
Some recent developments on Shannon’s General

Purpose Analog Computer

Daniel Silva Graça
CLC and DM/FCT, Universidade do Algarve, C. Gambelas,

8000-062 Faro, Portugal

April 28, 2004

Abstract

This paper revisits one of the first models of analog computation, the
General Purpose Analog Computer (GPAC). In particular, we restrict our
attention to the improved model presented in [11] and we show that it
can be further refined. With this we prove the following: (i) the previous
model can be simplified; (ii) it admits extensions having close connec-
tions with the class of smooth continuous time dynamical systems. As a
consequence, we conclude that some of these extensions achieve Turing
universality. Finally, it is shown that if we introduce a new notion of
computability for the GPAC, based on ideas from computable analysis,
then one can compute transcendentally transcendental functions such as
the Gamma function or Riemann’s Zeta function.

1 Introduction

In this paper we explore a particular model of analog computation, the General
Purpose Analog Computer (GPAC). The GPAC was introduced in 1941 by
Shannon [30] as a mathematical model of an analog device, the Differential
Analyzer [5]. This device was one of the most popular analog computers in
the 1930s and was intended to solve numerical problems, especially differential
equations [3]. In short, a (mechanical) differential analyzer may be seen as
a set of interconnected shafts, each of which representing one of the quantities
involved in the computation. Although the reader might feel uncomfortable with
this approach, based on technologically obsolete computing devices, we believe
there is much to explore. Quoting James Nyce [21]: “Because digital computers
and computation have been so successful, they have influenced how we think
about both computers as machines and computation as a process - so much so,
it is difficult today to reconstruct what analog computing was all about... It is a
history in which digital machines can do things ‘better’ and ‘faster’ than other
machines... However, what is at stake here are not matters of speed or precision.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sapientia

https://core.ac.uk/display/61500444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Rather, it is an argument about what can be rendered and understood through a
machine that does computation.”

Indeed, since the pioneering work of Turing, the notion of computability
has been pretty much settled. Every ‘computable’ entity is supposed to have a
suitable symbolic representation and a computation is considered as a sequence
of ‘elementary steps’ on these representations. Furthermore, this sequence of
‘elementary steps’ should be defined in a manner such that it could be performed
by any human following a ‘rule of thumb.’ This remains a highly consensual
approach, with some reserves [32], [9], [31], that can be found in the computable
analysis literature [25], [14], [33].

On the other side, a different philosophy underlies analog computers. Here
we don’t have a notion of ‘algorithm’ and there is no need to translate quantities
into appropriate symbolic forms. Moreover, we do not expect an analog com-
putation to be possibly carried out by an human following a ‘rule of thumb.’ In
an analog computer, variables are represented by physical quantities on which
the operations are performed. The computation is carried out by some “physi-
cal system that obeys the same mathematical relations that control the physical
or technical phenomenon under investigation” [26, p. 49]. This procedure is in
some sense much more natural to the physicist and to the engineer.1 As General
Electric put it in 1952: “A virtue of the analog computer is that its basic design
concepts are usually easy to recognize. What goes on inside is understandable
since it is an analog of the real thing” whereas “the digital type computer is a
product of pure logic. It cannot be described as similar to something with which
we are familiar” [10], cited from [23, p. 39].

Therefore, although digital computers had long ago superseded their analog
counterpart due, to a large extent, to the spectacular development of digital
technology, we still believe that these old-fashioned analog devices might bring
some fresh air to the theory of computation. Quoting again James Nyce [21]:
“Analog machines ... offer us a way to reconsider what we have come to take for
granted - how we model and think about objects in the world” and, in particular,
what we understand and mean by computation.

This paper focuses primarily on 3 objectives. The first one is to simplify the
submodel of the GPAC presented in [11]. Indeed, the general GPAC presented
by Shannon (and also by Pour-El [24]) has some problems that can be solved
by the FF-GPAC model introduced by Graça and Costa in [11]. The present
paper shows that this model can be further simplified (to the PGPAC model).
This point is covered by Sections 2, 3, 4, and partially by Section 6.

The second objective is to extend a result from [11, Corollary 1], where it
proved that the class of FF-GPAC computable functions is exactly given by
the class of dynamical systems of the form y′ = p(y, t), where p is a vector of
polynomials. In Section 5 we prove that these links can be generalized if we add
new types of units to the PGPAC model, thereby obtaining the IC model. It
is shown that every class of IC computable functions corresponds to a specific

1A similar philosophy can also be found, to a certain extent, in more recent models such as
artificial neural networks [18], [1]. As Haykin says [12, p. 25]: “The design of a neural network

is based directly on real-life data, with the data set being permitted to speak for itself.”

2

k +

iu

k u
v u+v

v
it
t0

u(x)dv(x)

A constant unit associated to
the real value k

An adder unit

An integrator unit A multiplier unit

x
u
v uva+

Figure 1: Different types of units used in a GPAC.

class of continuous time dynamical systems and, reciprocally, given a smooth
continuous time dynamical system, it can be described as the output of some
IC. As a corollary, it will be shown that there are classes of ICs that are Turing
universal.

Moreover, and in the spirit of objective 1, we also add new types of units
to the FF-GPAC to generalize it to the FIC model, and then prove results
establishing links between the IC and FIC models. This is done in Section 6. A
schema of relations between the models described in this paper is provided in
Fig. 5 (some of the relations are proved in what follows).

Finally, and as a third objective, we show that some of the mathematical
limitations pointed out in the literature [27] are not inherent to the GPAC but
rather on the underlying notion of computability. In particular, we will show
that the Gamma function and Riemann’s Zeta function can indeed be computed
by a GPAC if we redefine the notion of ‘computable function by a GPAC’ in a
way that it matches more closely the notion of computability from computable
analysis. This is done in Section 7.

