616 and 218.3344, respectively. In the 
examples with fixed-point representations we use for a0, a1 
and a2 <9,7>, <10,6> and <9,6>, respectively. Those repre-
sentations permit to represent those values as 223.1484, 
-441.4688 and 218.3281. Note that to represent the original 
parameters with full-precision we would need 44, 43 and 45 
bits for the fractions.  

For uniform fixed-point representation it was used 18 bits 
for the integer part and 7 bits for the fractional part (<18,7>) 
for all operands (a0, a1 and a2 included) and operators. This 
representation has been found to be the lowest one keeping 
the system stable. The representation uses a total of 345 bits.  

The specialized representation obtained using the static 
bit-width analyzer uses a total of 273 bits (a reduction of 
20.9% of bits that implies a reduction of 48.5% of 4-LUTs). 
Both implementations achieve none errors when compared to 
the floating-point implementation using the same values for 
a0, a1 and a2 for the reference signal presented. When 
compared to the original floating-point values, although 
stable, both representations have a mean relative error of 
7.9%. Note that further reductions of bit-widths make the 
system unstable. Based on this, we can conclude that in this 
kind of digital systems error metrics (relative, absolute, etc.) 
may play a secondary role since they may not have the im-
portance as in digital filter design. Here, we are firstly con-
cerned with stability and then with precision. 

Table II shows the results obtained for six implementations 
of the PID controller described in this paper. Those imple-
mentations consider arithmetic units without saturation, 
saturations only on ADDERs and SUBs, and on all the 
arithmetic units (ADDERs, SUBs and MULTs).  

The results show an increase from 26% to 38% of 
flip-flops (FFs), 1.41x and 2.87x more 4-LUTs, and 3x to 4x 
more MULT18x18s, between specialized and uniform 
bit-widths. With respect to maximum clock frequency, the 
results show a decrease from 11% to 29% between special-
ized and uniform bit-widths. When using arithmetic units 
with saturation the results show significant increase in the 
number of resources (4.3x and 5.7x for the specialized, and 
2.1x and 3.7x for the uniform) and a decrease in the maxi-
mum clock frequency (35% and 45% for the specialized, and 
19% and 27% for the uniform). Fig. 5 shows the ratios be-
tween the obtained results. 

TABLE II 
FPGA RESULTS FOR UNIFORM AND SPECIALIZED FIXED-POINT 

REPRESENTATIONS (EXAMPLE A) 

Fixed-Point Repre-
sentation 

Max. 
Freq 

(MHz) #4-LUTs #Slices #FFs 
#MULT 
18x18 

specialized w/o sat 73.31 62 84 106 3 
specialized w/ 
ADD-SUB sat 47.33 267 191 114 3 

specialized w/ all sat 40.64 358 227 118 3 
uniform w/o sat 52.40 178 163 146 9 
uniform w/ 
ADD-SUB sat 38.63 376 260 142 9 

uniform w/ all sat 32.39 665 380 148 12 
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Fig. 5. Ratio of resources used and maximum clock frequency for the exam-
ples (with respect to the normalized results obtained for the “specialized w/o 
sat” case). 

Example B 
When considering the complete PID (with hardware cir-

cuitry to calculate the a0, a1 and a2 coefficients) with uni-
form fixed-point representations of <18,8> the RMS (Root 
Mean Square) error, obtained based on the difference be-
tween fixed- and floating-point system output (y) values, was 
4.505. This error is null when using the representation 
<18,25>. For specialized fixed-point representations we used 
as maximum bit-widths <18,8>. The RMS error obtained 
with specialized fixed-point representations was 0.216. 

The implementation with specialized fixed-point repre-
sentations permitted to reduce the total number of bits used 
from 654 to 478 (26.9%). The FPGA results are shown in 
Table III. There is a tremendous increase in resources for the 
Example B due to the need of two dividers (the results con-
sider a combinational divider without pipelining). In this case 
it is obvious we need to consider sharing of some functional 
units in the same PID controller or among the PID controllers 
existent in the target system. Higher clock frequencies can be 
achieved using dividers with pipelining stages. 

TABLE III 
FPGA RESULTS FOR UNIFORM AND SPECIALIZED FIXED-POINT 

REPRESENTATIONS (EXAMPLE B) 

Fixed-Point Rep-
resentation 

Max 
Freq. 

