
Robust computations with dynamical systems

Olivier Bournez1, Daniel S. Graça2,3, and Emmanuel Hainry4,5

1 Ecole Polytechnique, LIX, 91128 Palaiseau Cedex, France
Olivier.Bournez@lix.polytechnique.fr

2 DM/FCT, Universidade do Algarve, C. Gambelas, 8005-139 Faro, Portugal
dgraca@ualg.pt

3 SQIG/Instituto de Telecomunicações, Lisbon, Portugal
4 LORIA, BP 239 - 54506 Vandœuvre-lès-Nancy Cedex, France

Emmanuel.Hainry@loria.fr
5 Nancy Université, Université Henri Poincaré, Nancy, France

Abstract. In this paper we discuss the computational power of Lips-
chitz dynamical systems which are robust to infinitesimal perturbations.
Whereas the study in [1] was done only for not-so-natural systems from
a classical mathematical point of view (discontinuous differential equa-
tion systems, discontinuous piecewise affine maps, or perturbed Turing
machines), we prove that the results presented there can be generalized
to Lipschitz and computable dynamical systems.
In other words, we prove that the perturbed reachability problem (i.e. the
reachability problem for systems which are subjected to infinitesimal per-
turbations) is co-recursively enumerable for this kind of systems. Using
this result we show that if robustness to infinitesimal perturbations is
also required, the reachability problem becomes decidable. This result
can be interpreted in the following manner: undecidability of verification
doesn’t hold for Lipschitz, computable and robust systems.
We also show that the perturbed reachability problem is co-r.e. complete
even for C∞-systems.

Key words : Verification, Model-checking, Computable Analysis, Analog Com-
putations.

1 Introduction

The investigations on the relationships between dynamics and computations
attracted the attention of several research communities. One of them is highly
motivated by the question of computer aided verification, and in particular by
the question of computer aided verification of hybrid systems (see e.g. [2]).

One main motivation of this community is to get some “as automatic as
possible” computer systems, that would take as input the description of a con-
tinuous or discrete (or hybrid) system, and the description of some property, call
it “safety”, and that would tell whether the system satisfies it or not.

The point is, by undecidability of the halting problem of Turing machines,
there is no hope to get a fully decidable procedure if the provided formalism for

describing hybrid systems allows the description of Turing machines, and if the
formalism for describing the property allows to talk about their halting.

Some classes of models, such as Timed Automata [3], have been shown to
provide subclasses of systems for which verification of the reachability property
is decidable.

However, unfortunately, very simple classes of linear hybrid automata [4] or
piecewise constant derivative systems [5] have been shown of being able to sim-
ulate arbitrary Turing machines. As a consequence, verification procedures are
semi-decision procedures and not decision procedures. A more general result can
be found in [6], where semidecidability is shown for non-linear systems in general,
and decidability is proved for systems satisfying some particular condition.

Since the proofs of undecidability or, more generally, of simulation of Turing
machines, often involve to encode the configuration of a Turing machine (or of
a two counter automata) into some real numbers, and since this require infinite
precision, in the hybrid system verification community a folklore conjecture ap-
peared saying that this undecidability is due to non-stability, non-robustness,
sensitivity to initial values of the systems, and that it never occurs in “real
systems” [1].

For example, Martin Fränzle writes in [7] “Hence, on simple information-
theoretic grounds, the undecidability results thus obtained can be said to be
artifacts of an overly idealized formalization. However, while this implies that
the particular proof pattern sketched above lacks physical interpretation, it does
not yield any insight as to whether the state reachability problem for hybrid
systems featuring noise is decidable or not. We conjecture that there is a variety
of realistic noise models for which the problem is indeed decidable”.