2 Preliminaries

Unlike the approach in computable analysis [25], [14], [33], the GPAC is not di-
rectly based on the Turing machine, neither on some effective procedures. The
model basically consists of circuits composed of ‘black boxes’ as indicated in Fig.
1 (the so-called analog units. These are not the units originally used by Shan-
non, but they are equivalent. Note that integrators compute Riemman-Stieltjes
integrals). It is required that inputs (and outputs) can never be interconnected.
It is also required that each input is connected to, at most, one output.

The inputs x1, ..., xk of a GPAC are applied to every input of a unit that is
not connected to the output of some other unit. Then an output for the GPAC
will consist of outputs of some units and/or some inputs of the GPAC. Notice
the existence of a parameter α in the integrator unit. This corresponds to an
initial setting that will settle the output for the integrator. Although these
definitions can be made more precise (e.g. a circuit can be seen as a labelled
graph), this yields, in our opinion, unnecessary complications. So, we rather

3

prefer to use a naive approach to circuit based models.
The reader should also remark that each output of a unit can be obtained by

solving a set of equations. For instance, if U is a GPAC consisting of only one
adder with inputs x1 and x2, then the output of the adder will be the solution
of the equation y = x1 + x2. In general, if we want to determinate the output
of some GPAC with n units, we have to solve a set of n equations.

Of course, the solution of a system of equations may not be unique or can
even not exist (and it is not difficult to find examples - cf. [11]). Furthermore,
in [11] it is also shown that Pour-El’s characterization for the GPAC [24] still
have some deficiencies. Therefore, in the next section, we restrict Shannon’s
model in order to avoid these problems.

Another important question (already reported in [24], [29]) is what happens
if we allow other types of black boxes beside those indicated in Fig. 1. An
answer for this question will be supplied in Section 5. This approach will also
enable us to present close connections with the class of C1 continuous time
dynamical systems defined in R

n.

3 The basic model

In this section we introduce one of the basic models that will be used in this
paper. It is essentially a restricted version of Shannon’s GPAC. In Section 6 it
will be shown that this model is equivalent to the FF-GPAC model presented
in [11].

For the matters of our work, it is only necessary to consider one input for
this model. We will usually refer to this input as the ‘time.’ However, when
considering circuits without integrators, we admit that they might have more
than one input.

The model presented in this section is based in the following ideas: First,
construct acyclic circuits that compute polynomials (polynomial circuits) by
using the following units from Fig. 1: constant units, adders, and multipliers.2

We assume that a polynomial circuit may have no units at all computing, in
this case, the identity.3 Second, use these circuits as building blocks for more
complex GPACs that we call polynomial GPACs (PGPAC for short). A PGPAC
is constructed in the following manner. Take n integrators I1, ..., In. Then use
polynomial circuits such that the following three conditions hold:

1. Each input of a polynomial circuit is the input of the PGPAC or the
output of an integrator;

2. Each integrand input of an integrator is an output of a polynomial circuit;

2Notice that multipliers could be replaced by integrators and adders (cf. [24, p. 11]).
However, this is not very relevant to our results.

3Note that the identity can also be computed by a polynomial circuit consisting of one
multiplier and one constant unit associated to the value 1 (just build a circuit that multiplies
the input by 1).

4

i yk

y ,...,y)1p(t, n

t

t
y1

yn

... Ak

Figure 2: Schema of inputs and outputs for the integrator Ik in a PGPAC. p
denotes a polynomial and yi denotes the output of Ii.

3. Each variable of integration input of an integrator is the input of the
PGPAC.

Formally, a polynomial circuit is defined as follows.

Definition 1 A polynomial circuit is an acyclic GPAC built only with adders,
constants units, and multipliers.

We assume that polynomial circuits may have several inputs. The proof of
the following lemma will be left to the reader.

Lemma 2 If x1, ..., xn are the inputs of a polynomial circuit, then the output
of the circuit will be y = p(x1, ..., xn), where p is a polynomial. Reciprocally,
if y = p(x1, ..., xn), where p is a polynomial, then there is a polynomial circuit
with inputs x1, ..., xn, and output y.

Definition 3 Consider a GPAC U with n integrators I1, ..., In, and one input
t. Suppose that to each integrator Ii, i = 1, ..., n, we can associate a polynomial
circuit Ai with the property that the integrand input of Ii is connected to an
output of Ai. Suppose that each input of Ai is connected to the output of an
integrator or to the input t. Suppose also that the variable of integration input
of each integrator is connected to the input t. In these conditions we say that U
is a polynomial GPAC (PGPAC) with input t. (cf. Fig. 2)

A concrete example of a PGPAC is presented in Fig. 3.

4 Properties of the model

The following theorems are taken from [11]. Notice that the PGPAC and the
model used in [11] are apparently different, but their equivalence is shown in
Corollary 17.

Theorem 4 Suppose that U is a PGPAC with one input t, defined on an in-
terval [t0, tf), where tf may possibly be ∞. Then there exists an interval [t0, t

∗)
(with t∗ ≤ tf) where each output exists and is unique. Moreover, if t∗ < tf , then
there exists an integrator with output y such that y(t) is unbounded as t→ t∗.

5

i e t

t

Figure 3: Example of a PGPAC that computes the exponential function exp.
We suppose the initial output of the integrator to be y(0) = 1 (note that exp is
the solution of y(x) =

∫

y(x)dx, y(0) = 1).

Theorem 5 If y is generated on some non-trivial interval I by a PGPAC with
n integrators and one input t, then there is a nonzero polynomial p with real
coefficients such that

p
(

t, y, y′, ..., y(n)
)

= 0, on I. (1)

Definition 6 The unary function y is differentially algebraic if there exists a
nonzero polynomial p with real coefficients such that (1) holds. If y is not
differentially algebraic, then we say that y is transcendentally transcendental.

