
UNIVERSIDADE TÉCNICA DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Computability
with

Polynomial Differential Equations

Daniel da Silva Graça
(Mestre)

Dissertação para obtenção do Grau de Doutor em Matemática

DOCUMENTO PROVISÓRIO

Janeiro de 2007

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Sapientia

https://core.ac.uk/display/61500797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

COMPUTABILIDADE COM EQUAÇÕES DIFERENCIAIS
POLINOMIAIS

Nome: Daniel da Silva Graça
Curso de doutoramento em: Matemática
Orientador: Doutor Manuel Lameiras de Figueiredo Campagnolo
Co-orientador: Doutor Jorge Sebastião de Lemos Carvalhão Buescu
Provas concluídas em:

Resumo: Nesta dissertação iremos analisar um modelo de computação analógica, baseado
em equações diferenciais polinomiais.

Começa-se por estudar algumas propriedades das equações diferenciais polinomiais, em
particular a sua equivalência a outro modelo baseado em circuitos analógicos (GPAC),
introduzido por C. Shannon em 1941, e que é uma idealização de um dispositivo físico, o
Analisador Diferencial.

Seguidamente, estuda-se o poder computacional do modelo. Mais concretamente,
mostra-se que ele pode simular máquinas de Turing, de uma forma robusta a erros, pelo
que este modelo é capaz de efectuar computações de Tipo-1. Esta simulação é feita em
tempo contínuo. Mais, mostramos que utilizando um enquadramento apropriado, o modelo
é equivalente à Análise Computável, isto é, à computação de Tipo-2.

Finalmente, estudam-se algumas limitações computacionais referentes aos problemas
de valor inicial (PVIs) definidos por equações diferenciais ordinárias. Em particular: (i)
mostra-se que mesmo que o PVI seja definido por uma função analítica e que a mesma,
assim como as condições iniciais, sejam computáveis, o respectivo intervalo maximal de
existência da solução não é necessariamente computável; (ii) estabelecem-se limites para
o grau de não-computabilidade, mostrando-se que o intervalo maximal é, em condições
muito gerais, recursivamente enumerável; (iii) mostra-se que o problema de decidir se o
intervalo maximal é ou não limitado é indecídivel, mesmo que se considerem apenas PVIs
polinomiais.

Palavras-chave: Computabilidade, computação analógica, análise computável, equações
diferenciais ordinárias, problemas de valor inicial, intervalo maximal.

iii

iv

COMPUTABILITY WITH POLYNOMIAL DIFFERENTIAL
EQUATIONS

Abstract: The purpose of the present dissertation is to analyze a model of analog compu-
tation defined with polynomial differential equations.

This work starts by studying some properties of polynomial differential equations and,
in particular, their equivalence to the functions computed by Shannon’s General Purpose
Analog Computer (GPAC), a model that was introduced in 1941 as an idealization of a
physical device, the Differential Analyzer.

We then study the model’s computational power. More concretely, we show that it
can perform robust simulations of Turing machines, thus achieving Type-1 computability.
Our simulation is done in continuous-time. Moreover, we show that in an appropriate
framework, this model is equivalent to computable analysis i.e., to Type-2 computability.

We pursue our digression on models based on differential equations by showing some
computational limitations concerning initial-value problems (IVPs) defined by ordinary dif-
ferential equations. Specifically: (i) we prove that even if the IVP is defined with an analytic
function that, together with the initial conditions, is computable, then the maximal interval
of existence for the respective solution is not necessarily computable; (ii) we establish limits
for the “degree of noncomputability”, by showing that the maximal interval is, under very
mild conditions, recursively enumerable; (iii) we show that the problem of deciding whether
the maximal interval is bounded or not is undecidable, even if we only consider polynomial
IVPs.

Keywords: Computability, analog computation, computable analysis, ordinary differential
equations, initial-value problems, maximal interval.

v

vi

ACKNOWLEDGMENTS

Many people helped me while I was working in my PhD thesis. I would like to thank all of
them. However, there were some people to which I interacted more closely and that I would like
to mention here.

Firstly, I would like to express my gratitude to my advisors, Jorge Buescu and Manuel Cam-
pagnolo, for their dedication and guidance during the elaboration of this thesis. The constant
encouragement they provided was essential for the determination of the course of this work. I
am indebted to them for the time and attention they devoted to this project.

Several institutions gave me the conditions I needed to pursue this research. Among these,
I am especially grateful to the department of Mathematics at FCT/University of Algarve for
providing me support and a leave for two and half years. Also, I thank the people at the Section
of Computer Science, the Center for Logic and Computation at IST/UTL, and the Security and
Quantum Information Group at IT, for their constant assistance and interest in my work. In
particular, the organizers of the Logic and Computation Seminar, Amílcar Sernadas and Carlos
Caleiro, provided me several opportunities to present my research.

A special acknowledgement goes to the Protheo group at LORIA/INRIA, France which
hosted me in several visits during the elaboration of this thesis, adding up to almost one year.
Among them, I must mention Olivier Bournez and Emmanuel Hainry for all the enriching dis-
cussions we had. The work done there resulted on Chapter 5 of the current thesis. Other persons
at LORIA also gave me support in other ways: Anderson Oliveira, Raúl Brito, Ricardo Marques
(the Portuguese speaking people), Antoine Reilles (for my FreeBSD problems), Johanne Cohen,
Chantal Llorens, and several people from the following teams: Calligrame, Carte, Cassis, and
Protheo.

I would also like to thank Ning Zhong for showing interest on a problem that we had the
chance to discuss during the conference CiE’2005. This would originate a fruitful collaboration,
which is reflected in Chapter 6. I am also grateful for the excellent hospitality that she and
Bingyu Zhang provided during my stays in Cincinnati.

Many people helped me with useful discussions and suggestions, while doing this work, in
earlier or current aspects. In particular, I wish to thank J. Félix Costa, V. Brattka, and C. Moore.
I would also like to thank P. Koiran, R. Lupacchini, G. Sandri, and G. Tamburrini for giving me
opportunities to present my work on seminars/workshops.

Last but certainly not least, I wish to give very special thanks to my family, for their presence
and unconditional support.

This research was partially supported by the following entities:

• Fundação para a Ciência e a Tecnologia and EU FEDER POCTI/POCI via Center for
Logic and Computation at IST/UTL, the Security and Quantum Information Group at IT,
grant SFRH/BD/17436/2004, and the project ConTComp POCTI/MAT/45978/2002,

• Fundação Calouste Gulbenkian through the Programa Gulbenkian de Estímulo à Investi-
gação,

• EGIDE and GRICES under the Program Pessoa through the project Calculabilité et com-
plexité des modèles de calculs à temps continu.

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 On the complexity of some simple dynamical systems 2
1.3 A computational perspective . 7
1.4 Our contributions . 9
1.5 Overview of the dissertation . 9

2 Preliminaries 11
2.1 Introduction . 11
2.2 Basic mathematical notation . 11
2.3 Classical computability . 12
2.4 Computable Analysis . 16
2.5 Analytic and elementary functions . 19
2.6 Ordinary differential equations . 20

3 Polynomial IVPs 23
3.1 Introduction . 23
3.2 Polynomial differential equations . 23
3.3 The GPAC . 28
3.4 Properties of the GPAC . 31

4 Simulation of Turing machines 35
4.1 Introduction . 35
4.2 Encoding configurations and controlling the error 35
4.3 Determining the next action - Interpolation techniques 38
4.4 Robust simulations of Turing machines with PIVP maps 41
4.5 Iterating maps with ODEs . 44
4.6 Robust simulations of Turing machines with polynomial ODEs 47

5 The GPAC and Computable Analysis are equivalent models 53
5.1 Introduction . 53
5.2 The main result . 53
5.3 Proof of the “if” direction . 55
5.4 Simulating partial computations with GPACs 55
5.5 Proof of the “only if” direction . 61

ix

Contents

6 The maximal interval problem 63
6.1 Introduction . 63
6.2 The maximal interval is r.e. open . 63
6.3 ... But not recursive . 67
6.4 Analytic case . 69
6.5 Boundedness is undecidable . 70
6.6 Boundedness for the polynomial case . 71

7 Conclusion 77
7.1 Concluding remarks . 77
7.2 Directions for further work . 78

Bibliography 79

Index 87

x

CHAPTER 1

Introduction

1.1 Motivation

Dynamical systems are a powerful tool to model natural phenomena. Their use is transversal
to almost all “exact sciences” and applications can be found ranging from fields like physics
or chemistry up to biology or economics. However this versatility and wealth of applications
comes with a price: dynamical systems can present an incredibly complex behavior, and their
understanding is far from complete. Indeed, only recently we started to have a glimpse on the
richness that even systems defined with simple rules can present. In section 1.2 we recall some
classical examples of such systems.

The purpose of the present work is to give new results for a particular class of dynamical
systems that, while being restricted, is still sufficiently broad to accommodate a full range of
meaningful systems. Here we use a computational approach and we try to understand which are
the computational strengths and weaknesses of such systems.

In general, we can consider two large families of dynamical systems: the discrete-time ones
and the continuous-time ones. The evolution of the first systems correspond to the iteration of a
function, and the evolution of the second ones corresponds to the solution of some differential
equation.

In this thesis we study, from a computational perspective, the class of continuous-time dy-
namical systems defined over Rn that are solution of some initial-value problem{

x′ = p(t, x)
x(t0) = x0

(1.1)

where p is a vector of polynomials. Notice that, while the previous class of dynamical systems
encompasses practically all analytic continuous-time systems that appear in applications (e.g. all
examples of Section 1.2 are of this type), this class is usually not studied on its own in standard
books about dynamical systems, e.g. [CL55], [Lef65], [Hal80], [HSD04].

As matter of fact, the emphasis is on linear systems, which we know how to solve explicitly,
and in planar systems (i.e., defined in R2) whose behavior is, in a qualitative way, completely
understood [HW95]. But besides that, and with the exception of a marginal number of cases,
little information is known about the general properties of systems like (1.1). For instance,
Hilbert’s 16th problem: “determine an upper bound for the number of limit cycles in polynomial

1

Chapter 1. Introduction

vector fields of order n” is still an open problem despite belonging to the famous list of 22
problems formulated by D. Hilbert in 1900.

We notice that the study of dynamical systems from a computational point of view is not
new. Indeed, recently there has been a renewed interest in analog computation, and computation
over the reals. The distinction between these two areas is not clear, and varies from author to
author.

To some extent, one can consider three levels when working with analog computation or
computation over the reals: (i) a physics/engineering level, where the emphasis is done on build-
ing analog computing machines, (ii) an abstraction level, where one is interested in mathematical
models of the previous analog machines, and (iii) a theoretical level, where one is interested in
computation with reals, but where the models used do not necessarily have any connection with
analog machines. The existing literature about the subject suggests that analog computation is
mainly concerned with the levels (i)–(ii), and computation over the reals with levels (ii)–(iii),
although this is not a strict classification.

For instance, the design of Differential Analyzers [Bus31], a kind of analog machine, falls
within the first category, while the study of its abstraction, the General Purpose Analog Com-
puter [Sha41], falls within the second. Finally, the third category includes models such as the
BSS model [BSS89] or computable analysis [PER89], [Ko91], [Wei00]. Note that this sepa-
ration is not strict, and the same model can be considered in different levels, depending upon
the author. For instance, for some authors, computable analysis [BH98] and the BSS model
[Sma92] can also be considered in level (ii).

In the present thesis we will be mainly concerned with the level (ii) described above, but we
will also delve into level (iii), in Chapters 5 and 6.

Another motivation to study dynamical systems from a computational perspective comes
from control theory. Many systems arising in control theory can be modeled as continuous
dynamical systems or hybrid systems (where some components of the system are continuous,
and others are discrete), and some questions arise naturally within this context, see e.g. [Bro89],
[Bra95], [Son98]. For instance, given a point from some set (inputs), is it possible that its
trajectory will reach another set (of invalid states)?

If we can answer, from a computational perspective, some of the previous questions we
can then provide automated verification tools (where a digital computer is used) for those sys-
tems, ensuring that they will behave correctly [AD90], [AMP95], [AD00], [HKPV98], [PV94],
[NOSS93], [BT00], [Cv04].

Again, these problems relate to the study of dynamical systems from a computational per-
spective, which is the core theme of the present work.

1.2 On the complexity of some simple dynamical systems

In this section we briefly recall some examples of dynamical systems of the type (1.1), defined
with simple evolution rules, that yet have a complex behavior. With this we not only want to
alert the reader to the difficulty of tackling them, but also to emphasize their importance in
applications. This is why we choose models that derived from practical problems. We note
that we will only present qualitative analysis of the respective equations (1.1), since in general,
explicit solutions cannot be constructed.

Biology: Lotka-Volterra equations
In the early 1920s, Vito Volterra came up with a now famous example of differential equations
in R2 to model a predator-prey system. This system was developed to give an answer to the
following problem. Umberto d’Ancona, who was an official in the Italian bureau of fisheries in

2

1.2 On the complexity of some simple dynamical systems

5 10 15 20

5

9
10

15

x

y

Figure 1.1: Phase plane trajectories for the Lotka-Volterra equation with parameters α = 0.9,
β= 1.1, and δ= γ = 0.1.

Trieste during World War I, was puzzled by the statistics he kept. Specifically, he remarked that
during World War I, the proportion of catch that consisted of predator fish, like sharks or skates,
increased markedly over what it had been before, and what it would became later. This was
somehow disconcerting, since the war period imposed severe restrictions to fishing activities,
thus releasing the pressure over “food fish”. He then presented this problem to Volterra, who
came out with the following set of equations

x′ = αx−γxy

y′ =−βy+δxy (1.2)

Here x(t) represents the number of prey fish and y(t) the number of predators. The coefficient
α represents the fertility rate of the prey fishes and γ is a coefficient that gives their mortality
rate, due to encounters with predators (this value is proportional to x(t)y(t)). Reciprocally δ is
a coefficient proportional to the number of meals that the predators have in average. It is also
supposed that without any food, the predators tend to die with exponential decay y′ =−βy.

In this idealized model, it can be shown [HW95] that trajectories are level curves of the
function

F(x,y) = |x|β|y|αe−δx−γy

i.e. they satisfy the condition F(x,y) = k, for some constant k ∈ R. The trajectories are as de-
picted in Fig. 1.1. Thus, the system (1.2) has an infinite number of trajectories and all of them are
periodic, except for the point (β/δ,α/γ) which is itself an equilibrium. As a curiosity, we remark
that d’Ancona’s problem can be explained in the following manner within this model. Fishing
can be interpreted as reducing the value of α and as increasing β (both prey fish and predators
are catched in fishing activities). This will shift the previous equilibrium point (β/δ,α/γ) to a
new point with increased value of x and decreased value of y, thus explaining the paradox.

This behavior has been observed in other situations, thus confirming the utility of the infor-
mation taken from (1.2). As an example [HW95], in 1868 some acacia trees were imported from
Australia to California, carrying with them some parasite insects that would nearly wipe out the

3

Chapter 1. Introduction

R C

L

Figure 1.2: A RLC circuit.

citrus industry in California. To solve the problem, some predators of the parasite were brought
from Australia. Although with a significant initial success, soon after the relation predator-prey
reached an equilibrium, not completely solving the farmers’ problem. Shortly before World War
II, DDT was discovered and used as a panacea for the problem. But, for the farmers’ surprise,
the parasite insects became more numerous!

Electronics: the Van der Pol equations
In this section we study Van der Pol’s equation. The original application described by Van der
Pol was to an electric circuit constituted by a triode valve (nowadays it would be replaced by a
transistor), the resistive properties of which change with current. We refer the reader to [GH83]
for further details and references about this equation. Instead, we pick an example given in
[HSD04], motivated by the RLC circuit of Fig. 1.2. It has one resistor (R), one capacitor (C),
and one inductor (L). Its electric state depends of six quantities: the intensity of the current
flowing to each component R, L, and C, as well as the voltage drop between the extremities of
R, L, and C. Assuming that the inductor and capacitor behave in an ideal way, and considering
Kirchhoff’s laws, it is shown in [HSD04] that we only need two variables to fully describe the
system, namely the current x flowing over L and the voltage drop y over the extremities of the
capacitor. Their evolution along time is described by the following system

x′ = y− f (x)

y′ =−x (1.3)

where f : R→ R is the dependence law of the voltage drop over R with the current passing
through it (ideally f (iR) = KiR, which is Ohm’s law. However, if R is replaced by a semicon-
ductor device e.g. a diode, this dependence is no longer linear).

In particular we pick f (x) ≡ fµ(x) = x3 − µx. It can be shown that this system has the
following behavior for µ ∈ [−1,1] (cf. Fig. 1.3):

1. For µ∈ [−1,0], all solutions tend to zero as t→∞ (i.e. the origin is a sink). In other words,
all currents and voltages tend to zero;

2. For µ ∈ (0,1], the circuit radically changes its behavior: it starts oscillating. Now there
is a unique periodic solution γµ, to which every nontrivial solution tends as t → ∞. We
also notice the existence of an unstable equilibrium at the origin: any point near the origin
will be drawn away from it (in this case it is called a source, that corresponds to the dual
notion of sink).

Therefore, the case µ = 0 corresponds to a revolutionary value, where the behavior changes
dramatically. It is an example of a Hopf bifurcation [HW95]. We notice that for this value of µ,

4

1.2 On the complexity of some simple dynamical systems

-0.02 -0.01 0 0.01 0.02

-0.04

-0.02

0

0.02

0.04

-0.4 -0.2 0 0.2 0.4
-0.6

-0.4

-0.2

0

0.2

0.4

-1.5 -1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

After bifurcation: µ = 1. The origin is now a
source, and all other trajectories converge to a
limit cycle.

Before bifurcation: µ = −1. The origin is a
sink and all trajectories converge to it.

At bifurcation: µ = 0. The origin is a weak sink
(its linearization gives a center) and all trajecto-
ries converge very slowly to it.

Figure 1.3: Hopf bifurcation for system (1.3).

the system is not stable is the sense that small perturbations on this value change significantly
the global dynamical behavior of the system.

Historically, the study of stable dynamical systems always had a prominent role in the devel-
opment of the theory of dynamical systems. Since we cannot avoid uncertainty when performing
measurements on a physical system, and we cannot fully isolate it, it seems that a good mathe-
matical model for physical phenomena should account for some kind of robustness.

This is the idea underlying structurally stable systems, originated from the work of Andronov
and Pontryagin [AP37]. A system is structurally stable if small perturbations of it leave the
whole orbit structure unchanged, up to a continuous global change of coordinates. Andronov,
Pontryagin, and Peixoto showed the following results for the plane R2:

(i) Structurally stable systems form an open and dense subset of the set of dynamical systems
with C1 vector fields;

(ii) Attractors for structurally stable systems consist only of fixed points and periodic orbits.

For some time it was conjectured (cf. the retrospective in [GH83]) that (i) and (ii) would
hold for higher dimensions. Both conjectures would turn out to be false: not only structurally
stable systems are not dense [Sma66], but they also allow other kinds of attractors.

For that reason structurally stable systems are no longer seen as the adequate class of “ro-
bust system”. Moreover, this initiated a search for stable attractors other than fixed points and
periodic orbits. The next application provides one of the best known examples of such attractors
that, while being very robust to changes in the parameters, is not structurally stable [Via00].

5

Chapter 1. Introduction

-10
0

10
20

-20

0

20

0

20

40

-10
0

10
20

-20

0

20

Figure 1.4: Numerical solution of Lorenz’ equations for parametersσ= 10, β= 8/3, and ρ= 28,
with initial solution (0,1,0) set for t0 = 0.

Meteorology: The Lorenz equations
In the early 1960s Lorenz, a meteorologist working at M.I.T. and interested in the foundations
of long-range weather forecasting, was studying a very simplified model for atmospheric con-
vection given by the system

x′ = σ(y− x)

y′ = ρx− y− xz

z′ = xy−βz (1.4)

where σ (the Prandtl number), ρ (the Rayleigh number), and β (an aspect ratio) are positive real
parameters. We refer the reader to [Sal62], [Lor63] for more physical details on this system.
The values used by Lorenz and most other investigators are σ= 10, β= 8/3, and ρ= 28, though
similar behavior occurs for other values [GH83]. Lorenz discovered that trajectories rapidly ap-
proached and then followed a butterfly-shaped trajectory like the one depicted in Fig. 1.4. This
would be one of the very first examples of strange attractors with underlying physical moti-
vation. While there is no precise definition for this mathematical object (there are a number
of different definitions in the literature, see e.g. [Mil85] and [Rue89] and references therein),
it has at least two properties: (i) it is robust and nearby trajectories converge to it; (ii) this is
not a “simple” attractor (i.e. a point or a periodic orbit). We note that while numerical ex-
periments furnished strong evidence for the existence of a strange attractor in Lorenz’ system,
despite a huge amount of theoretical work on the system (even a book [Spa82] was written on
Lorenz’ system), it was only very recently [Tuc98], [Tuc99] that its existence and robustness
were proved, showing the inherent difficulties in analyzing this kind of systems. We remark that
this is a computer-aided proof, with all the inherent objections it might raise [Via00], namely the
possible existence of errors in the computation that are beyond human detection.

6

1.3 A computational perspective

1.3 A computational perspective

As we mentioned earlier, there is already a significant amount of research devoted to the study
of dynamical systems from a computational point of view. This section describes some of the
results that can be found on the literature. This survey is far from complete, since it mainly
focuses on aspects that will be relevant later in this thesis.

One of the perspectives existent in the literature is the following: given some dynamical
system, can it simulate an universal Turing machine? Motivated by this issue, several authors
have proved that relatively simple discrete-time systems can simulate Turing machines. The
general approach is to associate each configuration of a Turing machine to a point of Rn, and to
show that there is a dynamical system with state space in Rn which embeds its evolution.

For example, it is known that Turing machines can be simulated on compact spaces, even
of low dimension [Moo90], [KCG94], [SS95]. While compactness is a desirable property of
dynamical systems, it is probably too strong a requirement since it is believed that no analytic
map on a compact, finite dimensional space can simulate a Turing machine through a reasonable
encoding [Moo98].

The requirement of compactness has another drawback: it prevents systems capable of sim-
ulating an arbitrary Turing machine of exhibiting robustness to noise. Indeed, Casey [Cas96],
[Cas98] has shown that in the presence of bounded analog noise, recurrent neural networks
can only recognize regular languages. This result was later generalized in [MO98] to other
discrete-time computational systems. Robustness is a critical issue in continuous models since
noncomputable behavior might arise when the use of exact real quantities is allowed. For in-
stance, it is known that recurrent analog neural networks can present noncomputable behavior if
real parameters are represented with infinite precision [SS95].

Another interesting result on the simulation of Turing machines by dynamical systems can
be found in [KM99]. There it is shown that elementary maps can simulate Turing machines in
an unbounded space. However, the effect of perturbations on the simulation is not studied (this
will be one of the issues addressed to in this thesis).

The previously mentioned results show that finite dimensional maps are capable of simulat-
ing the transition function of an arbitrary Turing machine. In that respect, those are results about
the computational power of hybrid systems, which are continuous with respect to the state space
but evolve discretely in time. Another perspective has been to simulate the evolution of Turing
machines with continuous flows in Rn [Bra95], [CMC02], [MC04]. However all these flows are
non-analytic and, at most, infinitely differentiable. In the present work, we will show that these
flows can be analytic.

Another natural approach to dynamical systems is to relate them with computable analysis
[PER89], [Ko91], [Wei00]. In particular, within this approach, an interesting question is the
following: given a dynamical system defined with computable data, can it have uncomputable
properties? In [PER79], Pour-El and Richards showed that the IVP{

x′ = f (t, x)
x(t0) = x0

defined with computable data may have noncomputable solutions. In [PER81], [PEZ97] it is
shown that there is a three-dimensional wave equation, defined with computable data, such that
the unique solution is nowhere computable. However, in these examples, noncomputability is
not genuine in the sense that the problems under study are ill-posed: either the solution is not
unique or it is unstable [WZ02]. In other words, ill-posedness was at the origin of noncom-
putability in those examples. Nonetheless, we will show in this dissertation that even well-posed
initial-value problems can have noncomputable properties, thus suggesting that the noncom-
putability results are not inherited from bad properties of the problems. For reference we also

7

Chapter 1. Introduction

mention the existence of other results about computability of ODEs that can be found in [Abe70],
[Abe71], [BB85], [Hau85], [DL89], [Ko91], [Ruo96].

A third perspective of interest for theoretical computer science is to relate dynamical sys-
tems with models of computations over the reals, not necessarily based on Turing machines. In
particular, we will be interested in this thesis on Shannon’s General Purpose Computer (GPAC)
[Sha41], which is discussed in Sections 3.3 and 3.4. We can relate them to a particular class of
dynamical systems, namely the ones defined as solutions of ODEs y′ = p(t,y).

We should also mention that connections exist between the GPAC and other models of com-
putation over the reals. In [GC03], it is shown that the GPAC and R-recursive functions [Moo96]
defined with a particular form of integration coincide. Moreover, the R-recursive functions are
shown to be equivalent to computable analysis if a different form of integration is used, as well
a new zero-finding schema [BH04]. This work was restricted to lower subclasses [BH05], by
substituting the zero-finding schema to a limit schema, and largely follows work from [Moo96],
[Cam02], [CMC02], [MC04]. In this thesis we will show that the GPAC, under a certain frame-
work, and computable analysis are equivalent models of computation.

The investigations of the relations between dynamics and computations attracted the atten-
tion of several research communities. One of them is highly motivated by the question of com-
puter aided verification, and in particular by the question of computer aided verification of hybrid
systems [AD90], [AMP95], [AD00], [HKPV98], [PV94], [NOSS93], [BT00], [Cv04], [AP04].
Hybrid systems combine both features from discrete and continuous systems. For instance, a
hybrid system may have a state space which has continuous and discrete components.

The idea underlying computer aided verification of hybrid systems is to get some “as auto-
matic as possible” computer system, that would take as input the description of a hybrid system,
and the description of some property, call it “safety”, and that would tell whether the system
satisfies it or not. In this sense, one is led to make a computational reasoning about a system that
has a continuous component.

Although some positive results exist along this line of research (e.g. it can be shown that
for some subclasses of timed automata [AD90], or for hybrid systems with linear vector fields
at each discrete location [LPY99], the reachability property is decidable), most of the results
are negative. For instance, very simple classes of linear hybrid automata [HKPV98] or piece-
wise constant derivative systems [AMP95] have been shown to be able to simulate arbitrary
Turing machines. As a consequence, verification procedures are semi-decision procedures and
not decision procedures.

However, there is much ongoing research on this subject. Indeed, there are important issues
that still need to be clarified. One of them is related to the “robustness to perturbations”. The
proofs of undecidability for properties of hybrid systems, or more generally of simulation of
Turing machines, often involve the coding of the configuration of a Turing machine into some
real numbers, and this requires infinite precision.

A pertinent question is to know what happens when we have to take into account some kind
of “robustness to perturbations”, as in real world applications. Some authors argue that unde-
cidability results can no longer be obtained in this case [AB01]. There were several attempts to
formalize and prove (or to disprove) this conjecture: it has been proved that small perturbations
of the trajectory still yields undecidability [HR99]. Infinitesimal perturbations of the dynamics
for a certain model of hybrid systems has shown to give rise to decidability [Frä99]. This has
been extended to several models by [AB01]. However, this question is far from being settled.

In the present work, and following partially the previous line of work, we will show that
one can perform robust simulations of Turing machines with continuous dynamical systems, in
a particular framework.

8

1.4 Our contributions

1.4 Our contributions

In this thesis we will be concerned with the study of computational properties for systems of the
type (1.1). In particular, our main contributions are the following:

1. Maps that are solutions of (1.1) can simulate Turing machines, in a robust manner, within
discrete-time, i.e. by iterating the map.

2. Each Turing machine can be simulated by a system (1.1), where the input to the Turing
machine sets the initial condition. We show that the simulation is still possible even if the
initial condition is perturbed. In other words, systems like (1.1) are Turing universal and
therefore achieve Type-1 computability.

3. We will show that, under an appropriate notion of computability, systems like (1.1) are
equivalent to computable analysis, i.e. Type-2 computability.

4. We study some of the limitations when computing information about systems like (1.1).
More generally, we will be concerned with initial-value problems (IVPs) defined with an-
alytic systems y′ = f (t,y), where f stands for an analytic function over Rn. We show that:
(i) if these IVPs are defined with computable data, their respective maximal interval of
existence for the solution can be noncomputable, but it is always recursively enumerable;
(ii) the problem of deciding whether the previous maximal interval is bounded or not is
undecidable, even if we restrict ourselves to the case (1.1) of polynomial IVPs.

