
Analog Computers and Recursive Functions Over

the Reals

Daniel Silva Graça
CLC and ADM/FCT, Universidade do Algarve, C. Gambelas,

8000-062 Faro, Portugal

José Félix Costa
DM/IST, Universidade Técnica de Lisboa, Av. Rovisco Pais,

1049-001 Lisboa, Portugal

March 14, 2003

Abstract

In this paper we show that Shannon’s General Purpose Analog Com-
puter (GPAC) is equivalent to a particular class of recursive functions over
the reals with the flavour of Kleene’s classical recursive function theory.

We first consider the GPAC and several of its extensions to show
that all these models have drawbacks and we introduce an alternative
continuous-time model of computation that solves these problems. We
also show that this new model preserves all the significant relations involv-
ing the previous models (namely, the equivalence with the differentially
algebraic functions).

We then continue with the topic of recursive functions over the reals,
and we show full connections between functions generated by the model
introduced so far and a particular class of recursive functions over the
reals.

1 Introduction

Digital computation has been, since the thirties, the most important compu-
tational model, mainly due to the unifying work of Turing. Turing clarified
the notion of algorithm, giving it a precise meaning, and introduced a coherent
framework for discrete computation.

Nevertheless, computers need not be digital. In fact, the first computers
were analog computers. In an analog computer, the internal states are continu-
ous, rather than discrete as in digital computation. The first analog computers
were especially well suited to solve ordinary differential equations and were ef-
fectively used to solve many military and civilian problems during World War II

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sapientia

https://core.ac.uk/display/61500436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


(e.g. gunfire control) and in the fifties and sixties (e.g. aircraft design). Unfor-
tunately, because of the nonexistence of a coherent theoretical basis for analog
computation and the fact that analog computing technology almost didn’t im-
prove when compared with its digital counterpart in the last half century, analog
computation was about to be forgotten with the emergence of digital computa-
tion.

Despite this period of oblivion, analog computation is again regaining in-
terest. The search for new models that could provide an adequate notion of
computation and complexity for the dynamical systems that are currently used
to model the physical world contributed to change the situation. However, rel-
atively little work exists on a general theory of analog computation, and this
still seems far away.

In this paper we will go to the roots of analog computation by recalling
Shannon’s General Purpose Analog Computer (GPAC) [14]. We will point out
some problems that appear in the scope of this model and also in its subsequent
versions. We will then present an alternative model (the feedforward GPAC:
FF-GPAC) that solves the problems referred to for the GPAC. We will also show
that the FF-GPAC model is more robust than the GPAC, but still preserves the
fundamental properties (equivalence with differentially algebraic functions).

Our objective is to develop some of the ideas presented in the seminal paper
[11]. In this paper, Moore introduced a recursion theory over the reals and
proved some results establishing links with classical recursion theory and also
with the GPAC. Unfortunately, these results presented some gaps and, hence,
the primary goal of our work is precisely to provide an adequate framework
to obtain, wherever possible, similar results to those presented by Moore. In
particular, we are interested in the connections between recursive functions over
the reals and functions generated by the GPAC. While working on this topic we
have found some further problems not referred to in the existing literature (at
least to our knowledge) and a major revision of the GPAC was needed for our
purposes.

2 The GPAC model

In 1941, Shannon introduced the General Purpose Analog Computer [14] as a
mathematical model of an analog device, the Differential Analyzer [1]. This
model basically consists of circuits composed of (a finite number of) “black
boxes” as indicated in fig. 2.1 (the so-called analog units).1

It is required that two inputs and two outputs can never be interconnected.
It is also required that each input is connected to, at most, one output.

The GPAC model has been mainly applied to functions depending on one
variable. In this case, we say that a unary function y is generated by a GPAC
U on some interval I ⊆ R if we can prescribe some initial conditions to the

1For reasons of simplicity, we will usually identify objects with functions. The context will
be enough to decide which is the case. For instance, in figure 2.1,

R t
to u(x)dv(x) should be

read as λt.
R t

to u(x)dv(x).

2



integrators of U at x = a ∈ I such that if x is applied to every input that is not
connected to an output, then y equals the output of some unit for values of x in
I. For functions of more than one variable we may easily adapt this definition.

We will assume that if we have more than one distinct input for a GPAC,
then they all depend on a parameter t that we will call the time (this is not
very clear in existing literature. Shannon [14] assumes independent variables as
inputs. Pour-El [13] talks on inputs depending on the time, but then assumes
independent variables). For the one variable case, these approaches are equiva-
lent: if x is the input of a GPAC, simply take x as the independent variable.

×k kuu

A constant multiplier unit
associated to the real value k

+v

u
u+v

An adder unit

∫
v

u R t
t0

u(x)dv(x)

An integrator unit

1 1

A constant function unit

Figure 2.1: Representations of different types of units in a GPAC.

Definition 1 A unary function y is differentially algebraic (d.a.) on some set
I if there exists some natural number n (where n > 0) and some (n + 2)-ary
nonzero polynomial P with real coefficients such that

P (x, y(x), ..., y(n)(x)) = 0,

for every x ∈ I.2

In what follows, we will assume that I ⊆ R is a closed, bounded interval
with non-empty interior.

In his paper [14], Shannon presented an argument for the following fact:

Claim 2 A unary function can be generated by a GPAC if and only if the
function is differentially algebraic.

This result indicates that a large class of functions, such as polynomials,
trigonometric functions, elliptic functions, etc., could actually be generated by
a GPAC. As a corollary some functions such as the Gamma function,

Γ(x) =
∫ ∞

0

tx−1e−tdt,

cannot be generated because they are not d.a. functions (cf. [2, pp. 49,50]).
2Note that this definition of differential algebraic function does not imply a definite degree

for the function being defined (see definition 12).

