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Abstract

Let (α, β) ⊆ R denote the maximal interval of existence of solution for
the initial-value problem {

dx
dt

= f(t, x)
x(t0) = x0,

where E is an open subset of Rm+1, f is continuous in E and (t0, x0) ∈
E. We show that, under the natural definition of computability from
the point of view of applications, there exist initial-value problems with
computable f and (t0, x0) whose maximal interval of existence (α, β) is
noncomputable. The fact that f may be taken to be analytic shows that
this is not a lack of regularity phenomenon. Moreover, we get upper
bounds for the “degree of noncomputability” by showing that (α, β) is
r.e. (recursively enumerable) open under very mild hypotheses. We also
show that the problem of determining whether the maximal interval is
bounded or unbounded is in general undecidable.

1 Introduction

In the last decades, digital computers have evolved at a breathtaking speed.
Nowadays, with the availability of fast, cheap, and reliable computers, their
widespread use has become transversal to all fields of science. In particular, ar-
eas of mathematics such as numerical analysis have greatly benefited from their
systematic use. Surprisingly, relatively little theoretical work exists relating
these areas to computability theory. This theory emerged in the 1930s from the
groundwork of logicians such as Gödel, Turing, Church, Kleene, Post, among
others. In this formal setting, computations are performed by Turing machines,
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first introduced by Turing in [Tur36] and accepted by the scientific community
as the standard model of computation. In practice, the Turing machine (TM for
short) is capable of solving exactly the same problems as an ordinary computer
(as long as enough memory is provided).

One of the great achievements of computability theory is to show that there
are noncomputable (or undecidable) problems, i.e. problems that cannot be
solved with the use of a Turing machine. The best-known examples of noncom-
putable problems are the Halting Problem and Hilbert’s 10th Problem [Sip97].

However, the Turing machine cannot be applied directly to deal with real
quantities because it can only have as input and output a “finite number of
bits”. To circumvent this problem, several extensions of the Turing machine
model have been proposed. One such extension is the BSS model [BSS89],
[BCSS98], which instead of using a “finite number of bits” allows the use of a
finite number of reals. Computations over the reals are then performed using
infinite-precision arithmetic. While this model is elegant, especially from the
algebraic point of view, its relevance to “practical computations” may be lim-
ited since, in general, bounded precision arithmetic is used. In this context,
we prefer to use the computable analysis theory, whose foundations go back to
Banach, Mazur [Maz63], Grzegorczyk [Grz55], and Lacombe [Lac55], where an
approximation of the output with arbitrary precision is computed from a suit-
able approximation of the input. For more recent developments in computable
analysis, the reader is referred to [PER89], [Ko91], [Wei00], [BC06], [BY06].

In this paper, we study computability and noncomputability in initial-value
problems (henceforth abbreviated to IVPs) of ordinary differential equations
based on the model of computable analysis. It is well known that ordinary
differential equations are fundamental in modeling physical processes. The most
general ODE is written as a system ẋ = f(t, x), where E is an open subset of
Rm+1, f : E → Rm, x = x(t) ∈ Rm is a function of t and ẋ denotes the
derivative of x with respect to t. The well-posedness of such systems follows
from the basic existence-uniqueness theory [CL55], [Lef65]; in particular, if f is
continuous on E and locally Lipschitz in the second argument, the initial-value
problem (IVP) {

ẋ = f(t, x)
x(t0) = x0

(1)

has a unique solution x(t) defined on a maximal interval of existence I =
(α, β) ⊂ R that is continuously differentiable on I. In general, however, it
is not possible to solve the above nonlinear system analytically with an explicit
solution formula. Many of those nonlinear systems can only be solved numeri-
cally on computers. Numerical methods are usually tailor-made for individual
problems and often depend on certain assumptions, for example, the existence
of some time interval where the solution is defined. This requirement is crucial
but in general hard to verify.

The satisfactory solution is to have some “automated method” that deter-
mines the maximal interval (α, β) and computes the solution on (α, β) from the
data defining the IVP (1). Thus, it becomes useful to know whether it is pos-
sible to derive such “automated method”. In this paper, we present a negative
answer to the question. We show that the maximal interval where the solution
of the IVP (1) is defined may not be computable, even when the function f
is analytic as well as computable and the initial condition is computable. In
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such circumstances, there is no algorithm to decide, given an arbitrary time t
as input, whether or not t ∈ (α, β). The undecidability indicates that the limit
behavior of the IVP (1) may not be determined by “general numerical recipes”.
In other words, such undecidability suggests limitations concerning numerical
methods for solving ODEs.

