
Robust Simulations of Turing Machines with

Analytic Maps and Flows

Daniel S. Graça1,2, Manuel L. Campagnolo3,2 and Jorge Buescu4

1 DM/FCT, Universidade do Algarve, C. Gambelas, 8005-139 Faro, Portugal
dgraca@ualg.pt

2 CLC, DM/IST, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal
3 DM/ISA, Universidade Técnica de Lisboa, 1349-017 Lisboa, Portugal

mlc@math.isa.utl.pt
4 CAMGSD, DM/IST, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal

jbuescu@math.ist.utl.pt

Abstract. In this paper, we show that closed-form analytic maps and
flows can simulate Turing machines in an error-robust manner. The maps
and ODEs defining the flows are explicitly obtained and the simulation
is performed in real time.

1 Introduction

Since the pioneering work of Turing in the 1930s, the Turing machine has be-
come the standard paradigm for computation. With the appearance and rapid
development of digital computers its role has become increasingly important. In
this paper we show that the behavior of Turing machines can be embedded in
robust and analytic analog systems defined on continuous spaces.

Several authors have proved that finite dimensional maps and flows can sim-
ulate Turing machines. The general approach is to associate each configuration
of a Turing machine to a point of R

n, and to show that there is a dynamical
system with state space in R

n that embeds its evolution. It is known that Tur-
ing machines can be simulated on compact spaces, even of low dimension [1–3].
While compactness is a desirable property of dynamical systems, it is probably
too strong a requirement since it is believed that no analytic map on a compact,
finite dimensional space can simulate a Turing machine through a reasonable
encoding [4]. However, most physical systems turn out to be analytic, at least
in the classical world of Physics. Even the physical model underlying digital
computers is analytic, although their behavior is idealized as discrete.

The requirement of compactness has another drawback since it prevents sys-
tems capable of simulating an arbitrary Turing machine to exhibit robustness
to noise. For instance, Casey [5, 6] showed that in the presence of bounded ana-
log noise, recurrent neural networks can only recognize regular languages. This
result was later generalized in [7] to other analog discrete-time computational
systems. Robustness is a critical issue in analog models since non-computable
behavior might arise when the use of exact real quantities is allowed. For in-
stance, the results of Pour-El, Richards and Zhong [8, 9] show that there is a

three-dimensional wave equation, with computable initial conditions, such that
its unique solution is not computable. However, that behavior is ruled out in the
presence of noise [10]. Recurrent analog neural networks are another known case
where non-computable behavior can occur if real parameters are represented
with infinite precision [3].

In this paper we will show that Turing machines can be simulated by finite
dimensional maps and flows which are both analytic and robust. We will consider
simulations on unbounded spaces. Our work is in some sense related to [11],
where a constructive simulation of Turing machines using closed-form analytic
maps is presented. However, in [11] it is not discussed how the presence of noise
affects the computational power of the model. We prove here that any Turing
machine M can be simulated by a closed-form analytic map fM : R

3 → R
3, even

in the case where some noise is added to the initial configuration or during the
evolution of the system.

The previously mentioned results show that finite dimensional maps are ca-
pable of simulating the transition function of an arbitrary Turing machine. In
that respect, those are results about the computational power of hybrid sys-
tems, which are continuous with respect to the state space but evolve discretely
in time. Another approach has been to simulate the evolution of Turing machines
with continuous flows in R

n [12–14]. Even if it is known that those flows can be
infinitely differentiable, no analytic form of iterating the map that simulates the
transition function of a Turing machine had been proposed before. Furthermore,
it is known that analytic differentially algebraic functions, which include most
of the usual mathematical analytic functions, are not closed under iteration [15],
which suggests that continuous-time computational models which are closed un-
der iteration must contain some non-analytic functions [16]. However, since we
only have to iterate functions in the vicinity of integers, we are able to show that
any Turing machine M can be robustly simulated by some system of differential
equations y′ = gM (y, t), where gM is analytic and t represents the time steps of
M .