3



Unfortunately, the original proof of claim 2 has some gaps, as indicated on
pp. 13-14 of [13]. In this paper, Pour-El was also concerned with showing some
relations in the spirit of claim 2. In order to achieve this result, she introduced
an alternative definition for the GPAC based on differential equations, that we
will call the theoretic GPAC (T-GPAC: this is not the usual notation, but we
use it in order to distinguish this model from Shannon’s GPAC). In essence, y
is generated by a T-GPAC if there is some system of differential equations

A(x,y)
dy
dx

= b(x,y),

where y = (y1, ..., yn), such that A(x,y) and b(x,y) are n×n and n×1 matrices,
respectively, with linear entries and, moreover, y is one of the yi’s. The original
paper [13] can be referred for more details on the T-GPAC. Pour-El proved
(with some corrections made by Lipshitz and Rubel in [9]) the following results:

Theorem 3 (Pour-El) Let y be a differentially algebraic function on I. Then
there exists a closed subinterval I ′ ⊆ I with non-empty interior such that, on
I ′, y can be generated by a T-GPAC.

Theorem 4 (Pour-El, Lipshitz, Rubel) If y is generable on I by a T-GPAC,
then there is a closed subinterval I ′ ⊆ I with non-empty interior such that, on
I ′, y is differentially algebraic.

Although the model presented by Pour-El is apparently different from Shan-
non’s GPAC, Pour-El presented the following result:

Claim 5 If a function y is generated on I by a GPAC, it is generated on I by
a T-GPAC.

This claim is the main reason why people referring to the GPAC actually
recall Pour-El’s definition, instead of Shannon’s GPAC. Therefore the T-GPAC
could be seen as a model that extends the GPAC, being able to compute func-
tions generated by a Differential Analyzer. However, the original proof of claim
5 [13, proposition 1] has some gaps.3

Hence we will not deal with the T-GPAC because we don’t have known
relationships between functions generated by this model and functions generated
by some existing analog computers (the Differential Analyzer).

We could therefore turn to Shannon’s GPAC, but this model itself presents
some problems. Besides the problem indicated with claim 2, we also have to
deal with some more subtle details.

Consider the GPAC indicated in fig. 2.2.
3(We assume that the reader is referring to [13] for details) In that proposition she, in

fact, presents an argument where she states that if y is generated by a GPAC, then there
exist functions (y2, ..., yn) satisfying the equation of condition 1 and condition 2 of definition
10. But she never shows that (y2, ..., yn) is the unique solution of that equation and she also
does not show condition 3. She only gives a physical argument to condition 3 on p. 12 when
defining domain of generation, but does not give any formal proof.

4



+
∫q

t
+

1

q y

Figure 2.2: A circuit that admits two distinct solutions as outputs.

It is not difficult to see that y at time t is given by

y(t) = 1 +
∫ t

0

(y(x) + x)d(y(x) + x).

We are supposing that t0 = 0 and that the initial output of the integrator is 0.
When we start the computation, we get two possible solutions:

y±(t) = 1±√−2t− t.

Therefore, we cannot have a physical implementation of this circuit (in partic-
ular, there is no Differential Analyzer that simulates this circuit). This is very
problematic. We will solve this problem in the next section.

3 The FF-GPAC model

In this section, we will introduce a new model based on Shannon’s GPAC (it is a
particular form of it), the FF-GPAC, that does not have the problems indicated
in the previous section for the GPAC. In particular, we will be able to show
that the output of each unit is unique on some “maximal interval” and that the
relations indicated in theorems 3 and 4 will remain valid if we substitute the
T-GPAC by the FF-GPAC model.

We had occasion to see that the output of a unit in a GPAC can be non-
unique. We believe that this is due to the lack of restrictions on the GPAC,
that allows connections with arbitrary feedback. Of course, feedback is desirable
since, without it, we would get an uninteresting model. However, we believe that
too much feedback can be harmful. In particular, we believe that this is the
cause for the abnormal behavior of circuit 2.2. So, in this new model, we will
restrict the feedback allowed.

Let us first give a brief overview of the standard procedure used to deal with
the GPAC (with one input corresponding to the independent variable x). We
can consider that every output of a GPAC is the output of an integrator. In
fact, suppose that the output y is the output of some unit Ak. Hence, we may
introduce a new integrator and connect the input associated to the variable of
integration to the output of Ak, and the input associated to the integrand to
a constant function unit. If we set the initial condition of the output of the
integrator to be y(t0), the output of this integrator will be precisely y.

5



Proceeding in a similar way as in [14] (or [13]), let U be a GPAC with n− 1
integrators U2, ...,Un, having as outputs y2, ..., yn, respectively. Let y0 = 1 and
let y1 = x. Then, each input of an integrator must be the output of one of
the following: an adder, an integrator, a constant function unit, or a constant
multiplier. Hence, the integrand of Uk can be expressed as

∑n
i=0 akiyi and the

variable of integration as
∑n

i=0 bkiyi, for some suitable constants aki, bki. Thus,
the output of Uk, yk, can be expressed as

yk =
∫ x

x0

n∑

i=0

akiyid




n∑

j=0

bkjyj


 + ck, or

yk =
∫ x

x0

n∑

i,j=0

akibkjyidyj + ck.

We may simplify the last expression by taking ck
ij = akibkj . It follows that

y′k =
n∑

i,j=0

ck
ijyiy

′
j , k = 2, ..., n. (1)

Hence, we could assert that it is equivalent to say that y is generated by a GPAC
(in the sense that it is a solution for a system of equations where each equation
is associated to a unit) and that y is a solution of some system of differential
equations with the particular structure of (1). Although this seems a clear and
natural procedure, we believe that we have to be more careful with it. For
instance, why should we consider that the inputs of the integrator Uk could be
expressed as

∑n
i=0 akiyi and

∑n
i=0 bkiyi for some constants aki, bkj? We could

have as input the output of a circuit like the one of fig. 3.1.