There are other noncomputability results related to the initial-value prob-
lems of differential equations. For example, Pour-El and Richards [PER79]
showed that the IVP (1) defined with computable data may have noncomputable
solutions. In [PER81], [PEZ97] it is shown that there is a three-dimensional
wave equation, defined with computable data, such that the unique solution
is nowhere computable. However, in these examples, noncomputability is not
“genuine” in the sense that the problems under study are ill-posed: either the so-
lution is not unique or it is unstable [WZ02]. In other words, ill-posedness was at
the origin of noncomputability in those examples. In contrast, all IVPs studied
in this paper are classically well-posed and, consequently, the noncomputability
results associated to these well-posed problems reflects true computational de-
ficiency inherited by the problems. For reference we also mention the existence
of other results about computability of ODEs that can be found in [Abe70],
[Abe71], [BB85], [Hau85], [DL89], [Ko91], [Ruo96].

The paper is organized as follows. Section 2 introduces necessary concepts
and results from computability theory, computable analysis and the theory of
ODEs. Section 3 presents a theorem stating that the maximal interval (α, β) ⊆
R of the IVP (1) where the solution is defined is recursively enumerable and
the solution is computable on (α, β), provided the data defining the initial-
value problem is computable. Section 4 contains two counterexamples showing
that the maximal interval (α, β) is r.e. but not necessarily computable. The
first example treats the case where the ODE is defined by a continuous and
computable function, while the second deals with the case where the ODE is
defined by an analytic as well as computable function. Finally, Section 5 shows
that even the problem of deciding whether the maximal interval is bounded or
not is undecidable.

2 Preliminaries

This section introduces necessary concepts and results from computability the-
ory, computable analysis and from the theory of ODEs. For more details the
reader is referred to [Sip97] for computability theory, [PER89], [Ko91], [Wei00]
for computable analysis, and [CL55], [Lef65] for ODEs.

We assume that the reader is familiar with the notion of TMs (cf. [Sip97]).
Roughly speaking, a TM can be treated as a computer program written in
one’s favorite programming language. We turn now to the basic computability
definitions. Denote by N, Q and Rn respectively the set of natural numbers
containing 0, the set of rational numbers, and the n-dimensional Euclidean
space.

Definition 1 1. A function f : Nn → N is computable (or recursive) if there
is a TM, which on input (a1, ..., an) ∈ Nn outputs f(a1, ..., an).

2. The set L ⊆ Nn is computable or decidable if the characteristic function
χL : Nn → {0, 1} defined by χL(x) = 1 if x ∈ L, χL(x) = 0 otherwise, is
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computable.

3. The set L ⊆ N is recursively enumerable (r.e. for short) if there is a
computable function f : N→ N such that L = {f(i) : i ∈ N}.

It is well-known that there are r.e. sets which are not recursive. Indeed, it
can be shown that a set A is recursive iff both A and its complement Ac are
r.e. [Odi89]. The above Turing machine model can be extended to deal with
computations that operate on real-valued data. Among different extensions, we
use the computable analysis approach. In this approach, informally, a function
f : R→ R is computable if there is a computer program that does the following.
Let x ∈ R be an arbitrary element in the domain of f . Given an output
precision 2−n, the program has to compute a rational approximation of f(x)
with precision 2−n.

To formalize this notion, we need oracle TMs. We say that M is an oracle
TM if, at any step of the computation of M using oracle φ : N → Nk, M is
allowed to query the value φ(n) for any n.

Definition 2 1. A sequence {rn} of rational numbers is called a ρ-name of
a real number x if there are three functions a, b and c from N to N such
that for all n ∈ N, rn = (−1)a(n) b(n)

c(n)+1 and

|rn − x| ≤
1
2n
. (2)

2. A real number x is called computable if it has a computable ρ-name, i.e.,
if a, b and c in (2) are computable (recursive) functions.

3. A sequence {xk}k∈N of real numbers is computable if there are three com-
putable functions a, b, c from N2 to N such that, for all k, n ∈ N,∣∣∣∣(−1)a(k,n) b(k, n)

c(k, n) + 1
− xk

∣∣∣∣ ≤ 1
2n
.

The notion of the ρ-name can be extended to points in Rl as follows: a
sequence {(r1n, r2n, . . . , rln)}n∈N of rational vectors is called a ρ-name of x =
(x1, x2, . . . , xl) ∈ Rl if {rjn}n∈N is a ρ-name of xj , 1 ≤ j ≤ l. Similarly, one can
define computable points and sequences over Rl, l > 1, by assuming that each
component is computable. Next we present a notion of computability for open
and closed subsets of Rl (cf. [Wei00], Definition 5.1.15).

Definition 3 1. An open set E ⊆ Rl is called recursively enumerable (r.e.
for short) open if there are computable sequences {an} and {rn}, an ∈ E
and rn ∈ Q such that

E = ∪∞n=0B(an, rn).

Without loss of generality one can also assume that for any n ∈ N,
the closure of B(an, rn), denoted as B(an, rn), is contained in E, where
B(an, rn) = {x ∈ Rl : |x− an| < rn}.