It is worthwhile to notice that our work can be included, in some sense, in
the wider topic of stable dynamical systems. In fact, there has been a long tradi-
tion of considering only structurally stable systems [17] when modelling physical
systems. The argument is that, due to measurement uncertainties, qualitative
properties of a system should not change with small perturbations. Gucken-
heimer and Holmes [18] refer to this approach as the “stability dogma”. How-
ever, recent developments in the theory of dynamical systems suggest that this
is too restrictive to account for all meaningful systems [19]. In fact, one can relax
the previous condition and demand stability only for those properties of interest
for the system under consideration. Here, we have chosen the latter line of work:
our only concern is that each system performs a simulation of a Turing machine
robust to perturbations.

The paper can be outlined as follows. In Section 2 we introduce the ideas
and concepts related to simulations robust to perturbations. Section 3 provides
tools that will be necessary in Section 4. In Section 4, we prove (in a constructive

2

manner) the main results of this paper: each Turing machine can be simulated by
an analytic map, or by ODEs even under the influence of (small) errors. The maps
and ODEs are explicitly obtained, by using expressions involving the composition
of polynomials and trigonometric functions, and only computable constants are
used. We end describing some connections of this paper with previous results on
continuous-time models of computation.

2 Simulation of Turing machines

Before stating the main results, we describe succinctly some aspects of our error-
robust simulation of Turing machines. For now, we will be only concerned with
discrete time simulations. Therefore we want to obtain a map that “captures”
the behavior of the transition function. We will code each configuration into
a triple (x, y, z) ∈ N

3, and prove that the simulation still works if this triple
is slightly perturbed. Without loss of generality, consider a Turing machine M
using 10 symbols, the blank symbol B = 0, and symbols 1, 2, ...9. Let

...B B B a−k a−k+1... a−1 a0 a1... an B B B... (1)

represent the tape contents of the Turing machine M. We suppose the head to
be reading symbol a0 and ai ∈ {0, 1, ..., 9} for all i. We also suppose that M has
m states, represented by numbers 1 to m. For convenience, we consider that if
the machine reaches a halting configuration it moves to the same configuration.
We assume that, in each transition, the head either moves to the left, moves to
the right, or does not move. Take

y1 = a0 + a110 + ... + an10n y2 = a−1 + a−210 + ... + a−k10k−1

and let q be the state associated to the current configuration. Then the triple
(y1, y2, q) ∈ N

3 gives the current configuration of M. We now can state the first
main result of this paper as follows:5

Theorem 1. Let θ : N
3 → N

3 be the transition function of a Turing machine M,

under the encoding described above and let 0 < δ < ε < 1/2. Then θ admits an

analytic extension fM : R
3 → R

3, robust to perturbations in the following sense:

for all f such that ‖f − fM‖∞ ≤ δ and for all x̄0 ∈ R
3 satisfying ‖x̄0 − x0‖∞ ≤

ε, where x0 ∈ N
3 represents an initial configuration,

∥

∥

∥f [j](x̄0) − θ[j](x0)
∥

∥

∥

∞
≤ ε for all j ∈ N.

A few remarks are in order. First, and as noticed before, we implicitly as-
sumed that if y is a halting configuration, then θ(y) = y. Secondly, we notice
that the upper bound (1

2) on ε results from the encoding we have chosen, which
is over the integers. In fact, the bound is maximal with respect to that encoding.

Incidentally, we notice that Theorem 1 can be stated using the notion of
shadowing in dynamical systems (cf. [20, 21]), which is formally defined as below.

5 We take ‖(x1, ..., xn)‖
∞

= max1≤i≤n |xi| and ‖f‖
∞

= sup
x∈R

‖f(x)‖
∞

, where f is

a real function. If f : A → A is a function, then f [k] denotes the kth iterate of f.

3

Definition 1. Let f : A → A be a map, ε > 0, and {pi}i∈N ⊆ A. Then {pi}i∈N

is a ε-pseudo-orbit of f if |pi+1 − f(pi)| < ε for all i ∈ N. For x ∈ A, we say

that {f [i](x)}i∈N ε-shadows the pseudo-orbit {pi}i∈N if
∣

∣f [i](x) − pi

∣

∣ < ε.