There were several attempts to formalize and prove (or to disprove) this
conjecture: it has been proved that small perturbations of the trajectory still
yields undecidability [8]. Infinitesimal perturbations of the dynamics for a certain
model of hybrid systems has shown to rise to decidability [7]. This has been
extended to several models by [1]. In [9] it is shown that Turing machines exposed
to small stochastic noise can decide the Halting problem, since its computational
power when the error converges to 0 is ≈ Π0

2 .
Let us look at the result presented in [1]: they consider several classes of

widely used models of dynamical systems: Turing machines, piecewise affine
maps, linear hybrid automata, and piecewise constant derivative systems. For
each of them a notion of “perturbed” dynamics is introduced and the computa-
tional power of the corresponding perturbed systems is studied. Perturbations
are defined for each model using a notion of metrics on the state space. For a
given model, with reachability relation R, the idea is to perturb the dynamic by
a small ε, and then take (as the perturbed dynamics of the system) the limit
(intersection) Rω of the perturbed reachability relations as this ε tends to 0. In
that setting, a system is said “robust” if its reachability relation does not change
under small perturbations of the dynamics, i.e. Rω is equal to R [1]. This has
a close resemblance with the notion of “structural stability” for dynamical sys-
tems: a system A is structurally stable if, roughly, ε-perturbed systems converge

2

to A as ε→ 0, a concept widely studied in the dynamical system theory see e.g.
[10], [11].

In [1], the authors show that for Turing machines, piecewise affine maps,
linear hybrid automata, and piecewise constant derivative systems, the relation
Rω belongs to the class Π1

0 (it is co-recursively enumerable), and moreover, any
Π1

0 relation can be reduced to a relation Rω of a perturbed system: any comple-
ment of a recursively enumerable set, can be semi-decided by an infinitesimally
perturbed system.

This means that, for any robust system, its reachability problem is decidable.
Indeed, as any system, its reachability problem is semi-decidable (recursively
enumerable), and since it is robust, the complement of its reachability prob-
lem must be recursively enumerable, from which it follows that the reachability
problem must be recursive for robust systems.

In other words, this gives a (partial) answer to the above mentioned conjec-
ture: verification is decidable for robust systems, if the notion of robustness is
the one considered here. If one prefers, undecidability of verification arises only
when non-robust systems are considered.

In this paper we extend the result of [1] for the case of Lipschitz and com-
putable (in the sense of recursive analysis [12]) systems defined on a compact
set, considered as a model of computation. We present both continuous-time and
discrete-time versions of our results.

Our aim is to reinforce in some sense the previous result: it follows that
verification is decidable for robust systems considered in classical mathematics
and computer science, that is to say for robust, Lipschitz, and computable dy-
namics. In other words, undecidability of verification is really a by-product of
non-robustness, even if the system does not rely on trivial (piecewise) dynamics
as in [1].

In a more provocative way, undecidability of verification for safety properties
over a compact domain is indeed an artifact of modelization for very general and
natural classes of systems.

2 Formal setting: continuous-time dynamical systems

We begin with some definitions.

Definition 1. A function f : Rm → Rk is said Lipschitz over a set X if there
is some K > 0 such that for all x,y ∈ X one has

‖f(x)− f(y)‖ ≤ K ‖x− y‖ . (1)

In particular it is well known that C1 functions are Lipschitz over a compact
set X ⊆ Rm and that an initial-value problem{

x′ = f(t, x)
x(t0) = x0

where f is Lipschitz, have an unique solution (see e.g. [13]).

3

Definition 2 (Dynamical systems). Let X ⊂ Rd, and consider some func-
tion f : X → X. Then we can define a (homogeneous inputless) discrete or
continuous-time dynamical system associated to (X, f) as follows:

– In the discrete-time case, a trajectory is a sequence of points {x0,x1, ...} ∈
XN, satisfying f(xi+1) = xi for all i ∈ N.

– In the continuous-time case, a trajectory is a solution of the differential
equation ẋ = f(x), x(0) = x0 ∈ X , i.e. a derivable function φ : R+

0 → X,
satisfying φ(0) = x0, and φ′(t) = f(φ(t)) for all t.

Note that dynamical systems are deterministic: there is only one trajectory
starting in a given initial point.

In this paper we consider dynamical systems as recognizers of languages:
Σ denotes the alphabet Σ = {0, 1} and Σ∗ denotes words over this alphabet.
Therefore we need to encode words over Σ as points in X. This is done using
the encoding ν : Σ∗ → [0, 1] defined by: if w = w1 . . . wn ∈ {0, 1}∗, where
w1, . . . , wn ∈ {0, 1}, then ν(w) =

∑n
i=1

(2wi+1)
4i .