+1
q

Figure 3.1: A circuit that admits no solutions as outputs.

This circuit follows the definition of a GPAC, but we cannot say that its
output is a linear combination of the input, because it does not exist (the output
of the circuit is a solution of the equation x = x+1). However these circuits are
admissible in Shannon’s or Pour-El’s frameworks. But we would like to keep
relations as in (1). To do so, we introduce the concept of linear circuit as follows.

Definition 6 A linear circuit is an acyclic GPAC built only with adders, con-
stant multipliers, and constant function units in the following inductive way:

1. A constant function unit is a linear circuit with zero inputs and one output;

2. A constant multiplier is a linear circuit with one input and one output;

6



3. An adder is a linear circuit with two inputs and one output;

4. If A is a linear circuit and if we connect the output of A to a constant
multiplier, the resulting GPAC is a linear circuit. It has as inputs the
inputs of A and as outputs, the output of the constant multiplier;

5. If A and B are linear circuits and if we connect the outputs of A and B to
an adder, then the resulting circuit is a linear circuit in which the inputs
are the inputs of A and B, and the output is the output of the adder.

The proof of the following proposition will be left to the reader.

Theorem 7 If x1, ..., xn are the inputs of a linear circuit, then the output of
the circuit will be y = c0 + c1x1 + ... + cnxn, where c0, c1, ..., cn are appropriate
constants. Reciprocally, if y = c0+c1x1+ ...+cnxn, then there is a linear circuit
with inputs x1, ..., xn, and output y.

We next introduce a new type of unit.

• Input unit : A zero-input, one-output unit.

The input units may be considered as interface units for the inputs from
outside world in order that they can be used by a GPAC (although we may pick
an output directly from the GPAC).

We now present the main definition of this section.

Definition 8 Consider a GPAC U with n integrators U1, ...,Un. Suppose that
to each integrator U i, i = 1, ..., n, we can associate two linear circuits, Ai and Bi,
with the property that the integrand and the variable of integration inputs of U i

are connected to the outputs of Ai and Bi, respectively. Suppose also that each
input of the linear circuits Ai and Bi is connected to one of the following: the
output of an integrator or to an input unit. U is said to be a feedforward GPAC
(FF-GPAC) iff there exists an enumeration of the integrators of U , U1, ...,Un,
such that the variable of integration of the kth integrator can be expressed as

ck +
m∑

i=1

ckixi +
k−1∑

i=1

c̄kiyi, for all k = 1, ..., n, (2)

(see fig. 3.2) where yi is the output of Ui, for i = 1, ..., n, xj is the input
associated to the jth input unit, and ck, ckj , c̄ki are suitable constants, for all
k = 1, ..., n, j = 1, ..., m, and i = 1, ..., k − 1.

Note that in a FF-GPAC we can link the output of Uk directly to the input of
Ur (as long as (2) is satisfied) because this is equivalent to having a constant
multiplier associated with the value 1 between them.

7



∫
L(1,x1,...,xm,y1,...,yk−1)

L(1,x1,...,xm,y1,...,yn)
yk

Figure 3.2: Schema of the inputs and outputs of Uk in the FF-
GPAC U . L(z1, ..., zr) denotes a linear combination (with real
coefficients) of z1, ..., zr.

We can also have a notion of function generated by a FF-GPAC using a
straightforward adaptation of the corresponding definition for the case of the
GPAC. We can also suppose that each function generated by a FF-GPAC is the
output of an integrator.

Before continuing with our work, we have to set up more conditions on this
model. We have admitted that the inputs x1, ..., xm of a GPAC are functions
of a parameter t, but we didn’t make any assumption on these functions (about
computability, differentiability, or whatever). When we consider the integrator
units, one problem still arises: if I = [a, b] is a closed interval, the Riemann-
Stieltjes integral

∫
I
ϕ(t)dψ(t) is not defined for every pair of functions ϕ,ψ, even

if they are continuous [16].
However, it is possible to show that if ϕ,ψ are continuously differentiable

on I, then
∫

I
ϕ(x)dψ(x) is defined. So, from now on, we will always assume

that the inputs are continuously differentiable functions of the time. And if the
outputs of all units are defined for all t ∈ I, where I is an interval, then we will
also assume that they are continuous in that interval. This is needed for the
following results and may be seen as physical constraints to which all units are
subjected.

4 Properties of the FF-GPAC

We now state the following theorems. Their proofs can be found in the disser-
tation [6].

Theorem 9 Suppose that the input functions of a FF-GPAC are of class Cr

on some interval I, for some r ≥ 1, possibly ∞. Then the outputs are also of
class Cr on I.

Theorem 10 Consider a FF-GPAC with m inputs x1, ..., xm of class C2 on an
interval [t0, tf ), where tf may possibly be ∞. Then there exists an interval [t0, t∗)
(with t∗≤ tf ) where each output exists and is unique. Moreover, if t∗< tf then
there exists an integrator with output y such that y gets unbounded as t → t∗.

These results show that the FF-GPAC is a “well-behaved” model that is
dynamically more robust than the GPAC. We will now show relations between
functions computable by the FF-GPAC and differentiably algebraic functions
in the spirit of claim 2 and theorems 3 and 4. We will only consider a FF-
GPAC with one input x, the independent variable, and we will also only consider
functions of class C∞.

8



Definition 11 Poln denotes the set of n-ary polynomials with real coefficients,
for n ∈ N and n ≥ 1.

