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Abstract—An experimental study was performed to deter-
mine whether it is neutrality itself or the larger neighborhoods
associated with neutral representations that allow good results
to be achieved on NK fitness landscape problems. Markov
chains were used to model a stochastic hill climber on NK
fitness landscapes, using three types of representation: a neutral
network representation, a redundant representation without
neutrality which exhibits the same neighborhood of the neutral
representation and a non-redundant representation.

I. INTRODUCTION

The neutral theory of molecular evolution proposed by

Kimura [8] considers that it is not selection, but the random

fixation of neutral mutations that is the main source of

evolution. This scientist observed that, in nature, the rate of

evolution in terms of nucleotide substitutions seems to give

a value so high that many of the mutations involved must

be neutral ones (a mutation is neutral if its application to a

genotype does not result in a change of the corresponding

phenotype). As large parts of the genotype have no actual

effect on the phenotype, i.e., they are redundant, evolution

can use them as a store for genetic information that was nec-

essary to survive in the past and is important for developing

new properties of the individual that could be advantageous

in the future. So, he concluded that a considerable fraction

of mutations will be neutral and only a reduced number of

them will be reflected at phenotypic level.

In the literature, several redundant representations have

been proposed for evolutionary algorithms. The main reason

for the development of redundant representations in evolu-

tionary computation has been the desire to achieve increased

performance, but the redundant representations proposed so

far use large amounts of redundancy and complex mappings

[4], [12], [13]. The advantages of using redundant represen-

tations are still not evident, and the existing practical results

have still not been accepted by all [9]. Others, such as [11],

have identified some properties of redundant representations,

such as synonymity, locality and connectivity, which are

believed to influence the quality of such redundant represen-

tations. In [5], practical evidence was provided showing that

the connectivity between phenotypes can increase, even when

using synonymously redundant representations, in contrast

with what was asserted in [11].

In molecular evolution, neutrality plays a positive role in

supporting adaptive selection through random drift. Schuster
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[14] and Schuster et al. [15] simulated the evolution of RNA

molecules in vitro, which can be visualized as a hill-climbing

process on a fitness landscape. They concluded that the

presence of neutral networks prevent populations from being

caught in evolutionary traps, and allows them to eventually

reach the global optimum through a composite dynamics of

adaptive walks and random drift.

Neutral networks are connected networks of genotypes

which map to the same phenotype. Two genotypes are

considered to be connected (or to be neighbors) if they differ

by a single point mutation. Theoretically, when the genotype-

phenotype mapping exhibits neutrality, it is possible to

continue the search by drifting along the neutral networks in

genotype space. When none of the neighbors is fitter than the

current genotype, there is, at least, one neighboring genotype

that maps to the same phenotype, allowing the search to

proceed without loss of fitness. As neutral networks exist

throughout genotypic space, it is possible to transverse it

with less of a chance of becoming stuck at local optima, and

it may not be necessary to pass through regions of lower

fitness in order to reach regions of higher fitness.

This paper presents the results of an experimental study

which used Markov chains to model a stochastic hill-climber

on NK fitness landscapes. Three different types of represen-

tation are used: the neutral network representation proposed

in [5], which exhibits neutrality, a redundant representation

without neutrality, but with the same neighborhood of the

corresponding neutral case and the non-redundant represen-

tation. The purpose is to investigate whether it is in fact the

neutrality provided by the representation that allows good

results to be achieved on NK fitness landscape problems,

or whether the same results can be explained by the larger

neighborhood provided by both representations.

The remainder of the paper is structured as follows:

Section II presents the neutral and the non-neutral representa-

tions used in the study. The NK fitness landscape problem is

explained in section III, as well as the difference between the

notion of local optimum when using a neutral versus a non-

neutral representation. Section IV shows how to calculate the

probability of a stochastic hill climber reaching the global

optimum of NK fitness landscapes, using a Markov chain

model. Section V presents some experimental results. The

paper concludes with a brief discussion of the results and

some directions for further work.
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II. NEUTRAL NETWORK REPRESENTATION VERSUS

NON-NEUTRAL NETWORK REPRESENTATION

The family of neutral network representations inspired by

error-control codes proposed in [5] exhibits various levels of

neutrality, connectivity, synonymity and locality. To under-

stand that representation, a brief explanation of some of the

concepts used is presented.