Theorem 7 Suppose that y is differentially algebraic on some non-trivial in-
terval I. Then there is a closed subinterval I ′ ⊆ I with non-empty interior such
that y can be generated by a PGPAC on I ′.

The last two theorems assert a classical result on the literature about the
GPAC [30], [24], [17]: unary functions generated by (P)GPACs are, in essence,
differentially algebraic functions.

This result indicates that a large class of functions, such as polynomials,
trigonometric functions, elliptic functions, etc., can actually be generated by a
PGPAC. As a corollary, some functions such as the Gamma function,

Γ(x) =

∫

∞

0

tx−1e−tdt, (2)

cannot be generated because they are not differentially algebraic functions [28,
Theorem 4].

5 An extension of the model

In this section we extend the PGPAC model to the IC model by allowing the use
of new units instead of constant units, adders, and multipliers as indicated in
Fig. 1. Moreover, and as a generalization of the result presented in [11, Corollary
1], we show that not only the PGPAC can be related with a particular class of
dynamical systems, but also every class of ICs can be put into correspondence
with some class of continuous time dynamical systems and vice versa.

Henceforth, consider F to be a set constituted by C1 functions of the form
fi : R

ki → R, defined on an open domain, where ki ∈ N and i ∈ I. We now
present a generalization for polynomial circuits.

6

Definition 8 A F-circuit is a circuit built like a polynomial circuit, but using
only units associated to functions in F .

Similarly to polynomial circuits, we consider that F-circuits might have
several inputs. Next, we introduce the main definition of the section.

Definition 9 An F-integrating circuit (F-IC) with one input is a circuit built
like a PGPAC, where F-circuits are used instead of polynomial circuits.

As an example, if F is constituted by the constant functions, the binary
sum, and the binary product, then the class of F-ICs will correspond to the
class of PGPACs. Next, we present some useful notation.

Definition 10 Let χ be a set of functions and OP a collection of operators.
Then [OP;χ] denotes the smallest set of functions containing χ and closed under
the operations of OP. The set [OP;χ] is called a function algebra.

The notation will not be very rigorous (e.g. [OP,G;χ] means [OP ∪{G};χ],
[OP ;χ1, χ2] means [OP ;χ1∪χ2], etc.), but the context will be enough to clarify
all situations. We shall consider the following functions and operators.

1. The projections. Let A be a set. For each n, i ∈ N, where 1 ≤ i ≤ n, Un
i :

An → A is called projection (over A) and is defined by Un
i (x1, ..., xn) = xi;

2. The constant functions. For each k ∈ R, the image of ck :→ R is the value
k;

3. Composition: Suppose that g is an p-ary function, with p ≥ 1, and that
f1, ..., fp are n-ary functions. Then the composition operator applied to
these functions by that order yields the n-ary function h given by h(x) =
g(f1(x), ..., fp(x)). We write h = C(g; f1, ..., fp).

We set the following notation

U = {Un
i : n, i ∈ N and 1 ≤ i ≤ n},

CR = {ck : k ∈ R}.

If we relax the notation and take {CR,+,×} as the set CR ∪ {+,×}, then a
PGPAC is simply an {CR,+,×}-IC.

Theorem 11 Let U be an F-IC with n integrators and one input t. Then there
exist n (n + 1)-ary functions h1, ..., hn ∈ [C;U,F] such that (ψ1, ..., ψj) is an
output of U if and only if there exist n unary functions y1, ..., yn such that:

1. ∂tyi = hi(t, y1, ..., yn) and yi(t0) = αi, where αi ∈ R;

2. There exist j (n + 1)-ary functions g1, ..., gj ∈ [C;U,F] such that ψi =
gi(t, y1, ..., yn), for i = 1, ..., j.

7

Proof. It is possible to show that if y1, ..., yn are the outputs of the in-
tegrators, then the output of each F-circuit is given by f(t, y1, ..., yn), where
f ∈ [C;U,F] (simply generalize Lemma 2). Therefore, each output yi of an
integrator satisfies

yi(t) = αi +

∫ t

t0

hi(t, y1(t), ..., yn(t))dt, (3)

where αi ∈ R and hi ∈ [C;U,F]. Part 1 of the theorem follows by differentiating
equation (3). Part 2 of the theorem follows from the fact that each output is
the input t, the output of some integrator, or a single output of a F-circuit.

Reciprocally, if conditions 1 and 2 are satisfied, then it is not difficult to
construct an F-IC U with input t, n integrators, and output (ψ1, ..., ψj).

A similar formalism to the one presented in the previous theorem was already
introduced by Pour-El, but for a different model [24]. Indeed, this model uses
a system of ODEs of the form Ay′ = b, where A does not have to be invertible.

The following corollary was already reported in [11, Corollary 1], but for the
FF-GPAC model presented there. A similar result was also proved by Pour-El
[24, Theorem 4], but it was only explicitly stated (as far as we known), for a
special case, in [7, Proposition 2].

Corollary 12 The function y is generated by a PGPAC if and only if it is a
component of the solution y = (y1, ..., yn) of y′ = p(y, t), where p is a vector of
polynomials.

Proof. The PGPAC uses as basic functions elements of {CR,+,×}. But
[C;U,CR,+,×] is the set of all polynomials. Then part 1 of Theorem 11 gives
us y′i = pi(t, y1, ..., yn), where pi is a polynomial. Moreover, by using part 2
of that theorem, we conclude that each gi is a polynomial. Hence, it can be
written as g′i = qi, where qi is a polynomial. Therefore, for the special case of
polynomials, part 1 and 2 of Theorem 11 can be condensed in a single system
y′ = p(y, t), where t is the input.