1.5 Overview of the dissertation

The contents of the present dissertation can be summarized as follows. In Chapter 2 we re-
view some of the basic theory we will use throughout this work. In particular, we will set some
basic notation (Section 2.2) and recall some notions and results from computability theory (Sec-
tion 2.3), recursive analysis theory (Section 2.4), analysis (Section 2.5), and dynamical systems
theory (Section 2.6).

In Chapter 3 we recall some previous results about polynomial initial-value problems (1.1).
Section 3.2 reviews some material about polynomial differential equations, namely the notion
of differentially algebraic functions, that we then restrict to the case (1.1). Next we prove that
the class of solutions of (1.1) is closed under several operations. Moreover, we also show (The-
orem 3.2.5) that many systems of ordinary differential equations that are not written in terms
of polynomials, but rather with functions involving the composition of trigonometric functions,
exponentials, etc., are still equivalent to a system (1.1), thus providing an argument for studying
systems like (1.1). In Section 3.3 we review a model of analog computation, the General Pur-
pose Analog Computer, and we then study its properties in Section 3.4. In particular, we recall
that within the approach of [GC03], this model is equivalent to the class defined by (1.1).

Chapter 4 focuses on the simulation of Turing machines with solutions of (1.1). Section 4.2
sets the coding of configurations to be used and, as well as Section 4.3, presents some useful
tools. Then Section 4.4 shows how we can iterate solutions of (1.1) to simulate Turing machines.
This simulation is robust in the sense that even if one adds some perturbation to the system in
each iteration, it will still be able to accurately perform the simulation. In Section 4.5 we review
some results on iterating maps with non-analytic ODEs. We then extend this construction to
analytic ODEs in Section 4.6, but only for maps that are robust to perturbations around integers.
This will be the case of the maps already introduced to simulate Turing machines. In that way,
we show that each Turing machine can be simulated by a system of the form (1.1).

9

Chapter 1. Introduction

In Chapter 5 we show that computable analysis and systems like (1.1), equipped with a
suitable notion of computability, are equivalent models of computation, on compact intervals. In
Section 5.2, we present the motivations for this line of research, a new notion of computability
for (1.1), and the main result about equivalence. This result is then proved in the following
sections. Section 5.3 proves the “if” direction of the result, while Section 5.5 shows the converse
relation. The latter is preceded by Section 5.4, which includes auxiliary results.

Finally Chapter 6 studies the problem of determining the maximal interval of existence for
the solution of {

x′ = f (t, x)
x(t0) = x0

(1.5)

from a computational point of view. Section 6.2 shows that, under very mild assumptions, if f ,
t0, and x0 are computable then the maximal interval is recursively enumerable, thus providing
an upper bound for the resources needed to compute it. Notwithstanding, we show in Section
6.3 that in the previous conditions, the maximal interval needs not to be recursive. We show in
Section 6.4 that this result continues to hold even if f is restricted to the well-behaved class of
analytic functions. In Section 6.5 we address the following problem: while for analytic functions
it is not possible to compute the maximal interval from the initial data in (1.5), perhaps it could be
possible to extract partial information, namely to know whether the maximal interval is bounded
or not. We prove that this problem is undecidable. In Section 6.6, this result in sharpened
for polynomial ODEs. More specifically, we show that the problem of deciding whether the
maximal interval is bounded or not is undecidable for polynomial IVPs of degree 56.

We end with a list of open questions which are suggested by the results of this dissertation.
The work done in this thesis appears partially in the following references: [Gra04], [GCB05],
[BCGH06], [BCGH06], [GZB06], [GZB07], and [GCB06]. It also reviews material obtained by
author during its MSc thesis: [Gra02], [GC03].

10

CHAPTER 2

Preliminaries

2.1 Introduction

This chapter introduces basic notation and recalls results that will be used throughout this work.
In Section 2.2, we review mathematical notions involving functions and strings. In Section 2.3,
we recall some fundamental results of the theory of computation. This section is intended to
be as much as possible self-contained, and states all the major definitions and results used in
this thesis. Its contents includes some fundamental definitions like Turing machines, recursive
functions and sets, recursively enumerable sets, and covers results like the undecidability of the
Halting Problem. This section is followed by Section 2.4 that covers material about computable
analysis (this is an extension of the classical theory of computability to the Euclidean space
Rn). Section 2.5 reviews the notions of analytic and elementary functions (not to be confused
with the homonymous class defined in theoretical computer science [Odi99]), and some of their
properties.

Finally the chapter ends with Section 2.6 that reviews the existence-uniqueness theory for
initial-value problems defined with ordinary differential equations.

2.2 Basic mathematical notation

In this section, for convenience of the reader, we summarize some of the basic terminology that
we shall use throughout this thesis.

An alphabet Σ is a non-empty finite set. A symbol is an element of Σ and a string is a finite
sequence of symbols from Σ. The empty word, denoted as ε, is the unique string consisting of
zero symbols. The set of all strings over Σ will be denoted as Σ∗. If one has a total order over
Σ, one can associate a (total) lexicographic order <∗ over Σ∗ as follows. Let w = a1...am and
v = b1...bn be strings over Σ∗, where a1, ...,am,b1, ...,bn ∈ Σ. Then w <∗ v if two situations occur:
(i) m < n or (ii) m = n and there is a j, with 1≤ j≤m, such that for all i < j, ai = bi, but a j < b j.
As an example, if one has Σ = {a,b}, with the order < defined by a < b, one gets

ε <∗ a <∗ b <∗ aa <∗ ab <∗ ba <∗

By N we denote the set of non-negative integers {0,1,2, ...}, as usual in computability the-
ory. By Z, Q, R, and C we denote the sets of integer, rational, real, and complex numbers,
respectively. The notation R+ is used for the set (0,+∞).

11

Chapter 2. Preliminaries

We will frequently have to deal with functions that are not defined for all the values of the
arguments. Therefore, given a function f : A → B we will say that this function is partial if it
is not defined for all elements of A and total otherwise. Also, we call a function f : An → Bm

with n arguments an n-ary function. For the special case n = 1, the function is called unary, and
for the case n = 2, it is called binary. Given a function f : An → Bm, one can easily define m
functions fi : An → B, with 1 ≤ i ≤ m such that f (x) = (f1(x), . . . , fm(x)). These functions are
called the components of f . Sometimes, we will need to iterate a function f : A→ A. We define
the kth iterate of f , where k ∈ N, as being the function f [k] : A → A defined recursively in the
following manner: f [0] = id and f [k+1] = f ◦ f [k], where id denotes the identity function.

When considering real functions, we shall say that a function f : E → Rm is of class Ck on
the open set E ⊆ Rl if the derivatives of f up to order k are all defined and continuous over
E. The class of all Ck functions over E is denoted by Ck(E). We also define the class of C∞

functions over E, C∞(E), as

C∞(E) =
∞⋂

k=0

Ck(E).

Obviously, to differentiate, we need to assume that to the space Rn is associated some norm
‖·‖ that by its turn generates a topology over Rn. The choice of the norm is irrelevant since
for Rn, where n ∈ N, all norms are equivalent [Lan05] and hence generate the same topology.
However, for practical purposes, we will assume in this work that we are using the norm defined
by

‖(x1, . . . , xn)‖∞
= max

1≤i≤n
|xi|

for all (x1, . . . , xn) ∈ Rn. The corresponding topology is generated by the class of open balls
B(a,r), where a ∈ Rn, r > 0, and

B(a,r) = {x ∈ Rn : ‖x−a‖ < r}.

The closure of a set A⊆ Rn will be denoted by A.

2.3 Classical computability

This section reviews material from classical computability theory. One of the most important
ideas underlying this theory is the notion of algorithm. While algorithms have appeared for a
long time in mathematics (e.g. recall Euclides’ algorithm to find the greatest common divisor of
two integers), it was only on the 1930s that this notion was formalized.

This remarkable breakthrough was achieved by logicians such as Kleene, Church, and Tur-
ing, and was aimed to solve some open problems of logic and mathematics. As an example let
us mention Hilbert’s 10th problem, proposed by D. Hilbert in 1900, in his now famous lecture at
the International Congress of Mathematics in Paris: is there any algorithmic procedure that tells
us whether a polynomial with integer coefficients has an integer root? While a positive answer
could easily be checked, a negative one would present a major problem, at least without a proper
definition of algorithm.

In the 1930s, Kleene, Church, and Turing defined the recursive functions, λ-calculus, and
Turing machines respectively, to formalize the intuitive notion of algorithm. It was soon discov-
ered that all these approaches were equivalent, as well as new definitions that would later appear.
This led to the following conjecture:

Church-Turing Thesis: A function can be computed by an algorithm if and only if it can
be computed by a Turing machine.

12

2.3 Classical computability

B B B B· · · · · ·a1 · · · ak · · · an

q

Figure 2.1: A Turing machine

Notice that the previous statement cannot be proved, since we don’t have a precise definition
for algorithm. Indeed, this thesis is intended to fix the meaning of algorithm and is accepted by
the scientific community as correct.

Before giving the formal definition of a Turing machine (TM for short), let us briefly describe
how it works. A TM consists of three elements (cf. Fig. 2.1): a tape divided into an infinite
number of cells, a control unit that may be in any of a finite set of states, and a tape head that
scans the symbol at one of the tape cells. Each cell of the tape contains one of a finite number
of symbols. Then, depending on the current symbol being scanned by the tape head and on
the current state of the control unit, the TM performs several steps, according to the definition
below.

Definition 2.3.1. A Turing machine is a 7-tuple (Q,Γ,Σ, δ,q0,B,F), where Q and Γ are finite
sets and

1. Q is the set of states,

2. Γ is the tape alphabet, where B ∈ Γ and Σ⊆ Γ,

3. Σ is the input alphabet,

4. δ : Q×Γ→ Q×Γ×{L,N,R} is the transition function,

5. q0 ∈ Q is the start state,

6. B ∈ Γ is the blank symbol, where B /∈ Σ,

7. F ⊆ Q is the set of final states.

A TM M = (Q,Γ,Σ, δ,q0,B,F) computes as follows. Initially M has its tape completely
filled with blank symbols. Then it receives its input w = w1w2 . . .wn ∈ Σ∗, writes it on the tape
in n consecutive cells (maintaining the order of the symbols), and places the tape head on the
leftmost cell that holds the input. The initial state of M is the start state q0. Once M starts, the
computation proceeds according to the rules described by the transition function. In particular,
if M is currently on state q and reading symbol s, and if δ(q, s) = (qnext, snext,move), then M will
update its state to qnext, change the symbol being read by the tape head to snext, and move the
tape head according to the value of move (where L, N, R correspond to a left move, no move,
and right move, respectively).

The computation of M continues until it reaches a final state at which point it halts. Then, if
at this point the tape content is

. . .Bv1v2 . . .vkB . . .

where v1v2 . . .vk ∈ Σ∗ and the tape head is over v1, then the output will be the string v1v2 . . .vk.
If M does not halt, then the output will be undefined. In this sense we have defined a (partial)
computable function f : Σ∗ → Σ∗. Later, when describing Turing machines, we will use some

13

Chapter 2. Preliminaries

pseudo-algorithm instead of the full formalism of Definition 2.3.1. The Church-Turing thesis
guarantees the equivalence of both approaches.

Notice that in each point of the computation, only a finite number of symbols is non-blank.
Therefore, if some Turing machine M at a given instant is in the situation pictured in Fig. 2.1,
where all symbols to the left of a1 and to the right of an are blanks, then all the relevant data for
the computation at that instant can be recorded into a triple

(a1 . . .ak,ak+1 . . .an,q) ∈ Γ
∗×Γ

∗×Q.

This triple is called the configuration of the Turing machine.
Since Σ is a finite set, we can define a one-to-one correspondence between N and Σ∗, by

using the lexicographic order. For instance, if Σ = {a,b}, then we can set the following corre-
spondence: ε → 0, a → 1, b → 2, aa → 3, Therefore, without loss of generality, we can
consider computability over integers instead of over strings. Moreover, if we add a new symbol
♦ to the input alphabet Σ, to delimitate strings of Σ, one can define computable functions with
several arguments over Σ∗ and hence over N.

Definition 2.3.2. A (partial) function f : Nn → Nk is computable (or recursive) if it can be
computed by a Turing machine.

We notice that there are computable bijective functions from Nn to N, for all n ≥ 1, such
that their inverses are also computable. As an example [Odi89], consider the following pairing
function 〈·, ·〉 : N2 → N defined by

〈x,y〉=
(x+ y)2 +3x+ y

2
. (2.1)

This function is bijective (this can be seen by using a Cantor enumeration ofN2) and computable.
Its inverses π1,π2 : N→ N defined by

π1(〈x,y〉) = x and π2(〈x,y〉) = y (2.2)

can also be shown to be bijective and computable. Provided with this function, we can easily
define computable and bijective pairing functions 〈·, . . . , ·〉 : Nn → N, with computable inverses
π1, . . . ,πn : N→ N, for all n ≥ 1. These functions appear quite often in computability, and this
work will not be an exception. Next, we define computability notions for sets.

Definition 2.3.3. A set A ⊆ Nn is recursive if there is a total computable function χA : Nn →
{0,1} such that

χA(x) =
{

0 if x /∈ A
1 if x ∈ A.

The function χA is called the characteristic function of A.

Definition 2.3.4. The problem “x ∈ A?” where A⊆Nn, is called decidable if the set A is recur-
sive.

We should point out that mathematical problems involving natural numbers can usually be
rephrased as a problem of the kind “x∈ A?”. For instance, the problem: “Given a natural number
x ∈ N, is x a prime number?” can be rephrased into “x ∈ PRIMES ?”, where

PRIMES = {x ∈ N : x is a prime number}.

14

2.3 Classical computability

One of the great achievements of computability theory was to show the existence of undecidable
problems. Among these, of particular importance is the Halting Problem. To describe it, we first
need the notion of universal TM. According to Def. 2.3.1, any TM can be described as a finite
7-tuple, and hence as a string. Therefore, we can put each TM M into correspondence to a
number f (M) ∈ N (remark that to different TMs correspond different numbers). Reciprocally,
we can put each element of N in correspondence with a TM (to x ∈N, associate the TM f−1(x).
If f−1(x) is not defined, then associate x to some predefined TM M0).

A universal TM is a TM M with two inputs, that on inputs x,y ∈ N outputs the result of
the TM x, when it computes with input y. The proof of the existence of such universal TMs
can be found in any standard book of computability theory, e.g. [Sip97], [HMU01]. In practice,
one can see a standard computer (with infinite memory) as a universal TM. The first argument
corresponds to the “program” in use (each time we want to perform a new task, we don’t want to
switch computer, i.e. we would like to continue to use the same TM), and the second argument
is the input to the program. Hence a universal TM is capable of simulating any other TM from
the description of that machine.

Definition 2.3.5. Let M be an universal TM. The problem “(x,y) ∈ HALT?” where

HALT = {(x,y) ∈ N : M halts in a finite number of steps for input (x,y)},

is called the Halting problem.

Proposition 2.3.6. The Halting problem is undecidable.

The proof of the previous proposition can be found in [Sip97]. For instance, an application
of this proposition would be the following: given a C/C++ program x and some input y, there
is no algorithmic way to tell if the program x will “crash” (i.e. enter in an infinite computation)
on input y. This corresponds to the idea that programming environments can catch syntactic
errors of programs, but can never catch all the semantic errors (at least for general purpose pro-
gramming languages). Another example of an undecidable problems is Hilbert’s 10th problem
[Mat70], [Mat72], [Dav73].

Of course, in computability theory we do not want to end the classification of computational
problems with the general class of undecidable problems. Instead, we would also like to establish
subclasses inside this class. This is the motivation for what follows.

Definition 2.3.7. A set A ⊆ Nn is called recursively enumerable (r.e. for short) if A = ∅ or if
there is a total computable function f : N→ Nn such that

A = { f (x) ∈ Nn : x ∈ N}.

Notice that every recursive set is r.e., but the converse relation is not true as the following
results show [Odi89].

Proposition 2.3.8. A set A⊆ Nn is recursive iff A and Nn\A are r.e.

Proposition 2.3.9. Let M be an universal TM. Then the set

K = {x ∈ N : M halts on input (x, x)}

is r.e. but not recursive.

The last result implies, in particular (cf. Prop. 2.3.8), that N\K is a set that is not even r.e.
The following result (cf. [Odi89]) will be used in the next section and in Chapter 6.

15

Chapter 2. Preliminaries

Proposition 2.3.10. If A ⊆ Nn is an non-empty r.e. set that is not recursive, then there is a one
to one recursive function f : N→ Nn such that

A = { f (x) ∈ Nn : x ∈ N}.

Because not all sets are recursive or r.e., we would like to know “how much power” we must
add to a TM so that it may compute a given set. This definition is formalized by the concept
of oracle Turing machine. Here we will use oracle TMs, but for a different purpose, as we will
see in the next section. A (function) oracle TM is an ordinary TM equipped with an extra tape,
the query tape. The machine also has two extra states, called the query state and the answer
state. An oracle TM M has two inputs: a string that it is written in the tape as usual, and an
oracle that is simply a total function φ :Nn →Nk. This includes the case when we have n oracles
φ1, . . . ,φn : N→ N, by considering φ = (φ1, . . . ,φn). The oracle TM computes as an usual TM,
except when it enters the query state. At that moment it reads the string t on the query tape,
replaces it by φ(t) and puts the tape head of the query tape scanning the leftmost symbol of the
string φ(t). Then it puts the machine into the answer state and the machine continues as usual.
We also suppose that each query takes only 1 step to perform and that the machine cannot enter
the answer state, unless after some query.

2.4 Computable Analysis

The previous section dealt with computability over integers, which is also known as Type-1
computability. Here we will study computability over reals. This corresponds to Type-2 com-
putability, because a real number can be considered as a function f : N→ N as we will see
(computability over real functions would correspond to Type-3 computability, and so on).

As we mentioned in the previous chapter, there is no unified approach to computation over
the reals, opposite to what happens in the discrete case. However, if we restrict ourselves to
real computation that can only be performed by Turing machines over partial and finite informa-
tion about real numbers, we get a rather coherent theory that is known as computable analysis
(or recursive analysis). This theory was introduced by Turing [Tur36], Lacombe [Lac55], and
Grzegorczyk [Grz57], and has received contributions from many other authors.

The idea underlying computable analysis is to extend the classical computability theory so
that it might deal with real quantities. See [Wei00] for an up-to-date monograph on computable
analysis from the computability point of view, [Ko91] for a presentation from a complexity point
of view, or [PER89] for a good introduction to the subject.

Definition 2.4.1. A sequence {rn} of rational numbers is called a ρ-name of a real number x if
there exist three functions a,b,c from N to N, such that for all n ∈ N, rn = (−1)a(n) b(n)

c(n)+1 and

|rn− x| ≤ 1
2n . (2.3)

In the conditions of the previous definition, we say that the ρ-name {rn} is given as an oracle
to an oracle Turing machine, if the oracle to be used is (a,b,c). The notion of the ρ-name can
be extended to Rl: a sequence {(r1n,r2n, . . . ,rln)}n∈N of rational vectors is called a ρ-name of
x = (x1, x2, . . . , xl) ∈ Rl if {r jn}n∈N is a ρ-name of x j, 1≤ j≤ l.

Definition 2.4.2. 1. A real number x is called computable if a, b, and c in (2.3) are com-
putable (recursive) functions.

16

2.4 Computable Analysis

2. A sequence {xk}k∈N of real numbers is computable if there are three computable functions
a,b,c from N2 to N such that, for all k,n ∈ N,∣∣∣∣(−1)a(k,n) b(k,n)

c(k,n)+1
− xk

∣∣∣∣≤ 1
2n .

Similarly, one can define computable points and sequences over Rl, l > 1, by assuming that
each component is computable.

The next result can be found in Section 0.2 of [PER89] and will be exploited in Chapter 6.

Proposition 2.4.3. Let a : N→ N be a one to one recursive function generating a recursively
enumerable nonrecursive set. Then the series

∞

∑
i=0

2−a(i)

converges to a noncomputable real.

Notice that functions a : N→ N in the conditions of the previous proposition do exist. This
follows as a corollary of Proposition 2.3.9 and Proposition 2.3.10.

Now we introduce computability notions for sets in Rl (cf. [Wei00]). Similarly to the def-
inition of r.e. sets over N, one would like that r.e. sets over R might be “enumerated”. The
problem is that R has a non-countable number of elements. But this problem can be avoided by
considering only topologically relevant sets.

Definition 2.4.4. An open set E ⊆ Rl is called recursively enumerable (r.e. for short) open if
there are computable sequences {an} and {rn}, an ∈ E and rn ∈ Q such that

E = ∪∞
n=0B(an,rn).

We now prove a lemma about r.e. sets that we will often use implicitly in Chapter 6.

Lemma 2.4.5. Suppose that E ⊆ Rl is a r.e. set satisfying the conditions of the definition above.
Then we may assume that B(an,rn)⊆ E for all n.

Proof. Define the following computable (double) sequence of rationals

rn,k = max{0,rn−
1
k
}.

Of course, B(an,rn,k)⊆ B(an,rn)⊆ E, and ∪∞
k=0B(an,rn,k) = B(an,rn). This implies that

E = ∪∞
i=0B(aπ1(i),rπ1(i),π2(i)),

where π1 and π2 are given by (2.2).

Next, we define closed r.e. subsets of Rl. Note that we cannot simply take the union of closed
balls to define a closed set since, in general, an infinite union of closed sets may not be a closed
set. Instead, and noting that for any closed sets A,B⊆ Rl [Wei00, Exercise 5.1.1]

{B(a,r) : B(a,r)∩A 6= ∅ and a ∈ Ql,b ∈ Q}=

= {B(a,r) : B(a,r)∩B 6= ∅ and a ∈ Ql,b ∈ Q}

implies A = B, we use the following definition.

17

Chapter 2. Preliminaries

Definition 2.4.6. A closed subset A⊆Rl is called r.e. closed if there exist computable sequences
{bn} and {sn}, bn ∈ Ql and sn ∈ Q, such that {B(bn, sn)}n∈N lists all rational open balls inter-
secting A.

Just for reference, we would like to mention the following result [Wei00, Corollary 5.1.11]
that matches quite closely Definition 2.3.7.

Proposition 2.4.7. A closed set A⊆ Rl is r.e. iff it is empty or has a dense computable sequence
{xi}i∈N.

Finally, having defined r.e. open and r.e. closed subsets of Rl, we can now define recursive
sets, in a spirit that follows Prop. 2.3.8.

Definition 2.4.8. An open (closed) set A⊆Rl is called recursive (or computable) if A is r.e. open
(closed) and its complement Rl\A is r.e. closed (open).

As a natural consequence, we have the following result [Wei00, Example 5.1.17].

Proposition 2.4.9. A real interval (a,b)⊆ R is recursive iff a and b are computable.

Finally, we are ready to introduce the notion of computable function. Informally, a function
f : R→ R is computable if there is a computer program that does the following. Let x ∈ R be an
arbitrary element in the domain of f . Given an output precision 2−n, the program has to compute
a rational approximation of f (x) with precision 2−n. More precisely:

Definition 2.4.10. Let E ⊆ Rl be an open or closed r.e. set.

1. A function f : E → Rm is computable if there is an oracle Turing machine such that for
any input n ∈N (accuracy) and any ρ-name of x ∈ E given as an oracle, the machine will
output a rational vector r satisfying ‖r− f (x)‖

∞
≤ 2−n.

2. A sequence of functions { fi}i∈N, where fi : E → Rm is computable if there is an oracle
Turing machine such that for any input n∈N (accuracy), any i∈N, and any ρ-name of x∈
E given as an oracle, the machine will output a rational vector r satisfying ‖r− fi(x)‖

∞
≤

2−n.

The following result is an adaptation of Corollary 2.14 from [Ko91] and will be used in
Chapter 5.

Proposition 2.4.11. A real function f : [a,b]→ R is computable iff there exist three computable
functions m : N→ N, sgn, abs : N4 → N such that:

1. m is a modulus of continuity for f , i.e. for all n ∈ N and all x,y ∈ [a,b], one has

|x− y| ≤ 2−m(n) =⇒ | f (x)− f (y)| ≤ 2−n

2. For all (i, j,k) ∈ N3 such that (−1)i j
2k ∈ [a,b], and all n ∈ N,∣∣∣∣(−1)sgn(i, j,k,n) abs(i, j,k,n)

2n − f
(

(−1)i j
2k

)∣∣∣∣≤ 2−n.

In particular, this proposition implies the following corollary.

Corollary 2.4.12. A computable function f : [a,b]→ R is continuous.

18

2.5 Analytic and elementary functions

2.5 Analytic and elementary functions

In this section we review the mathematical notions of analytic and elementary functions, as well
as some of their properties.

Definition 2.5.1. A function f : C→ C is called analytic in z0 ∈ C if there is some r > 0 such
that f (z0) can be represented as

f (z0) =
∞

∑
n=0

an(z− z0)n (2.4)

in the ball B(z0,r). We also say that f is analytic in the open set Ω if it is analytic for all points
z0 ∈Ω.

One should also remark that we can define analytic functions over Ck. Using multi-index
notation, a function f : Ck → C is analytic in z0 ∈ Ck if it can be represented as

f (z) = ∑
α

aα(z− z0)α,

where α = (α1, . . . ,αk) ∈ Nk. By Hartogs’ Theorem [Gun90], [Kra01], f : Ck → C is analytic
if and only if it is separately analytic in each component. However, we will mainly focus on
properties of one variable analytic functions. The following result will be useful for this case.

Proposition 2.5.2. For every power series ∑
∞
n=0 an(z− z0)n, there is some 0≤ r ≤ ∞ (called the

radius of convergence), given by

r = lim
n→∞

1
n
√
|an|

,

such that:

1. The power series converges absolutely in the ball B(z0,r) = {x ∈ C : |x− z0| < r}

2. The series is divergent in the set {x ∈ C : |x− z0| > r}.

Although we have discussed complex analytic functions in general, we will be mainly in-
terested in real analytic functions, that is, the restriction to the real axis of complex analytic
functions (2.4) in which the coefficients an are real. The next results for real analytic func-
tions follow from the corresponding results for non-isolated zeros of analytic functions [Ahl79],
[MH98].

Proposition 2.5.3. Let f : I → R, where I ⊆ R is an open interval, be an analytic function. If
there is a sequence {yn} ⊆ I converging to y ∈ I such that f (yn) = 0 for all n ∈N, then f (x) = 0
for all x ∈ I.

Corollary 2.5.4. Let I ⊆ R be an open interval.

1. Let f : R→ R be an analytic function such that f (x) = 0 for all x ∈ I. Then f (x) = 0 for
all x ∈ R.

2. Let f1, f2 : I → R be analytic functions. If there is an open interval J ⊆ I such that f1 = f2
on J, then f1 = f2 on I.

19

Chapter 2. Preliminaries

Next, we define the class of elementary functions (sometimes also known as closed-form
functions). This class should not be confused with the homonymous class defined in theoretical
computer science [Odi99]. The latter corresponds to a well-defined class of functions E, defined
over the naturals by using appropriate computational complexity bounds. Let us now give a
preliminary definition.

Definition 2.5.5. Let f :C→C be a function and z0 ∈C. The point z0 is an isolated singularity of
f if there exists some ε > 0 such that f is analytic in B(z0, ε)\{z0}, but not in z0. The singularity
is:

1. removable if limz→z0(z− z0) f (z) = 0;

2. a pole of order m if there is some a ∈ R\{0} such that limz→z0(z− z0)m f (z) = a;

3. an essential singularity if it is not a removable singularity nor a pole.

Definition 2.5.6. The function f is called a meromorphic function in the domain Ω if it is ana-
lytic there, except for isolated singularities that are poles.

By a domain or region inCn (respectivelyRn) we mean a nonempty connected open subset of
Cn (respectively Rn). We say that a function is elementary [Rit48], [Ros72] if it is meromorphic
on some region in R or C and is contained in an elementary extension field of the field of rational
function C(z), where “elementary” means that we allow the use of the complex exponential and
logarithm. Equivalently, elementary functions on R are the ones obtained from the rational
functions, sin, cos, exp, ..., through finitely many compositions and inversions.