This classical encoding is rather arbitrary. Similar encodings would still yield
the results proved in this paper.

We want to avoid not-so-interesting ways to get uncomputability:

– First, we restrict ourselves to dynamics over a compact domain. It is known
that smooth systems can robustly simulate Turing machines [14], [15] (con-
figurations are coded as integers), if the perturbations are ≤ ε, for some fixed
ε > 0. If we do some mapping from an unbounded domain to a bounded do-
main, these fixed ε-perturbations correspond to infinitesimal perturbations
in the compact space. Further allowing infinitesimal errors in an unbounded
space seems to originate a degree of modelization which is exceedingly arti-
ficial to be considered.
There is no loss in generality in assuming the compact domain to be [−1, 1]d.

– Second, we want to avoid undecidability due to the impossibility of distin-
guishing two reals in the recursive analysis setting: this is why we assume
that when some computation is accepted this can be stated by considering
a value that is clearly below some threshold (1/4), and that this quantity is
clearly above a bigger threshold (1/2) when the computation is not termi-
nated.

This leads to the following definition:

Definition 3 (Considering a dynamical system as a language recog-
nizer). Let H be a discrete/continuous-time dynamical system over space X =
[−1, 1]d. Let Vaccept be the set of x ∈ X with ‖x‖ ≤ 1/4 and Vcompute be the set
of x ∈ X with ‖x‖ ≥ 1/2. We say that H computes a language L ⊂ Σ∗ (or that
L is the language of H), over alphabet Σ = {0, 1}, if the following holds: for all
w ∈ Σ∗, w ∈ L iff the trajectory of H starting from (ν(w), 0, · · · , 0, 1) reaches
Vaccept. For robustness reasons, we assume that for any w 6∈ L, the corresponding
trajectory always stays in Vcompute.

4

3 Formal setting: recursive analysis

Recursive analysis or computable analysis, was introduced by Turing [16], Grze-
gorczyk [17], Lacombe [18]: see [12] for an up-to-date monograph presentation of
recursive analysis using a computability point of view, or [19] for a presentation
using a complexity theory point of view.

Following Ker-I Ko [19], let νQ : N → Q be the following representation6 of
dyadic rational numbers by integers: νQ(〈p, q, r〉) 7→ p−q

2r , where 〈., ., .〉 : N3 → N
is an elementarily polynomial time computable bijection.

A sequence of integers (xi)i∈N ∈ NN converges quickly toward x (denoted by
(xi)i∈N x) if the following holds for all i: |νQ(xi)− x| < 2−i.

A point x = (x1, . . . , xd) ∈ Rd is said computable if for all j, there is a
computable sequence (xi)i∈N ∈ NN (i.e. a computable function a : N → N such
that xi = a(i) for all i ∈ N) satisfying (xi)i∈N xj .

A function f : X ⊂ Rd → R, where X is compact, is said computable if there
exists some d-oracle Turing machine M such that, for all x = (x1, . . . , xd) ∈ X,
for all sequences (xj

i)i∈N xj , M taking as oracles these d sequences computes
a sequence (x′i)i∈N with (x′i)i∈N f(x). A function f : X ⊂ Rd → Rd, where X
is compact, is said computable if all its projections are.

4 Formal setting: robustness

We now introduce the settings of [1], based on an idea of [20].

Definition 4 (ε-perturbation). Consider a discrete/continuous-time dynam-
ical system H = (X, f). Given ε > 0, its ε-perturbation Hε is the discrete/con-
tinuous-time system Hε defined over the same space X, where:

1. (x0,x1, ...) is a trajectory of Hε (the trajectory may not be unique), in the
case where H is discrete-time, if ‖xi+1 − f(xi)‖ ≤ ε for all i ∈ N;

2. φ : R+
0 → X is a trajectory of Hε (the trajectory may not be unique), in the

case where H is continuous-time, if φ(0) ∈ X and ‖φ′(t)− f(φ(t))‖ ≤ ε for
all t ∈ R+

0 .

Note that the ε-perturbation Hε of a dynamical system H is not, in general,
a dynamical system since it is not deterministic (several trajectories may start
with a given initial point).