2. A closed subset K ⊆ Rl is called r.e. closed if there exist computable
sequences {bn} and {sn}, bn ∈ Ql and sn ∈ Q, such that {B(bn, sn)}n∈N
lists all rational open balls intersecting K.
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3. An open set E ⊆ Rl is called computable (or recursive) if E is r.e. open
and its complement Ec is r.e. closed. Similarly, a closed set K ⊆ Rl is
called computable (or recursive) if K is r.e. closed and its complement Kc

is r.e. open.

It is well known that an open interval (α, β) ⊂ R or a closed interval [α, β] is
computable if and only if α and β are computable real numbers. Having defined
the notion of recursive and r.e. sets, we are now ready to introduce the notion
of computable functions defined on those sets [PER89, Ko91, Wei00].

Definition 4 Let A ⊆ Rl be either a r.e. open set or a r.e. closed set.

1. A function f : A→ Rm is computable if there is an oracle Turing machine
such that for any input n ∈ N (accuracy) and any ρ-name of x ∈ A
given as an oracle, the machine will output a rational vector r satisfying
|r − f(x)| ≤ 2−n.

2. A sequence {fi}i∈N of functions, where fi : A ⊆ Rl → Rm, is computable
if there is an oracle Turing machine such that for any input n ∈ N (ac-
curacy), any i ∈ N, and any ρ-name of x ∈ A given as an oracle, the
machine will output a rational vector r satisfying |r − fi(x)| ≤ 2−n.

Recall that a function f : E → Rm, E ⊆ Rl, is said to be locally Lipschitz
on E if it satisfies a Lipschitz condition on every compact set V ⊂ E. The
following definition gives a computable analysis analog of this condition.

Definition 5 Let E = ∪∞n=0B(an, rn) ⊆ Rl, where B(an, rn) ⊆ E, be a r.e.
open set. A function f : E → Rm is called effectively locally Lipschitz on E if
there exists a computable sequence {Kn} of positive integers such that

|f(x)− f(y)| ≤ Kn |x− y| whenever x, y ∈ B(an, rn).

Strictly speaking, it would only be necessary to require in the above definition
that the sequence {Kn} is computable and formed by positive reals. However,
given a (computable) local Lipschitz constant Ln for a compact set, any integer
Kn ≥ Ln is also a local Lipschitz constant for that set, and therefore there is
no loss of generality in assuming that the sequence {Kn} in definition 5 consists
only of integers.

In the rest of the paper, we shall deal with the case of interest for ODEs, that
is, E ⊂ Rm+1 and f : E → Rm. From now on E ⊆ Rm+1 will always denote a
r.e. open set, and {an}, {rn} and B(an, rn) are the corresponding sequences in
definition 3. Also for notational convenience, we will sometimes simply write f
for f(t, x) and refer to t ∈ R as the first argument and x ∈ Rm as the second
argument of f .

It can be shown [Wei00] that if f is computable on E, then there exists a
computable modulus function e : N× N → N which is locally effective in the
sense that |f(x)− f(y)| ≤ 2−k whenever x, y ∈ ∪n

j=0B(aj , rj) and |x− y| ≤
2−e(k,n). In particular, this implies that f must be continuous.

Definition 6 Let E = ∪∞n=0B(an, rn) ⊆ Rl, where B(an, rn) ⊆ E, be a r.e.
open set. A function f : E → Rm is called effectively locally Lipschitz in the
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second argument if there exists a computable sequence {Kn} of positive integers
such that

|f(t, x)− f(t, y)| ≤ Kn |y − x| whenever (t, x), (t, y) ∈ B(an, rn).

Obviously an effectively locally Lipschitz function f : E → Rm is also effec-
tively locally Lipschitz in the second argument. On the other hand, denoting
by Ck(E) the space of k-fold continuously differentiable functions defined on
E, it is trivially shown that if f ∈ C1(E) then f is locally Lipschitz on E;
in other words, continuous differentiability is a strictly stronger condition than
that of being locally Lipschitz. This fact extends to computable functions in
the following way.

Theorem 7 Assume that f : E → Rm is a computable function in C1(E)
(meaning that both f and its derivative f ′ are computable). Then f is effectively
locally Lipschitz on E.

Proof. Let Kn be an integer greater than or equal to max
x∈B(an,rn)

|f ′(x)|.
Since f ′, an, rn are computable, the real number max

x∈B(an,rn)
|f ′(x)| is also

computable (notice that, because f ′ is computable, it has a modulus of con-
tinuity that can be used to obtain the maximum over B(an, rn) within any
preassigned precision). Moreover, since f ′ has a locally effective modulus of
continuity, we may assume that the sequence {Kn} is a computable sequence
of positive integers. Now, for any x, y ∈ B(an, rn), let u = y − x. Then
x + su ∈ B(an, rn) for 0 ≤ s ≤ 1 because B(an, rn) is a convex set. Define
F : [0, 1]→ Rn by F (s) = f(x+ su). By the chain rule

F ′(s) = f ′(x+ su) · u = f ′(x+ su) · (y − x).

