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Optical flow isthe pattern of apparent motion of objectsin avisual scene and the rel ative motion, or egomotion,

of the observer in the scene. In this paper we present anew cortical model for optical flow. Thismodel is based
on simple, complex and end-stopped cells. Responses of end-stopped cells serve to detect keypoints and those
of simple cells are used to detect orientations of underlying structures and to classify the junction type. By
combining ahierarchical, multi-scale tree structure and saliency maps, moving objects can be segregated, their
movement can be obtained, and they can be tracked over time. We also show that optical flow at coarse scales
suffices to determine egomotion. The model is discussed in the context of an integrated cortical architecture

which includes disparity in stereo vision.

1 INTRODUCTION

Optical flow, also called optic flow, isthe motion pat-
tern caused by moving objects in a visual scene. It
can be described by motion or displacement vectors
of entire objects or parts of them between successive
time frames. In the case of egomotion, i.e, the eye
of a moving person or a moving camera, the relative
motion between observer and scene a so contributes.

Experiments have strengthened the argumentsthat
neurons in a specialised region of the cerebral cortex
play amgjor rolein flow analysis (Wurtz, 1998), that
neuronal responsesto flow are shaped by visual strate-
gies for steering (William and Charles, 2008), and
that flow processing has an important role in the de-
tection and estimation of scene-relative object move-
ments during egomotion (Warren and Rushton, 2009).
For the latter, the brain identifies and globally dis-
counts (i.e., subtracts) optical flow patterns across the
visual scene, a process called flow parsing.

Morrone et al. (2000) demonstrated that neurons
inarea V5/MT (medial temporal) respond selectively
to components of optical flow, such as circular and
radial motion. Smith et a. (2006) showed that neu-
ronsin area MST (middle superior temporal) seem to
be more selective to complex movements than those

in area MT, the latter being more devoted to simple
movements, although both areas respond to al mo-
tion stimuli but with different activation patterns. Al-
though many cells may respond to more than onetype
of motion stimulus, individual cells show different di-
rection selectivities (Duffy and Wurtz, 1991). In ad-
dition, cellsin areaM ST were reported to be selective
for rotation and expansion (Orban et al., 1992), hav-
ing larger receptive fields and less precise retinotopic
mapping than thosein area M T. Therefore, MST cells
convey more global information about a scene’s struc-
ture and motions (Smith et al., 2006).

An essential function of visual processing is to
establish the position of the body in space and, in
concert with the other sensory systems, to monitor
its movements. egomotion through optical flow (Wall
and Smith, 2008). For example, forward motion gen-
erates an expanding flow pattern on the retinae and,
with eyes fixated centrally, the heading direction cor-
responds to the centre of expansion. AreaM ST being
sensitive to more global optical flow patterns, it has
been suggested that MST has a central role in guid-
ing heading in macaques. The same authors identi-
fied two areas of the human brain which represent vi-
sual cues to egomotion more directly than does area
MST. One isthe putative area VIP in the anterior part
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of the intraparietal sulcus. The other is a new visual
area coined cingulate sulcus visual area (CSv). In
contrast to these new areas, areas V1 to V4 and MT
respond about equally to stimuli mimicking arbitrary
motion and egomotion, whereas area MST has inter-
mediate properties, responding well to various motion
stimuli but with a modest preference for egomotion-
compatible stimuli.

Apart from motion processing, we know that the
visual cortex detects and recognises objects by means
of the ventral “what” and dorsal “where” subsystems.
Both bottom-up (visual input code) and top-down (ex-
pected object and position) data streams are necessary
for obtaining size, rotation and translation invariance,
assuming that object templates are normalised in vi-
sual memory.

Recently we presented cortical models based on
multi-scale line/edge and keypoint representations
(Rodrigues and du Buf, 2006, 2009b). These repre-
sentations, all based on responses of simple, complex
and end-stopped cellsin V1, can be integrated for dif-
ferent processes: visual reconstruction or brightness
perception, focus-of-attention (FOA), object segrega-
tion and categorisation, and object and face recog-
nition. The integration of FOA, region segregation
and object categorisation is important for developing
fast gist vision, i.e., which types of objects are about
wherein a scene.

Optical flow, asfor disparity in stereo vision, com-
plements colour and texture in object segregation,
possibly in, but not necessarily limited to, the dorsal
“where” pathway where keypoints may play a major
rolein FOA (Rodrigues and du Buf, 2006). In this pa-
per we present a new model for cortical optical flow
which is based on annotated (classified) multi-scale
keypoints. We show that the information can be used
for egomotion and for object segregation and track-
ing.