Similarly to what is done in Definition 3, we can define a language computed
by Hε, which we denote as Lε: w ∈ Lε iff there is some trajectory of Hε which
starts from (ν(w), 0, · · · , 0, 1) and reaches Vaccept.

The following result is immediate.

Lemma 1. For 0 < ε < ε′, Lε ⊂ Lε′ .

6 Many other natural representations of rational numbers can be chosen: they still
yield the same class of computable functions – see [12, 19].

5

Following the idea given in [1], we consider Lω = ∩ε>0Lε.

Definition 5 (Robustness). A dynamical system H is said robust iff its lan-
guage L is equal to Lω.

5 Main results

The following results are extensions from those obtained in [1].

Theorem 1 (Lω is co-r.e. for Lipschitz and computable Systems I).
Assume that language L is computed by a discrete-time system H defined over
[−1, 1]d which transition function is Lipschitz and computable. Then Lω is co-
recursively enumerable.

Proof. Let n ∈ N\{0} and decompose X in d-dimensional hypercubes V1, ..., Vs

of size 1
n . We build a finite automaton An, which states are V1, ..., Vs, that

roughly recognizes L 1
n
. To complete the description of this automaton we need

to define two things: (i) the set of accepting states and (ii) the transition rule δn.
The set of accepting states consists of those hypercubes which overlap Vaccept,
i.e. hypercubes that have vertices within distance ≤ 1/4 of the origin. These
hypercubes can easily be identified.

Fig. 1. A figure depicting various elements used in the demonstration of Theorem 1.

Now we have to present the transition rule of An. The following construction
is depicted in Fig. 1. Let Vj be some hypercube. Then pick its central point xj

(this is an easily computable rational) and compute a rational approximation
f(xj) of f(xj) with precision 1

n . Because f is Lipschitz, there will be some

6

Lipschitz constant K > 0 satisfying condition (1) for all x,y ∈ X. Then, if
x ∈ Vj is another point of the same hypercube, we have

‖f(x)− y‖ ≤ 1
n
⇒ (2)∥∥∥f(xj)− y

∥∥∥ ≤ ∥∥∥f(xj)− f(xj)
∥∥∥+ ‖f(xj)− f(x)‖+ ‖f(x)− y‖ ≤ K + 2

n
.

By other words, if y is an ε-perturbed image of a point of Vj , then this point
will be within distance K+2

n of f(xj). We use this fact to proceed as follows.
After computing f(xj), determine all the hypercubes which are within distance
≤ (K+2)/n of this point (in Fig. 1 this corresponds to all hypercubes covered by
the ball of center f(xj) and radius (K+2)/n). This can be done algorithmically,
in finite time, since it is only necessary to check which are the hypercubes (which
are finitely many) that have vertices within distance ≤ (K + 2)/n of f(xj). Let
W1, ...,Wi be these hypercubes. Then we define the transition rule over the
hypercubes as follows: δ(Vj) = {W1, ...,Wi}. This defines the automaton An.

Now we say that a point x ∈ X is accepted by An if it lies in an accepted
hypercube. Let L∗1

n

be the language accepted by An. From (2), the dynamics

of An includes those of the 1
n -perturbed system H 1

n
. Hence L 1

n
⊆ L∗1

n

. On the
other side, it is not difficult to see that the dynamics of An are included in those
of HK+3

n
.7 Therefore

L 1
n
⊆ L∗1

n
⊆ LK+3

n
⇒ ∩∞n=1 L

∗
1
n

= ∩ε>0Lε = Lω.

Let us now show that Lω = ∩∞n=1L
∗
1
n

is co-r.e., as required. Let w ∈ Σ∗. Then
build a Turing machine which performs the following steps:

i=0
Repeat

i++
Simulate Ai with input νX(w)

Until νX(w) is rejected
Reject w

This shows that the complement of Lω is r.e., as required.

We now introduce a (classical) tool to discretize a continuous-time system
(see e.g. [21]).

Definition 6 (Stroboscopic map). Consider the continuous-time system H =
(X, f). Then its corresponding stroboscopic map g : X → X is given by g(x0) =
φ(1), where φ : R+

0 → R satisfies φ′(t) = f(φ(t)), φ(0) = x0.

