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Introduction 

Anemia is a common complication of chronic kidney dis-
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Background: Anemia is a common complication of chronic kidney disease (CKD). In patients with CKD-related anemia, an inverse re-
lationship between vitamin D and hepcidin levels has been observed. Hepcidin is a key regulator of iron homeostasis, mediated via 
binding to ferroportin. The aim of this study was to investigate the effects of cholecalciferol and omega-3 fatty acids (FA) on hepcidin 
levels using 5/6 nephrectomized (Nx) rats. 
Methods: Male Sprague-Dawley rats were divided into five groups: sham control, 5/6 Nx, 5/6 Nx treated with cholecalciferol, 5/6 Nx 
treated with omega-3 FA, and 5/6 Nx treated with both cholecalciferol and omega-3 FA. We measured the hepcidin and ferroportin 
levels in the kidney and liver by enzyme-linked immunosorbent assays and Western blots. We evaluated hepcidin expression in the 
kidney by immunohistochemical staining. 
Results: Among the five groups, 5/6 Nx rats exhibited the worst kidney function. Compared with the sham controls, 5/6 Nx rats 
showed significantly increased serum hepcidin levels and decreased vitamin D levels. Supplementation with either omega-3 FA or 
cholecalciferol decreased hepcidin and increased vitamin D levels, with a concurrent improvement of anemia. Furthermore, 5/6 Nx 
rats treated with omega-3 FA/cholecalciferol showed decreased ferroportin and ferritin levels, while iron and total iron-binding capaci-
ty levels increased. 
Conclusions: Treatment with a combination of cholecalciferol and omega-3 FA may improve anemia in a CKD rat model by decreas-
ing hepcidin levels. 
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ease (CKD). According to the Kidney Disease: Improving 

Global Outcomes guidelines, anemia is defined as a he-

moglobin level less than 13.0 g/dL in men and 12.0 g/dL in 

https://doi.org/10.7180/kmj.23.137
http://crossmark.crossref.org/dialog/?doi=10.7180/kmj.23.137&domain=pdf&date_stamp=2024-03-31


women. In patients with CKD, the frequency of anemia is 

twice as high as in the general population [1,2]. This anemic 

condition is associated with a decreased quality of life, ex-

acerbated kidney function, increased risk of mortality, and 

cardiovascular complications [3-6]. The incidence of ane-

mia in CKD is 8.4% in stage 1, 12% in stage 2, 17% in stage 3, 

and more than 50% in stages 4 and 5 [1].  

The occurrence of anemia in patients with CKD may be 

caused by a reduction in erythropoietin production due to 

decreased kidney function, iron deficiency, inflammation, 

and the accumulation of uremic toxins [7]. Vitamin D defi-

ciency is one of the lesser-known causes of anemia in CKD 

and is inversely correlated with the prevalence of anemia 

[8-10]. 

Hepcidin, a small peptide produced by the liver, is a key 

regulator of iron homeostasis via binding to ferroportin on 

the membrane of enterocytes, macrophages, and erythroid 

cells [11]. When hepcidin binds to ferroportin, it inhibits 

both the intestinal iron absorption and the iron release 

from macrophages and hepatocytes. In patients with CKD, 

hepcidin levels increase with a decline in renal function [12] 

with an inverse relationship between vitamin D and hepci-

din levels [13]. The supplementation of omega-3 fatty acids 

(FA) increases hemoglobin levels in patients undergoing 

peritoneal dialysis [14]. In obese children, both the iron and 

hepcidin levels were improved after omega-3 FA supple-

mentation [15]. 

The aim of this study was to investigate the effect of 

cholecalciferol and omega-3 FA supplementation on iron 

homeostasis mediated via regulation of the hepcidin lev-

els using 5/6 nephrectomized (Nx) rats. We also evaluated 

hepcidin expression in the kidney. 