In Section 2 we present multi-scale keypoint de-
tection and annotation, in Section 3 optical flow de-
tection, in Section 4 object tracking using optical flow
information, and we conclude with a final discussion
and lines for future work in Section 5.

2 MULTI-SCALE KEYPOINT
ANNOTATION

Keypoints are based on end-stopped cells (Rodrigues
and du Buf, 2006). They provide important informa-
tion because they codelocal image complexity. More-
over, since keypoints are caused by line and edge jun-
tions, detected keypoints can be classified by the un-
derlying vertex structure, such asK, L, T, 4 etc. This

is very useful for most if not all matching problems:
object recognition, stereo disparity and optical flow.
In this section we describe the multi-scale keypoint
detection and annotation processes.

2.1 KEYPOINT DETECTION

Gabor quadrature filters provide a model of cortical
simple cells (Rodrigues and du Buf, 2006). In the
spatial domain (x,y) they consist of areal cosine and
an imaginary sine, both with a Gaussian envelope.
Responses of even and odd simple cells, which cor-
respond to real and imaginary parts of a Gabor fil-
ter, are obtained by convolving the input image with
the filter kernel, and are denoted by RE;(x,y) and
RS, (x,y), s being the scale, i the orientation (6; =
it/Ng) and Ny the number of orientations (here 8)
with i = [0,Ng — 1]. Responses of complex cells are
then modelled by the modulus

Csi(%Y) = [{RG (xy) 12 + {RG (x ) 2.

There are two types of end-stopped cells, single and
double. These are applied to Cs; and are combined
with tangential and radial inhibition schemes in or-
der to obtain precise keypoint maps Ks(x,y). For a
detailed explanation with illustrations see Rodrigues
and du Buf (2006). Below, the scale of analysis will
be given by A expressed in pixels, where A = 1 corre-
spondsto 1 pixel.

Figure 1 (top-left) shows a scene with, on the sec-
ond row from top, keypoints detected (diamond sym-
bols) at two scales A = 6 (left) and 27 (right). At
top-right it shows one quadrant of a test image with
a black sguare against a homogeneous background
(top-left) and a noisy background (top-right), both
with a correctly detected keypoint at the junction. All
other images show annotated keypoints; see below.

2.2 KEYPOINT ANNOTATION

In order to classify any detected keypoint, the re-
sponses of simple cells RE; and RS, are analysed, but
now using Ny = 2Np orientations, ¢x = kr/Ng and
k =[0,Ny — 1]. This means that for each simple-
cell orientation on [0, wt] there are two opposite anal-
ysis orientations on [0, 2xt], e.9., 81 = /Ny resultsin
d1 =7/Ng and dg = 91/ Ny; see Fig. 2 (top).

This division into response-analysis orientations
is acceptable, according to Hubel (1995), because a
typical cell has a maximum response at some orienta-
tion and its response decreases on both sides, from 10
to 20 degrees, after which it declines steeply to zero;
see also du Buf (1993). In addition, thisdivisionisa



Figure 1. Keypoint detection and annotation. Input scene
(top-left) with, on the 2nd row, keypoints detected at scales
A = 6 (Ieft) and 27 (right). The 3rd and 4th rows show anno-
tated keypoints at scales A = {6,12,18,27}. The top-right
image shows one quadrant of a black square against a ho-
mogeneous background (left) and noisy background (right),
both at A = 6.

compromise between the cost (CPU time) of the num-
ber of orientations and the accuracy of the results.
Classifying keypoints is not trivial, because re-
sponses of simple and complex cells, which code the
underlying lines and edges at the vertices, are unre-
liable due to response interference effects (du Buf,
1993). Thisimplies that responses must be analysed
in a neighbourhood around each keypoint, and the
size of the neighbourhood must be proportional to the
scale of the cells. The validation of the line and edge
orientations which contribute to the vertex structureis

based on an analysis of the responses of simple cells,
both RE; and RY;, and consists of three steps: (1) only
responses with small variations at three distances are
considered, (2) local maxima of the responses over
orientations are probed and the remaining orientations
are inhibited, and (3) responses of even and odd sim-
ple cells are matched in order to keep the orientations
which are common to both.

Instep (1), at any scale and each orientation ¢y the
responses of the smple cells on three circles around
the keypoint position, with radii A/2, A and 2\, are
compared. Instead of only taking the responses at
ok, the orientation intervals oy =7/ Nq) are considered.