In other words, g(x0) gives the point where the trajectory of H, starting on
x0, would reach after one time unit.
7 Here we suppose that ‖x‖ = ‖x‖∞ = max1≤i≤n |xi|. However, a similar result holds

for other norms since all norms are equivalent in a finite-dimensional space.

7

Lemma 2. Let H = (X, f) be a continuous-time system, and let Ĥ = (X, g)
be its discrete-time counterpart, where g is the stroboscopic map of H. Then, if
L, L̂ are the languages computed by H and Ĥ, respectively, under the same input
encoding, we have:

1. L = L̂;
2. Lω = L̂ω and Lε = L̂ε, for all ε > 0.

Proof. Note that for all x0 ∈ X, if φ : R+
0 → R, φ(0) = x0 is a trajectory of

H and (x0,x1, ...) is a trajectory of Ĥ, we must have φ(k) = xk for all k ∈ N.
Therefore, because only the accepting trajectories reach Vaccept and then stay
there, we must have L = L̂. Similar arguments can be used to show the identity
Lε = L̂ε that, by its turn, implies Lω = L̂ω.

Theorem 2 (Lω is co-r.e. for Lipschitz and computable Systems II).
Assume that language L is computed by a continuous-time system H defined
over [−1, 1]d with a Lipschitz and computable transition function. Then Lω is
co-recursively enumerable.

Proof. Using the same assumptions of the previous lemma, to show that the
language L computed by the continuous-time system H = (X, f), where X =
[−1, 1]d, is co-r.e., it is enough to show that L̂ is a co-r.e. language. If we show
that g is Lipschitz and computable, then this can be done as indicated in the
proof of Theorem 1. It is well-known (see e.g. [13]) that if f satisfies equation
(1) over X, and if φ0, φ1 are solutions of the differential equation x′ = f(x) over
X, then

‖φ0(t)− φ1(t)‖ ≤ ‖φ0(0)− φ1(0)‖ eKt.

By other words, the stroboscopic map g is Lipschitz on X, with Lipschitz con-
stant eK . Moreover, g is computable by using an algorithmic version of Euler’s
method on the time interval [0, 1] for the differential equation ẋ = f(x).(cf. [19]).

The following lemma is a corollary from the results of [6], [22]: one can
semi-compute any trajectory of H. Therefore one can semi-decide if a trajectory
finishes in Vaccept, and thus semi-decide L.

Lemma 3. Let L be the language computed by a system H = (X, f), where
X = [−1, 1]d and f is Lipschitz and computable. Then L is r.e.

Since a system is robust iff L = Lω, the following corollary is immediate.

Corollary 1 (Robust =>Recursive for Lipschitz and Computable Sys-
tems). In the conditions of the lemma above, if H is robust, then L is recursive.

We now prove that Turing machines can be simulated robustly with C∞-
systems. Recall that C∞-systems are also Lipschitz. This is a generalization of a
similar result from [1], which holds for piecewise systems (which are not of class
C1).

8

Theorem 3 (Perturbed reachability is complete in Π0
1). Let A be a re-

cursively enumerable language. Then there is a computable and C∞ dynamical
system H such that Lω = Ā.

Proof. For any Turing machine M , Theorems 4.4 and 4.5 from [23] give an
explicit way to build a continuous-time dynamical system (X, f) where X is
compact and fM is C∞ such that y′ = fM (y) simulates M . It is easy to ob-
serve that the function fM built there is computable. Changing coordinates,
and reasoning through homothety, we can assume without loss of generality X
to be [−T, T]3 and that the accepting configuration of M correspond to the
origin c = (0, 0, 0) ∈ [−T, T]3, and that the initial starting point corresponding
to some input w is of the form c = (ν(w), 0, 1) as in Definition 3. This yields
a dynamical system such that a word w is accepted by Turing machine M iff
the trajectory starting from (ν(w), 0, 1) reaches the origin c. Let C be the cubic
neighborhood of c defined by [−0.1, 0.1]3, and C ′ be the cubic neighborhood of
c defined by [−0.2, 0.2]3. The resulting system is also such that a non-accepted
word corresponds to a trajectory that stays forever outside of neighborhood C ′.