In short, we say that {pi}i∈N is a good approximation of some system whose
dynamics is given by f , if {f [i](x)}i∈N ε-shadows {pi}i∈N. Using the previous

definition, we can restate Theorem 1 by saying that the sequence {f
[j]
M (x0)}j∈N of

configurations ε-shadows {f [j](x̄0)}j∈N. We now present the other main results.

Theorem 2. Let θ : N
3 → N

3 be the transition function of a Turing machine

M, under the encoding described above and let 0 < ε < 1/4. Then there is an

analytic function z : R
4 → R

3 with the following property:

∥

∥

∥z(x0, j) − θ[j](x0)
∥

∥

∥

∞
≤ ε

for all j ∈ N, where x0 ∈ N
3 represents an initial configuration.

As a matter of fact, we will prove the following “robust” version of Theorem 2.

Theorem 3. In the conditions of Theorem 2, there is an analytic function gM :
R

6 → R
6 such that the ODE z′ = gM (z, t) robustly simulates M in the following

sense: there is some 0 < η < 1/2 such that for all g satisfying ‖g − gM‖∞ < 1/2,
and for all x̄0 ∈ R

3 satisfying ‖x̄0 − x0‖∞ ≤ ε, the solution z of

z′ = g(z, t), z(0) = (x̄0, x̄0)

has the following property: for all j ∈ N and for all t ∈ [j, j + 1/2],6

∥

∥

∥z2(t) − θ[j](x0)
∥

∥

∥

∞
≤ η.

3 Preliminary results

This section is devoted to the presentation of results that, while not very inter-
esting on their own, will be useful when proving Theorem 1. As our first task, we
introduce an analytic extension ω : R → R for the function f : N → N defined
by f(n) = n mod 10. This function will be necessary when simulating Turing
machines. It will be used to read symbols written in the tape. To achieve this
purpose, we can use a periodic function, of period 10, such that ω(i) = i, for
i = 0, 1, ..., 9. Then, using trigonometric interpolation (cf. [22, pp. 176-182]), one
may take

ω(x) = a0 + a5 cos(πx) +





4
∑

j=1

aj cos

(

jπx

5

)

+ bj sin

(

jπx

5

)



 , (2)

6 For simplicity, we denote z by (z1, z2), where z1, z2 ∈ R
3.

4

where a0, ..., a5, b1, ..., b4 are computable coefficients that can be explicitly ob-
tained by solving a system of linear equations.

It is easy to see that ω is uniformly continuous in R. Hence, for every ε ∈
(0, 1/2), there will be some ζε > 0 satisfying

∀n ∈ N, x ∈ [n − ζε, n + ζε] ⇒ |ω(x) − n mod 10| ≤ ε. (3)

When simulating a Turing machine, we will also need to keep the error under
control. In many cases, this will be done with the help of the error-contracting
function defined by

σ(x) = x − 0.2 sin(2πx).

The function σ is a contraction on the vicinity of integers:

Lemma 1. Let n ∈ Z and let ε ∈ [0, 1/2). Then there is some contracting factor

λε ∈ (0, 1) such that, for ∀δ ∈ [−ε, ε], |σ(n + δ) − n| < λεδ.

Remark 1. Throughout the remainder of this paper, we suppose that ε ∈ [0, 1/2)
is fixed and that λε is the respective contracting factor given by Lemma 1.

The function σ will be used in our simulation to keep the error controlled
when bounded quantities are involved (e.g., the actual state, the symbol being
read, etc.). We will also need another error-contracting function that controls
the error for unbounded quantities. This will be achieved with the help of the
function l3 : R

2 → R, that has the property that whenever ā is an approximation
of a ∈ {0, 1, 2}, then |l3(ā, y)−a| < 1/y, for y > 0. In other words, l3 is an error-
contracting map, where the error is contracted by an amount specified by the
second argument of l3. We start by defining a preliminary function l2 satisfying
similar conditions, but only when a ∈ {0, 1}.

Lemma 2. Let l2 : R
2 → R be given by l2(x, y) = 1

π arctan(4y(x − 1/2)) + 1
2 .

Suppose also that a ∈ {0, 1}. Then, for any ā, y ∈ R satisfying |a − ā| ≤ 1/4 and

y > 0, we get |a − l2(ā, y)| < 1/y.