2.6 Ordinary differential equations

Let E ⊆ Rm+1 be an open set, f : E → Rm, x = x(t) ∈ Rm be a function of t ∈ R, and x′ denote
the derivative of x with respect to t. Then an ordinary differential equation (ODE for short) is
an equation of the type x′ = f (t, x). However, in general, we will be interested in initial-value
problems (IVP for short) defined with ODEs, i.e. we will be interested in problems of the type{

x′ = f (t, x)
x(t0) = x0

(2.5)

where t0 ∈ R and x0 ∈ E.
We begin with some preliminary definitions and results.

Definition 2.6.1. Let E ⊆ Rl be an open set. A function f : E → Rm is called locally Lipschitz
on E if for every compact set Λ⊆ E there is a constant KΛ ≥ 0 such that

‖ f (x)− f (y)‖ ≤ KΛ ‖x− y‖ , for all x,y ∈ Λ.

Here we will mainly deal with the case where E ⊆ Rm+1. Hence, when considering a func-
tion f : E → Rm with argument (t, x), we refer to t ∈ R as the first argument and x ∈ Rm as the
second argument of f .

Definition 2.6.2. Let E ⊆Rm+1 be an open set. A function f : E →Rm is called locally Lipschitz
in the second argument, on E, if for every compact set Λ ⊆ E there is a constant KΛ ≥ 0 such
that

‖ f (t, x)− f (t,y)‖ ≤ KΛ ‖x− y‖ , for all (t, x),(t,y) ∈ Λ.

20

2.6 Ordinary differential equations

The following classical lemma [Hal80] asserts that C1 functions are locally Lipschitz, and
hence locally Lipschitz in the second argument.

Lemma 2.6.3. If f : E → Rm is of class C1 over E ⊆ Rl, then f is locally Lipschitz on E.

The following result is of particular importance for Chapter 6 and follows as an immediate
consequence of the fundamental existence-uniqueness theory for the initial-value problem (2.5)
[CL55], [Lef65], [Hal80] (the expressions t → α+ and t → β− mean that t converges to α from
above and to β from below, respectively).

Proposition 2.6.4. Let E be an open subset of Rm+1 and assume that f : E → Rm is continuous
on E and locally Lipschitz in the second argument. Then for each (t0, x0) ∈ E, the problem (2.5)
has a unique solution x(t) defined on a maximal interval (α,β), on which it is C1. The maximal
interval is open and has the property that, if β <+∞ (resp. α >−∞), either (t, x(t)) approaches
the boundary of E or x(t) is unbounded as t → β− (resp. t → α+).

Note that, as a particular case, when E = Rm+1 and β <∞, x(t) is unbounded as t → β−. For
instance, the IVP {

x′ =−x2

x(1) = 1

has as solution the function g : (0,∞) → R, defined by g(x) = 1/x, and has maximal interval
(0,∞).

The following proposition can be found in Section 32.4 of [Arn78].

Proposition 2.6.5. Let g : E×R→ Rm, where E ⊆ Rm+1 is an open set, be a function defined
as follows: given (t0, x0) ∈ E, the function g(t0, x0, ·) : R→ Rm is the solution of the IVP (2.5).
Then if f is analytic, so is g.

21

Chapter 2. Preliminaries

22

CHAPTER 3

Polynomial IVPs

3.1 Introduction

This chapter reviews basic results concerning polynomial differential equations and a particu-
lar model of analog computation, the General Purpose Analog Computer. In Section 3.2, we
present general properties of polynomial differential equations. In particular, we recall the no-
tion of differentially algebraic functions, that we then restrict to the case of explicit polynomial
ordinary functions. We then show that the latter class of functions is closed under many alge-
braic operations and we prove a new result, that can be seen as a strengthening of Rubel and
Singer’s elimination theorem for differentially algebraic functions [RS85], that will be useful in
later constructions.

In Section 3.3, we introduce one of the first models of analog computation, Shannon’s Gen-
eral Purpose Analog Computer (GPAC), and present some of its variants. Finally, in Section 3.4,
we study the properties of the GPAC and relate it with the class of the solutions of polynomial
differential equations.

The results of this chapter were partially published in the following references: [Gra02],
[GC03], [Gra03], [Gra04].

3.2 Polynomial differential equations

In this section we present useful properties for polynomial differential equations. These proper-
ties are a selection of results that can be found in the literature, plus some results that are proved
and that will be important later.

Perhaps the most well known class of functions satisfying polynomial differential equations
are the differentially algebraic functions [Rub89]:

Definition 3.2.1. Let I ⊆ R be some open interval. The unary function y : I → R is called
differentially algebraic (d.a. for short) on I if it satisfies a differential equation of the form

p(x,y,y′, ...,y(n)) = 0 on I,

where p : Rn+2 → R is a real nontrivial polynomial in its n+2 variables, and n ∈ N. If y is not
d.a., then we say that y is transcendentally transcendental.

23

Chapter 3. Polynomial IVPs

Differentially algebraic functions abound in elementary mathematical analysis. Examples of
d.a. functions are the polynomials, rational functions, algebraic functions, the exponential and
logarithm, the trigonometric functions, Bessel functions, among many others [Rub89]. Also, it
can be shown that sums, products, differences, quotients, compositional inverses and composi-
tion of d.a. functions are again d.a. [Rub89].

Historically, the first example of a transcendentally transcendental function was Euler’s
Gamma function

Γ(x) =
∫

∞

0
tx−1e−tdt.

This was proved by Hölder in 1887 [Höl87]. Another example is Riemann’s Zeta function

ζ(x) =
∞

∑
n=1

1
nx

that, on the real line and for x > 1, is given by

ζ(x) =
1

Γ(x)

∫
∞

0

ux−1

eu−1
du.

The first proof of its transcendentally transcendental nature was given by Hilbert, and was written
up by Stadigh [Sta02].

Although d.a. functions are certainly quite interesting mathematical objects, especially from
a differential algebraic point of view, their applications to other areas can be limited due to
the fact that they rely on an implicit characterization. This is the case of the present work,
where we are interested in having “normal form” ODEs with the format y′ = p(t,y). Notice that
while (components of the) solutions of the previous ODE are obviously d.a. on an interval I,
the result does not work the other way around: if ϕ : I → R is d.a. then, in general, we cannot
find a polynomial ODE y′ = p(t,y) having ϕ as a solution on the whole interval I (although it
possible to show that ϕ is solution of a polynomial ODE in some nonempty open interval I′ ⊆ I,
cf. [GC03]).

So, we now consider IVPs defined with polynomial ODEs{
x′ = p(t, x)
x(t0) = x0

(3.1)

where x ∈ Rn and p is a vector of polynomials. In the remainder of the text, an IVP of the form
(3.1) will be called a polynomial IVP, and each component of its solution will be termed a PIVP
function.

Note that by the standard existence-uniqueness theory (Proposition 2.6.4), an IVP associated
to a system of ODEs x′ = f (t, x) has a unique solution whenever f is continuous and locally
Lipschitz with respect to the second argument. Since polynomials are globally analytic, these
conditions are automatically satisfied for (3.1). Moreover, by Proposition 2.6.5, PIVP functions
must be analytic.

Example 3.2.2. The following are examples of PIVP functions [Sha41].

1. The exponential function ex. It is solution of the polynomial IVP

y′ = y, y(0) = 1. (3.2)

24

3.2 Polynomial differential equations

2. The trigonometric functions cos, sin. The vector (cos,sin) is the solution of the polyno-
mial IVP {

y′1 =−y2
y′2 = y1

{
y1(0) = 1
y1(0) = 0.

(3.3)

3. The inverse function x 7→ 1/x. On the interval (0,∞), it is the solution of the polynomial
IVP

y′ =−y2, y(1) = 1.

A similar polynomial IVP can be obtained for the interval (−∞,0).

Example 3.2.3. The PIVP functions are also closed under the following operations (as far as we
know, these properties have only been reported in the literature for the broader case of d.a. func-
tions):

1. Field operations +,−,×, /. For instance, if f ,g : I → R, where I ⊆ R is an open interval,
are PIVP functions, then so is f +g in I. As matter of fact, if f ,g are the first components
of the solutions of the polynomial IVPs{

x′ = p(t, x)
x(t0) = x0

and
{

y′ = q(t,y)
y(t0) = y0

respectively then, since f ′1(x)+ f ′2(x) = p1(t, x)+q1(t, x), f1 + f2 is the last component of
the solution of the polynomial IVP

x′ = p(t, x)
y′ = q(t,y)
z′ = p1(t, x)+q1(t,y)


x(t0) = x0
y(t0) = y0
z(t0) = x0 + y0.

Similar proofs apply for the operations −,×, /. It should be mentioned that the quotient
f /g is only a PIVP function where g is not zero, and that the polynomial IVP remains
the same only between two consecutive zeros. For instance tan is a PIVP function in
(−π/2,π/2).

2. Composition. If f : I → R, g : J → R, where I, J ⊆ R are open intervals and f (I)⊆ J, are
PIVP functions, then so is g◦ f on I. Indeed, supposing that f ,g are the first components
of the solutions of the PIVPs{

x′ = p(t, x)
x(t0) = x0

and
{

y′ = q(t,y)
y(t1) = y0

respectively then, since (g ◦ f)′(x) = g′(f (x)). f ′(x), one concludes that g ◦ f is the last
component of the solution of the PIVP

x′ = p(t, x)
y′ = q(x1,y)
z′ = q1(x1,y)p1(t, x)


x(t0) = x0
y(t0) = f (x0)
z(t0) = g◦ f (x0)

where p1(t, x), q1(x1,y), and q1(x1,y)p1(t, x) denote the derivatives f ′(t), g′(f (t)), and
(g◦ f (t))′, respectively.

25

Chapter 3. Polynomial IVPs

3. Differentiation. If f : I → R, where I ⊆ R is an open interval, is a PIVP function, then
so is f ′ : I → R. To see this, suppose that f is the first component of the solution of the
polynomial IVP {

x′ = p(t, x)
x(t0) = x0.

Then

f ′(t) = x′′1(t) =
d
dt

p1(t, x) =
∂p1

∂t
+

n

∑
i=1

∂p1

∂xi
x′i =

∂p1

∂t
+

n

∑
i=1

∂p1

∂xi
pi(t, x)

which implies that f ′ is the last component of the solution of the polynomial IVP{
x′ = p(t, x)
z′ = ∂p1

∂t +∑
n
i=1

∂p1
∂xi

pi(t, x)

{
x(t0) = x0
z(t0) = f ′(t0).

4. Compositional inverses. If f : I → R, where I ⊆ R is an open interval, is a bijective PIVP
function, then so is f−1. This case will be shown in the end of this section. In particular,
this result says that log, arcsin, arccos, and arctan are also PIVP functions.

From the preceding examples, we conclude that we have just proved the following corollary
(which also seems to be stated on the literature only for the case of d.a. functions):

Corollary 3.2.4. All closed-form functions are PIVP functions.

When proving that some function is PIVP, we will find most convenient to make use of ODEs
not only defined with polynomials, but also with other PIVP functions. For this purpose, we have
to resort to the next theorem, which can be viewed as a strengthening of the elimination theorem
of Rubel and Singer for differentially algebraic functions [RS85] to the case of polynomial IVPs.
We should also remark that a different proof is given implicitly in [Gra04].

Theorem 3.2.5. Consider the IVP {
x′ = f (t, x)
x(t0) = x0

(3.4)

where f : Rn+1 → Rn and each component of f is a composition of polynomials and PIVP
functions. Then there exist m ≥ n, a polynomial p : Rm+1 → Rm and a y0 ∈ Rm such that the
solution of (3.4) is given by the first n components of y = (y1, ...,ym), where y is the solution of
the polynomial IVP {

y′ = p(t,y),
y(t0) = y0.

Proof. Let f = (f1, . . . , fn). If every fi, i = 1, . . . ,n, is a polynomial there is nothing to prove,
so we suppose k ≤ n is the first integer such that fk is not a polynomial. For simplicity we will
handle only the case where the transcendence degree of fk over the ring of polynomials is 1; the
case of higher degree will follow from iterating the construction.

Suppose then that fk(t, x1, . . . , xn) = g(pk(t, x1, ..., xn)), where pk is a polynomial and g is the
first component of the solution y of {

y′ = q(t,y)
y(t0) = y0,

(3.5)

26

3.2 Polynomial differential equations

where q is a vector of polynomials in Rl not independent of y (thus ensuring that g is not trivially
a polynomial in t). Define new variables y by performing the change of independent variable
t 7→ pk(t, x1, ..., xn) in (3.5), that is,

y(t) = y(pk(t, x1, . . . , xn)).

Then
dy
dt

=
dy
dt

(pk(t, x1, . . . , xn)) p′k(t, x1, ..., xn)

= q(pk(t, x1, ..., xn),y)

(
n

∑
i=1

∂pk

∂xi
fi(t, x)+

∂p
∂t

)
,

(3.6)

subject to the initial condition y(t0) = y(p(t0, x1(t0), ..., xn(t0))).
We now consider the new IVP constructed by appending the IVP (3.6) to (3.4) and replacing

the terms g(p(t, x1, ..., xn)) by the new variable y1. By this procedure we have replaced the IVP
in Rn (3.4) with an IVP in Rn+l substituting the first non-polynomial term of f by a polynomial
and increasing the system with l new variables defined by a polynomial IVP.

If the transcendence degree of fk over the ring of polynomials is d > 1 we iterate this pro-
cedure d times. In this way we have effectively eliminated all non-polynomial terms up to
component k by increasing the order of the system only with polynomial equations. Repeating
this procedure with the variables labeled k + 1 up to n (whenever necessary) we end up with a
polynomial IVP satisfying the stated conditions.

Let us illustrate this theorem with some examples.

1. Consider the IVP {
x′1 = sin2 x2
x′2 = x1 cos x2− ex1+t

{
x1(0) = 0
x2(0) = 0

(3.7)

with solution (x1, x2). Since sin, cos, and exp are solutions of polynomial IVPs (see (3.2)
and (3.3)), Theorem 3.2.5 ensures that there is a polynomial IVP, with initial condition
defined for t0 = 0, whose solution is formed by x1, x2, and possibly other components.
Since the proof of the theorem is constructive, we can derive this polynomial IVP. Indeed,
one has (sin x2)′ = (cos x2)x′2 and (cos x2)′ =−(sin x2)x′2, and therefore (sin x2,cos x2) is
the solution of the IVP{

y′3 = y4x′2
y′4 =−y3x′2

⇔
{

y′3 = y4(x1 cos x2− ex1+t)
y′4 =−y3(x1 cos x2− ex1+t)

⇔

⇔
{

y′3 = y4(x1y4− ex1+t)
y′4 =−y3(x1y4− ex1+t)

with initial condition y3(0) = sin x2(0) = 0 and y4(0) = 1. It remains to eliminate the term
ex1+t. But this function is the solution of the IVP

y′5 = y5 (x′1 + t′) = y5(sin2 x2 +1) = y5(y2
3 +1)

with initial condition y5(0) = ex1(0)+0 = 1. Therefore the solution of (3.7) is formed by
the first two components of the solution of the polynomial IVP

y′1 = y2
3

y′2 = y1y4− y5
y′3 = y4(y1y4− y5)
y′4 =−y3(y1y4− y5)
y′5 = y5(y2

3 +1)


y1(0) = 0
y2(0) = 0
y3(0) = 0
y4(0) = 1
y5(0) = 1.

27

Chapter 3. Polynomial IVPs

Figure 3.1: A disc type integrator device. Figure taken from [BNP71] with permission of Dover
Publications, Inc.

2. Let us prove that the inverse function f−1 of a bijective PIVP function f : I → R, where
I⊆R is an open interval, is also a PIVP function. We know that (f−1)′(x) = 1/ f ′(f−1(x)).
Then, between two consecutive (inverse images of) zeros a,b of f ′, with a < b, f−1 will
be the solution of the IVP

y′ =
1

f ′(y)
, y(c) = f−1(c) (3.8)

where c = (a + b)/2. Since f is a PIVP function, so is f ′. Moreover x 7→ 1/x is also a
PIVP function, and since PIVP functions are closed under composition, so is x 7→ 1/ f ′(x).
Then (3.8) and Theorem 3.2.5 guarantee that f−1 : (a,b)→ R is a PIVP function.

3.3 The GPAC

In this section we return to the origins of analog computation with the pioneer work of Claude
Shannon on the so-called General Purpose Analog Computer (GPAC).

In essence, a GPAC is a mathematical model of an analog device, the differential analyzer.
The fundamental principles for this device were first realized by Lord Kelvin in 1876 [Bus31].
Working with an integrating device conceived by his brother James Thomson (see Fig. 3.1), he
had the idea of connecting integrators to solve differential equations.

A mechanical version of the differential analyzer was first developed by V. Bush and his
associates at MIT in 1931 [Bus31]. Many mechanical difficulties were overcome by ingenious
solutions. However, the inherent difficulties of the mechanical devices, due to mechanical re-
strictions, limited the speed of these differential analyzers and originated colossal machines.

The introduction of electronic differential analyzers was able to overcome these problems to
a great extent. But this was not enough to compete with emergent digital computers.

Differential analyzers were typically used in the thirties and forties to compute functions,
especially to solve ODEs. Their continuous nature allowed the direct simulation of a solution
from a given system of ODEs. Hence, comparatively to standard procedures that basically use
a discrete version of time (i.e., the independent variable) in order to approximate the solution
(with the inherent errors introduced in these processes), differential analyzers permitted faster
solutions with increased precision at that time. As an example, the Rockefeller Differential
Analyzer (designed by V. Bush and operational for the war effort in 1942) could solve an ODE
up to order 18, being able to produce results to at least 0.1 percent accuracy [Bow96, p. 8].

28

3.3 The GPAC

∫u
v α+

∫ t
t0 u(x)dv(x)

An integrator unit

×u
v u · v

A multiplier unit

k k

A constant unit associated to the
real value k

+u
v u+ v

An adder unit

Figure 3.2: Different types of units used in a GPAC.

In short, a (mechanical) differential analyzer may be seen as a set of interconnected shafts,
each of which representing one of the quantities involved in the computation. At an higher
level of abstraction, there are blocks of shafts performing mathematical operations, like adding
two inputs. The GPAC model was introduced by Shannon in 1941 in the paper [Sha41] as
an idealization of the differential analyzer. When Shannon was a student at MIT, he worked
as an operator in Bush’s differential analyzer in order to make some money. He then realized
that functions generated by a differential analyzer should be d.a. and published that result on
[Sha41] (for further details on this result, see Section 3.4) by making use of the GPAC model. In
essence, a GPAC is nothing more than a model based on circuits having several (finitely many)
interconnected units. The allowed units are the ones depicted in Fig. 3.2 (actually these units are
not the ones originally given by Shannon, but they are equivalent). It is required that inputs (and
outputs) can never be interconnected. It is also required that each input is connected to, at most,
one output.

Later, Pour-El [PE74, pp. 13-14] found a gap in Shannon’s results and redefined the GPAC
model in terms of quasi-linear differential equations. But, again, a gap was found by Graça and
Costa [GC03, p. 647] that then redefined the GPAC in terms of circuits, but where not all kind of
connections were allowed. In a subsequent work, Graça [Gra04] showed that the latter model is
equivalent to a subclass of Graça and Costa’s GPAC, thus providing a simpler approach. Hence,
except otherwise stated, we consider that a GPAC is defined according to [Gra04] (see details
below).

Before continuing, we note that for the matters of our work, it is only necessary to consider
GPACs with one input. We will usually refer to this input as the time.

The model presented in this section is based in the following ideas: first, construct acyclic
circuits that compute polynomials (polynomial circuits). We assume that a polynomial circuit
may have no units at all computing, in this case, the identity. Second, use these circuits as
building blocks for more complex circuits, now using integrators, that we call GPACs. A GPAC
is constructed in the following manner. Take n integrators I1, ...,In. Then use polynomial
circuits such that the following three conditions hold:

1. Each input of a polynomial circuit is the input of the GPAC or the output of an integrator;

2. Each integrand input of an integrator is an output of a polynomial circuit;

3. Each variable of integration input of an integrator is the input of the GPAC.

Formally a polynomial circuit is defined as follows.

Definition 3.3.1. A polynomial circuit is an acyclic circuit built only with adders, constants
units, and multipliers.

29

Chapter 3. Polynomial IVPs

∫
yit

Piyn

y1

t
p(t,y1, . . . ,yn)

Figure 3.3: Schema of inputs and outputs for the integrator Ii in a GPAC. p denotes a polynomial
and yi denotes the output of Ii.

∫
t

et

Figure 3.4: Example of a GPAC generating the exponential function ex. The initial condition of
the integrator is y(0) = 1.

We assume that polynomial circuits may have several inputs. The proof of the following
lemma will be left to the reader.

Lemma 3.3.2. If x1, ..., xn are the inputs of a polynomial circuit, then the output of the circuit
will be y = p(x1, ..., xn), where p is a polynomial. Reciprocally, if y = p(x1, ..., xn), where p is a
polynomial, then there is a polynomial circuit with inputs x1, ..., xn, and output y.

Definition 3.3.3 ([Gra04]). Consider a circuit U with n integrators I1, ...,In, and one input t.
Suppose that to each integrator Ii, i = 1, ...,n, we can associate a polynomial circuitAi with the
property that the integrand input of Ii is connected to an output ofAi. Suppose that each input
ofAi is connected to the output of an integrator or to the input t. Suppose also that the variable
of integration input of each integrator is connected to the input t. In these conditions we say that
U is a GPAC with input t. (cf. Fig. 3.3).

Example 3.3.4. Let us give some examples of GPACs.

1. Consider the circuit depicted in Fig. 3.4, where the initial condition of the integrator is
given by y(0) = 1. It is not difficult to see that this circuit is a GPAC with one integrator.
The corresponding polynomial circuit has no units (notice that one could replace this
polynomial circuit by a polynomial circuit having one multiplier and one constant unit
associated to the value 1, that just multiplies its input by 1). Moreover, the output y must
satisfy the integral equation

y(t) = 1+
∫ t

0
y(u)du.

Differentiating the last equation, we have that y is solution of the polynomial IVP (3.2)
i.e. the GPAC generates the function y(t) = et.

2. Consider the circuit depicted in Fig. 3.5, where the initial conditions of the integrators are
given by y1(0) = 1 and y2(0) = 0. This circuit is a GPAC. Moreover, the outputs y1, y2
must satisfy

y1(t) = 1−
∫ t

0
y2(u)du, y2(t) =

∫ t

0
y1(u)du.

Differentiating the last two equations, we get that y1 and y2 are the solutions of the poly-
nomial IVP (3.3), i.e. y1 = cos and y2 = sin.

30

3.4 Properties of the GPAC

× ∫ ∫
−1

t

y1

y2

Figure 3.5: A GPAC computing sin and cos.

3.4 Properties of the GPAC

As the reader probably noted in the examples at the end of the previous section, a connection
seems to exist between the class of functions generated by a GPAC and the class of PIVP func-
tions. Actually, we will show in this section that these classes coincide. Hence, all properties
described in Section 3.2 for PIVP functions are also valid for functions generated by a GPAC.
Reciprocally, a GPAC may be seen as a graphical way to represent PIVP functions, describing
their associated IVP.

In the remainder of this work, we will often identify PIVP functions with functions generated
by a GPAC, according to the most convenient approach at that time. But before presenting this
result, we would like to give a retrospective survey of the literature, concerning characterizations
of functions computable by a GPAC.

In his paper [Sha41], Shannon presented the following characterization for functions gener-
ated by a GPAC.

Claim 3.4.1. A unary function can be generated by a GPAC in Shannon’s setting iff the function
is differentially algebraic.

Unfortunately, the original proof of Claim 3.4.1 has some gaps, as indicated in [PE74, pp.
13-14]. In this paper, Pour-El was also concerned with showing some relations in the spirit of
claim 3.4.1. In order to achieve this result, she introduced an alternative definition for the GPAC
based on differential equations. Roughly, according to Pour-El’s definition, y is generated by a
GPAC if there is some system of differential equations

A(x,y)
dy
dx

= b(x,y),

where y = (y1, ...,yn), such that A(x,y) and b(x,y) are n×n and n×1 matrices, respectively, with
linear entries and, moreover, y is one of the yi’s. The original paper [PE74] can be referred for
more details on this model. Pour-El proved (with some corrections made by Lipshitz and Rubel
in [LR87]) the following results:

Theorem 3.4.2 (Pour-El). Let y be a differentially algebraic function on I. Then there exists a
closed subinterval I′ ⊆ I with non-empty interior such that, on I′, y can be generated by a GPAC
(in Pour-El’s approach).

Theorem 3.4.3 (Pour-El, Lipshitz, Rubel). If y is generable on I by a GPAC in Pour-El’s ap-
proach, then there is a closed subinterval I′ ⊆ I with non-empty interior such that, on I′, y is
differentially algebraic.

Although the model presented by Pour-El is apparently different from Shannon’s GPAC,
Pour-El presented the following result:

31

Chapter 3. Polynomial IVPs

1
+

Figure 3.6: A circuit that admits no solutions as output.

+t
∫ + y

1

Figure 3.7: A circuit that admits two distinct solutions as outputs.

Claim 3.4.4. If a function y is generated on I by a GPAC in the sense of Shannon, it is generated
on I by a GPAC in the sense of Pour-El.

However, the original proof of Claim 3.4.4 [PE74, proposition 1] has some gaps as pointed
out in [GC03, p. 647]. In this latter paper, Graça and Costa redefined the GPAC, returning to a
characterization with circuits, which is essentially the one presented in the previous section. No-
tice that in their characterization, not all kinds of interconnections between the units of Fig. 3.2
are allowed. Indeed, if we allow arbitrary connections, we can have circuits with no outputs (the
case of the circuit depicted in Fig. 3.6), or with several outputs (the circuit of Fig 3.7). Indeed,
for Fig. 3.7, it is not difficult to see that y at time t is given by

y(t) = 1+
∫ t

0
(y(x)+ x)d(y(x)+ x).

We are supposing that t0 = 0 and that the initial output of the integrator is 1. When we start the
computation, we get two possible solutions:

y±(t) = 1±
√
−2t− t.

Therefore, we cannot have a physical implementation of this circuit (in particular, there is no
differential analyzer that simulates this circuit. Physically, this would probably correspond to a
situation where the shafts would “block”, not allowing the solutions to bifurcate).

We should remark that Shannon, in its original model, restricted the GPAC to the ones with
the property that “all ordinary differential equations considered have unique solutions” [Sha41,
p. 338]. However, he does not give an explicit criteria to know which are the “good GPACs”.

Let us now explore Graça and Costa’s model to see why these situations are ruled out in
this model. This comes from the following result, taken from [GC03], [Gra04], that gives the
characterization of functions generated by a GPAC in terms of PIVP functions.

Proposition 3.4.5. A function is generated by a GPAC iff it is a PIVP function.

Proof. Suppose that we have a GPAC with n integrators I1, . . . ,In, having outputs y1, . . . ,yn,
respectively. To each integratorIk is associated a polynomial circuitAk. This polynomial circuit
has as inputs y1, . . . ,yn plus the input t of the circuit. Therefore, by Lemma 3.3.2, the polynomial
circuitAk feeds integrator Ik with an input pk(t,y1, . . . ,yn), where pk is a polynomial. According

32

3.4 Properties of the GPAC

to the characterization of GPACs given by Fig. 3.3, we see that the output of Ik, yk, must satisfy
the following integral equation

yk = αk +
∫ t

t0
pk(t,y1, . . . ,yn)dt,

where αk is the initial condition of the integrator. Differentiating the last equation for each
k = 1, . . . ,n, we get 

y′1 = p1(t,y1, . . . ,yn)
...

y′n = pn(t,y1, . . . ,yn)


y1(t0) = α1

...
yn(t0) = αn

(3.9)

i.e. y1, . . . ,yn are PIVP functions. Moreover, since each output of a polynomial circuit has the
format p(t,y1, . . . ,yn), where p is a polynomial, we conclude that each output of a GPAC must
be a PIVP function.

Reciprocally, suppose that f is a PIVP function, i.e. it is one of the components of the
solution of (3.9), where p1, . . . , pn are polynomials. Then it is not difficult to build polynomial
circuitsA1, . . . ,An which compute p1, . . . , pn, respectively. If we link each polynomial circuitAk
to an integrator Ik according to the layout specified in Fig. 3.3, and if we require each integrator
Ik to have αk as initial setting, it is not difficult to see that each output yk of the integrator Ik
must satisfy (3.9). This shows that y1, . . . ,yn are generated by a GPAC.

Some interesting consequences may be derived from the previous result.