A. Neutral network representation inspired on error-control

codes

The codewords of a linear (ℓ, k) Hamming code C [2],

defined over the Galois Field GF (2)1, where the codewords
v are obtained from the message word u using a generator

matrix of dimension k × ℓ, can be defined as:

vT = uT [Ik

...Pk×(ℓ−k)] (1)

To decode the word received, it is necessary to use the

parity-check matrix H which consists of the P submatrix

transposed:

H = [(Pk×(ℓ−k))
T
...Iℓ−k] (2)

To verify if the received word is error-free, the syndrome s

has to be determined:

s = Hv (3)

When a word is added to the codewords of a linear code

C, new classes of words are created, which can be seen as

“translations” of the original codewords. In group theory [6],

these classes are termed cosets of the linear code C. Each

coset Ci is generated choosing a word w that is added to

all the codewords v of a linear code C to create a set of all

words of the form v⊕w, where ⊕ corresponds to Exclusive-
or or addition modulo-2. In this case w is called the coset

leader or coset representative. If C has dimension k, then

there are exactly 2ℓ−k different cosets of C, and each coset

contains exactly 2k words, where the code C itself is one of

its cosets. It is easy to show that if w⊕v is in C, then w and

v are in the same coset and have the same syndrome and if

w ⊕ v is not in C, the w and v are in different cosets and

have different syndromes.

Also, according to [3] two linear q−ary codes, represented

by two k×ℓ matrices, generate equivalent linear (ℓ, k) codes
over GF (q) if one matrix can be obtained from the other by
a sequence of the following operations:

1) Multiplication of a row by a non-zero scalar;

2) Addition of a scalar multiple of one row to another;

3) Permutation of rows;

4) Multiplication of any column by a non-zero scalar;

5) Permutation of columns.

While the first three row operations preserve the linear

independence of the rows of the generator matrix, the last

1Consists of the two-element set {0,1}, where the addition and multipli-
cation operations correspond to exclusive-or or addition modulo-2 and and
operations, respectively.

two column operations convert the matrix to one which will

produce an equivalent code.

If the size of the genotypic space is |Φg| = 2ℓ and the

size of the phenotypic space is |Φp| = 2k, then the genotype

space can be divided into 2ℓ−k classes of equal cardinality

2k in such a way that single gene mutations allow to move

from one class to another. Viewing the word transmitted v

as the genotype and the word decoded after transmission u

as the phenotype, one of the 2ℓ−k classes can be seen as the

codewords of a Hamming (ℓ, k) code C. The other 2ℓ−k −1
classes are cosets of the linear code C. One difference exists

between these cosets and the cosets defined before. In this

case the coset leader do not need to be the vector of least

weight as is defined in the context of error-control coding

and group theory. If the coset leaders are chosen in such

a way that they are connected, then every coset leader is

a single point mutation of, at least, one of the other coset

leaders, and a connected neutral network can be defined by

the coset leaders. The genotype-phenotype mapping adopted

in the neutral network representation used in this work can

be defined as:

1) u = [Ik0k×(ℓ−k)]v if v ∈ codewords (coset C0) →
syndrome = 0

2) u = [Ik0k×(ℓ−k)](v + zj) if v ∈ coset Cj ∧ 0 < j <

2ℓ−k → syndrome = j

The vectors zj are the coset leaders that are chosen as

the genotypes that represent the all-zero phenotype (the

coset leaders will be called zeros). In order to obtain the

phenotype that corresponds to a given genotype, the coset Cj

to which that genotype belongs has to be determined through

syndrome decoding, and then the corresponding coset leader

has to be added (addition modulo-2) to the given genotype.

As the mapping between each coset Cj and the space of

the phenotypes is defined through the corresponding neutral

coset leader zj , different genotypes that map to the same

phenotype may also reach different phenotypes through a

single point mutation. Next, the minimum canonical form of

the neutral network representation will be defined.