Lemma 3. Let a ∈ {0, 1, 2} and let l3 : R
2 → R be given by

l3(x, y) = l2((σ
[d+1](x) − 1)2, 3y).(2l2(σ

[d](x)/2, 3y) − 1) + 1,

where d = 0 if ε ≤ 1/4 and d = d− log(4ε)/ logλεe otherwise. Then for any

ā, y ∈ R satisfying |a − ā| ≤ ε and y ≥ 2, we have |a − l3(ā, y)| < 1/y.

The following lemma can be easily proved by induction on n.

Lemma 4. If |αi|, |ᾱi| ≤ K for i = 1, ..., n then

|α1...αn − ᾱ1...ᾱn| ≤ (|α1 − ᾱ1| + ... + |αn − ᾱn|) Kn−1.

5

4 Robust analytic simulations of Turing machines

In this section we show, in a constructive manner, how to simulate a Turing
machine with an analytic map robust to (small) perturbations. We will first
prove the following theorem.

Theorem 4. Let θ : N
3 → N

3 be the transition function of some Turing ma-

chine. Then, given some 0 ≤ ε < 1/2, θ admits an analytic extension hM : R
3 →

R
3 with the property that

‖(y1, y2, q) − (ȳ1, ȳ2, q̄)‖∞ ≤ ε ⇒ ‖θ(y1, y2, q) − hM (ȳ1, ȳ2, q̄)‖∞ ≤ ε. (4)

Proof. We will show how to construct hM with analytic functions:

1. Determine the symbol being read. Let a0 be the symbol being actually
read by the Turing machine M. Then ω(y1) = a0, where ω is given by (2).
But what about the effect of the error present in ȳ1? Since |y1 − ȳ1| ≤ ε,

|a0 − ω ◦ σ[l](ȳ1)| ≤ ε, with l =

⌈∣

∣

∣

∣

log(ζε/ε)

log λε

∣

∣

∣

∣

⌉

, (5)

where ζε is given by (3). Then pick ȳ = ω◦σ[l](ȳ1) as an approximation of the
symbol being currently read. Similarly, ω ◦ σ[l](ȳ2) gives an approximation
of a−1, with error bounded by ε.

2. Determine the next state. The map that returns the next state is defined
by polynomial interpolation. This can be done as follows. Let y be the symbol
being currently read and q the current state. Recall that m denotes the
number of states and k = 10 is the number of symbols. One may take

qnext =

9
∑

i=0

m
∑

j=1







9
∏

r=0
r 6=i

(y − r)

(i − r)













m
∏

s=1
s6=j

(q − s)

(j − s)






qi,j ,

where qi,j is the state that follows symbol i and state j. However, we are
dealing with the approximations q̄ and ȳ. Therefore, we define instead

q̄next =

9
∑

i=0

m
∑

j=1







9
∏

r=0
r 6=i

(σ[n](ȳ) − r)

(i − r)













m
∏

s=1
s6=j

(σ[n](q̄) − s)

(j − s)






qi,j , (6)

with

n =

⌈

log(10m2Km+7(m + 8))

− logλε

⌉

, K = max{9.5, m + 1/2}.

With this choice for n, the error of σ[n](ȳ) and σ[n](q̄) is such that

9|y − σ[n](ȳ)| + (m − 1)|q − σ[n](q̄)| ≤
ε

10m2Km+7
. (7)

Thus, from (6), (7) and Lemma 4, we conclude that |q̄next − qnext| ≤ ε.

6

3. Determine the symbol to be written on the tape. Using a similar
construction, the symbol to be written, snext, can be approximated with
precision ε, i.e. |snext − s̄next| ≤ ε.

4. Determine the direction of the move for the head. Let h denote the
direction of the move of the head, where h = 0 denotes a move to the left,
h = 1 denotes a “no move”, and h = 2 denotes a move to the right. Then,
again, the “next move” hnext can be approximated by means of a polynomial
interpolation as in steps 3 and 4, therefore obtaining |hnext − h̄next| ≤ ε.