Methods 

Ethical statements: All procedures involving animals were 
performed in accordance with the approval of the Dong-A 
University Institutional Animal Care Committee (IACUC-14-4).

1. Experimental design 
In this study, we report additional data obtained from the 

same nephrectomy rats used in a previously published 

study [16]. The rats were randomized to five groups (n=6 

for each group) and treated for 45 days: sham control rats 

maintained on saline (1 mL/kg/day by gastric lavage), 5/6 

Nx rats treated with saline (1 mL/kg/day by gastric lavage); 

5/6 Nx rats treated with vitamin D by gastric lavage (chole-

calciferol 3,000 IU/kg/wk; Solgar); 5/6 Nx rats treated with 

omega-3 FA by gastric lavage (Omacor 300 mg/kg/day; 

Pronova Biocare); 5/6 Nx rats treated with cholecalciferol/

omega-3 FA. The dose and usage of omega-3 FAs contain-

ing 460 mg of eicosapentaenoic acid and 380 mg of docosa-

hexaenoic acid per gram of Omacor were determined in a 

previous study [17]. 

2. Biochemical evaluation 
Hemoglobin levels were assessed in the K3EDTA-treated 

whole blood using a HemoCue Hemoglobin 201 analyzer. 

Serum hepcidin and erythropoietin levels were measured 

using enzyme-linked immunosorbent assay (ELISA) kits 

(DRG instruments GmbH and CusaBio Biotech Co.). Serum 

iron and unsaturated iron-binding capacity levels were 

measured using a colorimetric method (JalCA). The total 

serum iron and unsaturated iron-binding capacity levels 

were defined as the total iron-binding capacity (TIBC). 

Serum ferritin and ferroportin levels were measured with 

rat-specific ELISA kits (Abcam and Cloud-Clone Corp.). 

Serum interleukin-6 (IL-6) levels were measured with a 

rat-specific Quantikine ELISA kit from R&D Systems. Serum 

25-hydroxyvitamin D [25(OH)D] and 1,25-dihydroxyvita-

min D [1,25(OH)2D] levels were measured using a radioim-

munoassay kit (DiaSorin Inc.). 

3. Immunohistochemical analyses 
Histologic evaluation and immunohistochemistry were 

performed as previously described [16]. Briefly, the kidney 

was fixed in 10% buffered formalin, followed by embed-

ding in paraffin wax after sacrificing the rats. The kidney 

was cut into 4 μm serial sections, which were transferred 

into a sodium citrate buffer (10 mM Sodium Citrate, 0.05% 

Tween20, pH 6.0). The slides were then microwaved on me-

dium power for 20 minutes for antigen retrieval. To block 

endogenous peroxidase activity, the tissue sections were 

incubated with 0.3% H2O2 in phosphate-buffered saline for 

30 minutes. The slides were then blocked with 5% normal 

goat serum for 1 hour at room temperature, and incubated 

first with the anti-hepcidin antibody at 4 °C overnight and 

then with a secondary antibody for 1 hour at 37 °C. Finally, 

slides were stained with 3,3-diaminobenzidine, its H2O2 
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substrate, and hematoxylin. All sections were analyzed 

using a 3DHISTECH Panoramic MIDI (3DHISTECH Ltd) 

microscope, at x200 magnification.  