The three maximum responses of Rk © in the orien-
tation interval around k and at the three radu r are
detected, and their maximum R = max, R ro Only
responses with small variations at the three radii are
considered (R > 0.6Rx), yielding Ny candidate ori-
entations. The smallest radius of A/2 was chosen
because of the interference effects referred to above
(du Buf, 1993). The other two radii were determined
experimentally.

Biologically, the above process is based on clus-
tersof grouping cellswith dendriticfields (Fig. 2 (top)
in red) covering the orientation intervals at each of
the three radii. These grouping cells combine other
cells with self-inhibition for non-maximum suppres-
sion. The three grouping cells at the three radii feed
into another grouping cell which compares the re-
sponses and which inhibits itself when the responses
are not similar. Figure 2 (bottom) shows responses
of simple cells in the case of a black sguare against
a noisy background (Fig. 1 top-right). It shows two
scales, A = 6 (column 1 and 2) and A = 15 (column 3
and 4), only three of all eight orientations (top to bot-
tom), even cells in columns 1 and 3 and odd cellsin
columns 2 and 4. Dark levels are negative and bright
ones are positive. Also shown is one detected key-
point at each scale with, in red, the three circles at
A/2, A and 2\ at which the grouping cells are located.
Thedrawing at the top shows the orientation intervals,
also in red, covered by the dendritic fields in the case
of 8, with opposite orientations ¢1 and ¢g.

In step (2), the responses at the detected orienta-
tions are summed, R = XyRy, and, for validation pur-
poses, al responses Rk below a threshold value of R
are suppressed (0.95R/Ng). Biologically, thisis done
by another grouping cell which sums responses of the
grouping cells in step (1) and which may inhibit the
same cellsif their response istoo low.

If there also exist maximum responses R¢ at the
two neighbouring orientations ¢x—1 and ok 1, they
will beinhibited if they aretoo low (Re+1 < 0.95Ry).
The above values were determined by analysing many



Figure 2: Top: afew orientations of simple cells (6) and
opposing orientations for keypoint classification (¢) plus, in
red, orientation intervals covered by grouping cells. Bot-
tom: responses of simple cells at 3 orientations (top to bot-
tom) and at two scales A = 6 (left) and A = 15 (right). From
left to right: responses of even and odd simple cells. Also
shown is one detected keypoint with, in red, the 3 circles on
which the responses are analysed for keypoint annotation.

objects like triangles, squares and polygons.

Step (2) is necessary because we need the orienta-
tions which convey the most consistent information,
i.e, not being due to varying lighting levels, light
sources casting shadows, background structures and
even dynamic backgrounds like the wind playing the
crowns of trees. Figure 1 (top-right) shows the dif-
ference in the case of the same black square against a
homogeneous background (left) and a structured one
(right). The diagona structure in the background has
a much lower contrast than the edge of the sgquare.
Hence, without step (2) the keypoint would have been
annotated by three orientations instead of two.

The analysisin step (3) only concerns the match-
ing of equal orientations, i.e., inhibiting al orienta-
tions which have not been detected in the responses of
both even (RE;) and odd (RY;) simple cells. Remain-
ing orientations ¢y are attributed to the keypoint, plus
the junction type K, L, T, +, etc. Again, the match-
ing is achieved by grouping cells which combine the
grouping cells devoted to @ jand Rg]

In the above procedure there is only one excep-

tion: keypoints at isolated points and blobs, especialy
at very coarse scales, are also detected but they are not

caused by any line/edge junctions. Such keypointsare
labeled “blob” without attributed orientations.

The bottom four images in Fig. 1 show re-
sults of keypoint annotation at the four scales A =
{6,12,18,27}. At fine scale there are many keypoints
and at coarse scale less. Below, the annotated key-
points will be exploited in different processes. As
mentioned above, keypoint detection may occur in
cortical areas V1 and V2, whereas keypoint annota-
tion requires bigger receptive fields and could occur
in V4. Optical flow isthen processed in areas V5/MT
and MST.

3 OPTICAL FLOW

Optical flow is determined by matching annotated
keypoints in successive camera frames, but only by
matching keypoints which may belong to the same
object. To this purpose we use regions defined
by saliency maps. Moreover, we do not consider
al scales independently, for two reasons: (1) non-
relevant areas of an image can be skipped because of
the hierarchical scale structure, and (2) by applying a
hierarchical tree structure, the accuracy of the match-
ing can be increased, therefore also increasing the ac-
curacy of the optical flow. The latter ideais based on
the strategies as employed in our visual system (Ro-
drigues and du Buf, 2009g; Bar, 2004).