B. Minimum canonical form of neutral network representa-

tion

Definition 1 A connected neutral network2 defined using

a redundant binary genotype-phenotype mapping fg(xg) :
Φg → Φp that determines which phenotypes are represented

by which genotypes, where |Φg| = 2ℓ represents the size of

the genotype space and |Φp| = 2k represents the size of

the phenotype space, can be defined based on a linear code

C (ℓ, k), with cardinality L = 2k, generated by a generator

matrix of dimension k×ℓ, as a vector of L = 2ℓ−k genotypes:

(z0, z1, . . . , zL−1) ∀i zi ∈ Ci ∧ zi ∈ {0, 1}ℓ

All of these genotypes map to the zero phenotype, where each

zero is chosen from each of the 2ℓ−k cosets Ci of the linear

2For the purpose of simplification the term neutral network is used instead
of connected neutral network.



code C, where for each zero there is, at least, another zero

at a Hamming distance of 1:

∀i ∃j dH(zi, zj) = 1

A neutral network is in a minimum canonical form if:

(z0, z1, . . . , zL−1) z0 = 0 zi ∈ {0, 1}ℓ

where:

1) The first zero is chosen to be the all-zero genotype;

2) The vector of zeros is the lexicographic minimal rep-

resentation of all equivalent codes.

The set of neutral networks which corresponds to a given

ℓ and k will be denoted as NN(ℓ, k). By default NN(ℓ, k)
denotes the neutral networks which represent the phenotype

0, the zeros. When indicated as NN(ℓ, k)pi
, it denotes the

neutral networks which represent the phenotype pi. The phe-

notypes which are neighbors of a neutral network NN(ℓ, k)pi

are the phenotypes encoded by the neighboring genotypes

(Hamming distance of 1) of the zeros of NN(ℓ, k)pi
. Also,

by the context, it is possible to distinguish when it is being

used as a specific neutral network or as the set of all neutral

networks. In [5] the number of neutral networks obtained for

each NN(ℓ, k), where 0 < k ≤ 8 and 0 < ℓ−k ≤ 4, is listed.

C. Non-neutral representation with same neighborhood of

neutral case

Consider NonNeutral(ℓ′, k) a set of redundant represen-
tation without neutrality as defined in [5]. In this case the

non-neutral genotype-phenotype mapping is defined by:

u = G · v (4)

where G is a k × ℓ′ binary matrix which columns consist of

the phenotypes which are reachable from the all-zero pheno-

type through single gene mutations and the rows determine

how likely each trait is to be changed through a single gene

mutation in comparison to the other traits. If G is denoted as

G = [gℓ′−1, . . . , g0], where each gi denotes a column of G

and 0 ≤ i ≤ ℓ′, the result of a single-bit mutation at position

i of v may be written as v+ei, where ei is a vector of length

ℓ′ with a single non-zero bit at position i. In this case:

G · (v + ei) = G · v + G · ei = u + gi (5)

When u is zero, gi is the phenotype obtained through

mutation of gene i. The effect of mutation on an arbitrary

phenotype u does not depend on the original genotype v, but

only on the bit mutated and the corresponding column of G.

Selecting ℓ′ and the appropriate G, it is possible to

define the same phenotypes neighborhood of a NN(ℓ, k)
representation, in terms of connectivity3 and phenotypes.

3Number of phenotypes accessible from a given phenotype

III. NK FITNESS LANDSCAPES TRANSFORMATION

A. NK fitness landscape problem

The NK landscapes [7] are stochastically generated fitness

functions on bit strings parameterized with N genes and

K interactions between genes. The NK fitness landscapes

allow to measure the difficulty of finding good solutions

based on the difficulty of climbing up to the globally

optimal fitness solution, avoiding locally optimal solutions.

The main parameters of the model are N , the length of

the binary strings or chromosomes, that form the points

in the landscape, and K, the number of other genes that

influence a particular gene, where the fitness contribution

of each gene is determined by the gene itself and K other

genes. Two different alternatives can be chosen, adjacent

neighborhoods4, which was the alternative chosen for this

study, where the K genes nearest to the locus which is

being evaluated on the chromosome are chosen, or random

neighborhoods, where the K genes are chosen randomly

in the chromosome. The computational complexity of the

adjacent neighborhoods variant is O(2KN), thus in P , while

the random neighborhoods alternative is NPcomplete for

K ≥ 2 and in P for K = 1 [16], [18]. The fitness
contributions are drawn from a uniform distribution ranging

from 0.0 to 1.0 and the fitness of a chromosome is the

average fitness of the genes at all N loci. The ruggedness

of the landscape is controlled by the parameter K, and is

largest when K takes the maximal value of N − 1. When
K = 0 (no epistasis), there is a single peak, the problem is
unimodal, and the fitness of strings is highly correlated with

Hamming distance. When K = N − 1 (maximum number
of interactions between genes), there are many sub-optimal

peaks and the fitness of strings is uncorrelated with Hamming

distance. Also, as both N and K increase, an increasing

number of fitness peaks fall towards the mean fitness as a

result of conflicting constraints among the genes.