Notice that the previous theorem provides a very pleasant characterization
of the computational power of an F-IC in terms of continuous time dynamical
systems. Indeed, it is known [13, p. 160] that a C1 continuous time dynamical
system, working on the Euclidean space S, is equivalent to a system of ordinary
differential equations (ODEs)

x′ = f(x), (4)

where x is a unary function with x(t) ∈ S.4 Hence, Theorem 11 says us two
things: (i) By adding different types of units one gets, in general, more complex
dynamical systems and more computational power. The exact characterization
of this power is given by the theorem; (ii) Given a C1 continuous time dynamical
system, working in R

n, one can associate it an ODE (4) that, by its turn, can be
simulated by some F-IC (just take F = {f1, ..., fn}, where f1, ..., fn designate
the various components of f).

4Notice that x
′ = f(x, t) can be reduced to (4) by taking x′

n+1
= 1.

8

Hence, one concludes that there is a tight relationship between ICs and C1

continuous time dynamical systems working in R
n. Another interesting result

is given by the following corollary:

Corollary 13 For each Turing machine M, there is a class F constituted by
C∞ functions such that M can be simulated by an F-IC.

Proof. This is an immediate consequence of Theorem 5.7, Corollary 5.8,
and the comments following them in [4], where it is stated that every Turing
machine can be simulated by a system of smooth ODEs. Then using Theorem
11, one concludes the result.

A review of notions of simulation can be found in [4]. In essence, the previous
theorem can be described as follows. Given a Turing machine M, one can encode
each configuration into an element of Z

2. Hence, each Turing machine M is
equivalent to a discrete time dynamical system (Z2, f), where f(x, t) ∈ Z

2 gives
the state reached from x ∈ Z

2 after t ∈ N time steps [4, Proposition 5.1]. Then
one can prove that there is a system of smooth ODEs associated to a continuous
time dynamical system (R4, F), where F (x, t) ∈ R

4 gives the state reached from
x ∈R

4 after time t ∈ R
+
0 , with the following property: there exists an ε > 0 such

that for each x ∈ N
2, the first two components of F (x,x,t) are equal to f(x, k),

where t ∈ [2k − ε, 2k + ε] and k ∈ N. In this manner one can say that (R4, F)
simulates (Z2, f) and, therefore, (R4, F) simulates the Turing machine M. The
existence of ε is important since one should have some robustness to “imprecise
time sampling.”5 Moreover, the point x encodes the initial configuration of
Turing machine M, including its input, and is used as an initial state for the
dynamical system (R4, F) and, hence, as an initial condition to the associated
system of ODEs. Therefore, the initial input of M is represented in the F-IC
through the initial settings of some integrators. It is also important to remark
that, in this case, these initial setting would take integer values.

In Section 6, we present a concrete example of a class F with the power of
Turing universality.

6 Feedforward ICs

Although ICs might appear natural in the context of the theory of dynamical
systems (cf. Theorem 11), they usually are not flexible enough for many appli-
cations. In fact, the restriction involving the variable of integration input for
integrators may be very limiting when composing ICs. For instance, if one wants
to compute exp(exp(t)), one could compose two circuits of those presented in
Fig. 3. But then the resulting circuit would no longer be an IC because the
variable of integration input of an integrator would be the output of the other

5The reader might feel, with reason, that one should also let F to be robust to small
perturbations. This would certainly provide a more natural notion of simulation. However, if
we consider F to be analytic, and if we do not introduce some kind of bound a priori, it seems
very hard to avoid an accumulation of errors that will compromise the computation. So, an
usual procedure is to allow the use of “exact computation” (eg. [30], [15], [22]).

9

y ,...,y)1f(t, n

g(t,y ,...,y)1 k-1

i yk

t
y1

yn

... P

t
y1

yk-1

... Qk

k

Figure 4: Schema of inputs and outputs for the integrator Ik in the F-FIC U .
Here f, g ∈ [C;U,F]. yi denotes the output of Ii.

integrator. So, an extension of the IC model is desirable. However, this exten-
sion should not have the problems referred at Section 2 (e.g., outputs should
exist and be unique). Therefore, we extend the FF-GPAC model presented
in [11] to obtain the FIC model. Then we show that the IC and FIC models
can be related and, as a corollary, we prove that FF-GPACs and PGPACs are
equivalent.

Definition 14 A F-feedforward IC (F-FIC) with one input is a circuit that
uses n integrators I1, ..., In and 2n F-circuits P1, ...,Pn,Q1, ...,Qn satisfying
the following conditions:

1. Each input of Pi is the input of the F-FIC or the output of an integrator,
for i = 1, ..., n;

2. Each input of Qi is the input of the F-FIC or the output of an integrator
Ij , for j < i and i = 1, ..., n;

3. The integrand input of Ii is an output of Pi, for i = 1, ..., n;

4. The variable of integration input of Ii is an output of Qi, for i = 1, ..., n.

This is sketched in Fig. 4. When F = {CR,+,×}, one obtains the FF-GPAC
model presented in [11, Definition 3]. From Definitions 9 and 14, it is immediate
to conclude the following:

Lemma 15 Let U be an F-IC. Then U is also a F-FIC.

A kind of converse for the previous theorem can also be proved:

Theorem 16 Let F be a set of C1 functions and let U be a F-FIC. Then there
exists an {F ,F ′, c−1,+,×}-IC that generates the same outputs of U , where F ′

is the class constituted by the partial derivatives of all elements from F .

Proof. If y1, ..., yn are the outputs of the integrators of U , then the output
of each F-circuit is given by f(t, y1, ..., yn), where f ∈ [C;U,F]. Therefore, each
output yi of an integrator satisfies

yi(t) = αi +

∫ t

t0

hi(t, y1(t), ..., yn(t)) dgi(t, y1(t), ..., yi−1(t))

10

where αi ∈ R and gi, hi ∈ [C;U,F]. Differentiating the last equation, one gets

y′i = hi(t, y1, ..., yn)
i−1
∑

j=0

∂gi

∂yj
y′j ,

with y0 = t. This can be rewritten as

Ay′ = b,

with

A =

1 0 0 · · · 0

−h2
∂g2

∂y1
1 0 · · · 0

−h3
∂g3

∂y1
−h3

∂g3

∂y2
1 · · · 0

...
...