4. Western blot analysis 
Western blot analysis was conducted as previously de-

scribed with slight modifications [16]. Briefly, kidney and 

liver tissues were lysed using PRO-PREP protein extraction 

solution (Intron biotechnology), and centrifuged at 14,000 

rpm for 20 minutes at 4 °C. The protein concentrations of 

the lysates were determined using Bradford protein as-

say reagent (Bio-Rad), according to the manufacturer’s 

protocols. The proteins (25 μg) were loaded onto 7.5% to 

15% SDS/PAGE gels, and then transferred to nitrocellulose 

membranes (Amersham Pharmacia Biotech), followed by 

blocking with 1% skim milk buffer overnight at 4 °C. Specif-

ically, the Western blot for hepcidin was performed using 

a Mini-Protein TGX precast gel (Bio-Rad) and BioTrace NT 

membrane (PALL Gelman Laboratory). The primary anti-

bodies against hepcidin and ferroportin were purchased 

from Abcam. Antibodies against IL-6 and β-actin were pur-

chased from Santa Cruz Biotechnology and Sigma, respec-

tively. The membranes were subsequently incubated with 

horseradish peroxidase-conjugated secondary antibody 

for 60 minutes at room temperature. Immunostaining with 

antibodies was performed with the Super Signal West Pi-

co-enhanced chemiluminescence substrate (Thermo Sci-

entific) and imaged with an AMERSHAM ImageQuant 800 

(GE Healthcare Bio-Sciences). Quantification and normal-

ization to the β-actin control were performed using ImageJ 

(version 1.48q). 

5. Statistical analysis 
Statistical significance among the experimental groups was 

evaluated using the Mann-Whitney U test and the Krus-

kal-Wallis test for continuous variables, using the SPSS 18.0 

software (IBM Corp). In all tables and images, data are pre-

sented as mean±standard deviation. A p-value less than 0.05 

was considered statistically significant. 

Results 

1. Baseline characteristics 
As shown in Table 1, 5/6 Nx rats exhibited the worst kidney 

function among the five groups. Among the 5/6 Nx groups, 

the hemoglobin levels were highest in the 5/6 Nx rats 

Table 1. Biochemical data in the groups

Variable Control (n=6) 5/6 Nx (n=6)
5/6 Nx with 

cholecalciferol 
(n=6)

5/6 Nx with 
omega-3 FA (n=6)

5/6 Nx with 
cholecalciferol and 
omega-3 FA (n=6)

p-value

Final body weight (g) 463.5±9.4 385.3±11.1a) 419.8±32.8a) 422.0±10.1a),b) 421.7±12.2a),b) <0.001
Hemoglobin (g/dL) 15.4±0.2 10.4±0.9a) 11.2±1.2a) 12.3±0.8a),b) 13.3±0.6a),b),c) <0.001
Blood urea nitrogen (mg/dL) 18.4±0.7 77.1±35.2a) 72.3±22.9a) 67.8±18.5 55.0±12.9b),c) 0.003
Creatinine (mg/dL) 0.4±0.0 1.3±0.6a) 1.2±0.3a) 1.1±0.3 0.9±0.2b),c),d) 0.002
25(OH)D (ng/mL) 97.5±5.6 27.8±16.5a) 50.4±41.7 61.6±38.5b) 111.1±37.1b),c),d) 0.003
1,25(OH)2D (pg/mL) 170.9±40.5 44.6±16.9a) 58.0±41.0a) 83.1±42.3a) 107.9±43.3a),b),c) 0.002
Hepcidin (ng/mL) 2.0±0.5 12.1±11.4a) 5.7±1.6a) 5.8±2.6a) 4.0±1.0a),b),c) 0.005
Erythropoietin (ng/mL) 1.9±2.6 12.4±7.3a) 11.4±11.8 8.8±16.4 3.4±7.8b),c) 0.033
Ferritin (μg/mL) 1.3±0.4 2.4±3.0 1.2±0.5 1.1±0.3 1.3±0.3 0.505
Ferroportin (ng/mL) 1.1±0.2 1.8±0.5a) 1.7±0.7 1.4±0.9 0.7±0.4b),c) 0.008
Iron (μg/dL) 200.2±61.2 122.5±43.8a) 119.3±45.1a) 160.1±26.2a),c) 154.3±11.8a),c) 0.008
UIBC (μg/dL) 345.5±95.9 240.3±65.8a) 283.8±106.0 250.9±120.7 318.0±47.8b) 0.220
TIBC (μg/dL) 545.6±67.3 362.8±70.2a) 403.1±94.6a) 411.0±122.7a) 472.3±45.8a),b) 0.005