B. Local optimum analysis

As the NK fitness landscape can be gradually tuned from

smooth to rugged, it is a good fitness model to study different

types of neutral networks. A way to characterize the nature of

the landscape is to understand the ruggedness or smoothness

of the landscape based on the number and distribution of

local optima. As it is known, a landscape is induced by

the operator which is used to define neighborhoods [10].

In this case, as the landscape is defined over the binary

space, the Hamming metric is used and the neighborhood

relation can be represented by a graph, the well known

Hamming cube. Using the Hamming cube with one more

dimension, a Hamming hypergraph can be defined. The

Hamming hypergraphs are a good tool to be used to represent

a NK fitness landscape. Figure 1 represents a NK(4, 1) fitness
landscape, where N = 4 and K = 1. Having in mind that a
local optimum in the NK landscape is a point which is better

(in this case higher because the optimization problem is to

4This notion of neighborhood is different from neutral network neighbor-
hood



be maximized) than any of the points of the search space

that surround it (if it is the best possible solution to the

problem, it is also the global optimum), the global optimum

corresponds to genotype 1101(0.658), while 0010(0.422)
and 1110(0.645) are local optima. Graphically, the global
optimum in Figure 1 is represented as a rectangle, while the

local optima are represented as circles. As the number of

Fig. 1. Hypergraph representing an instance of a NK(4,1) fitness landscape

local optima is a measure of NK fitness landscape difficulty,

the neutral networks were used to check if it is possible to

reduce that number. From the neutral networks defined with

3 redundant bits, the NN(7, 4) set of neutral networks can
be used in order to change the number of local optima in

a NK(4, 1) fitness landscape. Now, instead of 24 genotypes,

the NK fitness landscape is transformed into a landscape with

27 genotypes. Figure 2 shows a hypergraph which represents

the genotype search space of that fitness landscape [1]. For

simplicity, only some genotypes are denoted and the four

leftmost bits are highlighted. To better understand the figure,

an example of a genotype, for instance 1100101, is given,
as well as the corresponding neighbors. Graphically, the

genotype in question is drawn inside a rectangle, while its

neighbors are inside a circle. Applying a neutral network

Fig. 2. Hypergraph representing genotype search space with ℓ = 7

representation to an instance of a NK fitness landscape and

using the genotype-phenotype mapping presented in [5] and

attributing the corresponding fitness to each phenotype, it is

easy to verify that it is not a point of the search space that

is a local optimum or not, instead it is the neutral network

that represents a phenotype (phenotype neutral network) that

is a local optimum or not. As there is always, at least, one

neighbor with the same fitness (because there is always a

neighbor which maps to the same phenotype), it is possible

to use that neighbor to go to other phenotype neutral network

with better fitness. Then, it is sufficient that one of the

genotypes which belong to a phenotype neutral network

not to be a local optimum (with some neighbor with better

fitness) to consider that phenotype neutral network as not

being a local optimum. As all genotypes that map to a

specific phenotype are connected together through a neutral

network, instead of a local optimum, it is possible to think

of neutral network local optimum. The differences between

the two are:

1) A local optimum is a point in the landscape which is

better (better can be higher if optimization problem is to

be maximized or can be lower if optimisation problem

has to be minimized) than any of the points of the

search space that surround it (if it is the best possible

solution to the problem, it is also the global optimum).

If the fitness of some neighbor is equal to the fitness

of the point in question, then the other neighbors define

whether the point is a local optimum or not.

2) As all genotypes have, at least, a neighbor with the same

fitness, that neutral neighbor can be used to “escape”

from that phenotype neutral network, in order to, when

possible, reach a fitter phenotype neutral network. This

can be visualized as “bridges” or “plateaux” in the

fitness landscape.

In the next section, the probability of reaching the global

optimum of NK fitness landscapes using a stochastic hill

climber modelled as a Markov chain will be explained. It is

important to know that the evolution process of a stochastic

hill climbing can be modelled as a Markov Chain [17]. The

variant of the Hill Climber heuristic [17] used here considers

that given the current individual i, a neighbor j is randomly

generated and is accepted only if it has a fitness not lower

than the fitness of i. Note that, as defined, this Hill Climber

will never stop.