Therefore,

|f(x)−f(y)| = |F (1)−F (0)| =
∣∣∣∣∫ 1

0

F ′(s)ds
∣∣∣∣ ≤ ∫ 1

0

|f ′(x+su)·(y−x)|ds ≤ Kn|x−y|.

We now recall some basic results concerning initial-value problems defined
with ODEs. Let us consider the following initial-value problem{

ẋ = f(t, x),
x(t0) = x0,

(3)

where (t0, x0) ∈ E ⊂ Rm+1 and f : E → Rm is a continuous function and
satisfies a local Lipschitz condition in the second variable. The following is an
immediate consequence of the fundamental existence-uniqueness theory for the
initial-value problem (3) [CL55], [Lef65] (the expressions t → α+ and t → β−

mean that t converges to α from above and to β from below, respectively).

Theorem 8 (Maximal interval of existence) Let E be an open subset of
Rm+1 and assume that f : E → Rm is continuous on E and locally Lipschitz
in the second argument. Then for each (t0, x0) ∈ E, the problem (3) has a
unique solution x(t) defined on a maximal interval (α, β), on which it is C1.
The maximal interval is open and has the property that, if β < +∞ (resp.
α > −∞), either (t, x(t)) approaches the boundary of E or x(t) is unbounded as
t→ β− (resp. t→ α+).
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3 The maximal interval is r.e. open

Theorem 9 Let E ⊆ Rm+1 be a r.e. open set and f : E → Rm be a computable
function that is also effectively locally Lipschitz in the second argument. Let
(α, β) be the maximal interval of existence of the solution x(t) of the initial-
value problem (3), where (t0, x0) is a computable point in E. Then (α, β) is a
r.e. open interval and x is a computable function on (α, β).

Proof. We consider the right maximal interval (t0, β) and prove (t0, β) is
r.e. open and x is computable on it. The same argument applies to the left
maximal interval (α, t0). For simplicity, we assume that E is an open subset of
R2.

Since {an} and {rn} are computable sequences and f is a computable func-
tion on E, both sequences {Mn}, Mn = max

z∈B(an,rn)
|f(z)|+ 1, and {Kn} as

defined in Def. 6 are computable, where z = (t, x). A ρ-name of z is used as an
oracle in computations involving z on oracle Turing machines.

Next we construct three (oracle) Turing machines, denoted as TM1, TM2

and TM3. Let TM1 be the Turing machine defined as follows: on any input
{zk}k∈N, where {zk}k∈N is a ρ-name of some z ∈ E, TM1 computes |zk−an| and
halts if |zk−an| < rn−2−k+1. In this case, we say that the machine TM1 halts
at (k, n). Obviously the machine will halt at any given ρ-name of every z ∈ E
and if the machine halts at (k, n), then B(z, 2−k) ⊂ B(an, rn). The output of
TM1, on input {zk}k∈N, is the least (first) integer 〈k, n〉 such that TM1 halts
at (k, n), where the following lexicographic ordering 〈k, n〉 is used for the pairs
(k, n):

a1 a2 a3 a4 a5 a6 a7 a8 . . .
z1 1 3 6 10 15 21 28 . . .
z2 2 5 9 14 20 27 . . .
z3 4 8 13 19 26 . . .
z4 7 12 18 25 . . .
z5 11 17 24 . . .
z6 16 23 . . .
z7 22 . . .
...

Let TM2 be the Turing machine defined as follows: on any input ρ-name
{z′j}j∈N of z′ = (t′, x′) ∈ E, positive integersM , K and L satisfyingB(z′, 2−L) ⊂
E, max|z−z′|≤2−L |f(z)| + 1 ≤ M , and |f(z1) − f(z2)| ≤ K|x1 − x2| for all
z1 = (t, x1), z2 = (t, x2) ∈ B(z′, 2−L), TM2 outputs the solution of the initial-
value problem {

ẋ = f(t, x)
x(t′) = x′

over the time interval [t′, t′ + c′], where c′ = 2−L/M . TM2 can be constructed
by making use of the classical proof of Picard-Lindelöf’s theorem. The follow-
ing construction follows essentially the proof of Theorem 3.1 of [CL55]. Let
c′ = 2−L/M and denote by I the interval [t′, t′ + c′]. Define the successive ap-
proximations xk on I as follows: x0(t) = x′ and xk+1(t) = x′ +