Values are presented as means±standard deviation.
Nx, nephrectomy; FA, fatty acid; 25(OH)D, 25-hydroxyvitamin D; 1,25(OH)2D, 1,25-dihydroxyvitamin D; UIBC, unsaturated iron-binding capacity; TIBC, total iron-bind-
ing capacity.
a)p<0.05, compared to the control group.
b)p<0.05, compared to the 5/6 Nx group.
c)p<0.05, compared to the 5/6 Nx with cholecalciferol group.
d)p<0.05, compared to the 5/6 Nx with omega-3 FA group.

Effect of vitamin D and omega-3 FA on hepcidin
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treated with cholecalciferol/omega-3 FA. Compared with 

the sham control group, 5/6 Nx rats showed significantly 

increased serum hepcidin levels and decreased serum vi-

tamin D levels. After supplementation with either omega-3 

FA or cholecalciferol, hepcidin levels decreased and vita-

min D levels increased, with a concurrent improvement in 

anemia. Further, in 5/6 Nx rats treated with a combination 

of cholecalciferol and omega-3 FA, ferroportin and eryth-

ropoietin levels decreased, while iron and TIBC levels in-

creased. 

2. Hepcidin, ferroportin, and IL-6 expression in the kidney 
Hepcidin expression in the kidney was higher in 5/6 Nx 

rats than in controls. Interestingly, hepcidin expression was 

downregulated in 5/6 Nx rats following cholecalciferol/

omega-3 FA supplementation (Fig. 1A).  

Immunohistochemistry staining of kidney sections 

showed that hepcidin was mainly expressed in the tubules 

of the sham controls (Fig. 1B-F). Conversely, its expression 

was markedly increased in the kidney of 5/6 Nx rats but de-

creased with the combined cholecalciferol and omega-3 FA 

treatment. 

Western blotting analysis revealed an upregulation of fer-

roportin expression in the kidney of 5/6 Nx rats compared 

with the controls (Fig. 2). Its expression was downregulated 

with either omega-3 FA monotherapy or following the com-

bined cholecalciferol/omega-3 FA treatment. Moreover, 

IL-6 expression was increased in 5/6 Nx rats and a reverse 

trend was observed after the combined cholecalciferol/

omega-3 FA supplementation (Fig. 2). 

3. Hepcidin, ferroportin, and IL-6 expression in the kidney 
We observed the expression of hepcidin, ferroportin, and 

IL-6 in the liver of 5/6 Nx rats (Fig. 3). Compared with the 

sham control group, 5/6 Nx rats showed a significant up-

regulation of hepcidin expression. Supplementation of 

cholecalciferol/omega-3 FA led to a decrease in hepcidin 

levels. Ferroportin expression was higher in 5/6 Nx rats 

than in controls. Its expression was downregulated with 

omega-3 FA monotherapy or the combined cholecalciferol/

omega-3 FA treatment. IL-6 expression was downregulated 

in 5/6 Nx rats following cholecalciferol/omega-3 FA supple-

mentation. IL-6 expression was upregulated in 5/6 Nx rats 

compared with the controls and downregulated with chole-

calciferol or omega-3 FA supplementation. 

Discussion 

In this study, we found that both cholecalciferol and ome-

ga-3 FA supplementation improved hemoglobin levels in 

5/6 Nx rats. Interestingly, the greatest effect was observed 

when cholecalciferol and omega-3 FA were administered 

together. The increase in hepcidin levels and the simultane-

ous decrease in TIBC and hemoglobin levels were signifi-

cantly reversed by the combined cholecalciferol/omega-3 

FA treatment. Our data showed that decreasing hepcidin 

levels by cholecalciferol and omega-3 FA may be a potential 

strategy in CKD-induced anemia. In the context of CKD, 

anemia is usually treated with erythropoiesis-stimulating 

agents (ESA), iron infusions, and blood transfusions; how-

ever, these treatments are often accompanied by adverse 

events. Therefore, safer and more effective treatment op-

tions for CKD-induced anemia are needed. In this study, 

we showed that the supplementation of cholecalciferol 

combined with omega-3 FA may be a viable strategy for de-

creasing hepcidin levels. 