Definition 12 Let y be a differentially algebraic function on J. For each n ∈ N,
let

Pn(y) = {P ∈ Poln+2 : P 6= 0 and ∀x ∈ J, P (x, y(x), ..., y(n)(x)) = 0}.

The order of y on J is given by

order(y) = min{n ∈ N : Pn(y) 6= ∅}.

Theorem 13 If y is generable on I by a FF-GPAC with n integrators, then
there exists a nonzero polynomial p with real coefficients such that

p
(
x, y, y′, ..., y(n)

)
= 0, on I.

Proof. Suppose that we have a FF-GPAC U with n−1 integrators U2, ...,Un

in an appropriate order of enumeration, with outputs y2, ..., yn, respectively. We
only have to show that the functions y2, ..., yn are d.a. on I. We will show that
y2 is d.a.. Let y0 = 1 and y1 = x. Then using the standard procedure for the
GPAC indicated in the previous section, we conclude that

y′k =
n∑

i=0

k−1∑

j=1

ck
ijyiy

′
j , k = 2, ..., n,

where ck
ij are suitable constants. We can write this as

y′k −
k−1∑

j=2

(
n∑

i=0

ck
ijyi

)
y′j =

n∑

i=0

ck
i1yi, k = 2, ..., n.

This system may be written in the following way



1 0 · · · 0
−∑n

i=0 c3
i2yi 1 · · · 0

...
...

. . .
...

−∑n
i=0 cn

i2yi −∑n
i=0 cn

i3yi · · · 1







y′2
y′3
...

y′n


 =




∑n
i=0 c2

i1yi∑n
i=0 c3

i1yi

...∑n
i=0 cn

i1yi




or simply

Ay′ = b, where y =




y2

...
yn


 .

It is easily seen that det A = 1. Hence A is invertible and we have

A−1 = Acof ,

9



where Acof is the transpose of the matrix in which each entry is its respective
cofactor with respect to A. So, each entry in A−1 is a polynomial in x, y2, ..., yn.
The same happens with b. We know that

y′ = A−1b.

Then we may write
y′2 = P̄2(x, y2, ..., yn)

...
y′n = P̄n(x, y2, ..., yn)

(3)

where each P̄i is an n-ary polynomial, for i = 2, ..., n. Differentiating y′2 =
P̄2(x, y2, ..., yn) with respect to x and using (3), we get

y
(k)
2 = Pk(x, y2, ..., yn), k = 1, ..., n− 1, (4)

where each Pk is a n-ary polynomial. Now consider the field of n-ary rational
functions over R,

Ratn =
{

p

q
: p, q ∈ Poln, and q 6= 0

}
,

(for the results on algebra, cf. [7, pp. 311-317]). It is easy to see that x, y2∈Ratn
and that Pk(x, y2, ..., yn) ∈ Ratn, for k = 1, ..., n− 1. But a transcendence basis
of Ratn can only have n elements. Hence, the n + 1 polynomials

x, y2, Pk(x, y2, ..., yn), k = 2, ..., n,

must be algebraically dependent, i.e., there exists a nonzero polynomial p ∈ Poln
such that p(x, y2, P2(x, y2, ..., yn), ..., Pn(x, y2, ..., yn)) = 0. Using (4), we get

p
(
x, y2, y

′
2, ..., y

(n−1)
2

)
= 0,

as we wanted to prove.
Notice that we can conclude from the proof of this theorem that if a function

y is generated by a FF-GPAC, then it is a solution of a certain continuous
dynamical system y′ = p(y, t) where y is a component of y = (y1, ..., yn) and
p is a vector of polynomials. It is also not difficult to show that the converse
result is also true.

Corollary 14 y is generated by a FF-GPAC iff it is a component of the solution
y = (y1, ..., yn) of a differential equation y′ = p(y, t) where p is a vector of
polynomials.

Corollary 15 If y is generable on I by a FF-GPAC, then y is differentially
algebraic on I.

10



Corollary 16 Suppose that y is generable on I by a FF-GPAC. Then there
exists a closed subinterval I ′ ⊆ I with non-empty interior such that, on I ′, y
can be generated by a T-GPAC.

Proof. This result follows from theorem 3 and corollary 15 .
We now show a converse to corollary 15.

Theorem 17 Suppose that y is differentially algebraic on I. Then there is a
closed subinterval I ′ ⊆ I with non-empty interior such that y can be generated
by a FF-GPAC on I ′.

Proof. This proof follows much along the lines [13, theorem 4]. Let n be
the order of y and let P (x1, ..., xn+2) be the expression of a polynomial P of
lowest degree in xn+2 such that

P (x, y, y′, ..., y(n)) = 0

on I. Differentiating formally the last equation (with respect to x),4 we get

∂P

∂x
+

∂P

∂y
y′ +

∂P

∂y′
y′′ + ... +

∂P

∂y(n)
y(n+1) ≡ 0, or

R(x, y, y′, ..., y(n))y(n+1) −Q(x, y, y′, ..., y(n)) ≡ 0 (5)

on I, where R and Q are (n + 2)-ary polynomials having the property that
R is of lower degree than P in the last variable. Therefore, we must have
R(x, y, y′, ..., y(n)) 6≡ 0 on I, i.e., there exists some a ∈ I that satisfies the
condition R(a, y(a), ..., y(n)(a)) 6= 0. Then we may pick some closed, bounded
intervals J, J0, ..., Jn (with non-empty interiors) such that

(i) J ⊆ I,
(ii) (a, y(a), ..., y(n)(a)) ∈ J × J0 × ...× Jn,
(iii) If (c, c0, ..., cn) ∈ J × J0 × ...× Jn, then R(c, c0, ..., cn) 6= 0,
(iv) If x ∈ J, then (x, y(x), ..., y(n)(x)) ∈ J × J0 × ...× Jn.
We can rewrite (5) as a system of n + 2 first-order equations, with n + 2

variables defined on J × J0 × ... × Jn. Hence, this system satisfies a Lipschitz
condition in J and the solution is unique. So, y is the unique solution possessing
initial conditions a, y(a), y′(a), ..., y(n)(a) which satisfies (5) on J . Next, we are
going to prove that y can be generated by a FF-GPAC on J. We begin by finding
the equations that define the corresponding FF-GPAC. Solving for y(n+1) in (5),
we get

y(n+1) =
Q(x, y, y′, ..., y(n))
R(x, y, y′, ..., y(n))

.