∫ t

t′
f(s, xk(s))ds

for k = 0, 1, 2, . . .. By induction on k it can be shown that every xk exists on
I, xk ∈ C1(I) (with the appropriate interpretation of derivatives at endpoints
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as one-sided limits), and (t, xk(t)) ∈ B(z′, 2−L) for all t ∈ I. Since f is a com-
putable function and both integration and primitive recursion are computable
operators, the sequence {xk} of the successive approximations is computable
from (t′, x′) plus the positive integers M , K and L. Also it can be shown that
xk converges uniformly on I to a continuous limit function x, which is the solu-
tion of the given initial-value problem. Moreover, an upper bound for the error
in approximating the solution x by the kth approximation xk is easily calcu-
lable by the definition of xk, and is given by |xk(t) − x(t)| ≤ M

K
(Kc′)k+1

(k+1)! e
Kc′ ,

t ∈ I. It remains to show how TM2 works. On any input ρ-name {z′j}j∈N of
z′ = (t′, x′) ∈ E, positive integers M , K and L satisfying the required conditions
plus any n ∈ N (output accuracy) and any ρ-name of t (input as an oracle),
t ∈ [t′, t′+ c′], TM2 first computes a k ∈ N such that M

K
(Kc′)k+1

(k+1)! e
Kc′ ≤ 2−(n+1).

Then it computes a rational vector r such that |r − xk(t)| ≤ 2−(n+1), and sub-
sequently |r − x(t)| ≤ 2−n.

Let TM3 be the Turing machine defined as follows: The input to TM3 is the
same as that to TM2, the output of TM3 is a ρ-name of (t′+ c′, x(t′+ c′)) ∈ E.

Next we present an algorithm that computes a sequence {bl}l∈N converging
to β from below. Fix a ρ-name {z0k}k∈N of z0 = (t0, x0). On input l, set
j = 0. Now input {z0k} into TM1. Let n = 〈k0, n0〉 be the output of TM1

on {z0k}. By the construction of TM1, B(z0, 2−k0) ⊂ B(an0 , rn0). Next input
{z0k}k∈N,Mn0 ,Kn0 , k0 into TM2 and TM3. Then TM2 will output the solution
of (3) over the time interval [t0, t0 + c0], where c0 = 2−k0/Mn0 . Denote this
solution as x0 : [t0, t0 + c0] → Rm. Separately, the machine TM3 will output
a ρ-name {z1k}k∈N for z1 = (t0 + c0, x

0(t0 + c0)) ∈ E. Now increase j by 1,
i.e. set j = 1. Repeat the above computation on the input {z1k}k∈N, i.e. input
{z1k}k∈N into TM1. Let n = 〈k1, n1〉 be the output of TM1. Next input {z1k},
Mn1 , Kn1 and k1 into TM2 and TM3. Then TM2 will output the solution of
the problem {

ẋ = f(t, x)
x(t0 + c0) = x0(t0 + c0)

over the time interval [t0 + c0, t0 + c0 + c1], where c1 = 2−k1/Mn1 . Denote this
solution as x1 : [t0 + c0, t0 + c0 + c1]→ Rm. Also separately, the machine TM3

will output a ρ-name {z2k}k∈N of z2 = (t0 + c0 + c1, x
1(t0 + c0 + c1)) ∈ E. Now

increase j by 1 again, i.e. set j = 2. Repeat the computation on the input
{z2k}k∈N. Halt the computation on input l the first time when j > l and output
bl = t0 + c0 + c1 + . . .+ cl. Since l 7→ bl is an input-output function of a Turing
algorithm, the increasing sequence {bl}l∈N of rational numbers is a computable
sequence. Also by the uniqueness of the solution of (3) and Pour-El/Richards’
Patching Theorem [PER89], it follows that the map xbl : [t0, bl] → E, xbl(t) =
xj(t) if t0 +c0 + . . .+cj−1 ≤ t ≤ t0 +c0 + . . .+cj−1 +cj , 0 ≤ j ≤ l with c−1 = 0,
is the solution of the initial-value problem (3) over the time interval [t0, bl] and
this solution is computable. Let O = ∪∞l=0(t0, bl] and x : O → E be the solution
of the initial-value problem (3) over the time interval O. To complete the proof,
we need to show that (a) O is the right maximal interval of existence of the
solution of (3); (b) O is r.e. open; and (c) x is computable on O. For simplicity,
we take t0 = 0.

To prove (a), assume that O is not the maximal interval of existence of the
solution of the problem (3). Then (3) has a solution on an interval (0, β) with
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O $ (0, β). Choose β′ ∈ (0, β) \O. Then O $ (0, β′] $ (0, β). Since {bl}l∈N is a
monotonically increasing sequence bounded above by β′, it converges to a limit
γ less than or equal to β′. Since γ ∈ (0, β), (γ, x(γ)) must lie in E. Then there
exists an n such that (γ, x(γ)) ∈ B(an, rn). Moreover, there is also an integer M
such that (γ, x(γ)) ∈ B((γ, x(γ)), 2−M+2) ⊂ B(an, rn). Since x : [0, β′] → Rm

is continuous and bl → γ as l → ∞, it follows that x(bl) → x(γ) as l → ∞.
Consequently there exists an integer N such that

(bN , x(bN )) ∈ B((bN , x(bN )), 2−M+1) ⊂ B((γ, x(γ)), 2−M+2) ⊂ B(an, rn)

and
bN + min

0≤〈i,j〉≤〈M+2,n〉
2−i/Mj > γ.