We construct from this 3-dimensional smooth dynamical system fM a smooth
4-dimensional dynamical system gM whose perturbed version semi-recognizes the
complement of the language recognized by M .

Actually, robustness will only be shown for one component, the extra com-
ponent added to the original 3-dimensional system, which is the most critical
for the simulation, . The other 3 components can be made robust using the con-
struction presented in [14], [15] which, although originally done for unbounded
spaces, can be brought to the compact space [−T, T]3 via a transformation using
a function like, e.g. arctan, and can still be used here. However, giving all the
details would span the contents of this paper outside allowable size, so we only
show robustness for the crucial component.

We will use the notation x,y for 3-dimensional vectors, and h for the fourth
dimension. This 4-dimensional system is mainly the original smooth dynamical
system embedded in the hyperplane h = 3 of R4, however with two changes.
First, the neighborhood C of the original dynamical system becomes rejecting
in the new system. Second, the zone h ≤ 1 becomes accepting in the new system.

The idea is that for any word w accepted by M , the original system fM

will eventually come to C, and hence the perturbed dynamical system gM will
eventually go up and reject. For any word w not accepted by M , the system gM

will slowly drift “down” until it reaches the accepting zone h ≤ 1.
In order to get a smooth dynamics, we start by the following technicali-

ties. This is an easy and classical mathematical exercise to prove that for any
computable reals a < b, function ha,b(x) = exp(−1/(x − a)2 − 1/(b − x)2) for
a < x < b and 0 for x ≥ b or x ≤ a is C∞ and computable. If we denote by
γ the constant γ =

∫ b

a
ha,b(x)dx, and by χa,b(x) the function 1/γ

∫ x

a
ha,b(x),

one gets a computable and C∞ function that values 0 for x ≤ a, and 1 for
x ≥ b, and a value in interval [0, 1] in between. Given a < b < c, the function
χa,b,c(x) = χa,b(x) − χb,c(x) values 0 for x ≤ a, 1 in b, and 0 for x ≥ c, with a

9

value in interval [0, 1] in between. In the same spirit, let χC : R3 → R be some
function that values 1 over neighborhood C, and 0 outside neighborhood C ′.

Formally the new system gM is then defined on [−T, T]3 × [−1, 5] ⊂ R4 as
follows: gM (x, h) = (y, h′) where

h′ = χ4,5(h) + χC(x)χ2,3,4(h)− χ0,1,2(h) + χ−1,−0.5,0(h)

and
y = fM (x)(1− χC(x))χ2,3,4(h) + C(x)χ0,0.5,1(h),

where ẋ = C(x) is a smooth and computable vector field with all the trajectories
going to the origin.

In other words,

– if h ≥ 4, anything that arrives in the layer h ≥ 4 goes “up” and is rejected.
– if 2 < h < 4:
• if x ∈ C, then it goes “up” and it is ultimately rejected.
• if x 6∈ C, then it basically simulates the original system fM .

– if 1 < h < 2, then it goes “down” until it reaches h ≤ 1,
– if −1 ≤ h < 1, then it goes to the origin.

Consider the trajectory starting from (ν(w), 0, 1, 3): suppose that word w
is accepted by M : the corresponding trajectory of fM will eventually go to the
origin in some finite time t, and then the trajectory of gM will reach neighborhood
C, and hence will go up for ever. Taking ε small enough (depending on t) any
ε-perturbed trajectory of gM will be close at time t to this trajectory, and hence
also in C, and hence going for ever up afterwards.

Suppose that word w is not accepted by M : the corresponding trajectory
of fM will run for ever outside of C ′. For any ε > 0, we can easily construct a
trajectory of gM that drifts down slowly in the fourth coordinate until reaching
h ≤ 1, and then going to the origin.

Through a change of coordinates, the obtained system fulfills all constraints
of Definition 3 and of the statement of the Theorem.

In other words, “perturbed reachability is complete in Π0
1” as this is termed

in [1].

6 Conclusion

In this paper we showed that, on compact sets, the perturbed reachability prob-
lem is co-r.e. for Lipschitz and computable systems. We also proved that for
Lipschitz and computable systems which are robust to infinitesimal perturba-
tions, the reachability problem is decidable. The results are both for the discrete
and continuous-time case. It would be interesting to know what happens at a
more refined level, i.e. if from a complexity point of view.