IV. MARKOV CHAIN MODELLING

The evolution process of a stochastic hill climber can

be modelled as a Markov Chain, because the transitions of

an individual correspond to the transformation operations

between neighbors in the hill climber [17]. In fact, the

current individual influences the possible transitions to the

next individual, and the evolution of an individual is time

homogeneous.

As the goal is to compare the probabilities obtained using

the neutral network representation, the non-neutral represen-

tation and the non-redundant case, the way how the Markov

chain transition matrix is determined and the probability of



reaching the global optimum in NK fitness landscapes will

be explained for these three cases. Next a brief introduction

of Markov chains will be presented (for more explanations

see [17]).

A. Markov chain

Definition 2 A Markov chain is a sequence of random vari-

ables {X0, X1, X2,. . . } which satisfies the Markov property
based on the assumption that the probability to go to the next

state is entirely dependent on the current state. The Markov

property can be stated as:

Pr(Xn+1 = in+1|X0 = i0,X1 = i1, . . . ,Xn = in) =
Pr(Xn+1 = in+1|Xn = in)

(6)

The Markov property means the system is memoryless, it

does not “remember” the states it was in before, just “knows”

its present state, and bases its “decision” to which future

state it will move to, purely on the present, not considering

the past. The changes of state are called transitions. The

Markov Chain that is considered here is time homogeneous,

the transition probabilities are independent of the current

point of time, so the transition matrix stays constant during

time evolution. As the state space is finite, the transition

probabilities, can be defined as:

pij = Pr(Xn+1 = j|Xn = i)

The one-step transition matrix is defined as P = [pij ],
where 0 ≤ pij ≤ 1 and

∑num states

j=1 pij = 1. Raising the
transition matrix to power k, the new matrix will contain the

probabilities of going from each state to each state after k

times. The long-term transition matrix will predict where the

system (in this case, the hill climber) will end up in the long

run.

Next, for simplicity reasons, the way in which the Markov

chain transition matrix is determined and the probability of

reaching the global optimum in NK fitness landscapes will

be explained for the non-redundant case first.

B. Non-redundant representation case

Consider that Neighbor(i, j) defines the neighbor j of an

individual i, |bi| is the cardinality of the set bi of neighbors

of i, and the set of better or equally good neighbors is defined

as Bi [17]:

Bi = {j|Neighbor(i,j) ∧ Fitness(j) ≥ Fitness(i)}

Each element of the Markov chain transition matrix P for

the non-redundant representation is defined by:

pij =











1
|bi|

j ∈ Bi

1 − |Bi|
|bi|

i = j

0 otherwise

If an individual i only has neighbors with a lower fitness,

meaning that i is a local optimum, then Bi = φ. In this case

the chain will remain in this state forever without finding any

new and better individuals (i is absorbing). In the transition

matrix, for each local optimum, the corresponding column

will appear with a unique value of 1 in the corresponding
row, meaning that there is no chance to continue to other

neighbors. Taking the example of the NK fitness landscape

of Figure 1 which have three local optima, the matrix

P displayed in Table I corresponds to the Markov chain

transition matrix obtained.

C. Neutral network representation case

Consider a NN(ℓ, k) which corresponds to a neutral net-
work representation with 2ℓ genotypes and 2k phenotypes.

For each genotype the respective phenotype has to be calcu-

lated using the zeros of the neutral network in question. In

this case Neighbor(gi, gj) defines the genotype neighbor gj

of a genotype gi, ℓ is the number of neighbors of gi and the

set of better or equally good neighbors is defined as Bgi
:

Bgi
=

{

gj |Neighbor(gi, gj) ∧ Fitness(pgj
) ≥ (7)

Fitness(pgi
)} (8)

(9)

Each element of the Markov chain transition matrix P for

this representation is defined by:

pij =







1
ℓ

gj ∈ Bgi

1 −
|Bgi

|

ℓ
gi = gj

0 otherwise

In this case the transition matrix is 2ℓ×2ℓ, the principles are

the same presented for the non-redundant case, but adapted

for the redundant with neutrality case.