...
. . .

...

−hn
∂gn

∂y1
−hn

∂gn

∂y2
−hn

∂gn

∂y3
· · · 1

, b =

h1
∂g1

∂t

h2
∂g2

∂t

h3
∂g3

∂t
...

hn
∂gn

∂t

.

Because det(A) = 1, A is invertible and

y′ = A−1b.

Notice that each member of A−1 can be obtained from elements of A using
only products and sums, and the same happens for A−1b. Using the rule
of differentiation for composite functions, one can easily conclude that each
component of A−1b belongs to [C;U,F ,F ′, c−1,+,×]. Using Theorem 11, one
infers that every output of U is also an output of an {F ,F ′, c−1,+,×}-IC.

Corollary 17 A function f is generated by a FIC using constant units, adders,
and multipliers (cf. Fig. 1) if and only if it is generated by a PGPAC. That is,
the class of functions generated by FF-GPACs is exactly the class of functions
generated by PGPACs.

Proof. PGPACs are {CR,+,×}-ICs. Then, by Lemma 15, one only has
to show that if f is generated by a {CR,+,×}-FIC, it is also generated by an
{CR,+,×}-IC. But the partial derivatives of the functions in CR ∪{+,×} lie in
CR∪U∪{+,×}. Hence, by Theorem 16, f is also generated by an {CR,+,×}-IC.

Fig. 5 provides the essential connections between the different models re-
ferred to in this work. With the use of the FIC model, one can prove some
interesting results. Notice that, for the following theorem, g is only generated
by a F-circuit (and not by a F-FIC or an F-IC). This is the main difference
between Theorems 18 and 19.

Theorem 18 Let g ∈ [C;U,F] be a k-ary function and let f1, ..., fk be unary
functions generated by some F-FICs (F-ICs) U1, ...,Uk, respectively. Then the
composition of g with f1, ..., fk is also generated by a F-FIC (F-IC).

11

PGPAC
Cor. 17

= FF-GPAC ⊆ Shannon’s GPAC

‖ Def. 9 ‖ [11, Def.3]

{CR,+,×}-IC = {CR,+,×}-FIC

⊆ ⊆

F-IC
Lemma 15

⊆ F-FIC

⊆

‖

{F ,F ′}-IC
Thm. 16

⊇ F-FIC

cf. Fig. 2 cf. Fig. 4

Figure 5: Schema of relations between the models described in this work. Here
{CR,+,×} ⊆ F and F ′ is the set of partial derivatives of F . Fig. 2 and Fig. 4
suggest the structure of circuits in the first and second columns, respectively.

Proof. g can be computed by a F-circuit. Connecting the inputs of this
circuit with the outputs of U1, ...,Uk, one gets a composite circuit U that is a
F-FIC (F-IC, respectively) computing C(g; f1, ..., fk).

Theorem 19 Let f : R → R
n and g : R → R be unary functions generated by

some F-FICs. Then g ◦ f is also generated by a F-FIC.

Proof. Suppose that f and g are generated by F-FICs U1,U2, respectively.
Then link the output of U1 to the input of U2. The resulting circuit will be a
F-FIC generating g ◦ f.

Notice that the previous theorem does not apply, in general, to F-ICs. For
the following result, consider the function θk defined by θk(x) = xk if x ≥ 0 and
θk(x) = 0 if x < 0 (k ∈ N). This function can be seen [7] as a Ck−1 version of
Heaviside’s step function θ(x), where θ(x) = 1 for x ≥ 0 and θ(x) = 0 for x < 0.
Because we assumed in the beginning of Section 5 that F is constituted by C1

functions, we only consider functions θk for k ≥ 2.

Theorem 20 For each fixed k ≥ 2 and every Turing machine M, there is a
{CR,+,×, θk}-FIC U simulating it. The initial input of M corresponds to integer
initial settings for U .

Proof. We only give a sketch of the proof. In particular, it is sufficient to
check that Branicky’s simulation of Turing machines [4, Proposition 5.7] can be
implemented by {CR,+,×, θk}-FICs. Using the same arguments and notation as
Branicky (we suppose that the reader is referring to the proof of [4, Proposition
5.7]), one just have to take F̄ as the function presented by Koiran and Moore

12

in [16, Theorem 2],6 Π as the function defined by Π(x) = s(x + 1/2), where
s is a function presented by Campagnolo in [6, p. 7] and S1(t) = θk(sin(πt)),
S2(t) = θk(− sin(πt)). It is a straightforward exercise to see that the entire
construction can be implemented in a {CR,+,×, θk}-FIC (use Theorem 11 and
Lemma 15).

It is important to remark two facts: (i) This simulation is done in the sense
indicated after Corollary 13, but with a slight modification (substitute [2k −
ε, 2k + ε] by [2k, 2k + ε]); (ii) This simulation does not enable us to simulate
Type-2 machines [33]. Indeed, the construction presented in [16, theorem 2]
only allows the encoding of a tape with a finite number of non-blank symbols.

Corollary 21 For each fixed k ≥ 2 and for every Turing machine M, there
is an {CR,+,×, θk}-IC U simulating it. The initial input of M corresponds to
integer initial settings for U .

Proof. M can be simulated by a {CR,+,×, θk+1}-FIC. Hence, by Theorem
16, M can be simulated by an {CR,+,×, θk+1, θ

′

k+1}-IC. But θ′k+1(t) = (k +
1)θk(t) and θk+1(t) = tθk(t). Therefore, M can be simulated by an {CR,+,×, θk}-
IC.