3.1 OBJECT SEGREGATION

We apply a multi-scale tree structure in which at a
very coarse scale aroot keypoint defines a single ob-
ject, and at progressively finer scales more keypoints
are added which convey the object’sdetails. However,
coarser scales imply bigger filter kernels and more
CPU time, so for practical reasons the coarsest scale
applied here will be A = 27, which is a compromise
between speed and quality of results.

Below we use A = [6,27] with AL = 3, and at the
moment all keypoints at A = 27 are supposed to rep-
resent individual objects, although we know that it is
possible that several of those keypoints may belong
to a same object. Each keypoint at a coarse scale is
related to one or more keypoints at one finer scale,
which can be dlightly displaced. Thisrelation is mod-
elled by down-projection using grouping cells with
acircular axonic field, the size of which (A) defines
the region of influence. A responding keypoint cell
activates a grouping cell. Only if the grouping cell
is also excitated by responding keypoint cells at one
level lower (the next finer scale), a grouping cell at
the lower level is activated. Thisis repeated until the
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Figure 3: Top: hierarchical tree structure over scales. Bot-
tom: matching of annotated keypoints between successive
frames; seetext for details.

finest scale has been reached. By doing so, all key-
points outside the areas of influence of the grouping
cells will not be considered, thus avoiding unneces-
sary computations. Figure 3 (top) illustrates the prin-
ciple of the linking process with cones representing
the axonic fields of the grouping cells. At the finest
scale the region of influence of the keypoint at the
coarsest scaleisindicated by the yellow area.

As mentioned above, at a very coarse scale each
keypoint — or central keypoint CKP — should corre-
spond to an individual object. However, at the coars-
est scale applied, A = 27, this may not be the case and
an object may cause several keypoints. In order to
determine which keypoints could belong to the same
obj ect we combine saliency maps with the multi-scale
tree structure.

A saliency map can be based on keypoints asthese
code local image complexity (Rodrigues and du Buf,
2006). Such a map is created by summing detected
keypoints over al scales s, such that keypoints which
are stable over scale intervals yield high peaks, but
in order to connect the individual peaks and yield re-
gions a relaxation areais applied. As applied above,
the area is proportiona to the scale and has a ra

dius of A. Here, we simplify the computation of
saliency maps by summing responses of end-stopped
cells at all scales, which yields similar results. Fig-
ure 6 (right) shows on the 2nd to the 4th row examples
of such saliency maps which correspond to the input
framesto their left. For illustration purposes the maps
were scaled to the interval [0,255]. The maps will be
thresholded in order to obtain segregated regions; see
bel ow.

3.2 KEYPOINT MATCHING

At this point we have, for each frame, the tree struc-
ture which links the keypoints over scales, from
coarse to fine, with associated regions of influence
at the finest scale. We also have the saliency map
by summing responses of end-stopped cells over al
scales. The latter, after thresholding, yields segre-
gated regions which are intersected with the regions
of influence of the tree. Therefore, the intersected re-
gions link keypoints at the finest scale to segregated
regions which are supposed to represent individua
objects.

Now, each annotated keypoint of frame i can be
compared with all annotated keypointsin framei — 1.
This is done at all scales, but the comparison is re-
stricted to an area with radius 2\ instead of A at each
scale in order to alow for larger trandations and ro-
tations. In addition: (1) at fine scales many keypoints
outside the area can be skipped since they are not
likely to match over large distances, and (2) at coarse
scales there are less keypoints, A is bigger and there-
fore larger distances (motions) are represented there.
The tree structure is built top-down, Fig. 3 (top), but
the matching process, Fig. 3 (bottom), is bottom-up:
it starts at the finest scale because there the accuracy
of the keypoint annotation is better. Keypoints are
matched by combining three similarity criteria with
different weight factors:. the distance D, the attributed
orientations O, and the tree correspondence C.