D. Non-neutral with same neighborhood representation case

Consider a NonNeutral(ℓ′, k) equivalent in

terms of phenotypic neighborhood to a NN(ℓ, k).
Neighbor(pi, pj(NN(ℓ, k)pi

)) defines the phenotype

neighbor pj(NN(ℓ, k)pi
) of phenotype pi, where

pj(NN(ℓ, k)pi
) corresponds to phenotype pj which is

neighbor of the neutral network which represents the pi

phenotype (see II-B to remember what are neighbors of

the neutral network). Also ℓ is the number of genotype

neighbors of the equivalent NN(ℓ, k) and the set of better
or equally good neighbors is defined as Bpi

:

Bpi
= {pj |Neighbor(pi, pj(NN(ℓ, k)pi

))∧
Fitness(pj(NN(ℓ, k)pi

)) ≥ Fitness(pi)}

Each element of the Markov chain transition matrix P for

this representation is defined by:

pij =















f(pj)
ℓ′

pj ∈ Bpi

f(pi)
ℓ′

+

(

1 −

P

pj∈Bpi
f(pj)

ℓ′

)

pi = pj

0 otherwise

where f corresponds to the frequency of the indicated

phenotype. In this case the transition matrix is 2k × 2k.



TABLE I

MARKOV CHAIN TRANSITION MATRIX OBTAINED FOR THE NK FITNESS LANDSCAPE OF FIGURE 1

P =

2
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6
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6

6
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6
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0.50 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.75 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0
0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.25 0.25 0.25 0 0 0 0 0 0 0 0.25 0 0 0 0

0.25 0 0 0 0 0.25 0.25 0 0 0 0 0 0.25 0 0 0
0 0.25 0 0 0 0.50 0 0 0 0 0 0 0 0.25 0 0
0 0 0.25 0 0 0 0.50 0 0 0 0 0 0 0 0.25 0
0 0 0 0.25 0 0.25 0.25 0 0 0 0 0 0 0 0 0.25

0.25 0 0 0 0 0 0 0 0 0.25 0.25 0 0.25 0 0 0
0 0 0 0 0 0 0 0 0 0.75 0 0 0 0.25 0 0
0 0 0.25 0 0 0 0 0 0 0 0.50 0 0 0 0.25 0
0 0 0 0 0 0 0 0 0 0.25 0.25 0.25 0 0 0 0.25
0 0 0 0 0 0 0 0 0 0 0 0 0.50 0.25 0.25 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0.25 0.50

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
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E. Probability of reaching the global optimum

Having in mind that the long-term transition matrix P

(resulting from a stochastic hill climber had been simulated

as a Markov chain) will predict where the hill climber will

end up in the long run, then the algorithm to calculate the

stationary distribution can be defined as follows:

y = global optimum

r[:, 1] = 1
|search space|

for t from 2 to long run do

r[:, t] = P × r[:, t − 1]
p = [p; sum(r(y, t))]

end for

The algorithm will be explained using the example pre-

sented in Table II, which represents the vector of probabilities

obtained for the NK fitness landscape of Figure 1. In this

case r[:, 1] corresponds to the probability of presence of
an individual in the first state. At the beginning, all states

have equal probability 1
|search space| , where |search space|

corresponds to the cardinality of the search space, which

in the NK fitness landscape analysed corresponds to 1
24 . For

the neutral case, the global optimum (and each phenotype)

corresponds to a phenotype neutral network, as explained in

section III-B, with 2ℓ−k genotypes. Then, it is necessary to

calculate the probability p at each t, p = [p; sum(r(y, t))],
which corresponds to the sum of the probabilities for all

genotypes which belong to the phenotype neutral network of

the global optimum y, at state t. As can be seen the maximum

probability 0.5000 is achieved by the global optimum, which
corresponds to phenotype 13, a probability of 0.2639 is
obtained for the local optimum 14. Finally, the other local
optimum 2 has a probability of 0.2361 to be reached.
Obviously, ∀t

∑|search space|
i=1 pit = 1.

V. EXPERIMENTAL RESULTS

In the first part of the experimental study, the probability

of reaching the global optimum as a function of the number

of iterations is computed for the three types of representa-

tion when applied to a particular instance of a NK fitness

landscape. The purpose of the second part is to determine

which of the three representations has better behaviour when

applied to a set of instances of NK.

The results obtained after calculation of the long-term

probability of reaching the global optimum of an instance of

NK(11, 1) using one of the neutral networks in NN(14, 11)
and the corresponding non-neutral representation with same

neighborhood are displayed in Figure 3. In this case, the

non-neutral representation is faster than the neutral one, but

the final probability is higher for the neutral representation

(0.6099) than for the non-neutral representation (0.5375).