We observe that for any ρ-name {yk} of (bN , x(bN )),

|yM+2 − an| ≤ |yM+2 − (bN , x(bN ))|+ |(bN , x(bN ))− an|
< 2−(M+2) + rn − 2−M+1

= rn − 2−(M+2)+1(4− 1/2) < rn − 2−(M+2)+1.

By the construction of the machine TM1 it follows that on any ρ-name of
(bN , x(bN )) as input, TM1 will halt no later than 〈M + 2, n〉. Thus bN+1 =
bN +cN+1, where cN+1 = 2−i/Mj for some 〈i, j〉 less than or equal to 〈M+2, n〉,
which implies that bN+1 > γ. There is a contradiction because {bl}l∈N is an
increasing sequence converging to γ. This completes the proof of (a). We now
prove (b). Since by Theorem 8 the maximal interval of existence is open, O
is an open interval. It is also independent of the choice of ρ-names of x0. By
the proof of (a), it follows that O = ∪∞l=0(0, bl] = ∪∞l=0(0, bl). Since {bl}l∈N is a
computable sequence of rational numbers, O is r.e. open by definition. Finally
we prove (c), that is, x is computable on O. Recall that O = ∪∞l=0(0, bl) and
{bl}l∈N is a computable sequence of rational numbers. For any t ∈ O, to com-
pute x(t), we first compute an l ≥ 0 such that t < bl and then compute xbl(t).
By definition, x(t) = xbl(t).

We mention that the above proof is effective in the sense that given (E, f, t0, x0),
one can compute (α, β, x), β from below and α from above, i.e. one can com-
pute a sequence of rationals that converges to β from below and a sequence of
rationals that converges to α from above. However, the rate of the convergence
might not be computable.

4 Noncomputability of the maximal interval

In this section, we present some noncomputability results concerning ODEs.
In particular, we show that for the initial-value problem (3) defined by the
computable data f and (t0, x0), the maximal interval may be noncomputable.
We will present two versions of this result; the proof methods are different and
the results are interesting on their own. In the first case, where only continuity
is required, we can explicitly construct f with a finite expression on bounded
domains. For that reason, we prove a preliminary lemma. The second result is
for the stronger case where f is analytic, but lacks the finiteness feature: the
function f is defined as a (computable) power series.
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4.1 Continuous case

Since a computable function is continuous [Wei00], Theorem 8 ensures existence
of the maximal interval of the following IVP (4).

Lemma 10 Let a : N → N be a computable function. Then there exists a
computable and effectively locally Lipschitz function f : R → R such that the
unique solution of the problem {

ẋ = f(x)
x(0) = 0 (4)

is defined on a maximal interval (−α, α) with

α =
∞∑

i=0

1
2a(i)

.

Proof. We only need to construct the function f . The idea is as follows: f
is constructed piecewisely on intervals of the form [i, i+ 1], i ∈ N (for negative
values, we take f(x) = f(|x|)) in such a way that, for a fixed i, the solution of
the initial-value problem

ẋ = f(x), x(0) = i (5)

satisfies x(2−a(i)) = i + 1, which implies that the solution of the problem ẋ =
f(x) and x(0) = 0 will satisfy x(2−a(0)) = 1, x(2−a(0) + 2−a(1)) = 2, ..., or more
generally

x

(
n∑

i=0

2−a(i)

)
= n+ 1, for all n ∈ N.

Notice that f does not depend on t and therefore the solution is invariant under
time translations. If we take α =

∑∞
i=0 2−a(i), then x(t) → ∞ as t → α−. For

t < 0, since we required f(x) = f(|x|), (5) implies that x(−2−a(i)) = −(i + 1),
and hence x(t) → −∞ as t → −α+. Therefore the maximal interval must be
(−α, α).

We now construct the desired function f on intervals of the form [i, i + 1],
i ∈ N. Since f must be continuous, we need to glue the values of f at the
endpoints of these intervals. This is achieved by assuming that f(i) = 1 for
i ∈ N (in principle, the value of 1 is rather arbitrary; however, some singularities
may arise when we consider other values, e.g. 0).