(MHz) #4-LUTs #Slices #FFs 
#MULT 
18x18 

Uniform 3.964 5074 3584 209 18 
Specialized 4.494 3568 2189 116 14 
 
Example C 
We implemented a hardware/software system including 



 
 

 

the PID controller and an auto-tuning technique (a relevant 
characteristic for mobile robotics due to the changes in the 
environment that may occur) based on step response 
Ziegler-Nichols rule. 

The system architecture implemented as a SoC (sys-
tem-on-a-chip) solution, with an Altera Stratix 
EP1S10F780C6ES FPGA [22], uses one Nios II softcore 
microprocessor responsible to execute the auto-tuning algo-
rithm (the algorithm has been translated from Matlab to C 
language) and to calculate the a0, a1 and a2 PID coefficients 
(i.e., the software component includes the calculation of the 
coefficients from the Ts, Td, Ti and Kc values). The Nios II is 
connected to the PID architecture (a hardware core obtained 
from the VHDL description output from the generator) using 
the Avalon bus. This version of the software algorithm uses 
floating-point data types. Fixed-point values are read and 
written to the PID core by the microprocessor.  

Table IV shows the resources used by the entire system and 
the maximum frequency of the PID controller core. The re-
sources include a timer connected to the PID controller that is 
responsible to control the PID registers each sampling period, 
Ts. 

The results indicate that with the microprocessor running at 
50 MHz it is capable to execute each auto-tuning iteration in 
0.235 ms. This means that with a sampling period of 50 ms, a 
single Nios II could perform auto-tuning to several distrib-
uted PID controllers. 

With an EP1S80 Stratix FPGA we can include in the same 
FPGA one Nios II and about 7 or 28 PID controller cores 
using the uniform or the specialized fixed-point representa-
tions, respectively. Those maximum numbers of PID con-
troller cores are constrained by the number of DSP elements 
of the FPGA. Using logic elements (LEs) to implement the 
multipliers of the architecture would have resulted in much 
more PID controller cores in the same FPGA. However, that 
would certainly decrease the maximum clock frequency 
achieved. 

TABLE IV 
RESULTS USING AN ALTERA FPGA WITH ONE NIOS II AND THE PID 

ARCHITECTURE (EXAMPLE C): LES REPRESENT LOGIC ELEMENTS; DSP 
ELEMENTS REPRESENT 9X9 BITS INTEGER MULTIPLIERS. 

Architecture #LEs Memory 
(Kbits) 

#DSP 
Elements

Max 
Freq. 

(MHz)
Uniform (including 
Nios II) 

5651 
(53%) 

571,136  
(62%) 

32 
(67%) 57.72

Uniform (without 
Nios II) 

459 
(4%) 

0  
(0%) 

24 
(50%) 57.72

Specialized (including 
Nios II) 

5399 
(51%) 

571,136  
(62%) 

14 
(29%) 57.17

Specialized (without 
Nios II) 

238 
(2%) 

0  
(0%) 

6 
(43%) 57.17

 
Overall Comments 
The overall results for the eight implementations (related to 

the cases shown in Table II and III) reveal that when using 
our approach an increase of 24% on the maximum system 

clock frequency was achieved on average, and reductions on 
FPGA resources of 37.8% (Slices), 26.6% (FFs) and 57.6% 
(MULT18x18s) were achieved on average. 

Note that the FPGAs being used, although not the most 
advanced and largest commercially available, can easily 
accommodate various PID controllers. 

V. CONCLUSIONS 
This paper presents a methodology to design PID controllers 
when targeting FPGA-based systems. The methodology 
exploits fixed-point representations, uniform or specialized, 
in order to reduce the number of resources needed still 
achieving stable control systems. Resource savings are im-
portant in order to embed several PID controllers and other 
system components in the same FPGA. Resources savings are 
also an important factor to reduce power dissipation and 
energy consumption, important goals for embedded systems 
in certain mobile robotic systems. The preliminary tests show 
the effectiveness of the methodology on both shortening 
design time and reducing the number of resources. 

However, there are some aspects needing further research 
work. Evaluations of less conservative word-length analysis 
techniques are needed. The use of arithmetic units with 
saturation requires additional hardware resources and studies 
should be done in order to analyze the trade-off between the 
use of saturation and the use of more bits of representation. 
The sharing of multiplier units might also be needed when 
there are not enough on-chip multipliers to implement all the 
PID controllers and additional components on the system.  

Further work will also address time-variant processes and 
the integration of more advanced auto-tuning techniques. We 
also have plans to evaluate the capability of auto-tuning al-
gorithms to increase the immunity of the PID controller to 
quantization errors. 
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