Introducing the variables y1 = y, y2 = y′, ..., yn+1 = y(n), yn+2 = y(n+1), the
previous equation becomes

y′k = yk+1, k = 1, ..., n + 1, (6)

yn+2 =
Q(x, y1, ..., yn+1)
R(x, y1, ..., yn+1)

.

4Notice that we can differentiate the equation because we assumed in the beginning of this
section that y is a function of class C∞.

11



It is not difficult to show that y can be generated by a FF-GPAC having only one
independent variable x iff there are functions z2, ..., zg satisfying the relations

z′k =
g∑

i=0

k−1∑

j=1

ckickjziz
′
j , k = 2, ..., g. (7)

where cki, ckj are reals, and z0 = 1, z1 = x, with y = zi for some i = 2, ..., g.
Although the first n+1 equations of (6) satisfy (7), the same does not happen for
the last equation (yn+2 is expressed as the quotient of two polynomials). Hence,
we will substitute the last equation of (6) by a system of equations satisfying
(7).

Consider the polynomial Q. Each term of Q that is not a constant is of the
form bv1...vr, where each vi is x or one of the variables yj and b is a real number.
Suppose that the first term is bv1...vr. Taking

y′n+3 = bv1v
′
2 + bv2v

′
1

with initial condition yn+3(a) = bv1(a)v2(a), we have yn+3 = bv1v2. In a similar
way, taking

y′n+4 = v3y
′
n+3 + yn+3v

′
3

with initial conditions yn+4(a) = v3(a)yn+3(a), we get yn+4 = bv1v2v3. Contin-
uing with this procedure we will have yn+r+1 = bv1v2...vr. We can apply this
method to all non-constant terms of Q and R, obtaining new equations. Let the
y’s corresponding to the non-constant terms of Q be w1, ..., ws and let w∗1 , ..., w∗t
be those corresponding to the non-constant terms of R. Then

yn+2 =
(
∑s

i=1 wi + c)(∑t
i=1 w∗i + c∗

) , (8)

where c and c∗ are real constants. Now, we must reduce the last equation to a
form that fits (7). Suppose that the last y, w∗t , was yp−1. Let

y′p = −yp+1

t∑

i=1

(w∗i )′, (9)

y′p+1 = 2ypy
′
p,

with initial conditions

yp(a) =

(
t∑

i=1

w∗i (a) + c∗
)−1

, yp+1(a) = y2
p(a).

Then yp =
(∑t

i=1 w∗i + c∗
)−1

, yp+1 = y2
p, and we may replace (8) by three

equations: equations (9) and

y′n+2 = yp

s∑

i=1

(wi)′ +

(
s∑

i=1

wi + c

)
y′p,

12



where yn+2(a) = (
∑s

i=1 wi(a) + c) .yp(a). We conclude that (6) can be replaced
by the following system of equations

y′k = yk+1, k = 1, ..., n + 1
y′n+3 = bv1v

′
2 + bv2v

′
1, where v1, v2 ∈ {x, y1, ..., yn+1}

...
y′p−1 = yp−2v

′
m + vmy′p−2, where vm ∈ {x, y1, ..., yn+1}

y′p = −
t∑

i=1

yp+1(w∗i )′

y′p+1 = 2ypy
′
p

y′n+2 =
s∑

i=1

yp.w
′
i +

(
s∑

i=1

wi + c

)
y′p

It is easily seen that this system is in the form of (7) (the respective sequence
of z2, ..., zg is y1, ..., yn+1, yn+3, ..., yp+1, yn+2) and that y = y1 on J. So, y is
computable by a FF-GPAC on J.

Corollary 18 If y is generable on I by a T-GPAC, then there is a closed subin-
terval I ′ ⊆ I with non-empty interior such that y is generable by a FF-GPAC
on I ′.

Proof. Follows from theorems 4 and 17.

5 Analog circuits and Recursive functions over
R

We now recall recursion theory over the reals [11]. Adapting the definition
presented in [11], we say that a function h : D ⊆ Rn → R is R-recursive if it
can be defined inductively from the constants 0, 1, the projections Ui(x) = xi,
and the following operators:5

• Composition: Suppose that g is an p-ary function, with p ≥ 1, and that
f1, ..., fp are p n-ary functions. Then the composition operator applied to
these functions in that order yields the n-ary function h given by h(x) =
g(f1(x), ..., fp(x));

• Integration: Suppose that f1, ..., fm are n-ary functions, and g1, ..., gm are
n + m + 1-ary functions. The integration operator applied to f1, ..., fm,
g1, ..., gm, in that order, yields the n + 1-ary function h defined for each

5A minimalization operator was also introduced in [11]. But we will not use it here.

13



(x, y) ∈ Rn+1 as follows. Let I be the largest interval in which a unique
unary continuous function s satisfying

s(0) = f(x)
∂zs(z) = g(x, z, s(z)),

exists. Then, if y ∈ I, h(x, y) = s1(y). Otherwise h(x, y) is undefined.