Remark 3.4.6. Since outputs of GPACs are solution of polynomial IVPs, by Proposition 2.6.4
each output exists and is unique. Thus, we don’t have the problems mentioned before and
pictured in Fig. 3.6 and Fig. 3.7.

Remark 3.4.7. From the proof of the proposition it follows that, without loss of generality, each
output of a GPAC may be supposed to be the output of an integrator.

Remark 3.4.8. Suppose that instead of allowing all real numbers in constant units, we only
allow the use of elements from a set A ⊆ R. Moreover, assume that A is closed under product
and addition (i.e. assume that A is a subring of R, with the operations +,×). Then, by arguments
similar to those of the proof of Proposition 3.4.5, the outputs of this subclass of GPACs are
solutions of polynomial IVPs (3.9), but where all the coefficients of the polynomials p1, . . . , pn
are elements of A. In particular, if A is the set of real computable reals, then the polynomials
p1, . . . , pn must be computable.

33

Chapter 3. Polynomial IVPs

34

CHAPTER 4

Simulation of Turing machines

4.1 Introduction

This chapter proposes new results concerning the simulation of Turing machines with analytic
maps and flows. In Section 4.2, we present the encoding used in our results and, since we allow
perturbed simulations of TMs, we also introduce some tools that will be helpful to keep the
error under control. In section 4.3, we study some interpolation techniques that will be used in
Section 4.4 where, given a TM, we present a constructive method to obtain an elementary map
that simulates this TM. Moreover, the simulation is shown to be robust to perturbations.

In Section 4.5, we recall a construction that iterates a map with a system of ODEs. This
result is then generalized in Section 4.6 to prove that polynomial ODEs can also perform robust
simulations of TMs. As a corollary, we conclude that the GPAC is at least as powerful as Type-1
computability.

The results of this chapter were partially published in the following references: [GCB05],
[GCB06].

4.2 Encoding configurations and controlling the error

In this section we present useful tools to be used in the remaining of this chapter. In Section
4.4, we will show that elementary maps can simulate TMs, i.e. that the transition function of a
given TM can be extended to an elementary map. Of course, to arrive at this result, we have to
associate each configuration of a Turing machine to some number. Here, we will encode each
configuration as a triple (x,y,z) ∈ N3, and prove that the simulation still works if this triple is
slightly perturbed. Our encoding works as follows. Without loss of generality, consider a Turing
machine M using 10 symbols, the blank symbol B = 0, and symbols 1,2, ...,9. Let

. . .B B Ba−k a−k+1 . . . a−1 a0 a1 . . . an B B B . . .

represent the tape contents of the Turing machine M. We suppose the head to be reading symbol
a0 and ai ∈ {0,1, ...,9} for all i. We also suppose that M has m states, represented by numbers 1
to m. For convenience, we consider that if the machine reaches a halting configuration it moves

35

Chapter 4. Simulation of Turing machines

-2 -1 1 2

-2

-1

1

2

Figure 4.1: Graphical representation of the function σ.

to the same configuration. Take

y1 = a0 +a110+ ...+an10n (4.1)

y2 = a−1 +a−210+ ...+a−k10k−1

and let q be the state associated to the current configuration. Then the triple (y1,y2,q)∈N3 gives
the current configuration of M.

Now that we know precisely which is the encoding of configurations to be used and since
we will allow simulations with perturbed values, we need some tools that allow us to maintain
the error under control. For this purpose, we present three functions, σ : R→ R, l2 : R2 → R,
and l3 : R2 → R, that we shall describe in the remaining of the section.

The error-contracting function σ is defined by (cf. Fig. 4.1)

σ(x) = x−0.2sin(2πx). (4.2)

The function σ is a uniform contraction in a neighborhood of integers:

Proposition 4.2.1. Let n∈Z and let ε∈ [0,1/2). Then there is some contracting factor λε ∈ (0,1)
such that, ∀δ ∈ [−ε,ε], |σ(n+δ)−n| < λεδ.

Proof. It is sufficient to consider the case where n = 0. Because σ is odd, we only study σ in the
interval [0, ε]. Let g(x) = σ(x)/x. This function is strictly increasing in (0,1/2]. Then, noting
that g(1/2) = 1 and limx→0 g(x) = 1− 0.4π ≈ −0.256637, we conclude that there exists some
λε ∈ (0,1) such that |σ(x)| < λε|x| for all x ∈ [−ε,ε].

Remark 4.2.2. For the rest of this chapter we suppose that ε ∈ [0,1/2) is fixed and that λε is the
respective contracting factor given by Lemma 4.2.1. For instance, we can take λ1/4 = 0.4π−1≈
0.256637.

The function σ will be used in our simulation to keep the error controlled when bounded
quantities are involved (e.g., the actual state, the symbol being read, etc). We will also need an-
other error-contracting function that controls the error for unbounded quantities, e.g. when using
expressions that depend on the variables coding the tape contents. This will be achieved with
the help of the function l3 : R2 → R, which has the property that whenever a is an approximation

36

4.2 Encoding configurations and controlling the error

2 4 6 8 10

0.2

0.4

0.6

0.8

1

Figure 4.2: Graphical representation of the function l2. The dashed line represents l2(0.2,y)
while the gray line represents l2(1.2,y).

of a ∈ {0,1,2}, then |l3(a,y)−a| < 1/y, for y > 0. In other words, l3 is an error-contracting map,
where the error is contracted by an amount specified by the second argument of l3. We start
by defining a preliminary function l2 satisfying similar conditions, but only when a ∈ {0,1}
(cf. Fig. 4.2).

Lemma 4.2.3.
∣∣π

2 − arctan x
∣∣ < 1

x for x ∈ (0,∞).

Proof. Let f (x) = 1
x + arctan x− π

2 . It is easy to see that f is decreasing in (0,∞) and that
limx→∞ f (x) = 0. Therefore f (x) > 0 for x ∈ (0,∞) and the result holds.

Lemma 4.2.4.
∣∣π

2 + arctan x
∣∣ < 1

|x| for x ∈ (−∞,0).

Proof. Take f (x) = 1
x + arctan x+ π

2 and proceed as in Lemma 4.2.3.

Proposition 4.2.5. Let l2 : R2 → R be given by l2(x,y) = 1
π arctan(4y(x− 1/2)) + 1

2 . Suppose
also that a ∈ {0,1}. Then, for any a,y ∈ R satisfying |a−a| ≤ 1/4 and y > 0,

|a− l2(a,y)| <
1
y
.

Proof. 1. Consider a = 0. Then a− 1/2 ≤ −1/4 implies |4y(ā− 1/2)| ≥ y. Therefore, by
Lemma 4.2.4, ∣∣∣π

2
+ arctan(4y(a−1/2))

∣∣∣ < 1
|4y(a−1/2)|

≤ 1
y
.

Moreover, multiplying the last inequality by 1/π and noting that 1
πy <

1
y , it follows that

|a− l2(a,y)| < 1/y.

2. Consider a = 1. Remark that a− 1/2 ≥ 1/4 and proceed as above, using Lemma 4.2.3
instead of Lemma 4.2.4.

Remark 4.2.6. It follows easily from the previous proof that Proposition 4.2.5 can be extended
in the following way, where y > 0:

37

Chapter 4. Simulation of Turing machines

1. If x ≤ 1/4, then 0 < l2(x,y) < 1/y;

2. If x ≥ 3/4, then 1−1/y < l2(x,y) < 1.

We denote below, for any x ∈ R, dxe = min{k ∈ Z : k ≥ x}.

Proposition 4.2.7. Let a ∈ {0,1,2} and let l3 : R2 → R be given by

l3(x,y) = l2((σ[d+1](x)−1)2,3y).(2l2(σ[d](x)/2,3y)−1)+1,

where d = 0 if ε ≤ 1/4 and d = d− log(4ε)/ logλεe otherwise. Then for any ā,y ∈ R satisfying
|a−a| ≤ ε and y≥ 2, we have |a− l3(a,y)| < 1/y.

Proof. Let us start by noticing that for all x,y ∈ R for which l2(x,y) is defined, we have that
0 < l2(x,y) < 1. Consider the case where a = 0 and a ∈ [−1/4;1/4]. By other words, take
ε≤ 1/4. Then

∣∣(σ(a)−1)2−1
∣∣ < 1/4, and by the previous lemma,

1−1/y < l2((σ(a)−1)2,y) < 1.

Similarly, we conclude
−1 < 2l2(a/2,y)−1 <−1+2/y.

Since y≥ 2, this implies

−1 < l2((σ(a)−1)2,y)(2l2(a/2,y)−1) < (1−1/y)(−1+2/y)

or
0 < l2((σ(a)−1)2,y)(2l2(a/2,y)−1)+1 < 3/y.

Hence, for a = 0, |a− l3(a,y)| < 1/y. Proceeding similarly for a = 1,2 and ε ≤ 1/4, the same
result follows.

It remains to consider the more general case |a−a| ≤ ε. Taking d = d− log(4ε)/ logλεe and
applying d times the function σ to a, it follows that

∣∣a−σ[d](a)
∣∣ ≤ 1/4 and we fall back in the

previous case (use σ[d](a) instead of a).

4.3 Determining the next action - Interpolation techniques

In this section we present some tools, based on interpolation, that will allow us in the next section
to define an elementary map that simulates the transition function of a given TM. We have two
objectives. The first one is, given the integers coding the configuration of the TM, to extract the
symbol being read by the tape head. The second objective is, given the current state and symbol
being read by the tape head, to determine the next action to be performed (i.e. to determine the
next state, the symbol to be written on the tape, and the next move).
Detecting the symbol being read by the tape head. For this purpose, we introduce an analytic
extension ω : R→ R of the function f : N→ N defined by f (n) = nmod10. Indeed, from
the coding (4.1) we see that f (y1) = a0, as wanted. To achieve this purpose, we can use a
periodic function, of period 10, such that ω(i) = i, for i = 0,1, ...,9. Then, using trigonometric
interpolation (cf. [Atk89, pp. 176-182]), one may take

ω(x) = a0 +a5 cos(πx)+

(
4

∑
j=1

a j cos
(

jπx
5

)
+b j sin

(
jπx
5

))
, (4.3)

38

4.3 Determining the next action - Interpolation techniques

where a0, ...,a5,b1, ...,b4 are computable coefficients that can be explicitly obtained by solving a
system of linear equations. In particular

a0 = 9/2, a1 = a2 = a3 = a4 =−1, a5 =−1/2

b1 =−
√

5+2
√

5, b2 =−

√
1+

2√
5

, b3 =−
√

5−2
√

5, b4 =−

√
1− 2√

5
.

Due to the existence of errors in the argument of ω, it is useful to know how much can an integer
input of ω be perturbed so that the propagated error does not exceed ε. This can be done as
follows. Note that ω is uniformly continuous in R (ω has period 10 and is continuous in the
interval [0,10]). Hence, for every ε ∈ (0,1/2), there will be some ζε > 0 satisfying

∀n ∈ N, x ∈ [n− ζε,n+ ζε] ⇒ |ω(x)−nmod10| ≤ ε. (4.4)

Determining the next action to be performed. Since we want to simulate the transition func-
tion of a TM we need to know the following: given the symbol being read by the tape head,
y ∈ {0,1, . . . ,9}, and the current state q ∈ {1, . . . ,m}, determine the next action — the next sym-
bol to be written in the tape, the move to be performed, and the new state. This will be done with
the help of Lagrange interpolation. Moreover, since we want to derive a simulation of Turing
machines robust to (small) perturbations, we will not use exact values, but allow an error less
than ε, with 0 < ε < 1/2, on y and q. Special care is thus needed to ensure that the error does not
amplify along the simulation. Here, we study the propagation of errors throughout the iteration
of polynomial maps defined via Lagrange interpolation.

Let M be a Turing machine (using 10 symbols, as mentioned in Section 4.2) and consider
the following functions, where x ∈ R:

Qi(x) =
m

∏
j=1
j 6=i

(x− j)
(i− j)

, S i(x) =
9

∏
j=0
j 6=i

(x− j)
(i− j)

.

Note that

Qi(x) =
{

0, if x = 1, ..., i−1, i+1, ...,m
1, if x = i

and S i(x) =
{

0, if x = 0, ..., i−1, i+1, ...,9
1, if x = i.

Suppose that on state i and symbol j, the state of the next configuration is qi, j. Suppose also
that |qi, j| ≤ N for some suitable constant N (e.g., in this case, we may take N = m). Then the
state that follows state q and symbol y can be given by

qnext =
9

∑
i=0

m

∑
j=1

S i(y)Q j(q)qi, j. (4.5)

A similar procedure may be used to determine the next symbol to be written and the next move.
The main problem is that we will not use q neither y, but some approximations q and y, re-
spectively, thereby obtaining qnext. Hence, we want to increase the precision of q and y so that
|qnext − qnext| < ε (ε will be an upper bound for the error allowed during a computation). To
achieve this precision, we only need to compute each term in the sum given in (4.5) with an
error less than ε/(10m). This is verified when

|S i(y)Q j(q)−S i(y)Q j(q)| < ε

10mN
(4.6)

39

Chapter 4. Simulation of Turing machines

since this condition implies

|S i(y)Q j(q)qi, j−S i(y)Q j(q)qi, j| <
ε

10m
.

Lemma 4.3.1. Let n ∈ N and (x1, . . . , xn),(y1, . . . ,yn) ∈ Rn. If |xi| ≤ K, |yi| ≤ K for i = 1, . . . ,n
and some K > 0, then

|x1 . . . xn− y1 . . .yn| ≤ (|x1− y1|+ . . .+ |xn− yn|)Kn−1.

Proof. The Lemma is trivial for n = 1. Suppose it holds for n ∈ N. Then

|x1 . . . xn+1− y1 . . .yn+1|
≤ |x1 . . . xn+1− x1 . . . xnyn+1|+ |x1 . . . xnyn+1− y1 . . .yn+1|
= |x1 . . . xn| |xn+1− yn+1|+ |x1 . . . xn− y1 . . .yn| |yn+1|
≤ Kn |xn+1− yn+1|+(|x1− y1|+ . . .+ |xn− yn|)Kn−1K

= (|x1− y1|+ . . .+ |xn− yn|+ |xn+1− yn+1|)Kn

which proves the statement by induction.

Note that (4.6) is satisfied if∣∣∣∣∣∣∣
9

∏
r=0
r 6=i

(y− r)
m

∏
s=1
s6= j

(q− s)−
9

∏
r=0
r 6=i

(y− r)
m

∏
s=1
s 6= j

(q− s)

∣∣∣∣∣∣∣ <
ε

10mN

because
∣∣∣∣∏9

r=0
r 6=i

(i− r)∏
m
s=1
s6= j

(j− s)
∣∣∣∣≥ 1. Take K = max{9+ε,m−1+ε}.Applying Lemma 4.3.1,

(4.6) will hold for

9|y− y|+(m−1)|q−q| < ε

10mNKm+7 .

Then, in order to have |qnext−qnext| ≤ ε, it is sufficient to take y and q with an error less than

|y− y|, |q−q| < ε

10mNKm+7(m+8)
. (4.7)

To achieve this, and supposing that y and q are initially given with an error less than ε < 1/2, we
only have to apply j times the error-correcting function σ so that σ[j](y) and σ[j](q) have greater
precision than the bound in (4.7). This condition holds for every j satisfying

j≥
⌈

log(10mNKm+7(m+8))
− logλε

⌉
,

where λε is given by Proposition 4.2.1.

40

4.4 Robust simulations of Turing machines with PIVP maps

4.4 Robust simulations of Turing machines with PIVP maps

In this section we show, in a constructive manner, how to simulate a Turing machine with an
elementary map robust to (small) perturbations. We first prove the following theorem.

Theorem 4.4.1. Let ψ : N3 → N3 be the transition function of some Turing machine M. Then,
given some 0≤ ε < 1/2, ψ admits an elementary extension hM : R3 → R3 with the property that

‖(y1,y2,q)− (y1,y2,q)‖
∞
≤ ε ⇒ ‖ψ(y1,y2,q)−hM(y1,y2,q)‖

∞
≤ ε, (4.8)

where (y1,y2,q) ∈ N3 encodes some configuration of M.

Proof. As mentioned in Section 4.2, we can assume without loss of generality that M uses 10
symbols and that we encode the configurations of M as described in (4.1). Here we will show that
all quantities relevant for the computation can be obtained with sufficient precision so that the
computation can continue without being flooded with uncontrollable errors. In general, except
otherwise stated, we will compute each quantity with precision bounded by ε.

1. Determine the symbol being read. Let a0 be the symbol being actually read by the
Turing machine M. Then ω(y1) = a0, where ω is given by (4.3). We must show that the
effect of the error present in y1 can be controlled. Since |y1− y1| ≤ ε,

|a0−ω◦σ[l](y1)| ≤ ε, with l =
⌈∣∣∣∣ log(ζε/ε)

logλε

∣∣∣∣⌉ , (4.9)

where ζε is given by (4.4). Then pick y = ω◦σ[l](y1) as an approximation of the symbol
currently being read. Similarly, ω ◦σ[l](y2) gives an approximation of a−1, with error
bounded by ε.

2. Determine the next state. The map that returns the next state is defined by Lagrange
interpolation. This can be done as follows. Let y be the symbol being currently read and
q the current state. Recall that m denotes the number of states and k = 10 is the number of
symbols. On the absence of error on y and q,

qnext =
9

∑
i=0

m

∑
j=1

 9

∏
r=0
r 6=i

(y− r)
(i− r)


 m

∏
s=1
s6= j

(q− s)
(j− s)

qi, j,

where qi, j is the state that follows symbol i and state j. However, we are dealing with the
approximations q and y. Therefore, we define instead (cf. Section 4.3)

qnext =
9

∑
i=0

m

∑
j=1

 9

∏
r=0
r 6=i

(σ[n](y)− r)
(i− r)


 m

∏
s=1
s6= j

(σ[n](q)− s)
(j− s)

qi, j,

with

n =
⌈

log(10m2Km+7(m+8))
− logλε

⌉
, K = max{19/2,m−1/2},

which yields |qnext−qnext| ≤ ε.

41

Chapter 4. Simulation of Turing machines

3. Determine the symbol to be written on the tape. Using a construction similar to the
previous case, the symbol to be written, snext, can be approximated with precision ε,
i.e. |snext− snext| ≤ ε.

4. Determine the direction of the move for the head. Let h denote the direction of the
move of the head, where h = 0 denotes a move to the left, h = 1 denotes a “no move”, and
h = 2 denotes a move to the right. Then the “next move” hnext can be approximated by
means of Lagrange interpolation as in steps 2 and 3, therefore obtaining |hnext−hnext| ≤ ε.

5. Update the tape contents. In the absence of error, the “next value” of y1, ynext
1 , is given

by Lagrange interpolation as a function of y1, y2, snext and hnext (recall that a0 = ω(y1)):

ynext
1 = (10(y1 + snext−ω(y1))+ω(y2))

(1−hnext)(2−hnext)
2

+(y1 + snext−ω(y1))hnext(2−hnext)+
y1−ω(y1)

10
hnext(1−hnext)

−2
.

To make the simulation robust, we define instead functions P1,P2,P3 which are intended
to approximate the tape contents after the head moves left, does not move, or moves right,
respectively. Let H1 be a “sufficiently good” approximation of hnext, yet to be determined.
Then, ynext

1 can be approximated by

ynext
1 = P1

(1−H1)(2−H1)
2

+ P2 H1(2−H1)+ P3
H1(1−H1)

−2
(4.10)

with

P1 = 10(σ[d+4](y1)+σ[d+4](snext)−σ[d+4](y))+σ[d+2] ◦ω◦σ[l](y2)

P2 = σ[d+2](y1)+σ[d+2](snext)−σ[d+2](y)

P3 = 1
10

(
σ[d+1](y1)−σ[d+1](y)

)
,

where d is given by Proposition 4.2.7 and l is given by (4.9), as we show below.

First, notice that when exact values are used and H1 = hnext, one has ynext
1 = ynext

1 .However,
P1 in (4.10) depends on y1, which is not a bounded value. If we would simply take
H1 = hnext, the error of the term (1−H1)(2−H1)/2 will be arbitrarily amplified when
multiplied by P1. Hence, H1 must be a sharp estimate of hnext, proportional to y1.

Our goal is to define an approximation H1 of hnext with error at most δ, i.e. H1 = hnext +δ,
such that ynext

1 has error bounded by ε. Let us take P1 = 10(y1 + snext −ω(y1))+ω(y2),
P2 = y1 + snext−ω(y1), and P3 = (y1−ω(y1))/10. To simplify the construction, we first
suppose that d = 0, i.e. ε≤ 1/4. Since hnext ∈ {0,1,2},

|ynext
1 − ynext

1 |
≤ |P1−P1|+ |P2−P2|+ |P3−P3|+ |4P1δ|+ |7P2δ|+ |3P3δ|
< 0.112+ |4P1δ|+ |7P2δ|+ |3P3δ|.

We used the fact that |P1−P1| < 0.049, |P2−P2| < 0.05, |P3−P3| < 0.013 to derive the
last inequality. Hence, |ynext

1 − ynext
1 | < 1/4 can be achieved if |P1δ|, |P2δ|, |P3δ| < 0.01.

Taking |P1δ| < 0.01, one has |δ| < 0.01/|P1| or equivalently, considering (4.1) and the

42

4.4 Robust simulations of Turing machines with PIVP maps

definition of P1 (note that |P1| < 10n+2, where n is the number of symbols written on the
right half of the tape encoded by y1),

|δ| < 10−n−4.

But y1 > 10n−1/2 implies 10000(y1 +1/2) > 10n+4. Therefore we just have to take

|δ| < 1
10000(y1 +1/2)

.

Using a similar procedure for the inequalities |P2δ| < 0.01 and |P3δ| < 0.01, one reaches
the same bound.

So far we have seen that to guarantee that the error |ynext
1 − ȳnext

1 | is less than ε, H1 has
to approximate hnext within the above bound, which depends on y1. This can be achieved
with

H1 = l3(hnext,10000(y1 +1/2)+2),

as shown in Proposition 4.2.7. Notice that the extra 2 in the second argument of l3 is only
needed to ensure that 10000(ȳ1 +1/2)+2≥ 2, as required by Proposition 4.2.7.

We can generalize this result to ε < 1/2 by applying d times the function σ to all the terms
in the expressions of P1, P2 and P3, where d is given by Proposition 4.2.7. Therefore,
ynext

1 can be defined by (4.10).

Proceeding in the same manner for ynext
2 , one may take

ynext
2 = Q1

(1−H2)(2−H2)
2

+ Q2H2(2−H2)+ Q3
H2(1−H2)

−2
(4.11)

where

H2 = l3(hnext,10000(y2 +1/4)+2), Q3 = 10σ[d+4](y2)+σ[d+2](snext),

Q1 =
σ[d+1](y2)−σ[d+1] ◦ω◦σ[l](y2)

10
, Q2 = σ[d+2](y2).

We then conclude that |ynext
1 − ynext

1 | < ε and |ynext
2 − ynext

2 | < ε.

To finish the proof of Theorem 4.4.1, we put together the maps described above and define
hM : R3 → R3 as hM(y1,y2,q) = (ynext

1 ,ynext
2 ,qnext).

We shall now prove the main theorem of this section.

Theorem 4.4.2. Let ψ : N3 → N3 be the transition function of a Turing machine M, under the
encoding described above, and let 0< δ < ε < 1/2. Then ψ admits a globally analytic elementary
extension fM : R3 → R3, robust to perturbations in the following sense: for all f such that
‖ f − fM‖∞

≤ δ, for all j ∈ N, and for all x0 ∈ R3 satisfying ‖x0− x0‖∞
≤ ε, where x0 ∈ N3

represents an initial configuration,∥∥∥ f [j](x0)−ψ[j](x0)
∥∥∥

∞

≤ ε.

43

Chapter 4. Simulation of Turing machines

Proof. Using Theorem 4.4.1, one can find a map hM such that (4.8) holds. Let i ∈ N satisfy
σ[i](ε)≤ ε−δ. Define a map fM = σ[i] ◦hM. Then, if x0 ∈ N3 is an initial configuration,

‖x0− x0‖∞
≤ ε ⇒ ‖ fM(x0)−ψ(x0)‖∞

≤ ε−δ.

Thus, by the triangle inequality, if ‖x0− x0‖∞
≤ ε, then

‖ f (x0)−ψ(x0)‖∞
≤ ‖ f (x0)− fM(x0)‖∞

+‖ fM(x0)−ψ(x0)‖∞

≤ δ+(ε−δ) = ε.

This proves the result for j = 1. For j > 1, proceed by induction.

A few remarks are in order. First, and as noticed before, we implicitly assumed that if z is a
halting configuration, then ψ(z) = z. Secondly, we notice that the upper bound on ε, 1/2, results
from the encoding we have chosen, which is over the integers. In fact, the bound is maximal with
respect to that encoding. We also remark that the proof of the previous theorem is constructive
and that f can be obtained by composing the following functions: polynomials, sin, cos, and
arctan, i.e. f is elementary and also a PIVP function.

4.5 Iterating maps with ODEs

In this section we show how to iterate a map from integers to integers with smooth ODEs. By a
smooth ODE we understand an ODE

y′ = f (t,y) (4.12)

where f is of class Ck, for 1 ≤ k ≤ ∞ (but not necessarily analytic). Basically, we will describe
the construction presented by Branicky in [Bra95], but following the approach of Campagnolo,
Costa, and Moore [CMC00], [CM01], [Cam02]. Then using the map fM given by Theorem
4.4.2, we will be able to simulate TMs with smooth ODEs. This result will be extended in the
next section to the case of polynomial ODEs robust to perturbations.

Suppose that f : Zk → Zk is a map. For simplicity, let us assume k = 1. For better readability,
we also break down the procedure in three subtasks.

Construction 4.5.1. Consider a point b ∈ R (the target), some γ > 0 (the targeting error), and
time instants t0 (departure time) and t1 (arrival time), with t1 > t0. Then obtain an IVP (the
targeting equation) defined with an ODE (4.12), where f : R2 → R, such that the solution y
satisfies

|y(t1)−b| < γ (4.13)

independently of the initial condition y(t0) ∈ R.

Let φ : R→ R+
0 be some function satisfying

∫ t1
t0 φ(t)dt > 0 and consider the following ODE

y′ = c(b− y)3φ(t), (4.14)

where c > 0. There are two cases to consider: (i) y(t0) = b, (ii) y(t0) 6= b. In the first case, the
solution is given by y(t) = b for all t ∈ R and (4.13) is trivially satisfied. For the second case,
note that (4.14) is a separable equation, which gives

1
(b− y(t1))2 −

1
(b− y(t0))2 = 2c

∫ t1

t0
φ(t)dt =⇒

1
2c
∫ t1

t0 φ(t)dt
> (b− y(t1))2.

44

4.5 Iterating maps with ODEs

-2 -1 1 2

-2

-1

1

2

Figure 4.3: Graphical representation of the function r.

Hence, (4.13) is satisfied if c satisfies γ2 ≥ (2c
∫ t1

t0 φ(t)dt)−1 i.e. if

c≥ 1
2γ2

∫ t1
t0 φ(t)dt

. (4.15)

Construction 4.5.2. Obtain an IVP defined with an ODE (4.12), where f : R2 → R, such that
the solution r satisfies (cf. Fig. 4.3)

r(x) = j whenever x ∈ [j−1/4, j+1/4] for all j ∈ Z. (4.16)

We want a function r : R→ R satisfying this condition for the following reason. Suppose
that on Construction 4.5.1, γ < 1/4 and that b ∈ N. Then r(y(t1)) = b, i.e. r corrects the error
present in y(t1) when approaching an integer value b. This will be useful later in this chapter.

First let θ j : R→ R, j ∈ N−{0,1}, be the function defined by

θ j(x) = 0 if x ≤ 0, θ j(x) = x j if x > 0.

For j = ∞ define
θ j(x) = 0 if x ≤ 0, θ j(x) = e−

1
x if x > 0.

These functions can be seen [CMC00] as a C j−1 version of Heaviside’s step function θ(x),where
θ(x) = 1 for x ≥ 0 and θ(x) = 0 for x < 0.

With the help of θ j, we define a “step function” s : R→ R, that matches the identity function
on the integers, as follows: {

s′(x) = λ jθ j(−sin2πx)
s(0) = 0,

where

λ j =
∫ 1

1/2
θ j(−sin2πx)dx > 0.

