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ABSTRACT 

We aimed to evaluate if plants with different nutrient availability evidenced a different capacity to 

overcome drought-induced oxidative stress. Membrane peroxidative damages as MDA concentration and 

the activity of several antioxidant enzymes were determined in leaves of well watered (WW) and water 

stressed (WS) H. annuus plants grown either with adequate (Adeq Nutr) or limited (Limit Nutr) nutrient 

regimes. Constitutive capacity to eliminate ROS was not overall changed by growing plants with different 

nutrient supply regimes, but a diverse enzyme-dependent response was observed. In response to drought 

SOD and DHAR activity increased only in plants with limited nutrient supply, while in plants with 

adequate nutrient supply the activity of these enzymes did not change and were constitutively higher, but 

the activity APX increased by 50%. The subtle observed changes in the activity of the antioxidant 

enzymes are discussed, given that no oxidative damage was observed. 

 

INTRODUCTION 

 Reactive derivatives of oxygen (ROS), such as hydrogen peroxide (H2O2), the superoxide radical 

anion (O2
•-) and hydroxyl radical (OH•), are inevitable by-products of biological redox reactions (Foyer et 

al. 1994; Apel and Hirt, 2004). ROS accumulation may inactivate enzymes and damage important cellular 

components (Azzi et al. 2004), and adequate protection against ROS is provided by antioxidative defence 

systems, including enzymes as superoxide dismutase (SOD) that catalyzes the dismutation of O2
•- radicals 

to molecular oxygen and H2O2, while H2O2-scavenging is accomplished by catalase (CAT), various 

peroxidases and the ascorbate-glutathione cycle, a series of coupled redox reactions involving four 

enzymes, ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate 

reductase (DHAR) and glutathione reductase (GR) (Apel and Hirt, 2004). 

 It is well documented that water deficits may strongly limit both photosynthesis (Flexas et al. 

2004), and nitrate reduction (Correia et al. 2005) inducing the generation of ROS (e.g., Jiang and Zhang 

2002; Reddy et al. 2004). The extent of cellular damage by ROS may be limited or reduced by the 

up-regulation of the activities of several antioxidant enzymes. However, under mild to moderate water 

stress conditions, the degree to which the activities of antioxidant enzymes increase is extremely variable 

(Reddy et al. 2004), and in some cases no effect, or a negative effect, has been reported (Schwantz and 

Polle 2001; Turkan et al. 2005). 
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 Low availability of nutrients is another factor that may also decrease photosynthetic CO2 

fixation, leading to over reduction of the photosynthetic electron transport (ETC) components and hence 

increasing the demand for oxidative protection. In accordance, nutrient deficiencies have been found to 

affect the activities of antioxidant enzymes, the response depending on the enzyme and the nutrient (e.g., 

Logan et al. 1999; Schmitz-Eiberger et al. 2002; Kandlbinder et al. 2004; Tewari et al. 2004). These 

studies assessed the changes in the activity of several antioxidant enzymes in response to the depletion of 

individual nutrients in well-watered plants, but under field conditions, plants may be subjected to low 

availability of several nutrients. So far there is a lack of information on the influence of nutrient 

availability on the response of antioxidant enzymatic system to drought stress. In the present work we 

aimed to study the influence of low nutrient supply on drought-induced changes in lipid peroxidation 

levels of membranes and in the activity of several antioxidant enzymes in sunflower potted plants. 

 

MATERIAL AND METHODS 

 Plants of Helianthus annuus L. (var. “Giant”) were grown in 3 L pots (peat and vermiculite 

1v:1v) in a naturally lit greenhouse (light intensity 35% the outside levels, min and max temperatures 

averaging 15ºC and 29ºC). The pots were regularly brought to field capacity and watering was done using 

either an Hoagland modified, full strength nutrient solution (Adequate Nutr) or half strength nutrient 

solution (Limited Nutr). The onset of water stress imposition (WS) took place 26 days after sowing by 

replacing partially the water lost by evapotranspiration (determined gravimetrically) for 3 weeks and, at 

the same time, control plants (WW), of both nutrient treatments, were watered to full capacity. In order to 

assure similar environmental conditions between treatments in each measurement day, on the evening 

before, the plants were transferred to a growth chamber (Fitoclima, Aralab, Lisboa) with daytime 

temperature of 22ºC, 70% relative humidity and 200 µmol m-2 s-1 photosynthetic photon flux density. 

Samples were collected in two fully expanded, non-senescent leaves, except pre-dawn leaf water potential 

that was determined in an older leaf. The photosynthetic rate at saturating light and CO2 (Amax) and at 

25ºC was determined in a Clark type leaf disc oxygen electrode (Hansatech, Kings Lynn, U.K.) according 

to Delieu and Walker (1981) and soluble protein quantitation as in David et al (1998) with the BioRad 

Protein Assay Dye (BioRad, Hercules, California, USA). Lipid peroxidation level of plant membranes 

was determined as malondialdehyde (MDA) concentration as described by Hodges et al. (1999). Enzyme 

extracts were obtained as in Polle et al. (1993) modified in accordance to Nakano and Asada (1987). 