This theory has the flavour of the classical recursion theory. It is clear
that this definition pretends to match the primitive recursive functions over
N, where integration corresponds to primitive recursion. Moore was able to
show that the most usual functions used in analysis are R-recursive. For the
sake of completeness, we also note that Campagnolo and Costa added several
contributions to this theory [3], [4], [5].

It was also indicated in [11] that a subclass of R-recursive functions cor-
responded exactly to functions generated by a T-GPAC [11, proposition 9].
Unfortunately, we believe that this result presents some gaps.6 Therefore, we
would like to present a computational model for at least a subclass of R-recursive
functions.

Consider the alphabet constituted by the following symbols:

Basic Functions
{

0, 1,−1,+,×
Un

i , for 1 ≤ i ≤ n and n ∈ N.

Operators CM, INT
Punctuation (, ), ,

We will first focus on the definition of descriptions with active and locked vari-
ables (that we will abbreviate by AV and LV, respectively).

In what follows, we will introduce the FF-GPAC as a model for functions
associated to these descriptions and, informally, a variable xi of a description
is active if the value of the corresponding function depends on xi and if this
variable may be freely updated when the function is implemented in a FF-
GPAC. A variable xi is locked if the value of the corresponding function depends
on xi, but the value of xi must be fixed a priori, when generating the function
in a FF-GPAC. Note that, because we have not introduced a set of variables in
our alphabet, when we refer to the variable xi of the function f, we are referring
to the ith argument of f.

Definition 19 Descriptions with active and locked variables are expressions
formed with the following rules:

1. R is a set of 0-ary descriptions without AVs or LVs;
6(We assume that the reader is referring to [11]) The proof of this proposition relies on the

lemma preceding it that states that M0 (a class defined on [11]) is closed under differentiation
and inversion. However, the proof of this lemma presents some vicious circles when considering
the operation of integration.

14



2. Un
i is a description of arity n, for 1 ≤ i ≤ n and n ∈ N. It has one active

variable, xi, and no LVs;

3. × and + are descriptions of arity 2. They have x1 and x2 as AVs, and no
LVs;

4. If G,F1, ..., Fm are descriptions, where F1, ..., Fm have arity n, and G has
arity m, then CM(G,F1, ..., Fm) is a description of arity n. Let xk1 , ..., xks

and xu1 , ..., xur
be the AVs and LVs of G, respectively. Moreover, let Ai, Li

be the sets containing the AVs and LVs of Fi, respectively, for i = 1, ..., m.
Then the sets of LVs and AVs of CM(G,F1, ..., Fm) are given by

L =

(
s⋃

i=1

Lki

)
∪

r⋃

i=1

(Aui ∪ Lui) , A =

(
s⋃

i=1

Aki

)
\L,

respectively;

5. Let F1, ..., Fm be descriptions of arity n, and G1, ..., Gm be descriptions of
arity n+m+1. Suppose that the set constituted by all the AVs and LVs of
Fi, Gi, for every i = 1, ..., m is S1. Take S = S1∩{x1, ..., xn}. If Gi doesn’t
have any LV among the variables xn+1, ..., xn+m+1 for every i = 1, ..., n,
then INT(F1, ..., Fm, G1, ..., Gm) is a description of arity n + 1. It has as
sets of AVs and LVs, {xn+1} and S, respectively.

To each n-ary description, we associate an n-ary function in the following
way:

1. To each description a ∈ R corresponds the 0-ary constant function with
the corresponding value;

2. To each Un
i corresponds the projection f : Rn → R defined by f(x) = xi;

3. To the descriptions × and + corresponds binary addition and product.7

4. If a description is given by CM(G,F1, ..., Fm) and to G,F1, ..., Fm are
associated the functions g, f1, ..., fm (where n is the arity of the fi’s),
then we associate to CM(G, F1, ..., Fm) the n-ary function h defined by
h(x) = g(f1(x), ..., fm(x));

5. Suppose that a description is given by INT(F1, ..., Fm, G1, ..., Gm) and that
to F1, ..., Fm, G1, ..., Gm are associated the functions f1, ..., fm, g1, ..., gm

of arities n, ..., n, n + m + 1, ..., n + m + 1, respectively. Then we associate
to INT(F1, ..., Fm, G1, ..., Gm) the n + 1-ary function h defined for each

7Notice that we could obtain binary addition and product from the other functions and
operators. Nevertheless, this would associate one locked variable to both functions, and this is
not desirable when defining other functions that use the addition and the product. Therefore,
we choose to introduce them as basic functions without associated LVs to avoid this problem.
However, different approaches to this problem might be possible.

15



(x, y) ∈ Rn+1 as follows. Let I be the largest interval in which a unique
unary function s satisfying

s(0) = f(x)
∂zs(z) = g(x, z, s(z)), ∀z ∈ I,

exists. Then, if y ∈ I, h(x, y) = s1(y). Otherwise h(x, y) is undefined.

Notice that the inclusion of active and locked variables in the definition of
INT restricts this operator comparatively to the integration operator. Therefore,
descriptions using INT are essentially equivalent to descriptions that use, at
most, one application of the integration operator.

It is easy to verify (by structural induction) that if a description H has as
sets of AVs and LVs, A and L, respectively, then A ∩ L = ∅. Moreover, if h is
the function associated to H and xk /∈ A ∪ L, then h does not depend on xk.

Definition 20 The class IR is the class constituted by the functions that can
be obtained from R, the binary addition and product, and the projections by
applying the operators CM and INT a finite number of times.

It is not difficult to see (use similar arguments to those presented in [11,
proposition 2]) that the most usual functions also belong to IR (notice that they
use, at most, one application of the integration operator). We now relate the
class IR with the functions generated by the FF-GPAC as a main contribution
to recursive function theory over the reals of Moore, Campagnolo, and Costa.