For x∈ [0,1/2], s(x) = 0 since sin2πx≥ 0. On (1/2,1), s strictly increases and satisfies s(1) = 1.
Using the same argument for x ∈ [j, j+1], for all integer j, we conclude that s(x) = j whenever
x ∈ [j, j+1/2]. Then defining r :N→N by r(x) = s(x+1/4), it is easy to see that r satisfies the

45

Chapter 4. Simulation of Turing machines

0.5 1 1.5 2 2.5 3

1

2

3

4

Figure 4.4: Simulation of the iteration of the map f (n) = 2n via ODEs. The solid line represents
the variable z1 and the dashed line represents z2.

conditions set for Construction 4.5.2. One should remark that, for each j ∈ N∪{∞}−{0,1},
we get a different function r, but they all have the same fundamental property (4.16). So, we
choose to omit the reference to index j when defining r (this does not represent any problem in
later results).

Construction 4.5.3. Iterate the map f : Z→ Z with a smooth ODE (4.12).

Let f̃ : R→ R be an arbitrary smooth extension to the reals of f , and consider the IVP
defined with the smooth ODE{

z′1 = c j,1(f̃ (r(z2))− z1)3θ j(sin2πt)
z′2 = c j,2(r(z1)− z2)3θ j(−sin2πt)

(4.17)

and the initial condition {
z1(0) = x0
z2(0) = x0,

where x0 ∈ N. We shall use the previous two constructions to iterate f . First, we use Construc-
tion 4.5.1 with parameters satisfying: γ≤ 1/4, t0 = 0, t1 = 1/2, φ= φ1 where φ1(t) = θ j(sin2πt),
and c = c j,1 given by (4.15). With these parameters, let us look to (4.17). We have that for
t ∈ [0,1/2], z′2(t) = 0. Therefore the first equation of (4.17) becomes

z′1 = c(b− z1)3φ(t),

where b = f (x0). Thus one has |z1(1/2)− f (x0)| < γ ≤ 1/4. Now, for t ∈ [1/2,1], z′1(t) = 0,
and Construction 4.5.2 ensures that r(z1(t)) = f (x0) (z1 “remembers” the value of f (x0) for
t ∈ [1/2,1]). If we take Construction 4.5.1, but now changing t0 = 1/2, t1 = 1, the function φ to
φ(t) = φ2(t) = θ j(−sin2πt) and c = c j,2 accordingly, the second equation of (4.17) becomes

z′2 = c(b− z2)3φ(t),

where b = f (x0). Hence, one has |z2(1)− f (x0)| < γ≤ 1/4. Now, for t ∈ [1,3/2], z′2(t) = 0, and
Construction 4.5.2 ensures that f̃ (r(z2(t))) = f [2](x0) (z2 “remembers” the value of f (x0) for

46

4.6 Robust simulations of Turing machines with polynomial ODEs

t ∈ [1,1+1/2]). Noting that both sin2πt and −sin2πt are periodic with period one, we see that
the above procedure can be repeated for all time intervals [j, j + 1], where j ∈ N (cf. Fig. 4.4).
Moreover, one has that for any given x0 ∈ N

r(z2(t)) = f [j](x0) whenever t ∈ [j, j+1/2]

for all j ∈ N.
In this sense (4.17) simulates the iteration of the function f : Z→ Z. A straightforward

adaptation of this construction can be applied for the more general case when f : Zk → Zk, for
k ≥ 1. We then obtain an ODE with 2k equations, with a pair of equations simulating each
component f1, . . . , fk of f .

4.6 Robust simulations of Turing machines with polynomial ODEs

We now adapt the construction presented in the previous section to simulate a TM with polyno-
mial ODEs, even under the influence of perturbations. The idea is to iterate the map fM given by
Theorem 4.4.2 with ODEs, as described in the previous section. The problem is that the ODE
must be polynomial and hence analytic, and therefore we can no longer use the functions θk for
1≤ k ≤ ∞. Instead, we have to use a new variation of this construction.

The main idea of the construction to be presented in this section is the following. Let ψ :
N3 →N3 be the transition function of a Turing machine M. If we want to iterate ψ with analytic
ODEs, using a system similar to (4.17), we cannot allow z′1 and z′2 to be 0 in half-unit intervals —
cf. Corollary 2.5.4. Instead, we allow them to be very close to zero, which will add some errors
to the system (4.17). Therefore at time t = 1 both variables will have values close to ψ(x0). But
Theorem 4.4.2 shows that there exists some analytic function fM, robust to errors, that simulates
ψ. This allows us to repeat the process an arbitrary number of times, keeping the error under
control. We now state the main results of this section.

Theorem 4.6.1. Let ψ : N3 → N3 be the transition function of a Turing machine M, under the
encoding (4.1) and let 0 < ε < 1/4. There is a polynomial pM : Rm+4 → Rm+3, with m ∈ N, and
a constant y0 ∈ Rm such that the ODE z′ = pM(t,z) simulates M in the following sense: for all
x0 ∈N3 and for all x0 ∈ R3 satisfying ‖x0− x0‖∞

≤ ε, the solution z(t) of the IVP defined by the
previous ODE plus the initial condition (x0,y0), defined for t0 = 0, satisfies∥∥∥z1(j)−ψ[j](x0)

∥∥∥
∞

≤ ε,

for all j ∈ N, where z≡ (z1,z2) with z1 ∈ R3 and z2 ∈ Rm.

Indeed, we will prove the following robust version of Theorem 4.6.1.

Theorem 4.6.2. Given the conditions of Theorem 4.6.1, there is a PIVP function fM : R7 → R6

and a constant y0 ∈ R3 such that the ODE z′ = fM(t,z) robustly simulates M in the following
sense: for all g satisfying ‖g− fM‖∞

< 1/2, there is 0 < η < 1/2 such that for all (x0,y0) ∈ R6

satisfying ‖(x0,y0)− (x0,y0)‖∞
≤ ε, the solution z(t) of

z′ = g(t,z), z(0) = (x0,y0)

satisfies, for all j ∈ N and for all t ∈ [j, j+1/2],∥∥∥z1(t)−ψ[j](x0)
∥∥∥

∞

≤ η,

where z≡ (z1,z2) with z1 ∈ R3 and z2 ∈ R3.

47

Chapter 4. Simulation of Turing machines

Proof. Let us prove Theorem 4.6.2. For simplicity, and without loss of generality, we consider
that the function to be iterated, ψ, is a one-dimensional map as in (4.17). We begin with some
preliminary results about the introduction of perturbations in (4.17).

Studying the perturbed targeting equation. (cf. Construction 4.5.1) Because the iterating
procedure relies on the basic ODE (4.14), we have to study the following perturbed version of
(4.14)

z′ = c(b(t)− z)3φ(t)+ E(t), (4.18)

where
∣∣b(t)−b

∣∣ ≤ ρ and |E(t)| ≤ δ. We take the departure time to be t0 = 0 and the arrival
time to be t1 = 1/2 as in (4.17). Therefore we must require that

∫ 1/2
0 φ(t)dt > 0, where c satisfies

(4.15) and γ > 0 is the targeting error. Let z be the solution of this new ODE, with initial condition
z(0) = z0 and let z+,z− be the solutions of z′ = c(b+ρ−z)3φ(t)+δ and z′ = c(b−ρ−z)3φ(t)−δ,
respectively, with initial conditions z+(0) = z−(0) = z0. For simplicity denote

f (t,z) = c(b(t)− z)3φ(t)+ E(t) (4.19)

f+(t,z) = c(b+ρ− z)3φ(t)+δ

f−(t,z) = c(b−ρ− z)3φ(t)−δ.

We have that for all (t, x) ∈ R2,

f−(t, x)≤ f (t, x)≤ f+(t, x). (4.20)

Since z is the solution of the ODE z′ = f (t,z) and z± are the solutions of the ODEs z′ = f±(t,z),
all with the same initial condition z(0) = z+(0) = z−(0) = z0, from (4.20) and a standard dif-
ferential inequality from the basic theory of ODEs (see e.g. [HW95, Appendix T]), it follows
that z−(t) ≤ z(t) ≤ z+(t) for all t ∈ R. Now, if we put upper and lower bounds on z+ and z−,
respectively, we get immediately bounds for z.

Let us study what happens with z+. For convenience, let y+ be the solution of

y′ = c(b+ρ− y)3φ(t) (4.21)

(i.e. y′ = f+(t,y)− δ), with initial condition y+(0) = z0. Since f+(t, x) > f+(t, x)− δ for all
(t, x) ∈ R2, we have similarly to the case of z−, z, and z+, that

y+(t)≤ z+(t) for all t ∈ [0,1/2]. (4.22)

We consider two cases:

1. z0 ≤ b + ρ. Since y+ is the solution of the targeting equation (4.21), we have from Con-
struction 4.5.1 and (4.22) that

b+ρ−γ < y+(1/2) =⇒ b+ρ−γ < z+(1/2). (4.23)

Moreover, since z+(0) = z0 ≤ b + ρ, we have that if z+(t) ≥ b + ρ for some t ∈ (0,1/2),
then (4.19) gives z′+(t) = f+(t,z)≤ δ. Therefore z+(t) cannot grow at a rate bigger than δ
when its value exceeds b+ρ. This and (4.23) give

b+ρ−γ < z+(1/2) < b+ρ+δ/2.

48

4.6 Robust simulations of Turing machines with polynomial ODEs

2. z0 > b+ρ. Since y+ is solution of the targeting equation (4.21), we have from Construction
4.5.1 and (4.22) that

b+ρ < y+(t) < z+(t) for all t ∈ [0,1/2].

This condition then gives c(b+ρ− y+)3φ(t)+ δ > c(b+ρ− z+)3φ(t)+ δ which together
with (4.21) implies

δ > z′+(t)− y′+(t) for all t ∈ [0,1/2].

Integrating the last equation, we have

δ

2
> z+(1/2)− y+(1/2) =⇒ δ

2
+ y+(1/2) > z+(1/2).

The latter inequality plus the fact that b + ρ < y+(t) < b + ρ+γ, where y+ is solution of
(4.21), yield that

b+ρ < z+(1/2) < b+ρ+γ+
δ

2
.

Now that we have studied both cases z0 ≤ b+ρ and z0 > b+ρ, we conclude that

b+ρ−γ < z+(1/2) < b+ρ+γ+
δ

2
.

A similar analysis can be performed for z−(1/2), ultimately yielding

|z(1/2)−b| < ρ+γ+
δ

2
. (4.24)

Removing the θ j’s from (4.17). We must remove the θ j’s in two places: in the function r
and in the terms θ j(±sin2πt). Since in (4.17) we are using an extension f̃ : R→ R (actually,
f̃ ≡ fM : R3 → R3, but we consider the one-dimensional case for simplicity) of f : N → N
(≡ ψ : N3 → N3) which is robust to perturbations, we no longer need the corrections performed
by r. On the other hand we cannot use this technique to treat the terms θ j(±sin2πt). We need to
substitute φ(t) = θ j(sin2πt) by an analytic (PIVP) function ζ : R→ R with the following ideal
behavior:

(i) ζ has period 1;
(ii) ζ(t) = 0 for t ∈ [1/2,1];
(iii) ζ(t)≥ 0 for t ∈ [0,1/2] and

∫ 1/2
0 ζ(t)dt > 0.

Of course, conditions (ii) and (iii) are incompatible due to Proposition 2.5.4. Instead, we
approach ζ using a function ζε , where ε > 0. This function must satisfy the following conditions:

(ii)’ |ζε(t)| ≤ ε for t ∈ [1/2,1];
(iii)’ ζε(t)≥ 0 for t ∈ [0,1/2] and

∫ 1/2
0 ζε(t)dt > I > 0, where I is independent of ε.

Our idea to define such a function ζε is to use the function l2 introduced in Proposition 4.2.5.
Then define

ζε(t) = l2(ϑ(t),1/ε), (4.25)

where ε > 0 is the precision up to which ζε should approximate 0 in the interval [1/2,1] and
ϑ : R→ R is an elementary periodic function of period 1 satisfying the following conditions:

(a) |ϑ(t)| ≤ 1/4 for t ∈ [1/2,1];

49

Chapter 4. Simulation of Turing machines

(b) ϑ(t)≥ 3/4 for t ∈ (a,b)⊆ (0,1/2).
Notice that Proposition 4.2.5 and (a) ensure that |ζε(t)| < ε for t ∈ [1/2,1], i.e. they ensure

(ii)’, and that Proposition 4.2.5 and (b) ensure |ζε(t)|> 1−ε for t∈ (a,b) which gives
∫ 1/2

0 ζε(t)≥
(1−ε)(b−a)> 3(b−a)/4 for ε < 1/4, which yields (b) (remark that for all (t, x)∈R2, l2(t, x)> 0
and thus ζε(t) > 0 for all t ∈ R). It is not difficult to see that one can pick ϑ : R→ R as

ϑ(t) =
1
2
(sin2(2πt)+ sin(2πt)) (4.26)

since it satisfies all the conditions imposed above (e.g. a = 0.16 and b = 0.34). Hence, θ j(sin2πt)
will be replaced by the PIVP function ζε(t) = l2(ϑ(t),1/ε), where ϑ is given by (4.26). Similarly,
θ j(−sin2πt) will be replaced by the PIVP function ζε(−t).

Performing Construction 4.5.3 with PIVP functions. We are now ready to perform a simula-
tion of an integer map with a system similar to (4.17), but only using PIVP (and hence analytic)
functions. Choose a targeting error γ > 0 such that

2γ+δ/2≤ ε < 1/4, (4.27)

where δ = ‖g− fM‖∞
< 1/2 is the maximum amplitude of the perturbations that can affect our

system of ODEs (we suppose, without loss of generality, that δ/2 < ε) and take the following
system of ODEs

z′1 = c1(fM ◦σ[m](z2)− z1)3 ζε1(t), (4.28)

z′2 = c2(σ[n](z1)− z2)3 ζε2(−t)

with initial conditions z1(0) = z2(0) = x0, where σ is the error-contracting function defined in
(4.2) and c1,c2,m,n,ε1, and ε2 are still to be defined.

We would like that (4.28) satisfies the following property: on [0,1/2],∣∣z′2(t)∣∣≤ γ. (4.29)

This can be achieved by taking ε2 = γ/K, where K is a bound for c2(σ[n](z1)− z2)3 in the
interval [0,1]. Since |x|3 ≤ x4 + 1 for all x ∈ R, we can take ε2 = γ/c2(σ[n](z1)− z2)−4 +γ/c2.
Now notice that z2(0) has an error bounded by ε. This plus (4.29) and the fact that z′2 might be
subjected to perturbations of amplitude not exceeding δ, imply that

|z2(t)− x0| ≤ ε+(δ+γ)/2 = η < 1/2 for t ∈ [0,1/2]. (4.30)

Therefore, for m satisfying σ[m](η) < γ, we have that
∣∣σ[m](z2(t))− x0

∣∣ < γ for all t ∈ [0,1/2].
Hence, from the study of the perturbed targeting equation (4.18), where φ(t) = ζε1(t) and c1 is
obtained accordingly, we have (take ρ= γ and consider (4.27))

|z1(1/2)−ψ(x0)| < 2γ+
δ

2
≤ ε. (4.31)

For the interval [1/2,1] the roles of z1 and z2 are switched. Similarly to the reasoning done for
z2 on [0,1/2], take ε1 = γ/c1(fM ◦σ[m](z2)− z1)−4 +γ/c1 so that on [0,1/2],∣∣z′1(t)∣∣≤ γ.

50

4.6 Robust simulations of Turing machines with polynomial ODEs

From this inequality, (4.31), and the fact that z′2 might be subjected to perturbations of amplitude
not exceeding δ, we get that

|z1(t)−ψ(x0)| ≤ ε+(δ+γ)/2 = η < 1/2 for t ∈ [1/2,1].

Therefore, for n = m, we have
∣∣σ[n](z1(t))−ψ(x0)

∣∣ < γ for all t ∈ [1/2,1]. Hence, from the study
of the perturbed targeting equation (4.18), where φ(t) = ζε2(t) and c2 is obtained accordingly,
we have

|z2(1)−ψ(x0)| < 2γ+
δ

2
≤ ε.

Now we can repeat the procedure for intervals [1,2], [2,3], etc. to conclude that for all j ∈N and
for all t ∈ [j, j+1/2], ∣∣∣z1(t)−ψ[j](x0)

∣∣∣≤ η.

Moreover, z1 is defined as the solution of an ODE written in terms of PIVP functions.

As a corollary, we prove Theorem 4.6.1.

Proof of Theorem 4.6.1. From the previous proof, it follows that∣∣∣z1(t)−ψ[j](x0)
∣∣∣≤ η < 1/2.

Let k be an integer such that σ[k](η) < ε. Then the function y1 defined by y1 = σ[k](z1(t)) is also
a PIVP function (see Theorem 3.2.5) satisfying∣∣∣y1(t)−ψ[j](x0)

∣∣∣≤ ε.

for all j ∈ N and for all t ∈ [j, j+1/2].

51

Chapter 4. Simulation of Turing machines

52

CHAPTER 5

The GPAC and Computable Analysis are
equivalent models

5.1 Introduction

In this chapter we propose a new definition of computability for the GPAC — one that captures
more closely the ideas underlying computable analysis. In that manner we show that functions
that are computable according to recursive analysis are also computable in that new model,
and vice versa. This clarifies some of the issues discussed previously concerning the (non-)
computability of functions like the Gamma function Γ or Euler’s Zeta function ζ.

In Section 5.2 we present our new notion of GPAC-computability and state the main result
of this chapter: on compact intervals, a function is GPAC-computable (in the previous sense) iff
it is computable according to recursive analysis. The proof of this result then follows throughout
Sections 5.3, 5.4, and 5.5.

In Section 5.3 we present the proof of the “if” direction: if f : [a,b] → R is a GPAC-
computable function, then it is computable. In Section 5.4 we present a preliminary theorem
that will be necessary to prove the “only if” direction. Namely, we show that a GPAC can simu-
late an oracle Turing machine in the following sense: given a computable function f : [a,b]→R,
we can design a GPAC with two initial conditions, x∈ [a,b] and an approximation n of a positive
integer n ∈N, such that the GPAC outputs an approximation of f (x) with error bounded by 2−n.

Finally, in Section 5.5 we prove the “only if” direction of the main result of this chapter. As
a corollary, we conclude that the GPAC is equivalent to Type-2 computability, thus completing
the computational characterization of the GPAC given in Chapter 4.

The results of this chapter were partially published in the following references: [BCGH06],
[BCGHar].

5.2 The main result

As we had occasion to see in Section 3.2, the Gamma function Γ as well Euler’s Zeta function ζ
are not PIVP functions, and therefore are not computable by a GPAC, according to Proposition
3.4.5. This becomes a problem if we want to relate the GPAC with computable analysis, since
Γ and ζ are computable in the computable analysis framework [PER89]. Thus, it seems that
the GPAC is a less powerful model that computable analysis, at least if we restrict the GPAC to

53

Chapter 5. The GPAC and Computable Analysis are equivalent models

use computable constants, as in Remark 3.4.8. However, as mentioned in [CMC00, pp. 657-
658], this comparison is based on two non-equivalent definitions of computability and, therefore,
different arguments are needed. The GPAC computes in real time — a very restrictive form of
computation, where given one input t to the GPAC, the output f (t) is immediately computed.
In contrast, in computable analysis, the computation takes infinite time, but we have at all time
partial results that converge to the output.

Following these ideas, it was proved in [Gra04] that if we redefine the notion of GPAC-
computability in a manner that matches more closely the essence underlying computable anal-
ysis, namely the “converging computation” behavior, then one can compute the Γ function as
well as Riemann’s ζ function.

Here we further strengthen this result and show that every computable function can be com-
puted by a GPAC in the above sense. Reciprocally, we show that under some reasonable as-
sumptions, the converse is also true. These “reasonable assumptions” have to do with the fol-
lowing. The GPAC admits arbitrary and hence noncomputable constants, trivially leading to
super-Turing computations. To avoid this problem, we only allow the use of computable con-
stants.

Let us precise our definitions and results.

Definition 5.2.1. A function f : [a,b]→ R is GPAC-computable iff there exist some computable
polynomials p :Rn+1 →Rn, p0 :R→R, and n−1 computable real values α1, ...,αn−1 such that:

1. (y1, ...,yn) is the solution of the Cauchy problem y′ = p(t,y), y(0) = (α1, ...,αn−1, p0(x));

2. There are i, j ∈ {1, ...,n} such that limt→∞ y j(t) = 0 and | f (x)− yi(t)| ≤ y j(t) for all x ∈
[a,b] and all t ∈ [0,+∞) (we assume that y(t) is defined for all t ≥ 0).

The previous definition basically says the following. A function is GPAC-computable if
there are two PIVP functions yi and y j, defined with a polynomial IVP which uses computable
polynomials and computable initial conditions (except for the initial condition defined with the
input x), such that yi(t) converges to f (x) as t → ∞, with error bounded by y j(t).

Remark 5.2.2. In the remaining of this chapter, the expression “GPAC-computable” means a
function computable by a GPAC in the sense of Definition 5.2.1, while other expressions like
“generated by a GPAC” mean functions computed by a GPAC in a standard way (see Sections
3.3 and 3.4), i.e. PIVP functions.

Remark 5.2.3. If we are given a GPAC with initial condition (α1, ...,αn−1, p0(x)) set at time t0 =
0, where α1, ...,αn−1 are fixed computable values, and where x may vary for each computation,
as in Definition 5.2.1, we say that the initial condition x sets the output of the GPAC. The initial
condition includes p0(x) and not x because it is sometimes convenient not to use x directly as
initial condition, but some value that can be easily obtained from it, e.g. 2x.

Let us now state the main result of this chapter.

Theorem 5.2.4. Let a,b ∈ R be computable constants satisfying a < b. A function f : [a,b]→ R
is computable iff it is GPAC-computable.

The remaining sections of this chapter are devoted to the proof of this result.

54

5.3 Proof of the “if” direction

5.3 Proof of the “if” direction

Let f : [a,b]→ R be a GPAC-computable function. We want to show that f is computable in the
sense of computable analysis. By definition, we know that there is a polynomial ODE{

y′ = p(t,y)
y(0) = (α, p0(x))

whose solution has two components yi : R2 → R and y j : R2 → R such that

| f (x)− yi(t, x)| ≤ y j(t, x) and lim
t→∞

y j(t, x) = 0. (5.1)

We note that, according to Theorem 6.2.4, to be proved later in Chapter 6, it follows yi and y j are
computable in (0,∞)× [a,b]. Suppose that we want to compute f (x) with precision 2−n. Then
proceed with the following algorithm.

1. Set t = 1

2. Compute an approximation y j of y j(t, x) with precision 2−(n+2)

3. If y j > 2−(n+2) then set t := t +1 and go to Step 2

4. Compute yi(t, x) with precision 2−(n+1) and output the result

Steps 1, 2 and 3 are used to determine an integer value of t for which |y j(t, x)| ≤ 2−(n+1).
Once this value is obtained, an approximation of yi(t, x) with precision 2−(n+1) will provide an
approximation of f (x) with error 2−n, due to (5.1), thus providing the desired output.

5.4 Simulating partial computations with GPACs

Before entering the proof of the “only if” direction of Theorem 5.2.4, we present in this section a
result that shows that GPACs can simulate oracle Turing machines, in the context of computable
analysis, as in Definition 2.4.10.

From Proposition 4.6.1, we know how to simulate a Turing machine. However the error of
the output is bounded by some fixed quantity ε > 0 whereas in oracle Turing machines, as in
Definition 2.4.10, we would like that the output is given with error bounded by 2−n, where n is
one of the inputs of the machine. The next theorem shows how this can be done with a GPAC.

Theorem 5.4.1. Let f : [a,b]→ R be a computable function. Then there exists a GPAC with an
output yi such that if we set the initial conditions (x,n)∈ [a,b]×R, where |n−n| ≤ ε < 1/2, with
n ∈ N, then there exists some T ≥ 0 such that |yi(t)− f (x)| ≤ 2−n for all t ≥ T .

Before giving the proof of the theorem, we provide some preliminary lemmas. To compute
f (x) with a GPAC, we want to use the hypothesis that f is computable. Hence, it would be
useful to construct a GPAC that, when we set the initial condition x ∈ [a,b], outputs a sequence
of rational numbers converging to p0(x). This sequence could then be used to compute approx-
imations of f (x), as in condition 2 of Proposition 2.4.11. The problem is, given x ∈ [a,b] and
n ∈ N, to get integers i, j, and 2k such that (−1)i j/2k approximates x enough to compute f (x)
with precision 2−n, and to compute the values sgn(i, j,k,n) and abs(i, j,k,n).

55

Chapter 5. The GPAC and Computable Analysis are equivalent models

0.2 0.4 0.6 0.8 1

Figure 5.1: Functions ω1 and ω2. The solid line represents ω1, while the dashed line represents
ω2.

We assume first in what follows that [a,b] ⊆ R+, so that x is always positive. It follows
that i can be considered as the constant 0. Now, from Proposition 2.4.11, it is sufficient to take
k = m(n) (where m is a modulus of continuity), and j' x2m(n).

In the following lemma, g(j,n) is intended to represent abs(0, j,m(n),n). By a barycenter of
x,y ∈ R we mean a value of the form tx+(1− t)y, for t ∈ [0,1]. By other words, a barycenter is
a point on the segment of line joining x to y.

Lemma 5.4.2. Let g : N2 → N be a recursive function, [a,b] ⊆ R+ be a bounded interval, m :
N→ N be a recursive function, and ε be a real number satisfying 0 < ε < 1/4. Then there is a
GPAC with the following property: for all x∈ [a,b] and all j, n∈N satisfying j≤ x2m(n) < j+1,
there exists some T > 0 and some index i such that, when we set initial conditions n, x2m(n), where
|n−n| < ε and

∣∣∣x2m(n)− x2m(n)
∣∣∣ < ε, the output yi of the GPAC satisfies |yi(t)− c| ≤ ε for all

t ≥ T , where c is a barycenter of g(j,n) and g(j+1,n).

Proof. By Theorem 4.6.2 there is a GPACG that when set on initial condition k, n, where
∣∣k− k

∣∣,
|n−n| < 1/3 (the reason why we use 1/3 will be clear later) and k,n ∈ N, ultimately (i.e. at any
time t ≥ T for some T > 0) outputs g(k,n) with an error less than or equal to ε/2 (k is intended
to be j or j+1). Define k1 = x2m(n). We would like to use k = k1 as an initial condition to GPAC
G. However, k1 is not guaranteed to be close to an integer (i.e. within distance 1/3). We now
show how to overcome this. Let us consider two cases:

1. If k1 ∈ [l− 1/4, l + 1/4], for some l ∈ { j, j + 1}, then we can set k = k1. With this initial
condition, the output of GPACG (let us call it y1) will be g(j,n) or g(j+1,n), plus an error
not exceeding ε/2. Therefore, the output satisfies the conditions imposed by the lemma.
Notice that this reasoning extends for the case k1 ∈ [l− 1/3, l + 1/3], because (integer)
initial conditions of the GPAC can be perturbed by an amount bounded by 1/3;

2. If k1 ∈ [j + 1/4, j + 3/4], then we can set the initial condition k = k1 − 1/2. With this
initial condition, the output of GPAC G (let us call it y2) will be g(j,n) plus an error
not exceeding ε/2. Therefore, the output satisfies the conditions imposed by the lemma.
Notice that this reasoning extends for the case k1 ∈ [l+1/6, l+5/6].

The real problem here is to implement both cases in a single GPAC. Since GPACs do not
allow the existence of discontinuous functions that might work like a case checker, we have to
resort to a different approach.

56

5.4 Simulating partial computations with GPACs

0.2 0.4 0.6 0.8 1

-1

1

2

3

Figure 5.2: Function ϒ.

From the study of the previous cases, we know the following: there is a GPAC G which on
initial conditions k1 or k1−1/2, outputs y1 or y2, respectively. We now consider a new GPAC,
obtained with two copies of G, but where one copy has initial condition set to k1, and the other
has initial condition set to k1−1/2 (from Remark 5.2.3, both cases are covered by the expression
“each copy has initial condition set to k1”). Hence, this GPAC outputs both y1 and y2. We now
combine these outputs to get the desired result.