Acknowledgments. D. Graça was partially supported by Fundação para a
Ciência e a Tecnologia and EU FEDER POCTI/POCI via SQIG - Instituto de
Telecomunicações.

10

References

1. Asarin, E., Bouajjani, A.: Perturbed Turing machines and hybrid systems. In:
Logic in Computer Science, 2001. Proc. 16th Annual IEEE Symposium. (2001)
269–278

2. Alur, R., Pappas, G.J., eds.: Hybrid Systems: Computation and Control: 7th
International Workshop (HSCC 2004). LNCS 2993. Springer (2004)

3. Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Automata,
Languages and Programming, 17th International Colloquium. LNCS 443, Springer
(1990) 322–335

4. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? J. Comput. System Sci. 57(1) (1998) 94–124

5. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems
having piecewise-constant derivatives. Theoret. Comput. Sci. 138 (1995) 35–65

6. Collins, P.: Continuity and computability of reachable sets. Theor. Comput. Sci.
341 (2005) 162–195

7. Fränzle, M.: Analysis of hybrid systems: An ounce of realism can save an infin-
ity of states. In Flum, J., Rodŕıguez-Artalejo, M., eds.: Computer Science Logic
(CSL’99). LNCS 1683, Springer (1999) 126–140

8. A.Henzinger, T., Raskin, J.F.: Robust undecidability of timed and hybrid sys-
tems. In Lynch, N.A., Krogh, B.H., eds.: Proc. Hybrid Systems: Computation and
Control, Third International Workshop, HSCC 2000. LNCS 1790, Springer (2000)
145–159

9. Asarin, E., Collins, P.: Noisy Turing machines. In Caires, L., Italiano, G.F., Mon-
teiro, L., Palamidessi, C., Yung, M., eds.: Automata, Languages and Programming,
32nd International Colloquium, ICALP 2005. LNCS 3580, Springer (2005)

10. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and
Bifurcation of Vector Fields. Springer (1983)

11. Hirsch, M.W., Smale, S., Devaney, R.: Differential Equations, Dynamical Systems,
and an Introduction to Chaos. Academic Press (2004)

12. Weihrauch, K.: Computable Analysis: an Introduction. Springer (2000)
13. Birkhoff, G., Rota, G.C.: Ordinary Differential Equations. 4th edn. John Wiley &

Sons (1989)
14. Graça, D.S., Campagnolo, M.L., Buescu, J.: Robust simulations of Turing machines

with analytic maps and flows. In Cooper, S.B., Löwe, B., Torenvliet, L., eds.: CiE
2005: New Computational Paradigms. LNCS 3526, Springer (2005) 169–179

15. Graça, D.S., Campagnolo, M.L., Buescu, J.: Computability with polynomial dif-
ferential equations. Adv. Appl. Math. 40(3) (2008) 330–349

16. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc. (Ser. 2–42) (1936) 230–265

17. Grzegorczyk, A.: Computable functionals. Fund. Math. 42 (1955) 168–202
18. Lacombe, D.: Extension de la notion de fonction récursive aux fonctions d’une ou

plusieurs variables réelles III. C. R. Acad. Sci. Paris 241 (1955) 151–153
19. Ko, K.I.: Computational Complexity of Real Functions. Birkhäuser (1991)
20. Puri, A.: Dynamical properties of timed automata. In Ravn, A.P., Rischel, H.,

eds.: Proc. Formal Techniques in Real-Time and Fault-Tolerant Systems, 5th In-
ternational Symposium, FTRTFT’98. LNCS 1486, Springer (1998) 210–227

21. Ott, E.: Chaos in Dynamical Systems. 2nd edn. Cambridge University Press (2002)
22. Collins, P., Graça, D.S.: Effective computability of solutions of differential in-

clusions — the ten thousand monkeys approach. Journal of Universal Computer
Science 15(6) (2009) 1162–1185

11

23. Bournez, O., Cosnard, M.: On the computational power of dynamical systems and
hybrid systems. Theoret. Comput. Sci. 168(2) (1996) 417–459

12