Theorem 21 Suppose that a unary function f can be generated by a FF-GPAC
U . Then f ∈ IR.

Proof. Suppose that f is generated by a FF-GPAC U , with integrators
U2, ...,Un in an appropriate order, with outputs y2, ..., yn, respectively. Then, if
y0 = 1, y1 = x, we have

y′k =
n∑

i=0

k−1∑

j=1

ck
ijyiy

′
j , k = 2, ..., n,

for suitable constants ck
ij . Consider the functions gk ∈ IR of arity n + k− 2, for

k = 2, ..., n, defined as

gk = ck
01 +

n∑

i=1

(
ck
i1xi

)
+

k−1∑

j=2

(
ck
0jzj

)
+

n∑

i=1

k−1∑

j=2

(
ck
ijxizj

)
.

Note that
y′k = gk

(
y1, ..., yn, y′2, ..., y

′
k−1

)
.

Next, we prove by induction on k that there are functions g∗k ∈ IR, k = 2, ..., n,
such that

y′k = g∗k(y1, ..., yn).

16



For k = 2 the result is immediate. Take g∗2 = g2. For arbitrary k > 2 we
know that

y′k = gk

(
y1, ..., yn, y′2, ..., y

′
k−1

)
, (10)

and also, by induction hypothesis,

y′j = g∗j (y1, ..., yn), for j = 2, ..., k − 1.

Substituting the last k − 2 equations in (10), we get

y′k = gk

(
y1, ..., yn, g∗2(y1, ..., yn), ..., g∗k−1(y1, ..., yn)

)
.

If we take g∗k as the composition of gk with Un
1 , ..., Un

n , g∗2 , ..., g∗k−1, then we get
the desired function that also belongs to IR.

Now, suppose that f is defined on an interval I, and that the initial con-
ditions of the integrators are prescribed at x0 = a. We can, without loss of
generality, consider a = 0 for our next purpose.

Then, y2 can be obtained by integration in the following way:



y2(0)
...

yn(0)


 =




a2

...
an


 , ∂x




y2

...
yn


 =




g∗2
...

g∗n


 . (11)

Switching the rows in the last equations, we can show that y2, ..., yn ∈ IR.
Therefore y ∈ IR.

Note that this result cannot be extended for functions of more than one
variable. For instance, consider a FF-GPAC that generates the function z(w) =∫ w

0
(x2(t) + y(t))dt, for inputs x and y. If x and y correspond to the inputs

t and t2, then z(1) = 5/3. On the other hand if we switch the inputs, then
z(1) = 17/10. Therefore, if theorem 21 could be extended for functions of more
than one variable, we should have f(x = 1, y = 1) = 5/3 = 17/10, and this is
not possible.

We now show a converse of theorem 21.

Definition 22 Let f ∈ IR be an n-ary function defined on D ⊆ Rn where,
without loss of generality, x1, ..., xm are the locked variables. A function ϕ :
I → D, where I ⊆ R, is said to be a IR-path if it is a constant function on the
locked variables.

Theorem 23 Suppose that f ∈ IR is an n-ary function where, without loss
of generality, x1, ..., xm are the locked variables and xm+v, ..., xn are the active
variables. Let ϕ be a continuously differentiable IR-path on [t0, tf ). Then f ◦ ϕ
can be generated by a FF-GPAC working with inputs ϕm+v, ..., ϕn on [t0, tf ).

Proof. We basically have to show that the function

f̃(t) = f(a1, ..., am, 0, ..., 0, ϕm+v(t), ..., ϕn(t)),

17



where a1, ..., am are some real constants, can be generated by a FF-GPAC work-
ing with inputs ϕm+v, ..., ϕn on [t0, tf ). The proof is done by induction on the
structure of the description of f . The constant functions in R can be obtained
in a straightforward way. Similarly Un

i can be obtained using a circuit built
only with input units, by taking the output of the input unit associated to xi.

For the case of +, it is enough to use an adder and two input units connected
to the adder to get the result. In the case of product, we use the circuit sketched
in figure 5.1.

∫

∫

+
u

v
uvq

q

Figure 5.1: A circuit that computes uv.

To show that this circuit works, one only has to consider the formula of
integration by parts (for definite integration)

u(t)v(t) =
∫ t

t0

u(x)dv(x) +
∫ t

t0

v(x)du(x) + u(t0)v(t0).

Inductive step: consider now the two operators. Suppose that we have
f =CM(g, f1, ..., fk). Suppose, without loss of generality, that g has x1, ..., xs

and xs+d, ..., xk as LVs and AVs, respectively. Because the locked variables of
f are x1, ..., xm, we conclude that f1, ..., fs cannot depend on xm+1, ..., xn. Let
xir

1
, ..., xir

α
, and xjr

1
, ..., xjr

β
be the LVs and AVs of fr, for r = 1, ..., k, with

ir1 < ... < irα and jr
1 < ... < jr

β .

We have irα, jr
β ≤ m, for r = 1, ..., s (and irα ≤ m for r = s + d, ..., k). Using the

induction hypothesis, there exists, for r = 1, ..., k, a FF-GPAC Fr that generates
the function

fr(air
1
, ..., air

α
, 0, ..., 0, ϕjr

1
(t), ..., ϕjr

β
(t), 0, ..., 0),

(the actual order of the variables could be different, but this is not important
for us). Now substitute in Fr, for s + d, ..., k, the input units associated to xt

by at, for t = 1, ..., m, respectively (hence, these FF-GPACs compute fr, with
the first m arguments fixed). We still denote these new FF-GPACs by Fr, for
r = 1, ..., k. Let

br = fr(air
1
, ..., air

α
, 0, ..., 0, ajr

1
, ..., ajr

β
, 0, ..., 0),

for r = 1, ..., s. Also by the induction hypothesis, there exists a FF-GPAC G
that computes the function

g(b1, ..., bs, 0, ..., 0, ϕs+d(t), ..., ϕk(t)).