The function f is defined on each interval [i, i + 1] as suggested by Fig. 1:
f is piecewise linear and consists of three line segments, which meet at points
xi = x(ti,1) and yi = x(ti,2), with 0 < ti,1 < ti,2 < 2−a(i) and i = x(0) < xi <
yi < i+1. The points xi and yi are to be defined. For the moment let us assume
that a(i) ≥ 1. The more general case a(i) ≥ 0 will be dealt with later in the
proof. We now define the function f on the interval [i, i+ 1] as follows:

f(x) =


1 + (x− i)2a(i)/(xi − i) if x ∈ [i, xi)
1 + 2a(i) if x ∈ [xi, yi),
1 + 2a(i) − (x− yi)2a(i)/(i+ 1− yi) if x ∈ [yi, i+ 1),

i.e. assume that h = 2a(i) in Fig. 1. Supposing that xi and yi are equidistant
from i and i+ 1, respectively, and assuming that the solution x(t) of the initial-
value problem ẋ = f(x), x(0) = i satisfies x(2−a(i)) = i + 1, then one obtains

10
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Figure 1: Sketch of the function f on the interval [i, i+ 1], for i ∈ N.

the following values for xi and yi:

xi = i+
1−∆i

2
, yi = i+

1 + ∆i

2
,

where

0 < ∆i =
2−a(i) − 2−a(i) ln(2a(i) + 1)

(1 + 2a(i))−1 − 2−a(i) ln(2a(i) + 1)
< 1.

It remains to treat the general case where a(i) ≥ 0. This can be easily done
as follows. First define the recursive function a′ : N → N by a′(i) = a(i) + 1.
Using the previous result, we can construct an IVP ẋ = f(x), x(0) = 0 with
maximal interval (−α′, α′), where

α′ =
1
2
α, α =

∞∑
i=0

1
2a(i)

.

Thus, if in the previous problem time is slowed down by a linear factor of 1/2,
i.e., the change of independent variables t̃ = t/2 is performed, we arrive at an
IVP ẋ = f(x)/2, x(0) = 0 whose maximal interval of existence is (−α, α).

Theorem 11 (continuous case) There exists a continuous computable and
effectively locally Lipschitz function f : R→ R such that the unique solution of
the problem {

ẋ = f(x)
x(0) = 0

is defined on a noncomputable maximal interval.

Proof. In [PER89, Sec. 0.2], it is shown that if a : N → N is a one to
one recursive function generating a recursively enumerable nonrecursive set A,
then α =

∑∞
i=0 2−a(i) is a noncomputable real number. Consequently, the open

interval (−α, α) is noncomputable. The theorem now follows immediately from
the previous lemma.

The function f in Theorem 11 can be constructed so that f is of class C∞

and all its derivative are computable functions (just “smooth” the “corners”).
This condition matches the assumption set down in Theorem 9. Thus, Theorem
9 gives rise to the best possible result concerning computability of a maximal
interval for smooth functions.

11



4.2 Analytic case

We now show that the result of Section 4.1 can be strengthened to cover the
case of computable analytic functions.

Lemma 12 Let a : N → N be a one to one recursive function generating a
recursively enumerable nonrecursive set. Then there is a computable analytic
function ϕ with the following properties:

1. ϕ is defined on (−α, α), where α =
∑∞

i=0 2−a(i) is a noncomputable real
[PER89];

2. ϕ(x)→ ±∞ as x→ ±α∓;

3. ϕ : (−α, α)→ R is odd and bijective.

Proof. Define ϕ as

ϕ(x) =
∞∑

n=0

anx
n, an =

{ (∑n
i=0 2−a(i)

)−n
if n is odd

0 if n is even

The radius of convergence of this function is given by

R =
1

lim
n→∞

n
√
an

=
∞∑

i=0

2−a(i) = α.

Moreover, one has a2n+1 > 1/α2n+1, which in turn implies

ϕ(x) =
∞∑

n=0

a2n+1x
2n+1 >

∞∑
n=0

(x
α

)2n+1

.

Therefore, ϕ(x) → +∞ as x → α−. Since ϕ is odd by construction, it follows
that ϕ(x)→ −∞ as x→ −α+. Note also that

ϕ′(x) =
∞∑

n=0

(n+ 1) an+1x
n (6)

and thus ϕ′(x) > 0 for all x ∈ (−α, α) (all coefficients (n+ 1) an+1 are nonneg-
ative, and only even powers have nonzero coefficients). This implies that ϕ is
injective and therefore bijective according to condition (2) of the statement. It
also follows from (6) and our choice of an that ϕ′ is strictly increasing on [0, α)
and, since ϕ′ is even, decreasing on (−α, 0].