Assume we had two periodic functions ω1 and ω2, with period 1 and graphs similar to
the ones depicted in Fig. 5.1. We do not explicitly define ω1 and ω2, but rather state their
most important properties: (i) for every t ∈ R, ω1(t) ≥ 0, ω2(t) ≥ 0, and ω1(t)+ω2(t) > 0, (ii)
ω1(t) > 0 implies that t ∈ (a− 1/3,a + 1/3) for some a ∈ N, and (iii) ω2(t) > 0 implies that
t ∈ (a + 1/6,a + 5/6) for some a ∈ N. Remark that, for all a ∈ N, (ii) implies ω1(t) = 0 for all
t ∈ (a+1/3,a+2/3), and (iii) implies ω2(t) = 0 for all t ∈ (a−1/6,a+1/6). Then, taking into
account the previous two cases described above, one sees that we could output the value

y =
ω1(k1)y1 +ω2(k1)y2

ω1(k1)+ω2(k1)
. (5.2)

that would be correct in any of the two cases above. Indeed, the only case where both ω1(k1) and
ω2(k1) are nonzero is whenever k1 ∈ [l + 2/3, l + 5/6], where both outputs y1 and y2 are valid,
and the result is a barycenter of y1 and y2, i.e. a barycenter of g(j,n) and g(j+1,n) plus an error
not exceeding ε/2.

However, ω1 and ω2 are not GPAC-generable since they are not analytic. Alternatively, we
will use closed-form functions that approximate ω1 and ω2. In particular, we use the function l2
defined in Proposition 4.2.5. We also use the periodic function ϒ : R→ R defined by

ϒ(x) = 1+2sin2π(x+1/4)

with period 1 and whose graph is depicted in Fig. 5.2. Notice that for x ∈ [1/3,2/3], ϒ(x) ≤ 0,
and for x ∈ [−1/4,1/4], ϒ(x)≥ 1. Therefore, we can take

ω1(x) = l2(ϒ(x),1/δ)' ω1(x), ω2(x) = l2(ϒ(x−1/2),1/δ)' ω2(x)

since |ω1(x)−ω1(x)| ≤ δ, for x ∈ [a + 1/3,a + 2/3], where a ∈ Z, and similarly for ω2. More-
over, |ω1(x)−1| ≤ δ for x ∈ [a−1/4,a+1/4], and similarly for ω2, which implies that

ω1(t)+ω2(t) > 1−2δ > 0,

57

Chapter 5. The GPAC and Computable Analysis are equivalent models

t

t

y(t)

f
f1

f2

α

Figure 5.3: Switching functions. Functions f1 and f2 are represented in the first graph by the
dashed and dotted line, respectively. The resulting function is represented in gray. The second
graph displays the control function y, where α is the threshold.

for all t ∈ R. Now, we just have to substitute (5.2) by

y' ω1(k1)y1 +ω2(k1)y2

ω1(k1)+ω2(k1)
. (5.3)

If we pick 1/δ = γ(y1 + y2 + 1), for some γ > 0 (the value 1 is to avoid a singularity for y1 =
y2 = 0), we conclude that ω1(k1)y1 approaches ω1(k1)y1 with error bounded by γ, and similarly
for the other term. Moreover, ω1(k1)+ω2(k1) > 1−2γ. This implies that y in (5.3) is computed
with error bounded by 2γ/(1− 2γ) < ε/2 for γ sufficiently small. By other words, this yields
a GPAC with an output yi such that for some T > 0, |yi(t)− c| ≤ ε for all t ≥ T , where c is a
barycenter of g(j,n) and g(j+1,n).

In many occasions it will be useful to switch the behavior of a GPAC upon some “control
function” y : R→ R which is also the output of some GPAC. Ideally, we would like to have the
situation pictured in Fig. 5.3, which illustrates a coupled system that behaves like a “switch”.
There one can see on the above graph two functions f1 and f2, generated by GPACs. The graph
below represents the control function and a value α ∈ R called the threshold value. Then we
would like to have a GPAC with output z such that, if y(t) < α, then z(t) = f1(t), and z(t) = f2(t)
otherwise.

Of course, the previous idea cannot be implemented with a GPAC, since we allow immediate
transitions between two distinct functions, which would yield a discontinuous function. To
remedy that, we allow some transition zone around the threshold value (in gray in the second
graph of Fig. 5.3).

The construction of switching functions has to be further relaxed to cope with the fact that
only analytic functions can be used. Therefore, function z in the following lemma will just be
an approximation of f1 and f2 (cf. Corollary 2.5.4).

58

5.4 Simulating partial computations with GPACs

Lemma 5.4.3 (Switching functions). Let y, f1, f2 :R→R be functions generated by GPACs (y is
called the control function) and ε > 0. Then there is a function f : R→ R generated by a GPAC
with the following property: for all t ∈ R,{

| f (t)− f1(t)| ≤ ε if y(t)≤ α−1/4
| f (t)− f2(t)| ≤ ε if y(t)≥ α+1/4.

Proof. This can be done in a quite straightforward way using the function l2 introduced in Propo-
sition 4.2.5. It suffices to take

f = f1.l2

(
α+1/2− y(t),

f1 + f2
ε/2

)
+ f2.l2

(
y(t)−α+1/2,

f1 + f2
ε/2

)
.

It is easy to see that f satisfies the given conditions.

We will mainly use this lemma to switch between dynamics simulating different Turing ma-
chines. Suppose that the GPACs z′1 = p1(t,z1) and z′2 = p2(t,z2) simulate two Turing machines
T M1 and T M2 as in Theorem 4.6.1, respectively. Then if we have a control function yi(t), pro-
vided by the output of a third GPAC y′ = p(t,y), we can build a function f that switches between
f1 = p1 and f2 = p2, yielding a new system y′(t) = p(t,y(t)), z′(t) = f (t,z(t),yi(t)), simulating
the transition function of T M1 and T M2, according to the value of yi(t). From Proposition 3.2.5,
this corresponds to a GPAC.

A useful application will be to simulate two Turing machines T M1 and T M2 working in
series, i.e. where the output of T M1 is to be used as the input of T M2.

Indeed, when simulating T M1 with a GPAC as in Theorem 4.6.1 we can suppose that the
states are coded by the integers 1, . . . ,m, where state m corresponds to the halting state, and
that there is a variable yi of the GPAC giving the current state of T M1 in the simulation with
error bounded by 1/4 for every t ∈ [n,n + 1/2]. Therefore, if we set α = m− 1/2 and y = yi in
Lemma 5.4.3, we have a way of switching between the dynamics of a GPACs simulating T M1
and another simulating T M2 upon the value of yi, i.e. depending on whether T M1 is still running,
or already halted.

We can obtain a GPAC having the desired property in the following manner. The initial
condition sets the input of T M1 and this GPAC simulates T M1 until it halts. When this happens,
the variables coding the tape contents have the input of T M2. Then we switch the evolution law
of this GPAC so that now it simulates T M2, thus giving the desired output (to avoid interference
problems, the control function should be given by a separated GPAC that just simulates T M1
and that stays in a halting configuration after this Turing machine halts).

From the robustness conditions of Theorem 4.6.2, by choosing ε sufficiently small in the
lemma above one can ensure that errors will stay controlled at each step, so that a correct simu-
lation of T M1 and then T M2 will happen.

In some cases, we will need to switch to a dynamics that sets one variable to some value
coded in another variable. This can be done with the following lemma.

Lemma 5.4.4 (Resetting configurations). Let ε ∈ R satisfy 1/4 ≥ ε > 0. Let y be some GPAC
generated function and t0 < t1 be some reals.

There is a polynomial p : Rm+n+1 → Rn, with n ≥ m, such that the solution of z′ = p(t,z,y)
with some fixed initial condition at t0 satisfies ‖(z1(t1), . . . ,zm(t1))− k‖∞ < ε, whenever ‖y(t)−
k‖∞ ≤ ε for all t ∈ [t0, t1] for some vector k ∈ Nm.

Proof. This lemma follows from the study carried out in Section 4.6 for the perturbed version of
the Construction 4.5.1, where a “target” must be approached. The error done is given by (4.24),
which can then be corrected by applying the function σ of Proposition 4.2.1 to the variable(s)
approaching k a fixed number of times. The resulting variable is the output of a GPAC.

59

Chapter 5. The GPAC and Computable Analysis are equivalent models

Proof of Theorem 5.4.1. For simplicity, let us suppose that a > 0 so that we don’t have to care
about the sign of x ∈ [a,b]. This is not problematic since, if a < 0, we can always shift [a,b] by
an amount k ∈ N such that a+ k > 0, to define a new computable function h : [a+ k,b+ k]→ R
satisfying h(x) = f (x− k).

Suppose also that f (x) always takes the same sign for all x ∈ [a,b]. The case where the sign
of f (x) switches can be reduced to this one. Indeed, since [a,b] is compact, there is some l ∈ Z
such that g(x) = l + f (x) > 0, for all x ∈ [a,b]. Once we have a GPAC computing g(x), we just
have to subtract l to the output to obtain a GPAC computing f (x). So, to fix ideas, let us suppose
that f (x) always takes positive values.

Let us now proceed with the proof. Since f is computable, according to Proposition 2.4.11,
and previous discussions, there are recursive functions m : N→ N, abs (the function sgn is
no longer needed since f (x) takes positive values) such that given x ∈ [a,b] and non-negative
integers j,n satisfying ∣∣∣ j/2m(n)− x

∣∣∣ < 2−m(n), (5.4)

one has ∣∣∣∣abs(0, j,m(n),n)
2n − f (x)

∣∣∣∣ < 2
2n .

We will design a GPAC with an output yi such that, for some T > 0, for all t ≥ T , yi(t) is
always close to

abs(0, j,m(n),n)
2n , (5.5)

the error between the two values being bounded by 2−n. This will be sufficient to prove the
theorem.

Let us show how we can compute (5.5) with a GPAC. Let T M0 and T M1 be Turing machines
computing 2n and 2m(n) on input n. From Theorem 4.6.1, there are GPACs simulating these
Turing machines. This yields two GPACs with outputs y1 and y2, so that on initial condition n
close to n, one has |y1(t)−2n| ≤ ε and |y2(t)−2m(n)| ≤ ε for all t ≥ T1, for some T1. Moreover,
since [a,b] is bounded, we can suppose that |xy2(t)− x2m(n)| ≤ ε (if necessary, apply σ a fixed
number of times, independent of n, to y2). The values n and xy2 can then be used to feed the
GPAC described in Lemma 5.4.2, with g(j,n) = abs(0, j,m(n),n). This GPACU3 has an output
y3, which, after some time T2, yields a barycenter of abs(0, j,m(n),n) and abs(0, j+1,m(n),n)
plus an error bounded by ε. Since m is a modulus of continuity,

|abs(0, j,m(n),n)−abs(0, j+1,m(n),n)| ≤ 1.

This implies that the output ofU3, let us call it abs(j,n), satisfies

|y3(t)−abs(0, j,m(n),n)| ≤ 1+ε

for all t ≥ T2. Since [a,b] is bounded, there is some η ∈ N such that abs(0, j,m(n),n)≤ 2nη for
all n ∈ N and all j satisfying (5.4) for every x ∈ [a,b]. Therefore∣∣∣∣y3(t)

y1(t)
− abs(0, j,m(n),n)

2n

∣∣∣∣≤ ε.abs(0, j,m(n),n)+2n(1+ε)
2n(2n−ε)

≤ εη+1+ε

2n2−1 ≤ λ2−n (5.6)

with λ = 2(εη+ 1 + ε) independent of j,n, for all t ≥ T = max{T1,T2}, thus giving an appro-
priate approximation of abs(0, j,m(n),n)/2n, with error bounded by λ2−n.

60

5.5 Proof of the “only if” direction

Remark 5.4.5. Notice that after the time T referred to in Theorem 5.4.1, the corresponding
GPAC continues to output forever an approximation of f (x) with error bounded by 2−n. This is
because, as assumed in Section 4.2, the halting configurations of the Turing machines simulated
by the GPAC are fixed points (modulo some error bounded by ε).

5.5 Proof of the “only if” direction

Our idea is the following. From Theorem 5.4.1, we already know how to generate f (x) with
precision 2−n with a GPAC G fed with approximations of n and x2m(n) as initial conditions, say
in components y1 and y2, respectively. Hence, to get a GPAC with an output converging to f (x),
it suffices to implement the previous theorem in a cyclic way: start the computation with n = 0.
When the computation finishes, increment n, repeat the computation, and so on.

To do so, we need to address several problems. The first one is to know when the computa-
tion with the current n is over. Indeed, Theorem 5.4.1 tells us that this happens after some time
T , but does not give us any procedure to compute this instant T .

This can be solved by building another GPAC that provides a corresponding control function.
Indeed, consider a clocking Turing machine T M0 that basically simulates all involved Turing
machines in the constructions of Theorem 5.4.1 on all possible arguments x ∈ [a,b] of type k2n,
with k ∈ Z (that are finitely many). This guarantees that whenever T M0 terminates on input
n, we are sure that all involved Turing machines in the constructions of Theorem 5.4.1 have
had enough time to do their computations in GPAC G, and so that the output is correct. The
description of T M0, on input n ∈ N, is as follows:

1. Compute the first k1 ∈ Z such that k1/n≥ a, and the last k2 ∈ Z such that k2/n≤ b

2. For i = k1 to k2 simulate the Turing machines involved in the proof of Theorem 5.4.1 on
input (i,n).

Observe that Step 1 can be implemented because, by hypothesis, a and b are computable
constants. The Turing machine T M0 can be simulated by a GPAC (independent from GPAC G).
The output yi of this GPAC that encodes the state of T M0 can be used as a control function.
Indeed, whenever it becomes greater than m0− 1/2, where m0 is the number of states of T M0,
this means that T M0 halted, and hence the output of G is correct. This solves our first problem.

Actually, we need to simulate G on increasing n. So, more precisely, we consider a Turing
machine T M1 that does the following:

1. Start with n = 0

2. Simulate T M0 with input n

3. Increment n and go to Step 2.

Suppose, without loss of generality, that this Turing machine has m1 states, where m1 is the
halting state (that is never reached), and m1−1 is a special state, only reached in the transition
of Step 3 to Step 1. Value m1−3/2 can then be used a threshold. Whenever the output encoding
the state of T M1, call it yi, is higher than m1−3/2, we know that the computation of G is over
for the corresponding n.

We can then use Lemmas 5.4.3 and 5.4.4 so that the control function yi resets the value of y1
and y2 to approximations of n+1 and x2m(n+1), respectively, and begins a new cycle by allowing
again the simulation of G on these new values for y1 and y2.

61

Chapter 5. The GPAC and Computable Analysis are equivalent models

So far we have seen that while y1 and y2 are, respectively, approximations of n and x2m(n),
one of the components of the system, say y j, approaches f (x) with error 2−n. However, during
the following time period, when n is incremented, y j fluctuates before converging to f (x) with
error 2−(n+1). Therefore, y j doesn’t match condition 2 of Definition 5.2.1 for all times.

To define a component of the system that converges to f (x) with time, we use the compo-
nents of the system that encode the values of abs(0, j,m(n),n) and 2n in each final stage of a
computation period. By a computation period we mean the time gap that occurs between cor-
rects results for n and n + 1. We create a pair of components, say z1,z2, that are reset to the
values of abs(0, j,m(n),n) and 2n respectively, at the end of each computation period. This can
be done with Lemma 5.4.4 using the control function yi. More precisely, when yi is above the
threshold, z1,z2 approach abs(0, j,m(n),n) and 2n. During the following computation period,
i.e. while yi is below the threshold, z1,z2 are kept approximately constant. This can be done with
Lemma 5.4.3 by switching the dynamics from our current system to a GPAC that simulates a
Turing machine in a fixed configuration. Again, we use yi as the control function.

Hence, a sufficient approximation of f (x) is then given by z1/z2, and a bound on current
error on f (x), as required in Definition 5.2.1, is given by 1/z2 both values being valid at any
time.

62

CHAPTER 6

The maximal interval problem

6.1 Introduction

This chapter introduces new results about the degree of computational resources needed to com-
pute the maximal interval of existence for an IVP defined with an ordinary differential equation.
In Section 6.2, we give upper bounds for these computational resources, under very mild hy-
pothesis. In particular, we show that if the IVP is solved over an r.e. set (with computable data),
then the corresponding maximal interval is also a r.e. set.

Nevertheless, we show in Section 6.3 that, under the previous hypothesis, the maximal in-
terval can be non-recursive. This section shows the result for piecewise linear functions, while
Section 6.4 shows the same result, with a different approach, for the stronger case of analytic
functions. In Section 6.5, we show that even the partial problem of deciding if the IVP has a
bounded maximal interval or not, for the analytic case, is also undecidable. This resulted is also
derived for polynomial IVPs is Section 6.6, using techniques from Chapter 4. In particular, we
show that this problem is undecidable for polynomial IVP of degree 56.

The results of this chapter were partially published in the following references: [GZB06],
[GZB07].

6.2 The maximal interval is r.e. open

In this section, we give a computable counterpart for the fundamental existence-uniqueness the-
ory for the initial-value problems {

x′ = f (t, x)
x(t0) = x0

(6.1)

presented in Section 2.6. To achieve this purpose, we begin by presenting computable counter-
parts of the notions involved in that section. Recall (Definition 2.6.1) that a function f : E →Rm,
E ⊆ Rl, is said to be locally Lipschitz on E if it satisfies a Lipschitz condition on every compact
set V ⊂ E. The following definition gives a computable analysis analog of this condition.

Definition 6.2.1. Let E =∪∞
n=0B(an,rn)⊆Rl, where B(an,rn)⊆ E, be a r.e. open set. A function

f : E → Rm is called effectively locally Lipschitz on E if there exists a computable sequence
{Kn} of positive integers such that

| f (x)− f (y)| ≤ Kn |x− y| whenever x,y ∈ B(an,rn).

63

Chapter 6. The maximal interval problem

Strictly speaking, it would only be necessary to require in the above definition that the se-
quence {Kn} is computable and formed by positive reals. However, given a (computable) local
Lipschitz constant Ln for a compact set, any integer Kn ≥ Ln is also a local Lipschitz constant
for that set, and therefore there is no loss of generality in assuming that the sequence {Kn} in
Definition 6.2.1 consists only of integers.

In the rest of the chapter, we shall deal with the case of interest for ODEs, that is, E ⊂ Rm+1

and f : E → Rm. From now on E ⊆ Rm+1 will always denote a r.e. open set, and {an}, {rn}, and
B(an,rn) are the corresponding sequences in Definition 2.4.4. Also for notational convenience,
we will sometimes simply write f for f (t, x) and refer to t ∈ R as the first argument and x ∈ Rm

as the second argument of f . To get a computable counterpart of Proposition 2.6.4, we introduce
the following definition.

Definition 6.2.2. Let E = ∪∞
n=0B(an,rn) ⊆ Rl, where B(an,rn) ⊆ E, be a r.e. open set. A func-

tion f : E → Rm is called effectively locally Lipschitz in the second argument if there exists a
computable sequence {Kn} of positive integers such that

| f (t, x)− f (t,y)| ≤ Kn |y− x| whenever (t, x),(t,y) ∈ B(an,rn).

Obviously an effectively locally Lipschitz function f : E → Rm is also effectively locally
Lipschitz on the second argument. We now extend Lemma 2.6.3 to computable functions in the
following way.

Theorem 6.2.3. Assume that f : E → Rm is a computable function in C1(E) (meaning that both
f and its derivative f ′ are computable). Then f is effectively locally Lipschitz on E.

Proof. Let Kn be an integer greater than or equal to maxx∈B(an,rn)
| f ′(x)|. Since f ′,an,rn are

computable, the real number maxx∈B(an,rn)
| f ′(x)| is also computable (notice that, because f ′

is computable, it has a modulus of continuity that can be used to obtain the maximum over
B(an,rn) within any preassigned precision). Moreover, we may assume that the sequence {Kn}
is a computable sequence of positive integers. Now, for any x,y ∈ B(an,rn), let u = y− x. Then
x + su ∈ B(an,rn) for 0 ≤ s ≤ 1 because B(an,rn) is a convex set. Define F : [0,1] → Rn by
F(s) = f (x+ su). By the chain rule

F′(s) = f ′(x+ su) ·u = f ′(x+ su) · (y− x).

Therefore,

| f (x)− f (y)|= |F(1)−F(0)|=
∣∣∣∣∫ 1

0
F′(s)ds

∣∣∣∣≤ ∫ 1

0
| f ′(x+ su) · (y− x)|ds≤ Kn|x− y|.

Let us now consider the IVP (6.1) and prove the main result of this section.

Theorem 6.2.4. Let E ⊆ Rm+1 be a r.e. open set and f : E → Rm be a computable function that
is also effectively locally Lipschitz in the second argument. Let (α,β) be the maximal interval
of existence of the solution x(t) of the initial-value problem (6.1), where (t0, x0) is a computable
point in E. Then (α,β) is a r.e. open interval and x is a computable function on (α,β).

Proof. We consider the right maximal interval (t0,β) and prove (t0,β) is r.e. open and x is com-
putable on it. The same argument applies to the left maximal interval (α, t0). For simplicity, we
assume that E is an open subset of R2.

64

6.2 The maximal interval is r.e. open

Since {an} and {rn} are computable sequences and f is a computable function on E, both
sequences {Mn}, Mn = maxz∈B(an,rn)

| f (z)|+1, and {Kn} as defined in Definition 6.2.2 are com-
putable, where z = (t, x). A ρ-name of z is used as an oracle in computations involving z on
oracle Turing machines.

Next we construct three (oracle) Turing machines, denoted as T M1, T M2 and T M3. Let T M1
be the Turing machine defined as follows: on any input {zk}k∈N, where {zk}k∈N is a ρ-name of
some z ∈ E, T M1 computes |zk−an| and halts if |zk−an| < rn−2−k+1. In this case, we say that
the machine T M1 halts at (k,n). Obviously the machine will halt at any given ρ-name of every
z ∈ E and if the machine halts at (k,n), then B(z,2−k)⊂ B(an,rn). The output of T M1, on input
{zk}k∈N, is the least (first) integer 〈k,n〉 (cf. (2.1)) such that T M1 halts at (k,n).

Let T M2 be the Turing machine defined as follows: on any input ρ-name {z∗j} j∈N of z∗ =
(t∗, x∗) ∈ E, positive integers M, K, and L satisfying B(z∗,2−L)⊂ E, max|z−z∗|≤2−L | f (z)|+1 ≤
M, and | f (z1)− f (z2)| ≤ K|x1 − x2| for all z1 = (t, x1),z2 = (t, x2) ∈ B(z∗,2−L), T M2 outputs
the solution of the IVP {

x′ = f (t, x)
x(t′) = x∗

over the time interval [t∗, t∗ + c∗], where c∗ = 2−L/M. T M2 can be constructed by making use
of the classical proof of Picard-Lindelöf’s theorem. The following construction follows essen-
tially the proof of Theorem 3.1 of [CL55]. Let c∗ = 2−L/M and I = [t∗, t∗ + c∗]. Define the
successive approximations xk on I as follows: x0(t) = x∗ and xk+1(t) = x∗+

∫ t
t∗ f (s, xk(s))ds for

k = 0,1,2, By induction on k it can be shown that every xk exists on I, xk ∈ C1 there, and
(t, xk(t)) ∈ B(z∗,2−L) for all t ∈ I. Since f is a computable function and both integration and
primitive recursion are computable operators, the sequence {xk} of the successive approxima-
tions is computable from (t∗, x∗) plus the positive integers M, K and L. Also it can be shown
that xk converges uniformly on I to a continuous limit function x, which is the solution of the
given initial-value problem. Moreover, an upper bound for the error in approximating the solu-
tion x by the kth approximation xk is easily calculable by the definition of xk, and is given by
|xk(t)− x(t)| ≤ M

K
(Kc∗)k+1

(k+1)! eKc∗ , t ∈ I. It remains to show how T M2 works. On any input ρ-name
{z∗j} j∈N of z∗ = (t∗, x∗)∈ E, positive integers M, K and L satisfying the required conditions plus
any n ∈ N (output accuracy) and any ρ-name of t (input as an oracle), t ∈ [t∗, t∗+ c∗], T M2 first
computes a k ∈ N such that M

K
(Kc∗)k+1

(k+1)! eKc∗ ≤ 2−(n+1). Then it computes a rational vector r such

that |r− xk(t)| ≤ 2−(n+1), and subsequently |r− x(t)| ≤ 2−n.
Let T M3 be a Turing machine defined as follows: the input to T M3 is the same as T M2 and

the output of T M3 is a ρ-name of (t∗+ c∗, x(t∗+ c∗)) ∈ E.
Next we present an algorithm that computes a sequence {bl}l∈N converging to β from below.

Fix a ρ-name {z0k}k∈N of z0 = (t0, x0). On input l, set j = 0. Now input {z0k} into T M1.
Let n = 〈k0,n0〉 be the output of T M1 on {z0k}. By the construction of T M1, B(z0,2−k0) ⊂
B(an0 ,rn0). Next input {z0k}k∈N,Mn0 ,Kn0 ,k0 into T M2 and T M3. Then T M2 will output the
solution of (6.1) over the time interval [t0, t0 + c0], where c0 = 2−k0/Mn0 . Denote this solution
as x0 : [t0, t0 + c0]→ Rm. Separately, the machine T M3 will output a ρ-name {z1k}k∈N for z1 =
(t0 + c0, x0(t0 + c0)) ∈ E. Now increase j by 1, i.e. set j = 1. Repeat the above computation
on the input {z1k}k∈N, i.e. input {z1k}k∈N into T M1. Let n = 〈k1,n1〉 be the output of TM1.
Next input {z1k}, Mn1 , Kn1 and k1 into T M2 and T M3. Then T M2 will output a sequence of
rational polynomials which rapidly converges to the solution x1 : [t0 + c0, t0 + c0 + c1]→ Rm of
the problem {

x′ = f (t, x)
x(t0 + c0) = x0(t0 + c0),

65

Chapter 6. The maximal interval problem

where c1 = 2−k1/Mn1 . Also separately, the machine T M3 will output a ρ-name {z2k}k∈N of
z2 = (t0 + c0 + c1, x1(t0 + c0 + c1)) ∈ E. Now increase j by 1 again, i.e. set j = 2. Repeat the
computation on the input {z2k}k∈N. Halt the computation on input l the first time when j > l and
output bl = t0 +c0 +c1 + . . .+cl. Since l 7→ bl is an input-output function of a Turing algorithm,
the increasing sequence {bl}l∈N of rational numbers is a computable sequence. Also by the
uniqueness of the solution of (6.1) and Pour-El/Richards’ Patching Theorem [PER89], it follows
that the map xbl : [t0,bl]→ E, xbl(t) = x j(t) if t0 + c0 + . . .+ c j−1 ≤ t ≤ t0 + c0 + . . .+ c j−1 + c j,
0 ≤ j ≤ l with c−1 = 0, is the solution of the initial-value problem (6.1) over the time interval
[t0,bl] and this solution is computable. Let O = ∪∞

l=0(t0,bl]. To complete the proof, we need
to show that (a) O is the right maximal interval of existence of the solution of (6.1); (b) O is
r.e. open; and (c) x is computable on O. For simplicity, we take t0 = 0.

To prove (a), assume that O is not the maximal interval of existence of the solution of the
problem (6.1). Then (6.1) has a solution on an interval (0,β) with O $ (0,β). Choose β∗ ∈
(0,β) \O. Then O $ (0,β∗] $ (0,β). Since {bl}l∈N is a monotonically increasing sequence
bounded above by β∗, it converges to a limit γ less than or equal to β∗. Since γ ∈ (0,β), (γ, x(γ))
must lie in E. Then there exists an n such that (γ, x(γ)) ∈ B(an,rn). Moreover, there is also
an integer M such that (γ, x(γ)) ∈ B((γ, x(γ)),2−M+2) ⊂ B(an,rn). Since x : [0,β∗] → Rm is
continuous and bl → γ as l → ∞, it follows that x(bl) → x(γ) as l → ∞. Consequently there
exists an integer N such that

(bN , x(bN)) ∈ B((bN , x(bN)),2−M+1)⊂ B((γ, x(γ)),2−M+2)⊂ B(an,rn)

and
bN + min

0≤〈i, j〉≤〈M+2,n〉
2−i/M j > γ.

We observe that for any ρ-name {yk} of (bN , x(bN)),

|yM+2−an| ≤ |yM+2− (bN , x(bN))|+ |(bN , x(bN))−an|
< 2−(M+2) + rn−2−M+1

= rn−2−(M+2)+1(4−1/2) < rn−2−(M+2)+1.

By the construction of the machine T M1 it follows that on any ρ-name of (bN , x(bN)) given as
input, T M1 will halt no later than 〈M +2,n〉. Thus bN+1 = bN +cN+1, where cN+1 = 2−i/M j for
some 〈i, j〉 less than or equal to 〈M +2,n〉, which implies that bN+1 > γ. There is a contradiction
because {bl}l∈N is an increasing sequence converging to γ. This completes the proof of (a).