18



With these FF-GPACs, we can build a FF-GPAC that computes the com-
position of functions. This is sketched in figure 5.2.

Fk

Fs+d+1

Fs+d

G...
...

Figure 5.2: A circuit that computes the composition of functions.

Finally, suppose that INT(F1, ..., Fk, G1, ..., Gk) is the description associated
to f. By similar arguments to the previous case, we can obtain FF-GPACs
G1, ...,Gm such that Gj computes the function

gj(a1, ..., am, 0, ..., 0, ϕn+1(t), ..., ϕn+k(t)).

Finally
f̃(t) = f(a1, ..., am, 0, ..., 0, ϕn(t))

can be obtained by the FF-GPAC indicated in figure 5.3, where the integrator
connected to Gi, for i = 1, ..., k, takes the following initial value

fi(a1, ..., am, 0, ..., 0).

To see that we can pick an appropriate enumeration of the integrators of the
circuit represented in figure 5.3, pick appropriate enumerations for the various
sub-FF-GPACs and then take the following general enumeration:

∫

1

, ...,

∫

k

,G1, ...,Gk,

where
∫

i
denotes the integrator connected to Gi, for i = 1, ..., k. Therefore, the

circuit indicated in figure 5.3 is a FF-GPAC.

Gk

G1

...
∫

∫

...

x

q

q

q

q

q
q
··

··

Figure 5.3: A circuit that solves integration.

19



6 Conclusion

We have shown that Shannon’s GPAC and Pour-El’s alternative definition still
present too many problems in order for them to be considered as appropriate
mathematical models for analog computers. Therefore, we have introduced
a new model (the FF-GPAC) that preserves the desirable properties of the
GPAC (namely, it is a model based on circuits that preserves equivalence with
differentially algebraic functions) but that has a “nice behavior”. We have
further showed the relevance of this model by establishing full connections with
a class of recursive functions over the reals.

Some questions can be considered. For example, can we introduce natural
complexity measures in defining the FF-GPAC? Indeed, we saw in theorem 13
that the number of integrators in a FF-GPAC can be related to the order of
the differentially algebraic function that it generates (a d.a. function of order
n can only be generated by a FF-GPAC with at least n integrators). This
result indicates that this task is apparently feasible, although possibly with
some limitations.

The results proved in this paper can also be seen as a different route in order
to establish connections with the classical theory of computation. In [3], [4], [5],
several connections between recursive functions over the naturals and recursive
functions over the reals are established. This work does not rely in the coding of
Turing machines into some real numbers as in [8], [10], [15], and hence presents
an alternative path to the traditional work in the field.

Acknowledgments. We would like to thank Cris Moore and Manuel Cam-
pagnolo for several useful discussions related to this work. In particular, we
acknowledge M. Campagnolo for the idea that would led to the concept of IR-
path.

This work was partially supported by FCT and FEDER via the Center
for Logic and Computation - CLC, Laboratório de Modelos e Arquitecturas
Computacionais - LabMAC, and is inserted in the FCT project ConTComp.

References

[1] V. Bush. The differential analyzer. A new machine for solving differential
equations. J. Franklin Institute, 212:447-488, 1931.

[2] B. C. Carlson. Special Functions of Applied Mathematics, Academic Press,
1977.

[3] M. L. Campagnolo and C. Moore. Upper and lower bounds on continuous-
time computation. In I. Antoniou, C. S. Calude, and M. J. Dinneen, editors,
Unconventional Models of Computation, UMC’2K, DMTCS, pp. 135-153,
Springer-Verlag, 2001.

[4] M. L. Campagnolo, C. Moore, and J. F. Costa. An analog characterization
of the Grzegorczyk hierarchy. Journal of Complexity, to appear.

20



[5] M. L. Campagnolo, C. Moore, and J. F. Costa. Iteration, inequalities, and
differentiability in analog computers. Journal of Complexity, 16(4):642-660,
2000.

[6] D. S. Graça. The General Purpose Analog Computer and Recursive Func-
tions Over the Reals, MSc thesis, IST/UTL, 2002. (available online at
http://w3.ualg.pt/~dgraca.)

[7] T. W. Hungerford. Algebra, Springer-Verlag, 8th printing, 1996.

[8] P. Koiran, M. Cosnard, and M. Garzon. Computability with low-
dimensional dynamical systems. Theoretical Computer Science, 132:113-
128, 1994.

[9] L. Lipshitz and L. A. Rubel. A differentially algebraic replacement theorem,
and analog computation. Proceedings of the A.M.S., 99(2):367-372,1987.

[10] C. Moore. Unpredictability and undecidability in dynamical systems. Phys-
ical Review Letters, 64:2354-2357, 1990.

[11] C. Moore. Recursion Theory on the reals and continuous-time computation.
Theoretical Computer Science, 162:23-44, 1996.

[12] P. Odifreddi. Classical Recursion Theory, Elsevier, 1989.

[13] M. B. Pour-El. Abstract computability and its relations to the general
purpose analog computer. Transactions Amer. Math. Soc., 199:1-28, 1974.

[14] C. Shannon. Mathematical theory of the differential analyzer. J. Math.
Phys. MIT, 20:337-354, 1941.

[15] H. T. Siegelmann. Neural Networks and Analog Computation: Beyond the
Turing Limit, Birkhäuser, 1999.

[16] D. W. Stroock. A Concise Introduction to the Theory of Integration,
Birkhäuser, 3rd edition,1999.

21