5. Update the tape contents. We define functions P̄1, P̄2, P̄3 which are in-
tended to approximate the tape contents after the head moves left, does not
move, or moves right, respectively. Let H be a “sufficiently good” approxi-
mation of hnext, yet to be determined. Then, the next value of y1, ynext

1 , can
be approximated by

ȳnext
1 = P̄1

1
2 (1 − H)(2 − H) + P̄2 H(2 − H) + P̄3 (− 1

2)H(1 − H), (8)

with

P̄1 = 10(σ[j](ȳ1) + σ[j](s̄next) − σ[j](ȳ)) + σ[j] ◦ ω ◦ σ[l](ȳ2),

P̄2 = σ[j](ȳ1) + σ[j](s̄next) − σ[j](ȳ), P̄3 =
σ[j](ȳ1) − σ[j](ȳ)

10
,

where j ∈ N is sufficiently large and l is given by (5). Notice that when exact
values are used, ȳnext

1 = ynext
1 . The problem in this case is that P̄1 depends

on ȳ1, which is not a bounded value. Thus, if we simply take H̄ = h̄next, the
error of the term (1−H)(2−H)/2 is arbitrarily amplified when this term is
multiplied by P̄1. Hence, H̄ must be a sharp estimate of hnext, proportional
to ȳ1. Therefore, using Lemma 3 and the definition of y1, one can see that
it is suffices to take

H = l3(h̄next, 10000 (ȳ1 + 1/2) + 2).

Using the same argument for P̄2 and P̄3, we conclude that |ȳnext
1 − ynext

1 | < ε.
Similarly, and for the left side of the tape, we can define ȳnext

2 such that
|ȳnext

2 − ynext
2 | < ε,.

Finally, hM : R
3 → R

3 is defined by hM (ȳ1, ȳ2, q̄) = (ȳnext
1 , ȳnext

2 , q̄next). ut

We shall now prove the main results of this paper.
Proof of Theorem 1. Let 0 ≤ δ < ε. Then, using Theorem 4, one can find
a map hM such that (4) holds. Let i ∈ N satisfy σ[i](ε) ≤ ε − δ. Define a map
fM = σ[i] ◦ hM . Then, if x0 ∈ N

3 is an initial configuration,

‖x̄0 − x0‖∞ ≤ ε ⇒ ‖fM (x̄0) − θ(x0)‖∞ ≤ ε − δ.

Thus, by triangular inequality, if ‖x̄0 − x0‖∞ ≤ ε, then

‖f(x̄0) − θ(x0)‖∞ ≤ ‖f(x̄0) − fM (x̄0)‖∞+‖fM (x̄0) − θ(x0)‖∞ ≤ δ+(ε−δ) = ε.

7

This proves the result for j = 1. For j > 1, we proceed by induction. ut

Proof of Theorem 3. (Sketch) We adapt the construction in [12] to simulate
the iteration of the transition function of a TM with ODEs, using our Theorem 1
to generalize Branicky’s construction to analytic and robust flows. To iterate a
function θ we use a pair of functions to control the evolution of two “simulation”
variables z1 and z2. Both simulation variables have values close to x0 at t = 0.
The first variable is iterated during half of an unit period while the second
remains approximately constant (its derivative is kept close to zero by a control
function that involves our error-contracting function l2). Then, the first variable
remains controlled during the following half unit period of time and the second
variable is brought up close to it. Therefore, at time t = 1 both variables have
values close to θ(x0). Theorem 1 shows that there exists some analytic function
robust to errors that simulates θ. This allow us to repeat the process an arbitrary
number of times, keeping the error under control.

We begin with some preliminary results. There exists an ODE whose solution
can be as close as desired to an arbitrary fixed value b ∈ R at t = 1/2, for any
initial condition at t = 0. Let φ : R → R

+ be some function. For an arbitrary
error γ > 0 we define a perturbed version, where we allow an error ρ ≥ 0 on b
and a perturbation term bounded by δ ≥ 0:

z′ = −c(z − b̄(t))3φ(t) + E(t), with c ≥
(

2γ2
∫ 1/2

0 φ(t)dt
)−1

. (9)

where
∣

∣b̄(t) − b
∣

∣ ≤ ρ and |E(t)| ≤ δ. Using the theory of ODEs, we can conclude

that
∣

∣z(1
2) − b

∣

∣ < γ + ρ + δ/2 regardless to the initial condition at t = 0.
For the control functions mentioned above, we use s : R → [− 1

8 , 1] defined
by

s(t) =
1

2

(

sin2(2πt) + sin(2πt)
)

.