7 Γ is GPAC-computable

In this section we show that the Gamma function can be computed by a PGPAC.
This might seem contrary to reason in virtue of Theorem 5, since Γ is not
differentially algebraic. However, we can achieve computability of this function
by changing our notion of computability for the GPAC.

Indeed, it is a classical result in computable analysis that Γ is computable
(cf. [25]). So, it might seem that the PGPAC is a less powerful model because it
cannot compute Γ. However, in [7, pp. 657-658] it is referred that this compar-
ison is based on two non-equivalent definitions of computability and, therefore,
different arguments are needed. In fact, we will prove in this section that if we
redefine our notion of GPAC-computability in a manner that it matches more
closely the philosophy underlying computable analysis, then one can compute
the Gamma function as well as Riemann’s Zeta function.

Remark that within the traditional framework, outputs of a GPAC are usu-
ally provided in real time, i.e., once some input t is presented to the circuit, the
output f(t) is immediately updated. Therefore, computations take ‘time 0’ to
carry out (cf. Fig. 6). But this is not what happens with computable analysis.
Indeed, one of the basic concepts of this theory is that f is computable if for
each x one can approximate f(x) to any extent, in an effective manner, probably
using the information encoded in the input x.

So, we introduce a similar notion of computability for the GPAC as follows.
Let ‖·‖

∞
be the sup-norm defined in R

n by ‖(x1, ..., xn)‖
∞

= max{|x1|, ..., |xn|}.

6Notice that for n = 2, 3, ..., the term sin(nx) is divisible by sin(x) (this can be proved
by induction) and then the function hp presented in this paper consists of a multipolynomial
with terms sin(x) and cos(x). This argument was pointed out by José Félix Costa.

13

Output:

Time:

f(t0) f(t1) f(tn)

t0 t1 tn

Figure 6: A GPAC computes in ‘real time.’

Definition 22 A function f : R
n → R

k is generated by a GPAC via approx-
imations if there exists some GPAC U with input t and at least n integrators
admitting initial settings x1, ..., xn, such that

‖f(x1, ..., xn) − g(x1, ..., xn, t)‖∞ ≤ ε(x1, ..., xn, t), (5)

with limt→∞ ε(x1, ..., xn, t) = 0, where g(x1, ..., xn, t) is a vector constituted by
k outputs of U and ε is one output of U .

Therefore, the definition basically says that one can approximate up to any
preassigned precision the value of f(x) with the help of a GPAC. In fact, one
just have to wait the necessary time to achieve the preassigned precision δ.
Moreover, in each instant t, one has an upper bound for the error δ, that is
given by output ε from the GPAC (this is intended to be the GPAC equivalent
for “efective convergence” from computable analysis. More details are provided
below). Similarly, one can define generability via approximations for PGPACs,
F-ICs, etc. It is also worthwhile to remark that, due to the connections between
PGPAC-computable functions and R-recursive functions presented in [11], if f
is generated by a PGPAC via approximations, then f belongs to the class H1

presented in [20].7 Moreover, f is also computable by Rubel’s Extended Analog
Computer [29].

Notice that t represents the time, that might not necessarily correspond to
physical time. It is also important to remark that this approach is natural from
the dynamical systems point of view. We present some input via initial setting,
thereby determining the complete behavior of the system for this input. Then
we consider another input, the time, that allows us to observe the evolution of
the system (that is seen as a process of computation).

The reader that is familiar to computable analysis may ask why we did not
use, for example, the function 1/2t instead of ε in (5). This is due to a more
general problem concerning analog computation. For instance, if t is the time
input of U , then one can obtain a circuit calculating the exponential function
e−t (cf. Fig. 3) and can link it to the time input of U . In this manner one can
exponentially accelerate the computation. Moreover, if instead of a circuit that
generates et one uses a circuit generating tan(t), then one can approximate f(x)
to any extent only by using values of t in [0, π/2). This is in some sense similar to
the “compression trick” presented by Moore in [19], where infinite computations

7Provided we allow the use of all reals and not only the constants −1, 0, 1.

14

can be carried out “within finite time.” Therefore, one can always accelerate
the computation process in order to capture the bound 1/2t.

However, since ε is computed by the same GPAC as g, this speed-up pro-
cedure also speeds-up the upper bound ε, thereby providing a more natural
complexity measure for the computation of f. Hence, Definition 22 presents a
complexity measure ε “robust to speed-up procedures.” Let us now present an
interesting result.

Theorem 23 Function Γ is generated by a PGPAC via approximations in (0,+∞).

Proof. To prove this result, we rely on Corollary 12. The idea is to generate
the function given by fx(t) = tx−1e−t and to integrate it from 0 to ∞. Note
that this integral only converges if x ∈ (0,+∞). It is easily seen that fx is a
solution of

y′ =
(x− 1)

t
y − y, y(1) =

1

e
. (6)

However, y will not be defined at t = 0.8 So, a few more steps are required to
compute Γ. From (2), one gets

Γ(x) =

∫ 1

0

tx−1e−tdt+

∫

∞

1

tx−1e−tdt.

Substituting w = 1/t in the first integral, one has

∫ 1

0

tx−1e−tdt =

∫

∞

1

(

1

w

)x+1

e−
1
w dw.

or

Γ(x) =

∫

∞

1

(

1

t

)x+1

e−
1
t + tx−1e−tdt. (7)

Here one can consider t0 = 1 and that the computation runs through t → ∞.
In this manner, 1

t is generated by a PGPAC since it is the solution of

y′ = −y2, y(1) = 1.

Using Corollary 12 and equation (6), one concludes that fx can be generated
by a PGPAC, where x is given by a constant unit. Noting that

(

1

t

)x+1

e−
1
t =

fx(t−1)

t2

one can conclude that the integrand part of the integral given in (7) can be
generated by some PGPAC. Using the output of this PGPAC as an input for
an integrator (integrand input), and taking t for the other input (variable of

8This problem arises for powers like gx(t) = tx, because it is only defined for t > 0 (x may
take negative values).