We now prove (b). Since by Proposition 2.6.4 the maximal interval of existence is open,
then O is an open interval. It is also independent of the choice of ρ-names of x0. By the proof
of (a), it follows that O = ∪∞

l=0(0,bl] = ∪∞
l=0(0,bl). Since {bl}l∈N is a computable sequence of

rational numbers, O is r.e. open by definition.
Finally we prove (c), that is, x is computable on O. Recall that O = ∪∞

l=0(0,bl) and {bl}l∈N
is a computable sequence of rational numbers. For any t ∈ O, to compute x(t), we first compute
an l ≥ 0 such that t < bl and then compute xbl(t). By definition, x(t) = xbl(t).

We mention that the above proof is effective in the sense that given (E, f , t0, x0), one can
compute (α,β, x), β from below and α from above, i.e. one can compute a sequence of rationals
that converges to β from below and a sequence of rationals that converges to α from above. How-
ever, the rate of the convergence might not be computable, i.e. α and β can be noncomputable,
as we show in the next section.

66

6.3 ... But not recursive

6.3 ... But not recursive

In this section, we present some noncomputability results concerning ODEs. In particular, we
show that for the initial-value problem (6.1) defined by the computable data f and (t0, x0), the
maximal interval may be noncomputable. We will present two versions of this result; the proof
methods are different and the results are interesting on their own. In the first case, where only
continuity is required, we can explicitly construct f with a finite expression on bounded domains.
For that reason, we prove a preliminary lemma. The second result is for the stronger case where
f is analytic, but lacks the finiteness feature: the function f is defined as a (computable) power
series. The latter case will be studied in the next section.

Lemma 6.3.1. Let a : N→ N be a computable function. Then there exists a computable and
effectively locally Lipschitz function f : R→ R such that the unique solution of the problem{

x′ = f (x)
x(0) = 0

(6.2)

is defined on a maximal interval (−α,α) with

α=
∞

∑
i=0

1
2a(i) .

Proof. We only need to construct the function f . The idea is as follows: f is constructed piece-
wisely on intervals of the form [i, i + 1], i ∈ N (for negative values, we take f (x) = f (|x|)) in
such a way that, for a fixed i, the solution of the initial-value problem

x′ = f (x), x(0) = i (6.3)

satisfies x(2−a(i)) = i+1, which implies that the solution of the problem x′ = f (x) and x(0) = 0
will satisfy x(2−a(0)) = 1, x(2−a(0) +2−a(1)) = 2, ..., or more generally

x

(
n

∑
i=0

2−a(i)

)
= n+1, for all n ∈ N.

Notice that f does not depend on t and therefore the solution is invariant under time translations.
If we take α= ∑

∞
i=0 2−a(i), then x(t)→ ∞ as t → α−. For t < 0, since we required f (x) = f (|x|),

(6.3) implies that x(t)→−∞ as t →−α+. Therefore the maximal interval must be (−α,α).
We now construct the desired function f on intervals of the form [i, i + 1], i ∈ N. Since f

must be continuous, we need to glue the values of f at the endpoints of these intervals. This is
achieved by assuming that f (i) = 1 for all i ∈ N (in principle, the value of 1 is rather arbitrary;
however some singularities may arise when we consider other values, e.g. 0).

The function f is defined on each interval [i, i + 1] as suggested by Fig. 6.1: f is piecewise
linear and consists of three line segments, which meet at points xi = x(ti,1) and yi = x(ti,2), with
0 < ti,1 < ti,2 < 2−a(i) and i = x(0) < xi < yi < i + 1. The points xi and yi are to be defined. For
the moment let us assume that a(i)≥ 1. The more general case a(i)≥ 0 will be dealt with later
in the proof. We now define the function f on the interval [i, i+1] as follows:

f (x) =


1+(x− i)2a(i)/(xi− i) if x ∈ [i, xi)
1+2a(i) if x ∈ [xi,yi)
1+2a(i)− (x− yi)2a(i)/(i+1− yi) if x ∈ [yi, i+1)

67

Chapter 6. The maximal interval problem

x

f (x)

1+h

1

i xi yi i+1

h

Figure 6.1: Sketch of the function f on the interval [i, i+1], for i ∈ N.

i.e. assume that h = 2a(i) in Fig. 6.1. Supposing that xi and yi are equidistant from i and i + 1,
respectively, and assuming that the solution x(t) of the initial-value problem x′ = f (x), x(0) = i
satisfies x(2−a(i)) = i+1, then one obtains the following values for xi and yi:

xi = i+
1−∆i

2
, yi = i+

1+∆i

2
,

where

0 < ∆i =
2−a(i)−2−a(i) ln(2a(i) +1)

(1+2a(i))−1−2−a(i) ln(2a(i) +1)
< 1.

It remains to treat the general case where a(i)≥ 0. This can be easily done as follows. First
define the recursive function a∗ : N→ N by a∗(i) = a(i)+1. Using the previous result, we can
construct an IVP x′ = f (x), x(0) = 0 with maximal interval (−α∗,α∗), where

α∗ =
1
2
α, α=

∞

∑
i=0

1
2a(i) .

Thus, if in the previous problem time is slowed down by a linear factor of 1/2, i.e. the change
of independent variables t̃ = t/2 is performed, we arrive at an initial-value problem x′ = f (x)/2,
x(0) = 0 whose maximal interval of existence is (−α,α).

Theorem 6.3.2 (continuous case). There exists a continuous computable and effectively locally
Lipschitz function f : R→ R such that the unique solution of the problem{

x′ = f (x)
x(0) = 0

is defined on a noncomputable maximal interval.

Proof. From Proposition 2.4.3, if a : N→ N is a one to one recursive function generating a re-
cursively enumerable nonrecursive set A, then α= ∑

∞
i=0 2−a(i) is a noncomputable real number.

Consequently, the open interval (−α,α) is noncomputable. The theorem now follows immedi-
ately from the previous lemma.

The function f in Theorem 6.3.2 can be constructed so that f is of class C∞ and all its
derivative are computable functions (just “smooth” the “corners”). This condition matches the
assumption set down in Theorem 6.2.4. Thus, Theorem 6.2.4 gives rise to the best possible result
concerning computability of a maximal interval for smooth functions.

68

6.4 Analytic case

6.4 Analytic case

We now show that the result of Section 6.3 can be strengthened to cover the case of computable
analytic functions.

Lemma 6.4.1. Let a : N→ N be a one to one recursive function generating a recursively enu-
merable nonrecursive set. Then there is a computable analytic function ϕ with the following
properties:

1. ϕ is defined on (−α,α), where α = ∑
∞
i=0 2−a(i) is a noncomputable real (cf. Proposition

2.4.3);

2. ϕ(x)→±∞ as x →±α∓;

3. ϕ : (−α,α)→ R is odd and bijective.

Proof. Define ϕ as

ϕ(x) =
∞

∑
n=0

anxn, an =

{ (
∑

n
i=0 2−a(i)

)−n
if n is odd

0 if n is even

The radius of convergence of this function is given by

R =
1

lim
n→∞

n
√

an
=

∞

∑
i=0

2−a(i) = α.

Moreover, one has a2n+1 > 1/α2n+1, which in turn implies

ϕ(x) =
∞

∑
n=0

a2n+1x2n+1 >
∞

∑
n=0

(x
α

)2n+1
.

Therefore ϕ(x)→+∞ as x→ α−. Since ϕ is odd by construction, it follows that ϕ(x)→−∞ as
x →−α+. Note also that

ϕ′(x) =
∞

∑
n=0

(n+1)an+1xn (6.4)

and thus ϕ′(x) > 0 for all x ∈ (−α,α) (all coefficients (n+1)an+1 are nonnegative, and only
even powers have nonzero coefficients). This implies that ϕ is injective and therefore bijective
according to condition (2) of the statement. It also follows from (6.4) and our choice of an that
ϕ′ is strictly increasing on [0,α) and, since ϕ′ is even, decreasing on (−α,0].

It remains to show that ϕ is computable. Assume, without loss of generality, that x≥ 0. Since
a :N→N is computable by assumption, there is a TM that, for any input k∈N (output precision)
and any x ∈ (−α,α) with x≥ 0, computes first a rational number ε > 0 satisfying 0≤ x < α−ε,

then an n(k)∈N satisfying ∑
n(k)
i=0 2−a(i) > x+ε and

(
x

x+ε(x)

)n(k) (x+ε(x))2

(x+ε(x))2−x2 < 2−k−1. We observe
that ∣∣∣∣∣ϕ(x)−

n(k)

∑
i=0

aixi

∣∣∣∣∣= ∞

∑
i=n(k)+1

aixi =
∞

∑
i=
⌈

n(k)
2

⌉
(

x

∑
2i+1
j=0 2−a(j)

)2i+1

≤
∞

∑
i=
⌈

n(k)
2

⌉
(

x
x+ε(x)

)2i+1

≤
(

x
x+ε(x)

)n(k) (x+ε(x))2

(x+ε(x))2− x2 ≤ 2−k−1.

69

Chapter 6. The maximal interval problem

Then, if our TM computes a rational rk satisfying∣∣∣∣∣rk−
n(k)

∑
i=0

aixi

∣∣∣∣∣≤ 2−k−1

one concludes that |rk−ϕ(x)| ≤ 2−k. Thus ϕ is computable.

Theorem 6.4.2. There exists an analytic computable function f : R→ R such that the unique
solution of the problem

x′ = f (x), x(0) = 0

is defined on a noncomputable maximal interval.

Proof. Define the function ϕ as in the previous lemma. By the lemma, ϕ′(x) > 0 for all x ∈
(−α,α), and consequently ϕ−1 exists over R. Denote ψ= ϕ−1. Then

ψ′(x) =
1

ϕ′(ψ(x))
> 0 for all x ∈ R. (6.5)

Similarly, ϕ′(x) = (ψ′(ϕ(x)))−1 for all x ∈ (−α,α), and therefore ϕ is the solution of the IVP{
y′ = f (y)
y(0) = 0

where f : R→ R is defined by f (x) = 1/ψ′(x) (note that f is defined for all real numbers due to
(6.5)). Since ψ (and thus ψ′) is analytic and computable (see e.g. [Wei00]), so is f .

6.5 Boundedness is undecidable

In the previous two sections, it is shown that, in general, given an IVP (6.1) and t > t0, we cannot
devise an algorithm that tells us how close we are from one of the endpoints of the maximal
interval. Nevertheless, this does not rule out the existence of an algorithm that can determine
some partial information about the maximal interval. A further question of interest is if there
exists an algorithm that can decide whether a given analytic IVP has a bounded maximal interval.
As we now show, the answer to this question is also negative.

Theorem 6.5.1. Given an IVP (6.1) with maximal interval (α,β), where f is analytic, f and
(t0,x0) are computable, there is no effective (i.e. computable) procedure to determine whether
β < ∞ or β= ∞.

Proof. Suppose that there is an effective procedure that determines whether β < ∞ or β = ∞,
i.e. there is a Turing machine M that with input 〈 f , t0, x0〉 returns 1 if β < ∞ and 0 otherwise
(f , t0, x0 mean the canonical encodings of the machines computing f , t0, and x0, respectively;
see [Wei00] for further details), where 〈 f , t0, x0〉 is the data defining the IVP x′ = f (t, x) and
x(t0) = x0. Consider the following undecidable problem (cf. Proposition 2.3.6): “Let ψ :N2 →N
be the function generated by an universal Turing machine. Then, given i ∈ N, decide if ψ(i, i) is
defined”. Let M1 be a Turing machine that computes ψ. Define the recursive function g :N2 →N
by

g(i, j) =
{

0 if M1 halts with input (i, i) in ≤ j steps
1 otherwise.

70

6.6 Boundedness for the polynomial case

Note that
ψ(i, i) is defined iff ∃ j0 ∈ N (∀ j≥ j0, g(i, j) = 0). (6.6)

Next consider the sequence of functions {ϕi}, where ϕi : R→ R is defined by

ϕi(x) =
∞

∑
n=1

ai,2n x2n, where ai,n =
(

1
3

)n2

+
(

1
3

)n

g(i,n).

Following arguments similar to those of Section 6.4, one concludes that: (i) ϕi is analytic and
computable, (ii) the sequence {ϕi} is computable by an oracle machine N since g : N2 → N is
recursive, (iii) the radius of convergence of ϕi is +∞ iff ψ(i, i) is defined, (iv) we can design a
Turing machine M2 in the following way: on input i ∈N, M2 computes ϕ′i ◦U2

1 and then runs M
on the input 〈ϕ′i ◦U2

1 ,0,0〉 (note that, given some i ∈ N, the “code” for ϕ′i can be obtained from
the “code” of ϕi that, in turn, can be obtained from the “code” of the Turing machine N), where
ϕ′i is the derivative of ϕi and U2

1 : R2 → R is the projection function defined by U2
1(t, x) = t.

Recall that 〈ϕ′i ◦U2
1 ,0,0〉 is the data defining the IVP x′ = ϕ′i(t) and x(0) = 0. Then by (6.6),

(iii), and the design of M2, we arrive at the following conclusion

M2 on input i outputs
{

0 if ψ(i, i) is defined
1 otherwise

i.e. M2 decides an undecidable problem, and we have a contradiction.

6.6 Boundedness for the polynomial case

Here we sharpen the result of the previous section to the case of polynomial ODEs i.e., when
the components of f are polynomial functions. In particular, we would like to know for which
degree of the polynomials the boundedness problem is decidable or not. We begin with a simple
result, which states that the boundedness problem is decidable for linear IVPs.

Theorem 6.6.1. Consider the IVP (6.1) with f (t, x) = A(t, x)x+h(t), where A and h are m×m
and m×1 matrices, respectively, and each entry A jk :R→R, h j :R→R is a continuous function,
for j,k = 1, . . . ,m. Then the maximal interval associated to this IVP is (−∞,∞). In particular, the
boundedness problem is decidable for linear problems.

Proof. See [Hal80, p. 79].

Concerning undecidability, we will prove the following theorem.

Theorem 6.6.2. There is a vector p : Rm+1 → Rm constituted by polynomials, where each com-
ponent has degree less than or equal to 56, such that the following problem is undecidable:
“Given (t0, x0) ∈ R×Rm, decide whether the maximal interval of the IVP{

x′ = p(t, x)
x(t0) = x0

(6.7)

is bounded or not”.

Corollary 6.6.3. Let Rn[x] be the class of all polynomials having degree less than or equal to
n ∈ N. Then, for every n ≥ 56, the following problem is undecidable: “Given p : Rm+1 → Rm

with components in Rn[x] and (t0, x0) ∈ R×Rm, decide whether the maximal interval of the IVP
(6.7) is bounded or not”.

71

Chapter 6. The maximal interval problem

Proof. If the previous problem is decidable, then using p as the function introduced in Theorem
6.6.2, we conclude that the problem defined there is also decidable, which is absurd (if n > 56,
just add a “dummy” equation of degree n, e.g. y′p = tn).

A similar proof applies for the next corollary.

Corollary 6.6.4. The following problem is undecidable: “Given p :Rm+1 →Rm with polynomial
components and (t0, x0) ∈ R×Rm, decide whether the maximal interval of the IVP (6.7) is
bounded or not”.

The rest of this section will be devoted to prove Theorem 6.6.2. The following lemma is a
result from [Rog96].

Lemma 6.6.5 ([Rog96]). There exists a universal Turing machine with 4 states and 6 symbols.

Lemma 6.6.6. The Turing machine of Lemma 6.6.5 can be simulated by an IVP defined by a set
of polynomial ODEs of degree at most 56 in the following manner (cf. Section 4.6):

1. The input of the TM is coded in the initial conditions of the IVP, through one or more
variables of the IVP;

2. Let q(k) ∈ {1,2,3,4} denote the state of the TM at step k. Then there is one variable
yq of the IVP that approximates q(k) with error bounded by 5/16 in each time interval
[k,k +1/2], where k ∈ N;

3. During each time interval [k + 1/2,k + 1], with k ∈ N, the variable yq only takes values
between the previous state q(k) and the next state q(k+1), plus an error bounded by 5/16.

Proof. The simulation of the Turing machine is done essentially as described in Section 4.6.
Note that the IVP obtained there can be reduced to a polynomial IVP with the help of Theorem
3.2.5. Since the entire procedure is constructive, it is possible to determine the degrees of the
polynomials appearing in the IVP.

In this setting, the variable yq is simply the component z2 of (4.28), where fM is the compo-
nent of the transition function that gives the next state. The value 5/6 is a consequence of the
choices for the errors allowed in the system, which we analyze later on this proof.

In order to optimize our results, we use some simple adaptations on the results of Section
4.6. In particular, since our TM uses only 6 symbols and not 10, we change the encoding (4.1)
to base 6 (i.e. in the equations defining y1 and y2, substitute each power 10 j by 6 j). We set the
error ε = 1/4 in the construction presented in Theorem 4.4.1. Also, it is possible to reduce the
number of terms in the function ω defined in (4.3) by considering the trigonometric interpolation
only for i = 0, . . . ,5. We then have

ω(x) = a0 +a3 cos(πx)+

(
2

∑
j=1

a j cos
(

jπx
5

)
+b j sin

(
jπx
5

))
,

where a0,a1,a2,a3,b1,b2 are computable coefficients, and ζε = 0.0735 in (4.4) (substitute the 10
there by 6).

Then the variables set in the proof of Theorem 4.4.1 have the following value: l = 1 in (4.9),

qnext =
5

∑
i=0

4

∑
j=1

 5

∏
r=0
r 6=i

(σ[14](y)− r)
(i− r)


 4

∏
s=1
s6= j

(σ[14](q)− s)
(j− s)

qi, j, (6.8)

72

6.6 Boundedness for the polynomial case

snext has a similar equation (the value σ[14] still works) and also hnext (but where σ[14] is changed
to σ[13]); ynext

1 is still given by (4.10), but with the following adaptations:

P1 = 6(σ[3](y1)+σ[3](snext)−σ[3](y))+σ[2] ◦ω◦σ(y2), (6.9)

P2 = σ[2](y1)+σ[2](snext)−σ[2](y),

P3 = 1
6 (σ(y1)−σ(y)) ,

H1 = l3(hnext,6000(y1 +1/4)+2);

ynext
2 is also given by (4.11), but with the following adaptations:

H2 = l3(hnext,6000(y2 +1/4)+2), Q3 = 6σ[2](y2)+σ[2](snext), (6.10)

Q1 =
σ(y2)−σ◦ω◦σ(y2)

6
, Q2 = σ[2](y2).

Remark that in the proof of Theorem 4.4.1, the arguments of qnext, ynext
1 , and ynext

2 are given by
a triple (q,y1,y2) i.e. the first argument of qnext : R3 → R in equation (6.8) is q, the second is y1,
and so on.

Using the equations (4.28) and the results of Section 4.6, and using the error bounds ε= 1/4,
γ= 1/8, and δ= 0, one can see that the Turing machine can be simulated by the following system
of ODEs: 

z′1 = c1(qnext ◦σ(z2,z4,z6)− z1)3 ζε1(t)
z′2 = c2(σ(z1)− z2)3 ζε2(−t)
z′3 = c3(ynext

1 ◦σ(z2,z4,z6)− z3)3 ζε3(t)
z′4 = c4(σ(z3)− z4)3 ζε4(−t)
z′5 = c5(ynext

2 ◦σ(z2,z4,z6)− z5)3 ζε5(t)
z′6 = c6(σ(z5)− z6)3 ζε6(−t)

(6.11)

where qnext ◦σ(z2,z4,z6) means qnext(σ(z2),σ(z4),σ(z6)) and so on, ζε is given by (4.25), ε1, . . .,
ε6 are defined as in the proof of Theorem 4.6.2, i.e., ε1 = γ/c1(qnext ◦σ(z2,z4,z6)−z1)−4 +γ/c1,
. . ., ε6 = γ/c6(σ(z5)− z6)−4 +γ/c6, where γ = 1/8 is the targeting error. Actually, without loss
of generality, we can add 4 to 1/ε1, . . ., 1/ε6. This is useful to determine the values of c1, . . ., c6.
Indeed ϑ(t) ≥ 3/4 for t ∈ [0.16,0.34] and because ε1 ≥ 4, . . ., ε6 ≥ 4, one has |ζεi(t)−1| ≤ 1/4
in [0.16,0.34], which implies

∫ 1/2
0 ζεi(t)dt > 3/4(0.34−0.16) = 0.135 for i = 1, . . ., 6.

Hence, if we consider the requirement (4.15) (change φ to ζεi and t0 = 0, t1 = 1/2 for n even
or t0 = 1/2, t1 = 1 otherwise), we conclude that we just have to pick ci ≥ 8/0.135, e.g. ci = 60
for i = 1, . . ., 6.

Then, from the construction outlined in the proof of Theorem 4.6.2, one can see that (6.11)
simulates the Turing machine as described in the statement of that theorem. Notice that z2(t),
for t ∈ [k,k +1/2] gives the state of M at step k with an error bounded by ε+(δ+γ)/2 = 5/16
(cf. (4.30)). So, we can take yq = z2.

However, the system (6.11) is not polynomial. Nevertheless, according to Theorem 3.2.5,
the ODE (6.11) can be converted to a polynomial ODE, in a constructive manner. So, we just
have to show that (6.11) can be reduced to a polynomial ODE of degree 56 to complete the proof
of the theorem.

We recall that the proof of Theorem 3.2.5 is bottom-up, where each non-polynomial func-
tion, e.g. siny1, is replaced by a variable plus a set of polynomial ODEs. Let us see how we can
reduce the PIVP functions appearing in the system (6.11). In what follows we assume that x and
y are variables in an IVP, whose derivatives can be written as a polynomial (possibly involving

73

Chapter 6. The maximal interval problem

other variables of the IVP) of degrees k and n, respectively (for short, we will simply say that x
and y have degree k and n). Then we want to know what is the degree of the polynomial IVP
giving functions like sin x, l2(x,y), etc.

1. The case of sin and cos. We have{
(sin x)′ = x′ cos x
(cos x)′ =−x′ sin x

=⇒
{

y′1 = x′y2
y′2 =−x′y1

where y1 and y2 substitute sin x and cos x, respectively. So, if x has degree k, sin x and
cos x can be replaced by variables having degree k +1.

2. The case of arctan. One has{
(arctan x)′ = x′

1+x2(
1

1+x2

)′
=− 2x́x

(1+x2)2

=⇒
{

y′1 = x′y2
y′2 =−2x′xy2

2

where y1 replaces arctan x. So, arctan x can be replaced by a variable of degree k +1, but
also introduces another variable of degree k +3.

3. Proceeding similarly for the case of sin x, one concludes that σ(x), where σ is given by
(4.2), can be substituted by a variable of degree k +1.

4. The function l2. From Proposition 4.2.5, one has l2(x,y) = π−1 arctan(4xy− 2y) + 1/2.
Let y1 = 4xy−2y and y2 = arctany1. Then y1 has degree max(k,n)+1, and y2 has degree
max(k,n)+2 but introduces another variable of degree max(k,n)+4. Then, if z = l2(x,y),
we conclude that z′ = π−1y′2 i.e. l2(x,y) can be replaced by a variable of degree max(k,n)+
2 but introduces variables of degree up to max(k,n)+4.

5. We now study the function l3 of Proposition 4.2.7, where ε= 1/4 (and hence d = 0). Let
w1 be a variable substituting (σ(x)−1)2. Then

w′
1 = 2σ′(x)(σ(x)−1)

which implies that w1 has degree k + 2. Then, if w2 substitutes l2((σ(x)− 1)2,3y) =
l2(w1,3y), one has that w2 has degree max(k +2,n)+2 but introduces variables of degree
at most max(k + 2,n)+ 4. Now let w3 substitute l2(x/2,3y). The variable w3 has degree
max(k,n)+2, but introduces another variable of degree max(k,n)+4. Finally, l3(x,y) can
be replaced by a variable

w4 = w2(2w3−1)+1

satisfying
w′

4 = w′
2(2w3−1)+w22w′

3.

Thus l3(x,y) can be replaced by a variable of degree max(k + 2,n) + 3, but introduces
other auxiliary variables of degree up to max(k +2,n)+5.

6. The case of ζε(t), given by (4.25). Actually, for reasons of convenience, we study the case
of

ζ1/y(x) = l2(ϑ(x),y),

where ϑ is given by (4.26). It’s not hard to see that ϑ(x) can be replaced by a variable of
degree k+2 (proceed as in the case for sin and cos). Therefore, ζ1/y(x) can be replaced by
a variable of degree max(k + 2,n)+ 2, but introduces variables of degree up to max(k +
2,n)+4.

74

6.6 Boundedness for the polynomial case

With these auxiliary results, we are ready to determine the degree of a polynomial ODE
equivalent to (6.11).
(i) First, consider the case of z2, z4, and z6 in (6.11). For the variable z2, we have that the
function σ(z1) will be replaced by a variable, as well as ζε2(t). Therefore, the derivative of z2
will be a polynomial of degree 4. Proceeding similarly for z4 and z6, we conclude that z2, z4, and
z6 are variables with degree 4.
(ii) Let us consider the case of z1. Note that the expression of qnext ◦σ(z2,z4,z6) in (6.11)
is equivalent to substituting y in (6.8) by y = ω ◦σ[2](z4) and q by σ(z2). Thus y and q are
variables of degree 7 and 5, respectively, in the system (6.11). Moreover, σ[14](y) and σ[14](q)
can be replaced by variables of degree 21 and 19, respectively. Thus qnext ◦σ(z2,z4,z6) is a
polynomial in several variables, with degree (6−1)+(4−1) = 8. More, ζε1(t) corresponds to a
variable, and thus the derivative of z1 can be written as a polynomial of variables having degree
3×8+1 = 25.
(iii) Let us consider the case of z3. The variable ynext

1 is given by (4.10). The value H1 in (6.9)
will be replaced by a variable (as we did for l3 previously), and P1, P2, and P3 will be linear
functions on the variables replacing σ[3](y1), etc. Thus, from (4.10), we conclude that ynext

1 is a
polynomial of degree 3 on several variables. Thus, from (6.11), we conclude that the derivative
of z3 can be written as a polynomial of degree 3×3+1 = 10.
(iv) The case of z5 is similar to z3. In particular, it follows that z5 is a variable of degree 10.

However, in the previous analysis, we didn’t study the degree of some of the auxiliary vari-
ables used in our reasonings. For instance, in point (i), we just asserted that ζε2(t) will be
replaced by a variable, say z, but we still don’t know which is the degree of this variable. In
the following, we determine the degrees of those variables. To match more closely the previ-
ous analysis, we also divide them into separate items, where (i)’ corresponds to the analysis of
variables introduced in (i), and so on.
(i)’ The variable z1 has degree 25, and hence σ(z1) has degree 26. Concerning the case of
ζε2(t), we remark that

1
ε2

=
1
γ

(
c2(σ(z1)− z2)4 + c2

)
.

Then, since σ(z1) can be replaced by a variable of degree 26, we conclude that 1/ε2 can be
replaced by a variable y of degree 26 + 3 = 29. Thus ζε2(t) = ζ1/y(t) can be replaced by a
variable of degree 31, but introduces also variables of degree 33. The same result holds for ζε4(t)
and ζε6(t).
(ii)’ Concerning ζε1 , we have that qnext ◦σ(z2,z4,z6) is a polynomial in several variables (that
were already studied — σ[14](y), . . .), with degree 8 and that its derivative has degree 21+7 =
28. This yields that

1
ε1

=
1
γ

(
c1(qnext ◦σ(z2,z4,z6)− z1)4 + c1

)
can be replaced by a variable of degree 28+3×8 = 52. Thus ζε1(t) can be replaced by a variable
of degree 54, but introduces also variables of degree 56.
(iii)’ In the equation defining z′3, we still have to analyze the variables H1, P1, P2, and P3,
defined in (6.9). However, there we must substitute y1, y2, and y, by σ(z4), σ(z6), and ω ◦
σ[2](z4), respectively. The analysis done for qnext in point (ii) applies for snext and hnext. In
particular, snext and hnext are polynomials in several variables, with degree 8, and the derivative
of these variables are polynomials with degree up to 21. Thus, snext and hnext can be considered
as a variable of degree 21 + 7 = 28. Since σ[3](snext) has degree 31, P1, P2, and P3 can be
replaced by variables of degree up to 31. Relatively to H1, from the analysis done for l3 in point

75

Chapter 6. The maximal interval problem

5, we conclude that it can considered as a variable of degree 28 + 2 + 3 = 33, introducing also
variables of degree up to 35.