On [0, 1/2] s ranges between 0 and 1 and on [1/2, 1] s ranges between − 1
8 and 0.

We can now present the proof of the theorem. Let M be some Turing machine,
let fM be a map satisfying the conditions of Theorem 4 (replacing ε by γ), and
let x̄0 ∈ R

3 be an approximation, with error ε, of some initial configuration x0.
Take also δ < 1/2 and γ > 0 such that 2γ + δ/2 ≤ ε < 1/2 (we suppose, without
loss of generality, that δ/2 < ε). This condition will be needed later. Consider
the system of differential equations z′ = gM (z, t) given by

z′1 = c1(z1−fM◦σ[m](z2))
3 φ1(t, z1, z2), z′2 = c2(z2−σ[n](z1))

3 φ2(t, z1, z2) (10)

with initial conditions z1(0) = z2(0) = x̄0, where

φ1(t, z1, z2) = l2

(

θ(t), c1

γ (z1 − fM ◦ σ[m](z2))
4 + c1

γ + 10
)

φ2(t, z1, z2) = l2

(

θ(−t), c2

γ (z2 − σ[n](z1))
4 + c2

γ + 10
)

.

Because we want to show that the ODE z′ = gM (z, t) simulates M in a robust
manner, we also assume that an error of amplitude not exceeding δ is added to

8

the right side of the equations in (10). Our simulation variables are z1, z2 and the
control functions are φ1, φ2. Since φ1, φ2 are analytic they cannot be constant on
any open interval as in [12]. However, our construction guarantees that one of the
control functions is kept close to zero, while the other one reaches a value close
to 1. For instance, on [0, 1/2] |s(−t)| ≤ 1/8 and, by Lemma 2, φ2 is therefore

less than γ(c2

∥

∥z2 − σ[n](z1)
∥

∥

3

∞
)−1. This guarantees that z′

2 is sufficiently small
on [0, 1/2] and, therefore,

∥

∥z2(
1
2) − x0

∥

∥

∞
< (γ + δ)/2 + ε < 1

2 .

Hence, for m large enough ‖σ[m](z2) − x0‖ < γ. Moreover, on some subinterval
of [0, 1/2] s(t) is close to 1 and therefore φ1 is also close to 1. Thus, the behavior
of z1 is given by (9) and

∥

∥z1(
1
2) − θ(x0)

∥

∥

∞
< 2γ + δ/2 ≤ ε.

Now, for interval [1/2, 1] the roles of z1 and z2 are switched. One concludes
that if n ∈ N is chosen so that σ[n](5γ/2 + δ) < γ, then ‖z2(1) − fM (x0)‖∞ <
2γ + δ/2 ≤ ε. We can repeat this process for z1 and z2 on subsequent intervals,
which shows that for j ∈ N, if t ∈ [j, j + 1

2] then ‖z2(t) − θ[j](x0)‖∞ ≤ ε as
claimed. ut

Notice that all the functions we use in the proof above are analytic. Moreover,
note that if we apply the error-contracting function σ to z1 we can make the
error arbitrarily small. Therefore, Theorem 3 implies Theorem 2.

5 Final remarks

We showed that robust analytic maps and flows can simulate Turing machines,
filling some existing gaps on the literature on this subject.

There are several connections of this work and previous results on continuous-
time computational models. In particular, it is not difficult to verify [23] that the
function z in Theorem 3 is computable by Shannon’s General Purpose Analog
Computer (GPAC). Moreover, according to [16] z also belongs to the (analytic)
subclass [0, 1,−1, U ; COMP, I] of Moore’s real recursive functions.

We proved lower computational bounds for analytic systems robust in the
sense of Theorems 1 and 3. Can we show that the computational power of those
systems lies in the realm of Turing computability, in analogy with the upper
bounds in [5] for compact domains? We leave this question to the reader.