It remains to show that ϕ is computable. Assume, without loss of generality,
that x ≥ 0. Since a : N→ N is computable by assumption, there is a TM that,
for any input k ∈ N (output precision) and any x ∈ (−α, α) with x ≥ 0,
computes first a rational number ε > 0 satisfying 0 ≤ x < α − ε, then an

n(k) ∈ N satisfying
∑n(k)

i=0 2−a(i) > x+ε and
(

x
x+ε(x)

)n(k)
(x+ε(x))2

(x+ε(x))2−x2 < 2−k−1.
We observe that∣∣∣∣∣∣ϕ(x)−

n(k)∑
i=0

aix
i

∣∣∣∣∣∣ =
∞∑

i=n(k)+1

aix
i =

∞∑
i=dn(k)

2 e

(
x∑2i+1

j=0 2−a(j)

)2i+1

≤
∞∑

i=dn(k)
2 e

(
x

x+ ε(x)

)2i+1

≤
(

x

x+ ε(x)

)n(k) (x+ ε(x))2

(x+ ε(x))2 − x2
≤ 2−k−1.
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Then, if our TM computes a rational rk satisfying∣∣∣∣∣∣rk −
n(k)∑
i=0

aix
i

∣∣∣∣∣∣ ≤ 2−k−1

one concludes that |rk − ϕ(x)| ≤ 2−k. Thus ϕ is computable.

Theorem 13 There exists an analytic computable function f : R → R such
that the unique solution of the problem

ẋ = f(x), x(0) = 0

is defined on a noncomputable maximal interval.

Proof. Define the function ϕ as in the previous lemma. By the lemma,
ϕ′(x) > 0 for all x ∈ (−α, α), and consequently ϕ−1 exists over R. Denote
ψ = ϕ−1. Then

ψ′(x) =
1

ϕ′(ψ(x))
> 0 for all x ∈ R. (7)

Similarly, ϕ′(x) = (ψ′(ϕ(x)))−1 for all x ∈ (−α, α), and therefore ϕ is the
solution of the IVP {

ẏ = f(y)
y(0) = 0 (8)

where f : R→ R is defined by f(x) = 1/ψ′(x) (note that f is defined for all real
numbers due to (7)). Since ψ (and thus ψ′) is analytic and computable (see e.g.
[Wei00]), so is f .

5 Boundedness is undecidable

In the previous section it is shown that, in general, given an IVP (1) and t > t0,
we cannot devise an algorithm that tells us how close we are from one of the
endpoints of the maximal interval. Nevertheless, this does not rule out the
existence of an algorithm that can determine some partial information about
the maximal interval. A further question of interest is if there exists an algorithm
that can decide whether a given analytic IVP has a bounded maximal interval.
As we now show, the answer to this question is also negative.

Theorem 14 Given an IVP (3) with maximal interval (α, β), where f is an-
alytic, f and (t0,x0) are computable, there is no effective (i.e. computable)
procedure to determine whether β <∞ or β =∞.

Proof. Suppose that there is an effective procedure that determines whether
β <∞ or β =∞, i.e. there is a Turing machine TM1that with input 〈f, t0, x0〉
returns 1 if β < ∞ and 0 otherwise (f, t0, x0 mean the canonical encodings
of the machines computing f , t0, and x0, respectively; see [Wei00] for further
details), where 〈f, t0, x0〉 is the data defining the IVP ẋ = f(t, x) and x(t0) = x0.
Consider the following undecidable problem [Odi89], Th. II.2.3: “Let ψ : N2 →
N be the function generated by an Universal Turing machine. Then, given i ∈ N,
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decide if ψ(i, i) is defined”. Let TM2 be a Turing machine that computes ψ.
Define the recursive function g : N2 → N by

g(i, j) =
{

0 if TM2 halts with input (i, i) in ≤ j steps
1 otherwise.

Note that

ψ(i, i) is defined iff ∃j0 ∈ N (∀j ≥ j0, g(i, j) = 0) (9)

Next consider the sequence of functions {ϕi}, where ϕi : R→ R is defined by

ϕi(x) =
∞∑

n=1

ai,2n x
2n, where ai,n =

(
1
3

)n2

+
(

1
3

)n

g(i, n).

Following arguments similar to those of section 4.2, one concludes that: (i) ϕi

is analytic and computable, (ii) the sequence {ϕi} is computable by an oracle
machine TM3 since g : N2 → N is recursive, (iii) the radius of convergence of
ϕi is +∞ iff ψ(i, i) is defined, (iv) we can design a Turing machine TM4 in the
following way: on input i ∈ N, TM4 computes ϕ′i ◦ U2

1 and then runs TM1 on
the input 〈ϕ′i ◦ U2

1 , 0, 0〉 (note that, given some i ∈ N, the “code” for ϕ′i can be
obtained from the “code” of ϕi that, in turn, can be obtained from the “code”
of TM3), where ϕ′i is the derivative of ϕi and U2

1 : R2 → R is the projection
function defined by U2

1 (t, x) = t.
Recall that 〈ϕ′i◦U2

1 , 0, 0〉 is the data defining the IVP ẋ = ϕ′i(t) and x(0) = 0.
Then by (9), (iii) and the design of TM4, we arrive at the following conclusion

TM4 on input i outputs
{

0 if ψ(i, i) is defined
1 otherwise

i.e. TM4 decides an undecidable problem, and we have a contradiction.
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