Having concluded our analysis, we see that the highest degree for a variable that appears in
the polynomial expansion of (6.11) is the one of the variables introduced in the expansion of
ζε1(t), that has degree 56 — cf. point (ii)’.

Proof of Theorem 6.6.2. Let M be the Turing machine of Lemma 6.6.5. Suppose that in the
proof of Lemma 6.6.6 the state 4 is a halting one. Using the IVP defined on that lemma one has
that for every k ∈ N{

yq(t)≤ 3+ 5
16 if M has not halted at step k and t ≤ k

yq(t)≥ 4− 5
16 if M has already halted at step k and t ≥ k.

(6.12)

Consider the IVP {
z′1 = yq−7/2
z2 = 1

z1

⇐⇒
{

z′1 = yq−7/2
z′2 =−yqz2

2
(6.13)

where z1(0) = z2(0) =−1. Since yq appears as a component, we assume that this IVP is coupled
with the polynomial IVP defined by Lemma 6.6.6. It is easy to see that while M hasn’t halted,
yq−7/2≤−3/16. Thus z1 keeps decreasing and the IVP is defined in (0,+∞), i.e. the maximal
interval is unbounded.

On the other hand, if M eventually halts, z1 starts increasing at a rate of at least 3/16 and
will do that forever. So, at some time it will have to assume the value 0. When this happens,
a singularity appears for z2 and the maximal interval is therefore (right-)bounded. For negative
values of t just replace t by (−t) in (6.11) and assume t to be positive. The behavior of the system
will be similar, and we reach the same conclusions for the left bound of the maximal interval.
So M halts iff the maximal interval of the polynomial IVP (6.13) is bounded, i.e. boundedness
is undecidable.

Note that the degree 56 mentioned in Theorem 6.6.2 is not necessarily optimal. Actually, it
remains an open question whether there are IVPs defined with polynomials of degree between 2
and 55, for which the boundedness problem is also undecidable. The techniques used in the proof
of Theorem 6.6.2 could be used for proving undecidability for IVP defined with polynomials of
lower degree than 56 provided that: (i) one can show that there is an universal Turing machine
smaller than the one of Lemma 6.6.5, where the size is given by the product of the number of
symbols and of the number of states (24 in that case) or (ii) one uses a technique more efficient
than the one provided by Theorem 3.2.5 to convert the IVP (6.11) to a polynomial IVP.

76

CHAPTER 7

Conclusion

7.1 Concluding remarks

The present thesis has deepened our understanding of continuous dynamical systems defined
with polynomial ODEs, at least from a computable perspective. The focus has essentially been
made on the connections between polynomial ODEs and traditional computability (Turing ma-
chines, computable analysis, decidability questions). In that regard, our results helped to shorten
the gap between discrete computation and analog computation by showing that these two areas
overlap to a significant extent.

We have thus shown that analog computation can have more solid foundations. In particular,
we presented PIVP functions as a model with many advantages:

1. It is mathematically sound in the sense that it defines a class that is closed under many
important mathematical operations (e.g. arithmetical operations, composition, obtaining
new functions as the solution of ODEs) — cf. Section 3.2.

2. Contrarily to what happens with other models of “real computation” (e.g. BSS model,
computable analysis), it uses a language (ODEs) that is common in the field of continuous
dynamical systems. Thus, under certain circumstances, this model can be seen as more
natural and may be better suited to study some classes of continuous systems.

3. It is realistic in the sense that it can be implemented with existing physical devices (dif-
ferential analyzers) — cf. Sections 3.3, 3.4.

4. It can simulate Turing machines, even under the influence of some perturbations, thereby
having the power of Type-1 computability — cf. Chapter 4.

5. Under a suitable and natural variation, it is equivalent to Type-2 computability (i.e. com-
putable analysis) — cf. Chapter 5.

Besides these interesting features, this model also gave us some hints about the limitations
that digital computers have in modeling continuous processes. For instance, our results of Chap-
ter 6 showed that even systems defined with computable ODEs that are mathematically well-
behaved (analytic, polynomial) can have properties which cannot be computed nor verified with
the help of a digital computer.

77

Chapter 7. Conclusion

7.2 Directions for further work

Below we list some questions and possible new directions of research raised by this work.

1. The model presented in this thesis relies on polynomial ODEs. Can it be extended to other
functions in such a way that it still preserves its capability to be implemented by a physical
device as well as its nice mathematical properties?

2. On the other way round, should we allow the use of all polynomial ODEs? It is known
that there are unstable systems, in which some of their properties no longer hold if some
perturbation is added to the system, and thus can only be implemented by ideal physi-
cal devices cf. [GH83]. This subject seems to be quite interconnected with the idea of
“stable systems” that often arises in the dynamical systems literature. Roughly, stable
systems should correspond to “physically feasible” systems. However, the quest for an
appropriate mathematical characterization of such systems seem to be a major challenge
for mathematicians [Via01].

3. Can a polynomial IVP simulate a Turing machine if “noise” is not only added only on the
initial condition, but also during the evolution of the system? Can we also simulate oracle
(Type-2) machines under these conditions?

4. Can we present an adequate notion of computational complexity for continuous dynamical
systems? Can we establish connections between this notion and the respective notions for
Turing machines or oracle (Type-2) machines? A first step in that direction can be found
in [SBHF99], [BHSF02], for a rather restricted case.

5. Is it possible to present other noncomputability and undecidability results for computable
and analytic systems as in Chapter 6?

6. Which is the lower (integer) degree n of the class of polynomials for which the maximal
interval problem becomes undecidable? Our results of Section 6.6 only provide the (con-
structible) upper bound n = 56, but the optimality question of obtaining the least such n
remains open.

78

Bibliography

[AB01] E. Asarin and A. Bouajjani. Perturbed Turing machines and hybrid systems. In
Logic in Computer Science, 2001. Proc. 16th Annual IEEE Symposium, pages 269–
278, 2001.

[Abe70] O. Aberth. Computable analysis and differential equations. In A. Kino, J. Myhill,
and R.E. Vesley, editors, Intuitionism and Proof Theory, Studies in Logic and the
Foundations of Mathematics, pages 47–52. North-Holland, 1970.

[Abe71] O. Aberth. The failure in computable analysis of a classical existence theorem for
differential equations. Proc. Amer. Math. Soc., 30:151–156, 1971.

[AD90] R. Alur and D. L. Dill. Automata for modeling real-time systems. In Automata,
Languages and Programming, 17th International Colloquium, LNCS 443, pages
322–335. Springer, 1990.

[AD00] R. Alur and D. L. Dill. Are timed automata updatable? In E. A. Emerson and A. P.
Sistla, editors, Computed Aided Verification, 12th International Conference, LNCS
1855, pages 464–479. Springer, 2000.

[Ahl79] L. Ahlfors. Complex Analysis. McGraw-Hill, 1979.

[AMP95] E. Asarin, O. Maler, and A. Pnueli. Reachability analysis of dynamical systems
having piecewise-constant derivatives. Theoret. Comput. Sci., 138:35–65, 1995.

[AP37] A. A. Andronov and L. Pontryagin. Systèmes grossiers. Dokl. Akad. Nauk. SSSR,
14:247–251, 1937.

[AP04] R. Alur and G. J. Pappas, editors. Hybrid Systems: Computation and Control: 7th
International Workshop (HSCC 2004). LNCS 2993. Springer, 2004.

[Arn78] V. I. Arnold. Ordinary Differential Equations. MIT Press, 1978.

[Atk89] K. E. Atkinson. An Introduction to Numerical Analysis. John Wiley & Sons, 2nd
edition, 1989.

[BB85] E. Bishop and D. S. Bridges. Constructive Analysis. Springer, 1985.

[BCGH06] O. Bournez, M. L. Campagnolo, D. S. Graça, and E. Hainry. The General Purpose
Analog Computer and Computable Analysis are two equivalent paradigms of analog
computation. In J.-Y. Cai, S. B. Cooper, and A. Li, editors, Theory and Applications
of Models of Computation TAMC’06, LNCS 3959, pages 631–643. Springer-Verlag,
2006.

79

BIBLIOGRAPHY

[BCGHar] O. Bournez, M. L. Campagnolo, D. S. Graça, and E. Hainry. Polynomial differential
equations compute all real computable functions. J. Complexity, to appear.

[BH98] V. Brattka and P. Hertling. Feasible real random access machines. J. Complexity,
14(4):490–526, 1998.

[BH04] O. Bournez and E. Hainry. Real recursive functions and real extentions of recursive
functions. In M. Margenstern, editor, Machines, Computations and Universality
(MCU’2004), volume 3354 of LNCS, pages 116–127, 2004.

[BH05] Olivier Bournez and Emmanuel Hainry. Elementarily computable functions over the
real numbers and R-sub-recursive functions. Theoret. Comput. Sci., 348(2–3):130–
147, 2005.

[BHSF02] A. Ben-Hur, H. T. Siegelmann, and S. Fishman. A theory of complexity for contin-
uous time systems. J. Complexity, 18(1):51–86, 2002.

[BNP71] Basic Machines and How They Work. Bureau of Naval Personnel, Dover Publica-
tions, Inc., 1971.

[Bow96] M. D. Bowles. U. S. technological enthusiasm and british technological skepticism
in the age of the analog brain. IEEE Ann. Hist. Comput., 18(4):5–15, 1996.

[Bra95] M. S. Branicky. Universal computation and other capabilities of hybrid and contin-
uous dynamical systems. Theoret. Comput. Sci., 138(1):67–100, 1995.

[Bro89] R. W. Brockett. Smooth dynamical systems which realize arithmetical and logi-
cal operations. In H. Nijmeijer and J. M. Schumacher, editors, Three Decades of
Mathematical Systems Theory, LNCS 135, pages 19–30. Springer, 1989.

[BSS89] L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions and universal machines.
Bull. Amer. Math. Soc., 21(1):1–46, 1989.

[BT00] V. D. Blondel and J. N. Tsitsiklis. A survey of computational complexity results in
systems and control. Automatica, 9(36):1249–1274, 2000.

[Bus31] V. Bush. The differential analyzer. A new machine for solving differential equations.
J. Franklin Inst., 212:447–488, 1931.

[Cam02] M. L. Campagnolo. Computational Complexity of Real Valued Recursive Functions
and Analog Circuits. PhD thesis, Instituto Superior Técnico/Universidade Técnica
de Lisboa, 2002.

[Cas96] M. Casey. The dynamics of discrete-time computation, with application to recurrent
neural networks and finite state machine extraction. Neural Comp., 8:1135–1178,
1996.

[Cas98] M. Casey. Correction to proof that recurrent neural networks can robustly recognize
only regular languages. Neural Comp., 10:1067–1069, 1998.

[CL55] E. A. Coddington and N. Levinson. Theory of Ordinary Differential Equations.
McGraw-Hill, 1955.

80

BIBLIOGRAPHY

[CM01] M. Campagnolo and C. Moore. Upper and lower bounds on continuous-time com-
putation. In I. Antoniou, C. Calude, and M. Dinneen, editors, 2nd International
Conference on Unconventional Models of Computation - UMC’2K, pages 135–153.
Springer, 2001.

[CMC00] M. L. Campagnolo, C. Moore, and J. F. Costa. Iteration, inequalities, and differen-
tiability in analog computers. J. Complexity, 16(4):642–660, 2000.

[CMC02] M. L. Campagnolo, C. Moore, and J. F. Costa. An analog characterization of the
Grzegorczyk hierarchy. J. Complexity, 18(4):977–1000, 2002.

[Cv04] P. Collins and J. H. van Schuppen. Observability of piecewise-affine hybrid systems.
In R. Alur and G. J. Pappas, editors, Hybrid Systems: Computation and Control, 7th
International Workshop, LNCS 2993, pages 265–279. Springer, 2004.

[Dav73] M. Davis. Hilbert’s tenth problem is undecidable. Amer. Math. Monthly, 80:233–
269, 1973.

[DL89] J. Denef and L. Lipshitz. Decision problems for differential equations. J. Symbolic
Logic, 54(3):941–950, 1989.

[Frä99] M. Fränzle. Analysis of hybrid systems: An ounce of realism can save an infinity
of states. In J. Flum and M. Rodríguez-Artalejo, editors, Computer Science Logic
(CSL’99), LNCS 1683, pages 126–140. Springer, 1999.

[GC03] D. S. Graça and J. F. Costa. Analog computers and recursive functions over the
reals. J. Complexity, 19(5):644–664, 2003.

[GCB05] D. S. Graça, M. L. Campagnolo, and J. Buescu. Robust simulations of Turing
machines with analytic maps and flows. In S. B. Cooper, B. Löwe, and L. Torenvliet,
editors, CiE 2005: New Computational Paradigms, LNCS 3526, pages 169–179.
Springer, 2005.

[GCB06] D. S. Graça, M. L. Campagnolo, and J. Buescu. Computability with polynomial dif-
ferential equations. Preprint, CLC, Department of Mathematics, Instituto Superior
Técnico, 1049-001 Lisboa, Portugal, 2006. Submitted for publication.

[GH83] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and
Bifurcation of Vector Fields. Springer, 1983.

[Gra02] D. S. Graça. The General Purpose Analog Computer and Recursive Functions over
the Reals. Master’s thesis, IST/UTL, 2002.

[Gra03] D. S. Graça. Computability via analog circuits. In V. Brattka, M. Schröder,
K. Weihrauch, and N. Zhong, editors, Proceedings of the International Confer-
ence on Computability and Complexity in Analysis (CCA 2003), pages 229–240.
FernUniversität in Hagen, 2003.

[Gra04] D. S. Graça. Some recent developments on Shannon’s General Purpose Analog
Computer. Math. Log. Quart., 50(4-5):473–485, 2004.

[Grz57] A. Grzegorczyk. On the definitions of computable real continuous functions. Fund.
Math., 44:61–71, 1957.

81

BIBLIOGRAPHY

[Gun90] R. Gunning. Introduction to Holomorphic Functions of Several Variables. Chapman
& Hall/CRC, 1990.

[GZB06] D. S. Graça, N. Zhong, and J. Buescu. The ordinary differential equation defined by
a computable function whose maximal interval of existence is non-computable. In
G. Hanrot and P. Zimmermann, editors, Proceedings of the 7th Conference on Real
Numbers and Computers (RNC 7), pages 33–40. LORIA/INRIA, 2006.

[GZB07] D.S. Graça, N. Zhong, and J. Buescu. Computability, noncomputability and unde-
cidability of maximal intervals of IVPs. Trans. Amer. Math. Soc., 2007. To appear.

[Hal80] J. K. Hale. Ordinary Differential Equations. Robert E. Krieger Pub. Co, 2nd edition,
1980.

[Hau85] J. Hauck. Ein kriterium für die konstruktive lösbarkeit der differentialgleichung
y′ = f (x,y). Z. Math. Logik Grundlag. Math., 31(4):357–362, 1985.

[HKPV98] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about
hybrid automata? J. Comput. System Sci., 57(1):94–124, 1998.

[HMU01] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 2nd edition, 2001.

[Höl87] O. Hölder. Über die eigenschaft der gamma funktion keiner algebraische differen-
tialgleichung zu genügen. Math. Ann., 28:1–13, 1887.

[HR99] T. Henzinger and J.-F. Raskin. Robust undecidability of timed and hybrid systems.
In F. Vaandrager and J. H. van Schuppen, editors, Hybrid systems: computation and
control; Second International Workshop, (HSCC’99), LNCS 1569. Springer, 1999.

[HSD04] M. W. Hirsch, S. Smale, and R. Devaney. Differential Equations, Dynamical Sys-
tems, and an Introduction to Chaos. Academic Press, 2004.

[HW95] J. H. Hubbard and B. H. West. Differential Equations: A Dynamical Systems Ap-
proach — Higher-Dimensional Systems. Springer, 1995.

[KCG94] P. Koiran, M. Cosnard, and M. Garzon. Computability with low-dimensional dy-
namical systems. Theoret. Comput. Sci., 132:113–128, 1994.

[KM99] P. Koiran and C. Moore. Closed-form analytic maps in one and two dimensions can
simulate universal Turing machines. Theoret. Comput. Sci., 210(1):217–223, 1999.

[Ko91] K.-I Ko. Computational Complexity of Real Functions. Birkhäuser, 1991.

[Kra01] S. Krantz. Function Theory of Several Complex Variables. AMS Chelsea Publish-
ing, 2nd edition, 2001.

[Lac55] D. Lacombe. Extension de la notion de fonction récursive aux fonctions d’une ou
plusieurs variables réelles III. C. R. Acad. Sci. Paris, 241:151–153, 1955.

[Lan05] S. Lang. Real and Functional Analysis. Springer, 3rd edition, 2005.

[Lef65] S. Lefshetz. Differential Equations: Geometric Theory. Interscience, 2nd edition,
1965.

[Lor63] E. N. Lorenz. Deterministic non-periodic flow. J. Atmos. Sci., 20:130–141, 1963.

82

BIBLIOGRAPHY

[LPY99] G. Lafferriere, G. J. Pappas, and S. Yovine. A new class of decidable hybrid systems.
In Hybrid Systems: Computation and Control (HSCC’99), LNCS 1569, pages 137–
151. Springer, 1999.

[LR87] L. Lipshitz and L. A. Rubel. A differentially algebraic replacement theorem, and
analog computability. Proc. Amer. Math. Soc., 99(2):367–372, 1987.

[Mat70] Y. Matijasevic̆. Enumerable sets are diophantine. Dokl. Akad. Nauk, 191:279–282,
1970.

[Mat72] Y. Matijasevic̆. Diophantine sets. Upsekhi Mat. Nauk, 27:124–164, 1972.

[MC04] J. Mycka and J. F. Costa. Real recursive functions and their hierarchy. J. Complexity,
20(6):835–857, 2004.

[MH98] J. E. Marsden and M. J. Hoffman. Basic Complex Analysis. W. H. Freeman, 3rd
edition, 1998.

[Mil85] J. Milnor. On the concept of attractor. Comm. Math. Phys., 99(2):177–195, 1985.

[MO98] W. Maass and P. Orponen. On the effect of analog noise in discrete-time analog
computations. Neural Comput., 10(5):1071–1095, 1998.

[Moo90] C. Moore. Unpredictability and undecidability in dynamical systems. Phys. Rev.
Lett., 64(20):2354–2357, 1990.

[Moo96] C. Moore. Recursion theory on the reals and continuous-time computation. Theoret.
Comput. Sci., 162:23–44, 1996.

[Moo98] C. Moore. Finite-dimensional analog computers: Flows, maps, and recurrent neural
networks. In C. Calude, J. Casti, and M. Dinneen, editors, 1st International Confer-
ence on Unconventional Models of Computation - UMC’98, pages 59–71. Springer,
1998.

[NOSS93] X. Nicollin, A. Olivero, J. Sifakis, and S.Yovine. An approach to the description
and analysis of hybrid systems. In R. L. Grossman, A. Nerode, A. P. Ravn, and
H. Rischel, editors, Hybrid Systems, LNCS 736, pages 148–178. Springer, 1993.

[Odi89] P. Odifreddi. Classical Recursion Theory, volume 1. Elsevier, 1989.

[Odi99] P. Odifreddi. Classical Recursion Theory, volume 2. Elsevier, 1999.

[PE74] M. B. Pour-El. Abstract computability and its relations to the general purpose ana-
log computer. Trans. Amer. Math. Soc., 199:1–28, 1974.

[PER79] M. B. Pour-El and J. I. Richards. A computable ordinary differential equation which
possesses no computable solution. Ann. Math. Logic, 17:61–90, 1979.

[PER81] M. B. Pour-El and J. I. Richards. The wave equation with computable initial data
such that its unique solution is not computable. Adv. Math., 39:215–239, 1981.

[PER89] M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics. Springer,
1989.

[PEZ97] M. B. Pour-El and N. Zhong. The wave equation with computable initial data whose
unique solution is nowhere computable. Math. Log. Quart., 43:499–509, 1997.

83

BIBLIOGRAPHY

[PV94] A. Puri and P. Varaiya. Decidability of hybrid systems with rectangular differential
equations. In 6th Workshop on Computer-Aided Verification, LNCS 818, pages 95–
104. Springer, 1994.

[Rit48] J. F. Ritt. Integration in Finite Terms. Columbia Univ. Press, 1948.

[Rog96] Y. Rogozhin. Small universal Turing machines. Theoret. Comput. Sci., 168(2):215–
240, 1996.

[Ros72] M. Rosenlicht. Integration in finite terms. Amer. Math. Monthly, 79(9):963–972,
1972.

[RS85] L. A. Rubel and F. Singer. A differentially algebraic elimination theorem with ap-
plication to analog computability in the calculus of variations. Proc. Amer. Math.
Soc., 94(4):653–658, 1985.

[Rub89] L. A. Rubel. A survey of transcendentally transcendental functions. Amer. Math.
Monthly, 96(9):777–788, 1989.

[Rue89] D. Ruelle. Chaotic Evolution and Strange Attractors. Cambridge University Press,
1989.

[Ruo96] K. Ruohonen. An effective Cauchy-Peano existence theorem for unique solutions.
Internat. J. Found. Comput. Sci., 7(2):151–160, 1996.

[Sal62] B. Salzmann. Finite amplitude free convection as an initial value problem. J. Atmos.
Sci., 19:239–341, 1962.

[SBHF99] H. T. Siegelmann, A. Ben-Hur, and S. Fishman. Computational complexity for
continuous time dynamics. Phys. Rev. Lett., 83(7):1463–1466, 1999.

[Sha41] C. E. Shannon. Mathematical theory of the differential analyzer. J. Math. Phys.
MIT, 20:337–354, 1941.

[Sip97] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company,
1997.

[Sma66] S. Smale. Structurally stable systems are not dense. Amer. J. Math., 88:491–496,
1966.

[Sma92] S. Smale. Mathematical Research Today and Tomorrow, chapter Theory of compu-
tation, pages 59–69. Springer, 1992.

[Son98] E. D. Sontag. Mathematical Control Theory. Springer, 2nd edition, 1998.

[Spa82] C. Sparrow. The Lorenz equations: Bifurcations, Chaos, and Stange Attractors.
Springer, 1982.

[SS95] H. T. Siegelmann and E. D. Sontag. On the computational power of neural networks.
J. Comput. System Sci., 50(1):132–150, 1995.

[Sta02] V. E. E. Stadigh. Ein satz ueber funktionen die algebraische differentialgleichungen
befriedigen und ueber die eigenschaft der function ζ(s) keiner solchen gleichung zu
genügen. Thesis, Helsinki, 1902.

[Tuc98] W. Tucker. The Lorenz attractor exists. PhD thesis, Univ. Uppsala, 1998.

84

BIBLIOGRAPHY

[Tuc99] W. Tucker. The Lorenz attractor exists. In C. R. Acad. Sci. Paris, volume 328 of
Série I, Mathématique, pages 1197–1202, 1999.

[Tur36] A. M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc., 2(42):230–265, 1936.

[Via00] M. Viana. What’s new on Lorenz strange attractors? Math. Intelligencer, 22(3):6–
19, 2000.

[Via01] M. Viana. Dynamical systems: Moving into the next century. In B. Engquist and
W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, pages 1167–1178.
Springer, 2001.

[Wei00] K. Weihrauch. Computable Analysis: an Introduction. Springer, 2000.

[WZ02] K. Weihrauch and N. Zhong. Is wave propagation computable or can wave comput-
ers beat the Turing machine? Proc. London Math. Soc., 85(3):312–332, 2002.

85

BIBLIOGRAPHY

86

Index

A, 12
R+, 11
C∞, 12
C∞(E), 12
Ck, 12
Ck(E), 12
f [k], 12
f̃ , 46
Γ function, 24, 53
id, 12
K , 15
λε, 36
‖·‖

∞
, 12

ω, 38
〈·, ·〉, 14
φ

oracle, 16
π1, 14
π2, 14
r, 45
θ, 45
θ∞, 45
θ j, 45
χA, 14
x′, 20
ζ function, 24, 53
ζε, 39

algorithm, 12
alphabet, 11

barycenter, 56

Church-Turing thesis, 12
computability

Type-1, 16, 35
Type-2, 16, 53

computable
closed set over Rl, 18
function over Nk, 14

function over strings, 13
GPAC-computable, 54
open set over Rl, 18
real function, 18, 54
real interval (a,b), 18
real number, 16
sequence of real functions, 18
sequence of real numbers, 17
subset of N, 14

computable analysis, 16, 53
contracting factor λε, 36

differential analyzer, 28, 29
domain, 20
dynamical systems, 1

continuous-time, 1
discrete-time, 1

equation
Lorenz, 6
Lotka-Volterra, 2
Van der Pol, 4

function
analytic, 19, 24
characteristic, 14
of class Ck(E), 12
closed-form, see elementary function
components, 12
differentially algebraic (d.a), 23, 26, 31
effectively locally Lipschitz, 63
effectively locally Lipschitz in the 2nd ar-

gument, 64
elementary, 20, 26, 41
error-contracting l2, 37
error-contracting l3, 37
error-contracting σ, 36
Gamma, Γ, 24, 53
Heaviside’s, 45
locally Lipschitz, 20

87

INDEX

locally Lipschitz in the second argument,
20

meromorphic, 20
n-ary, 12
pairing, 14
partial, 12
partial computable (over N), 14
PIVP, 24, 26, 32, 50, 53
real computable, 18
sequence of real computable, 18
r, 45
θ j, 45, 49
total, 12
transcendentally transcendental, 23
transition, 13, 39, 41, 43, 47
unary, 12
Zeta, ζ, 24, 53

pairing 〈·, ·〉, 14

GPAC, 28, 30, 32, 53, 55
polynomial circuits, 29
Pour-El’s, 29, 31
problems with Shannon’s, 32, 33
Shannon’s, 29, 31
units, 29
using computable values, 33, 54
using values of a subring, 33

Hartogs’ theorem, 19
Hopf bifurcation, 4

initial condition
of a GPAC, 54

initial-value problem (IVP), 1, 20
analytic, 21
boundedness of maximal interval, 70
maximal interval, 21, 64, 67, 68
maximal interval, analytic case, 70
maximal interval, linear case, 71
maximal interval, polynomial case, 71

integrator, 28, 33
interpolation

Lagrange’s, 39
trigonometric, 38

isolated singularity, 20
essential, 20
pole of order m, 20
removable, 20

iteration, 12

modulus of continuity, 18

noncomputable
real, 17, 68, 69

oracle, 16
order

lexicographic, 11
ordinary differential equation (ODE), 20

iterating maps with, 44, 46
maximal interval, 21
polynomial, 24

problem
decidable, 14
Halting, 15
Hilbert’s 10th, 12, 15
Hilbert’s 16th, 1
undecidable, 15

radius of convergence, 19
recursive analysis, see computable analysis
ρ-name, 16

set
closure, 12
K , 15
r.e., 15
r.e. closed over Rl, 18
r.e. nonrecursive, 15–17, 69
r.e. open over Rl, 17, 64
recursive, 14, 15
recursive closed over Rl, 18
recursive open over Rl, 18

sink, 4
source, 4
strange attractor, 6
string, 11

empty, 11
structurally stable systems, 5
symbol, 11

target, 44
targeting equation, 44

perturbed, 48
targeting error, 44
Turing machine, 13

configuration, 14, 35
encoding of configuration, 35
oracle, 16, 18, 55
universal, 15, 70, 72

88

	Introduction
	Motivation
	On the complexity of some simple dynamical systems
	A computational perspective
	Our contributions
	Overview of the dissertation

	Preliminaries
	Introduction
	Basic mathematical notation
	Classical computability
	Computable Analysis
	Analytic and elementary functions
	Ordinary differential equations

	Polynomial IVPs
	Introduction
	Polynomial differential equations
	The GPAC
	Properties of the GPAC

	Simulation of Turing machines
	Introduction
	Encoding configurations and controlling the error
	Determining the next action - Interpolation techniques
	Robust simulations of Turing machines with PIVP maps
	Iterating maps with ODEs
	Robust simulations of Turing machines with polynomial ODEs

	The GPAC and Computable Analysis are equivalent models
	Introduction
	The main result
	Proof of the ``if'' direction
	Simulating partial computations with GPACs
	Proof of the ``only if'' direction

	The maximal interval problem
	Introduction
	The maximal interval is r.e. open
	... But not recursive
	Analytic case
	Boundedness is undecidable
	Boundedness for the polynomial case

	Conclusion
	Concluding remarks
	Directions for further work

	Bibliography
	Index