Acknowledgments. D. Graça wishes to thank Carlos Lourenço for helpful dis-
cussions. Our interest in the questions addressed in this paper was raised by
past discussions with Félix Costa and Cris Moore. This work was partially
supported by Fundação para a Ciência e a Tecnologia (FCT) and FEDER
via the Center for Logic and Computation - CLC, the project ConTComp
POCTI/MAT/45978/2002 and grant SFRH/BD/17436/2004. Additional sup-
port was also provided by the Fundação Calouste Gulbenkian through the Pro-

grama Gulbenkian de Est́ımulo à Investigação.

9

References

1. Moore, C.: Unpredictability and undecidability in dynamical systems. Phys. Rev.
Lett. 64 (1990) 2354–2357

2. Koiran, P., Cosnard, M., Garzon, M.: Computability with low-dimensional dynam-
ical systems. Theoret. Comput. Sci. 132 (1994) 113–128

3. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural networks.
J. Comput. System Sci. 50 (1995) 132–150

4. Moore, C.: Finite-dimensional analog computers: Flows, maps, and recurrent neu-
ral networks. In Calude, C., Casti, J., Dinneen, M., eds.: 1st International Confer-
ence on Unconventional Models of Computation - UMC’98, Springer (1998) 59–71

5. Casey, M.: The dynamics of discrete-time computation, with application to recur-
rent neural networks and finite state machine extraction. Neural Comp. 8 (1996)
1135–1178

6. Casey, M.: Correction to proof that recurrent neural networks can robustly recog-
nize only regular languages. Neural Comp. 10 (1998) 1067–1069

7. Maass, W., Orponen, P.: On the effect of analog noise in discrete-time analog
computations. Neural Comput. 10 (1998) 1071–1095

8. Pour-El, M.B., Richards, J.I.: The wave equation with computable initial data
such that its unique solution is not computble. Adv. Math. 39 (1981) 215–239

9. Pour-El, M.B., Zhong, N.: The wave equation with computable initial data whose
unique solution is nowhere computable. Math. Log. Quart. 43 (1997) 499–509

10. Weihrauch, K., Zhong, N.: Is wave propagation computable or can wave computers
beat the Turing machine? Proc. London Math. Soc. 85 (2002) 312–332

11. Koiran, P., Moore, C.: Closed-form analytic maps in one and two dimensions can
simulate universal Turing machines. Theoret. Comput. Sci. 210 (1999) 217–223

12. Branicky, M.S.: Universal computation and other capabilities of hybrid and con-
tinuous dynamical systems. Theoret. Comput. Sci. 138 (1995) 67–100

13. Campagnolo, M.L., Moore, C., Costa, J.F.: An analog characterization of the
Grzegorczyk hierarchy. J. Complexity 18 (2002) 977–1000

14. Mycka, J., Costa, J.F.: Real recursive functions and their hierarchy. J. Complexity
20 (2004) 835–857

15. Campagnolo, M.L., Moore, C., Costa, J.F.: Iteration, inequalities, and differentia-
bility in analog computers. J. Complexity 16 (2000) 642–660

16. Campagnolo, M.L.: The complexity of real recursive functions. In Calude, C.S.,
Dinneen, M.J., Peper, F., eds.: UMC’02. LNCS 2509. Springer (2002) 1–14

17. Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems, and Linear
Algebra. Academic Press (1974)

18. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and
Bifurcation of Vector Fields. Springer (1983)

19. Viana, M.: Dynamical systems: moving into the next century. In Engquist, B.,
Schmid, W., eds.: Mathematics Unlimited - 2001 and Beyond. Springer (2001)
1167–1178

20. Pilyugin, S.Y.: Shadowing in Dynamical Systems. Springer (1999)
21. Grebogi, C., Poon, L., Sauer, T., Yorke, J., Auerbach, D.: Shadowability of chaotic

dynamical systems. In: Handbook of Dynamical Systems. Volume 2. Elsevier (2002)
313–344

22. Atkinson, K.E.: An Introduction to Numerical Analysis. 2nd edn. John Wiley &
Sons (1989)

23. Graça, D.S., Costa, J.F.: Analog computers and recursive functions over the reals.
J. Complexity 19 (2003) 644–664

10