15

i

0

t

Figure 7: If the integrator has initial setting x, then the output of the integrator
will always be x during the whole computation.

integration input), one concludes that the output of this integrator converges
to (2) as t→ ∞. Call this circuit U ′.

We now want to check that (5) is satisfied. By taking Taylor’s expansion of
zx−1e−z with z ≥ 0, the reader may verify that

zx−1e−z = zx−1

(

∞
∑

i=0

zi

i!

)

−1

≤ zx−1

(

zk

k!

)−1

≤ k!z−2,

as long as k ≥ x+ 1 is an integer and z ≥ 1. Taking k = dx+ 1e and t ≥ 1, one
has
∣

∣

∣

∣

∫

∞

1

zx−1e−zdz −

∫ t

1

zx−1e−zdz

∣

∣

∣

∣

=

∫

∞

t

zx−1e−zdz ≤
k!

t
≤

(x+ 2)(x+2)

t
.

Moreover, for z ≥ 0, zx−1e−z ≤ zx−1 and

∫ a

0

zx−1e−zdz ≤
ax

x
.

Hence, for t ≥ 1,

∣

∣

∣

∣

∣

∫

∞

1

(

1

w

)x+1

e−
1
w dw −

∫ t

1

(

1

w

)x+1

e−
1
w dw

∣

∣

∣

∣

∣

=

∫

∞

t

(

1

w

)x+1

e−
1
w dw =

=

∫ 1/t

0

zx−1e−zdz ≤
t−x

x

Therefore, at time t ≥ 1 (note that t0 = 1), the output
∫ t

1

(

1
z

)x+1
e−

1
z +

zx−1e−zdz of U ′ will approximate Γ(x), with an upper bound for the error
given by

t−x

x
+

(x+ 2)(x+2)

t
.

This later function converges to 0 as t → ∞ and can also be generated by a
PGPAC U ′′. Now consider the circuit of Fig. 7. Its output has value x, where x
is the initial setting of the integrator. Replacing the constant units with output
x in U ′ and U ′′ by the circuit of Fig. 7, and putting these circuits in parallel,
one gets a PGPAC that generates Γ via approximations

16

Another function known not to be differentially algebraic is Riemann’s Zeta
function. On the real line, with x > 1, it can be defined by

ζ(x) =
1

Γ(x)

∫

∞

0

ux−1

eu − 1
du. (8)

Using an argument similar to the one employed for the Gamma function, one
can show the following:

Theorem 24 Function ζ is generated by a PGPAC via approximations in (1,+∞).

Notice that the previous results hold even if we restrict the PGPAC to use
only units associated to computable values (in the sense of computable analysis).

It is important to mention that all the limiting results concerning the GPAC
are only valid when ‘real time’ computation is used. So, one should investigate
to which extent the mathematical limitations of the GPAC presented in [27]
also apply to computability via approximations.

8 Conclusion

We have introduced a model (PGPAC) based on Shannon’s GPAC and we have
shown that this model presents some characteristics that make it more suitable
than Shannon’s and Pour-El’s GPAC. Moreover, we have extended this model,
showing that some of these extensions are Turing universal, and also established
links with the theory of continuous time dynamical systems.

However, there still are many open questions. For instance, one could ask
under which assumptions the PGPAC lead to computable functions, in the
sense of computable analysis. In [24] it is presented a very interesting work
on these ideas, although for a different model. In particular, Pour-El shows
the following. Let f be an analytic differentially algebraic function (functions
generated by PGPACs are of this type). Hence, locally, f can be expressed as
f(x) =

∑

∞

i=0 bi(x − c)i. Then Pour-El proves that the sequence of coefficients
{bi} is “essentially computable in a finite number of the bi’s and c.”9 In par-
ticular, if c and all the bi’s are computable, then f is computable. In general
f is not computable because f might be the constant function ck, where k is
not computable. But even in the case where all units of a GPAC are associated
to computable values, it is unknown whether f should have a series expansion
with computable coefficients and be therefore computable.

Another different path is followed in [8], [2]. Namely, Campagnolo, Costa,
and Moore showed that restricted forms of integration lead to a hierarchy of
continuous time systems related to the Grzegorczyk hierarchy over the natu-
rals. In some sense, this can be captured by GPACs if we allow weaker forms

9The reader might refer to section 1 of [24] to see the exact meaning of this expression.
Roughly, essential computability in b ∈ R uses standard computability, with the aid of a
function f(n) that gives the decimal expansion of b upon to n digits.

17

of integrations in the integrator units. More recently, Bournez and Hainry gen-
eralized this result to the case of the reals. The idea was to introduce a new
operator computing restricted versions of limits. It would be interesting if some
links could be established between this later work and the contents of Section
7.

For the sake of completeness we mention that Campagnolo et al. also pre-
sented a conjecture [7, Conjecture 1], where functions generated by PGPACs
that only have access to rational constants in their initial conditions and pa-
rameters, are expected to have primitive recursive upper bounds.

Some directions for further research can be pointed out. Let us present some
of them.

1. Can a PGPAC simulate a Turing machine? Indeed, all existing simulations
of Turing machines always involve some non-analytic function (in this case
θk). But is this kind of function really necessary? And what about the
simulation of Type-2 machines?

2. How can we precisely define a notion of complexity for the models intro-
duced above? And can we present connections between this theory and
the theory of dynamical systems?

3. Is it possible to establish connections with computable analysis? In par-
ticular, can we restrict the constant units in Fig. 1 to some values (e.g.
−1, 0, 1) and then relate PGPAC-computability with computability from
the computable analysis point of view?