Hepcidin is upregulated by inflammation, iron excess, 

and cancer [18], and downregulated in hypoxic conditions, 

iron deficiency, and enhanced erythropoiesis [19]. CKD is a 

chronic inflammatory state and hepatic hepcidin synthesis 

is associated with inflammation [20,21]. In patients with 

CKD, hepcidin levels are elevated due to decreased renal 

excretion or inflammation and increased expression due to 

excessive iron levels. Hepcidin is also involved in the ESA 

resistance mechanism, by reducing the release of iron from 

storage tissues or limiting iron availability for erythropoie-

sis. Vitamin D supplementation may inhibit the production 

of inflammatory cytokines [22]. Accordingly, we observed 

that the expression of IL-6 and ferritin, which is one of the 

increased inflammatory markers observed in 5/6 Nx rats, 

tends to reverse after supplementation with the combined 

cholecalciferol/omega-3 FA. IL-6 stimulates hepcidin 

synthesis via activation of the STAT3 pathway [23]. There-

fore, vitamin D and omega-3 FA could reduce hepcidin 

levels in 5/6 Nx rats via an anti-inflammatory effect. It has 

been reported that the use of vitamin D and omega-3 FA 

monotherapy may lower hepcidin levels [13,24]. However, 

no studies to date have examined the combined effect of 

vitamin D and omega-3 FA on the hepcidin levels, but our 

study showed their synergic effect on hepcidin and hemo-

globin levels. In this study, 50% of serum hepcidin levels 
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were decreased in single omega-3 FA or cholecalciferol 

treated 5/6 Nx group without significant improvement of 

renal function compared to 5/6 Nx control group. There-

fore, the improvement of serum hepcidin levels was not 

just by improvement of renal function. Although significant 

improvement of renal function by omega-3 FA and chole-

calciferol supplementation affect the serum hepcidin levels, 

combined treatment with omega-3 FA and cholecalciferol 

may be beneficial for decreasing hepcidin levels and renal 

function in 5/6 Nx rat model. We observed an increase in 

Fig. 1. (A) Hepcidin expression in the kidney of 5/6 nephrectomy (Nx) rats. (B) Immunohistochemical staining (×200) of hepcidin in the 
kidney of sham control rats, (C) 5/6 Nx rats, (D) 5/6 Nx rats treated with cholecalciferol, (E) 5/6 Nx rats treated with omega-3 fatty acids, 
and (F) 5/6 Nx rats treated with cholecalciferol and omega-3 fatty acids. O, omega-3 fatty acid; V, vitamin D. a)p<0.05, compared to the 
control group; b)p<0.05, compared to the 5/6 Nx group. 
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the serum iron and TIBC levels and a decrease of hepcidin 

expression in rats treated with both cholecalciferol and 

omega-3 FA. Thus, we suspect that the reduction of serum 

hepcidin increases the efflux of iron from storage sites. 

Ferroportin is an iron exporter protein. Hepcidin binds 

to ferroportin, blocking the cellular iron exit. Low hepci-

din levels are generally associated with high levels of fer-

roportin. However, the relationship between ferroportin 

and hepcidin is unclear. Unexpectedly, despite showing 

increased hepcidin levels, 5/6 Nx rats showed significantly 

elevated levels of ferroportin. In addition, increased eryth-

ropoietin and reduced hemoglobin and iron levels and in-

creasing tendency ferritin levels were found in 5/6 Nx rats. 