For this NK(11, 1) instance, the neutral and non-neutral
representations do not perform better than the standard, non-

redundant binary encoding.
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Fig. 3. Long-term probability of reaching the global optimum NK(11,1)
using a neutral network in NN(14,11) and a non-neutral encoding with same
neigborhood

However, there are neutral networks in NK(11, 1) that lead
to better probabilities of reaching the global optimum than

both the non-neutral and the non-redundant representations,

while being as fast as the equivalent non-neutral and non-

redundant ones. Figure 4 shows the behavior obtained with

such a neutral network.



TABLE II

PROBABILITIES VECTOR OF REACHING LOCAL OPTIMA APPLIED TO A NK FITNESS LANDSCAPE

1 2 3 10 20 30 40 50 60 t

0.0625 0.0625 0.0312 ... 0.0002 ... 0.0000 ... 0.0000 ... 0.0000 ... 0.0000 ... 0.0000

0.0625 0.0938 0.1094 ... 0.0230 ... 0.0013 ... 0.0001 ... 0.0000 ... 0.0000 ... 0.0000

0.0625 0.1250 0.1797 ... 0.2356 ... 0.2361 ... 0.2361 ... 0.2361 ... 0.2361 ... 0.2361

0.0625 0.0312 0.0078 ... 0.0000 ... 0.0000 ... 0.0000 ... 0.0000 ... 0.0000 ... 0.0000

0.0625 0 0 ... 0 ... 0 ... 0 ... 0 ... 0 ... 0

0.0625 0.0625 0.0312 ... 0.0002 ... 0.0000 ... 0.0000 ... 0.0000 ... 0.0000 ... 0.0000

0.0625 0.0625 0.0312 ... 0.0002 ... 0.0000 ... 0.0000 ... 0.0000 ... 0.0000 ... 0.0000

0.0625 0 0 ... 0 ... 0 ... 0 ... 0 ... 0 ... 0

0.0625 0 0 ... 0 ... 0 ... 0 ... 0 ... 0 ... 0

0.0625 0.0938 0.1016 ... 0.0615 ... 0.0078 ... 0.0007 ... 0.0001 ... 0.0000 ... 0.0000

0.0625 0.0625 0.0391 ... 0.0005 ... 0.0000 ... 0.0000 ... 0.0000 ... 0.0000 ... 0.0000

0.0625 0.0312 0.0156 ... 0.0000 ... 0.0000 ... 0.0000 ... 0.0000 ... 0.0000 ... 0.0000

0.0625 0.0625 0.0312 ... 0.0002 ... 0.0000 ... 0.0000 ... 0.0000 ... 0.0000 ... 0.0000

0.0625 0.1250 0.1953 ... 0.4148 ... 0.4908 ... 0.4992 ... 0.4999 ... 0.5000 ... 0.5000

0.0625 0.1250 0.1875 ... 0.2632 ... 0.2639 ... 0.2639 ... 0.2639 ... 0.2639 ... 0.2639

0.0625 0.0625 0.0391 ... 0.0005 ... 0.0000 ... 0.0000 ... 0.0000 ... 0.0000 ... 0.0000
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Fig. 4. Long-term probability reaching the global optimum NK(11,1)
using a neutral network in NN(14,11) and a non-neutral encoding with same
neigborhood

These results show that:

1) Neutral networks modify the NK fitness landscapes, and

may lead to a higher probability of reaching the global

optimum than the corresponding non-neutral representa-

tion. The contrary may also happen, i.e., the probability

of reaching the global optimum may be lower than with

the corresponding non-neutral representation;

2) The convergence speed of the hill-climber may be

affected by the neutrality of the encoding, even if

neutral and non-neutral encodings exhibit the same

phenotypic neighbourhod. Although non-neutral repre-

sentations were observed to usually lead to faster con-

vergence, there were some neutral networks that led to

better probabilities and were as fast as the corresponding

non-neutral ones.

The second part of the study was performed using 20000

neutral networks randomly chosen from the 2350336 possible

neutral networks of NN(14,11) and the corresponding non-

neutral counterparts. Eight instances of NK(11, 1) and eight

instances of NK(11, 10) were used to detect the influence
of K on the behavior of the representations. Time execution

and space storage are the reasons why only 20000 neutral

networks were used.

Tables III and IV show the results of this second part of the

study. Each of the three columns compares two of the three

representations. In each column, the first value corresponds

to the percentage of encodings of the first type that were

better than the corresponding encodings of the other type,

while the second value corresponds to the percentage of

encodings of the first type that were equal or worse than those

of the first type (Nt refers to neutral network representation,

NNt to non-neutral representation andNR to non-redundant

representation).