Acknowledgments. The author would like to thank Manuel Campagnolo
for many helpful comments and suggestions. In particular, it was M. Campag-
nolo who realized the potential of Corollary 12 and that foresaw the possibility of
establishing connections between GPAC-circuits and dynamical systems. Vasco
Brattka also helped to clarify some points concerning computable analysis, es-
pecially in aspects regarding the computability of the Gamma function. The
author would also like to thank the anonymous referees for their suggestions
and remarks.

A special thanks goes to José Félix Costa for introducing the author to the
GPAC model. Indeed, it was him who supplied the author with the necessary
background to deal with the model and it was under its supervision that some
earlier research was done and that the results presented in [11] were obtained.
Moreover, all historical references presented throughout the text were provided
by Félix Costa.

This work was partially supported by Fundação para a Ciência e a Tec-
nologia (FCT) and FEDER via the Center for Logic and Computation - CLC,
and via the project ConTComp POCTI/MAT/45978/2002. The author is also
grateful to Fundação Calouste Gulbenkian for the support given to this research
through the Programa Gulbenkian de Est́ımulo à Investigação.

18

References

[1] J. A. Anderson. An Introduction to Neural Networks. MIT Press, 1995.

[2] O. Bournez and E. Hainry. An analog characterization of computable func-
tions over the real numbers. submitted for publication.

[3] M. D. Bowles. U. S. technological enthusiasm and british technological
skepticism in the age of the analog brain. IEEE Ann. Hist. Comput.,
18(4):5–15, 1996.

[4] M. S. Branicky. Universal computation and other capabilities of hybrid
and continuous dynamical systems. Theoret. Comput. Sci., 138(1):67–100,
1995.

[5] V. Bush. The differential analyzer. A new machine for solving differential
equations. J. Franklin Inst., 212:447–488, 1931.

[6] M. L. Campagnolo. The complexity of real recursive functions. In C. S.
Calude, M. J. Dinneen, and F. Peper, editors, Unconventional Models of
Computation (UMC’02), LNCS 2509, pages 1–14. Springer, 2002.

[7] M. L. Campagnolo, C. Moore, and J. F. Costa. Iteration, inequalities, and
differentiability in analog computers. J. Complexity, 16(4):642–660, 2000.

[8] M. L. Campagnolo, C. Moore, and J. F. Costa. An analog characterization
of the Grzegorczyk hierarchy. J. Complexity, 18(4):977–1000, 2002.

[9] J. Copeland. Even Turing machines can compute uncomputable functions.
In J. Casti, C. Calude, and M. Dinneen, editors, Unconventional Models of
Computation (UMC’98), pages 150–164, 1998.

[10] General Electric Management Consultant Services Division. The Next Step
in Management ... an Appraisal of Cybernetics, 1952.

[11] D. S. Graça and J. F. Costa. Analog computers and recursive functions
over the reals. J. Complexity, 19(5):644–664, 2003.

[12] S. Haykin. Neural Networks - A Comprehensive Foundation. Prentice Hall,
1999.

[13] M. W. Hirsch and S. Smale. Differential Equations, Dynamical Systems,
and Linear Algebra. Academic Press, 1974.

[14] K.-I Ko. Computational Complexity of Real Functions. Birkhäuser, 1991.

[15] P. Koiran, M. Cosnard, and M. Garzon. Computability with low-
dimensional dynamical systems. Theoret. Comput. Sci., 132:113–128, 1994.

[16] P. Koiran and C. Moore. Closed-form analytic maps in one and two dimen-
sions can simulate Turing machines. Theoret. Comput. Sci., 210(1):217–223,
1999.

19

[17] L. Lipshitz and L. A. Rubel. A differentially algebraic replacement theorem,
and analog computability. Proc. Amer. Math. Soc., 99(2):367–372, 1987.

[18] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent
in nervous activity. Bull. Math. Biophys., 5:115–133, 1943.

[19] C. Moore. Recursion theory on the reals and continuous-time computation.
Theoret. Comput. Sci., 162:23–44, 1996.

[20] J. Mycka and J. F. Costa. Real recursive functions and their hierarchy.
submitted for publication.

[21] J. M. Nyce. Guest editor’s introduction. IEEE Ann. Hist. Comput., 18:3–4,
1996.

[22] P. Orponen. A survey of continous-time computation theory. In D.-Z. Du
and K.-I Ko, editors, Advances in Algorithms, Languages, and Complexity,
pages 209–224. Kluwer Academic Publishers, 1997.

[23] L. Owens. Where are we going, Phil Morse? Changing agendas and the
rhetoric of obviousness in the transformation of computing at MIT, 1939-
1957. IEEE Ann. Hist. Comput., 18:34–41, 1996.

[24] M. B. Pour-El. Abstract computability and its relations to the general
purpose analog computer. Trans. Amer. Math. Soc., 199:1–28, 1974.

[25] M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics.
Springer, 1989.

[26] S. Puchta. On the role of mathematics and mathematical knowledge in the
invention of Vannevar Bush’s early analog computers. IEEE Ann. Hist.
Comput., 18:49–59, 1996.

[27] L. A. Rubel. Some mathematical limitations of the general-purpose analog
computer. Adv. Appl. Math., 9:22–34, 1988.

[28] L. A. Rubel. A survey of transcendentally transcendental functions. Amer.
Math. Monthly, 96(9):777–788, 1989.

[29] L. A. Rubel. The extended analog computer. Adv. Appl. Math., 14:39–50,
1993.

[30] C. E. Shannon. Mathematical theory of the differential analyzer. J. Math.
Phys. MIT, 20:337–354, 1941.

[31] H. T. Siegelmann. Neural Networks and Analog Computation: Beyond the
Turing Limit. Birkhäuser, 1999.

[32] S. Smale. Mathematical Research Today and Tomorrow, chapter Theory of
computation, pages 59–69. Springer, 1992.

[33] K. Weihrauch. Computable Analysis: An Introduction. Springer, 2000.

20