On the contrary, decreased ferroportin and erythropoietin 

and increased hemoglobin and iron levels and decreasing 

tendency ferritin levels were found in 5/6 Nx rats supple-

mented with combined cholecalciferol/omega-3 FA. These 

finding may be explained by compensatory mechanism. 

Decreased hemoglobin levels may activate ferroportin ex-

pression and erythropoietin stimulation of remnant kidney 

and recovered hemoglobin levels by cholecalciferol/ome-

ga-3 FA may suppress ferroportin expression and erythro-

poietin stimulation of remnant kidney. In a previous study, 

increased expression of duodenal ferroportin was found in 

CKD rats [25,26]. Hepcidin expression was found in the kid-

ney tubules as well as liver [27]. Further studies are needed 

to identify the exact mechanism according to hemoglobin 

levels and remnant renal function. 

Vitamin D insufficiency, as well as the presence of 

anemia, have been associated with resistance to ESA 

[8,10,28,29]. Recent studies shed light on the role of vita-

min D in modulating the hepcidin levels [13,30]. In human 

hepatocytes and monocytes, vitamin D directly downregu-

lates hepcidin expression by binding to vitamin D response 

Fig. 2. Ferroportin and interlukin-6 (IL-6) expression in the kidney of 5/6 nephrectomy (Nx) rats. O, omega-3 fatty acid; V, vitamin D.  
a)p<0.05, compared to the control group; b)p<0.05, compared to the 5/6 Nx group.
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elements in the hepcidin gene (HAMP) promoter [13]. In 

the same study, vitamin D repletion (in the ergocalciferol 

form) in a healthy cohort has been shown to decrease hep-

cidin levels with a concurrent increase of 25(OH)D levels 

[13]. In patients with stage 2-3 CKD, an inverse relationship 

between hepcidin and 25(OH)D levels was found [30]. In 

this study, the group treated with cholecalciferol showed 

no improvement in hepcidin and IL-6 levels compared 

with the group supplemented with additional omega-3 FA. 

The dramatic effect may be mediated via additional an-

ti-inflammatory mechanisms and elevated 25(OH)D levels 

induced by additional omega-3 FA supplementation. Also, 

it was reported that high-dose vitamin D supplementation 

was associated with beneficial effects on erythropoiesis and 

iron availability in patients with low baseline vitamin D lev-

els [31]. Further studies are needed to evaluate the effect of 

different doses of vitamin D on hepcidin levels. 

Our study utilized cholecalciferol rather than ergocal-

ciferol supplementation. Another study showed that the 

treatment of patients with CKD using calcitriol showed no 

significant changes in the hepcidin levels [32]. Recent study 

reported that hepcidin levels slightly increased in the 3-day 

short term after cholecalciferol supplementation in patients 

with hemodialysis [33]. Although some studies reported 

that hepcidin levels decrease after cholecalciferol supple-

mentation, the ability of vitamin D to regulate hepcidin 

levels and iron parameters in patients with CKD is debated. 

Further studies will be required to investigate the effect of 

different forms of vitamin D on hepcidin levels. 

Given the cost and adverse effects associated with esca-

lating ESA therapy in patients with CKD, a treatment based 

on cholecalciferol and omega-3 FA would be an attractive 

adjuvant therapy to modulate the hepcidin levels. 

In conclusion, cholecalciferol and omega-3 FA are potent 

modulators of hepcidin levels and may be used in combi-

nation as a management strategy in anemia associated with 

low vitamin D and/or CKD. Further studies are needed to 

confirm the effect of cholecalciferol and omega-3 FA on the 

modulation of the hepcidin levels in patients with CKD. 

Fig. 3. Hepcidin, ferroportin and interlukin-6 (IL-6) expression in the liver of 5/6 nephrectomy (Nx) rats. O, omega-3 fatty acid; V, vitamin 
D. a)p<0.05, compared to the control group; b)p<0.05, compared to the 5/6 Nx group.
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