These results show that:

1) When K is small (the ruggedness of the landscape is

low and there are few local optima) neutral network

representations and the corresponding non-neutral rep-

resentations generally lead to similar behavior, and that

both types of representation perform worse than the non-

redundant representation;

2) When K is large (there are many local optima due to

the high ruggedness of the landscape) both redundant

representations perform better than the non-redundant

representation, and the results of the neutral network

representations tend to be sightly worse than those

obtained with the corresponding non-neutral represen-

tations.

VI. CONCLUSION

In evolutionary computation, the notion of neutrality and

neutral networks has attracted increasing attention for its

potential to create alternative paths for evolution and, in

this way, improve the quality of the search. An experimen-

tal study was developed using Markov chains to model a

stochastic hill climber in NK fitness landscapes modelled

with three types of representation: the neutral network repre-

sentation proposed in [5] that exhibits neutrality and interest-

ing properties, a redundant representation without neutrality

which exhibits the same neighborhood of the neutral case and

the non-redundant representation. The purpose was to detect



TABLE III

RESULTS OF APPLYING NEUTRAL NETWORK (NT), NON-NEUTRAL (NNT) AND NON-REDUNDANT (NR) REPRESENTATIONS ON NK(11,1)

NK instance %Nt better NNt; %Nt eq worse NNt %Nt better NR; %Nt eq worse NR %NNt better NR; %NNt eq worse NR

1 50.51 - 49.49 9.87 - 90.13 9.99 - 90.01

2 50.30 - 49.70 64.84 - 35.16 64.91 - 35.09

3 56.11 - 43.89 0 - 100 0 - 100

4 53.52 - 46.48 48.99 - 51.01 49.02 - 50.98

5 37.72 - 62.28 0.79 - 99.21 0.77 - 99.23

6 66.86 - 33.14 0 - 100 0 - 100

7 66.96 - 33.03 14.32 - 85.68 14.19 - 85.80

8 61.55 - 38.45 35.84 - 64.16 35.33 - 64.67

TABLE IV

RESULTS OF APPLYING NEUTRAL NETWORK (NT), NON-NEUTRAL (NNT) AND NON-REDUNDANT (NR) REPRESENTATIONS ON NK(11,10)

N NK instance %Nt better NNt; %Nt eq worse NNt %Nt better NR; %Nt eq worse NR %NNt better NR; %NNt eq worse NR

1 48.02 - 51.99 74.82 - 25.17 74.78 - 25.22

2 39.25 - 57.24 98.67 - 1.33 98.81 - 1.18

3 47.02 - 52.99 99.78 - 0.22 99.88 - 0.12

4 41.37 - 58.63 54.65 - 45.40 55.04 - 44.96

5 40.71 - 59.29 84.28 - 15.72 84.82 - 15.18

6 44.19 - 55.82 96.75 - 3.26 96.90 - 3.10

7 39.87 - 60.13 85.59 - 14.41 86.30 - 13.70

8 43.89 - 56.12 100 - 0 100 - 0

whether, in the context of NK-landscapes, the neutrality

of a representation might influence the performance of a

stochastic hill-climber in a way which could not be simply

attributed to the larger neighbourhood associated with it.

The results indicate that neutrality may affect both the

probability of reaching the global optimum and the speed

of convergence, even in comparison to an analogous non-

neutral redundant encoding. It is also possible to conclude

that the behavior of the three types of representations depends

on the ruggedness of the NK fitness landscape. When K is

small, the non-redundant representation seems to perform

better than the redundant ones; when K is large, neu-

tral and non-neutral representations performed better than

the non-redundant one. This suggests that, in general, the

search neighborhood induced by the representation affects

search performance more strongly than whether or not the

representation is neutral. However, the results also show

that neutrality may improve search performance beyond the

effect of the neighborhood, by structuring the way in which

it is searched. Given that the neutral encodings used in

this work are much more compact than their non-neutral

counterparts [5], neutrality remains an interesting encoding

property.

Finally, it may seem disappointing that, over the entire

space of neutral representations considered, the percentage

of those which bring performance benefits in comparison to

non-neutral and possibly non-redundant representations tends

to be low, especially in contrast with what happens in nature.

However, one must realize that the genetic code itself has

been the object of natural selection throughout the years,

which may explain why neutrality seems to work well in

nature and yet remains difficult to harness in practice.
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