APX, DHAR, MDHAR and GR activities were measured as in Polle and Morawe (1995). SOD activity 

was assayed according to Polle et al. (1989) and CAT as in Aebi (1984). 

 

RESULTS 

 By the end of the drought period WS plants experienced a moderate water stress presenting a 

pre-dawn leaf water potential (ΨPD) of -0.6 MPa, whereas WW plants always presented values higher 

than -0.2 MPa. No significant differences in ΨPD were observed between plants with different nutrient 

supplies (data not shown). Water deficits did not negatively affect either Amax or MDA (Table 1), nor 

there was any significant difference between nutrient treatments. Changing the availability of nutrients 



did not affect protein content, but water deficits induced a significant decrease in leaf soluble protein 

content (Table 1). 

 
Table 1 Photosynthetic rate at saturating light and CO2 (Amax), malondialdehyde (MDA) and soluble protein 
(Psol) determined in leaves of well watered (WW) and water stressed (WS) H. annuus plants grown with 
adequate (Adeq Nutr) or limited (Limit Nutr) nutrient supply regime (mean ± standard error, n = 5). 
 
 WW WS 

 Adeq Nutri Limit Nutr Adeq Nutr Limit Nutr 

Amax (µmol O2 s-1 g-1Chl) 61.7 ± 5.8 61.7 ± 3.9 57.0 ± 0.7 49.4 ± 1.3 

MDA (nmol g-1DM) 281 ± 37 274 ± 31 330 ± 32 289 ± 16 

Psol (mg g-1 DM) 318 ± 14 299 ± 12 265 ± 15 265 ± 14 

 

 In the absence of water deficit, the 

plants adequately supplied with nutrients 

exhibited SOD and DHAR activities two and 

four-fold higher, respectively, than those from 

plants subjected to a nutrient deficient supply 

regime (Fig. 1). An opposite, but less intense 

trend was evidenced for GR and MDHAR. 

Regardless of the nutrient supply regime, water 

deficit did not induce any significant response in 

MDHAR activity whereas the activity of CAT 

decreased in water-stressed plants. As to the 

response of the other enzymes to water deficit, 

they were dependent on the availability of 

nutrients (Fig. 1). The activities of SOD and 

DHAR increased in WS plants with limited 

nutrient supply, contrasting with a decrease in 

WS plants with adequate nutrient supply. In 

response to water deficit, APX activity was 

unchanged in plants with low nutrient supply 

but increased by 50% in plants adequately 

supplied with nutrients. In the later the GR 

activity was unaffected by drought stress, but in 

leaves of plants subjected to nutrient deficiency 

the activity of this enzyme decreased by 35% in 

response to water deficit. 
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Figure 1 Antioxidant enzymes activity (see text for 
details) in leaves of well watered (WW) and water 
stressed (WS) H. annuus plants grown with adequate 
(filled bars) or limited (open bars) nutrient supply 
regime (mean ± standard error, n = 5) 
 

 

DISCUSSION 

Previous studies indicate that the differential water stress tolerance of plants may be related with 

differential protection against drought-induced oxidative stress due to differences in constitutive levels 

and/or responsiveness of the antioxidant enzymes to water stress (Sairam et al. 1998, Lima et al. 2002; 

Türkan et al. 2005). Our study show that the constitutive capacity to eliminate ROS is not overall changed 



by growing plants with adequate nutrient supply, since only SOD and DHAR activities were enhanced in 

response to increased availability of nutrients.  

Our results concerning plants with an adequate nutrient supply generally agree with those of 

Zhang and Kirkham (1996) who observed that mild and moderate water deficits did not affect total 

activities of SOD, APX, CAT, MDHAR, DHAR and GR in sunflower seedlings, the exception is made, 

in our case, for CAT activity that, under mild water deficit, decreased irrespective of the nutrient supply 

regime. In response to water deficits, SOD and DHAR activity increased only in plants with limited 

nutrient supply. The adaptive meaning of enhanced SOD protection against over reduction processes, 

often associated with depleted intercellular CO2 situations (Arisi et al. 1998), would only be effective if 

the H2O2-scavenging capacity is also enhanced (Foyer et al. 1994). In WS plants with adequate nutrients, 

higher APX activity indicates a higher potential to eliminate H2O2, on the other hand, in nutrient deficient 

plants, the elevated GR and MDHAR activities might increase NADP+/NADPH ratio, ensuring NADP+ 

availability to accept electrons from the ETC, and thereby minimizing O2
•- production.  

Apparently the subtle changes observed in the activity of the enzymes involved in the ascorbate-

glutathione cycle were sufficient to prevent oxidative damage, as shown by the lack of increase of MDA 

in leaves either from moderate droughted or nutrient limited sunflower plants. The contrasting patterns of 

drought-induced changes in SOD, APX, DHAR and GR activities between plants grown with different 

nutrient supplies may also contribute to explain some diversity of drought-induced responses in 

antioxidant enzymes reported in the literature. 
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