The distance D serves to emphasise keypoints
which are closer to the centre of the matching area.
For having D = 1 at the centre and D = 0 at radius
2\, we use D = (20 —d)/2\ with d the Euclidean
distance. Biologicaly, there may be no need to use
Euclidean distancesif akind of dynamic feature rout-
ing in space and time is used, possibly with motion
prediction in the “where” pathway.! Dynamic routing
from frame i — 1 to frame i, possibly also involving
previous frames i — 2 etc., is a spatiotemporal map-

IMotion prediction is a form of adaptation which could
explain the motion aftereffect, for example our illusion that
arailway station moves after our train has stopped. This
may occur in area M T (Kohn and Movshon, 2003).
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Figure 4: Top: dynamic routing between coarse keypoints
of successive frames (left), and cell representation of dis-
tance D (right). Bottom: cell representation of orientation
O (left), and tree correspondence C (right); see text for de-
tails.

ping, assuming a stack of neural layers in which a
few previous maps are stored: a new frame is a-
ways pushed on the “top-of-stack” and older frames
are also being pushed down. As for dynamic rout-
ing in invariant object recognition, see Rodrigues and
du Buf (2009a), the principle can be based on link-
ing first keypoints at very coarse scales (central key-
points or CKP in Fig. 4 top-left) in space after which
finer scales refine the linking (Fig. 4 top-right). This
is subject to ongoing research.

The orientation error O measures the differences
of the attributed orientations, but with a relaxation of
+m/Ng of al orientations such that also a small ro-
tation of the vertex structure is allowed. Similar to
D, the summed differences are combined such that
O = 1 indicates good correspondence and O =0 a
lack of correspondence. Obviously, keypoints marked
“blob” do not have orientations and are treated sep-
arately. Biologically, the orientation error could be
based on the number of intermediate layers in the
routing which is necessary to establish correspon-
dence of the vertex structure, which is shown simpli-
fied in Fig. 4 (bottom-left).

Parameter C measures the number of matched
keypoints at finer scales, i.e., at any scale coarser than
the finest one. The keypoint candidates to be matched

in frame i and in the area with radius 2\ are linked
in the tree to localised sets of keypoints at al finer
scales. The number of linked keypoints which have
been matched is divided by the total number of linked
keypoints. Thisis achieved by sets of grouping cells
at all but the finest scale which sum the number of
linked keypoints in the tree, both matched and all.
Hence, parameter C describes the consistency of the
matching at a candidate’s position at the finer scales,
thereby influencing the matching of the candidate at
the actual scale. Figure 4 (bottom-right) illustrates
in colour the matched keypoints which influence the
matching at coarser scales; see aso Fig. 3 (bottom).

The three parameters are combined by grouping
cellswhich can establish alink between keypointsin
framei—1andi. Mathematically we use the similar-
ity measure S= 0O+ BC+yD, withoo = 0.4, 3 =10.3
and Y= 0.3. These values were determined empiri-
caly. The candidate keypoint with the highest value
of Sinthearea(2\) is selected and the vector between
the keypoint in frame i — 1 and the matched one in
framei is computed. The remaining candidatesin the
area can be matched to other keypointsin framei — 1,
provided they areintheir local area. Keypoints which
cannot be matched are discarded.

Figure 5 (top-left) shows a sequence of 10 frames
with a moving and rotating star combined into one
image and, at right, examples of keypoints detected at
scales A = 6 (left) and 24 (right), together with their
annotation below. The 2nd row (left) shows the opti-
cal flow vectors from the first to the last frame. The
other images show two superimposed frames with
egomotion of the camera and the optical flow vectors
at four scales A = {6,12,18,27}. It can be seen that
there are some but few errors. In principle, such out-
liers can be removed, but important is that the cor-
rect egomotion can be seen at all scales with, as ex-
pected, more variation at the finest scale. In fact, the
flow detected at the coarsest scale (bottom-right) is
aready sufficient to extract the egomotion. This is
consistent with object categorisation and recognition
(Bar, 2004; Oliva and Torralba, 2006; Rodrigues and
du Buf, 2009b): coarse-scale information is available
first and thisis used for afirst but rough categorisation
(80 — 100 ms), after which information at finer scales
becomes available to refine the categorisation.

After obtaining egomotion vectors at the coarsest
scale, by averaging but perhaps after elimination of
outliersin local neighbourhoods because of possible
camerarotation, egomotion can be eliminated by sub-
tracting this information from all flow vectors (War-
ren and Rushton, 2009). Bearing thisin mind, when
we compute the tree correspondence C for keypoint
matching at only the coarsest scale, the result will be



Figure 5: Optical flow results. Top-left: frames with amov-
ing and rotating star combined into one image. Top-right:
detected keypoints at scales A = 6 (left) and 24 (right), with
the annotated keypoints below. Second from top, at |eft, op-
tical flow vectors. The other images show two combined
frames with egomotion of the camera and optical flow vec-
torsat scalesA = {6,12,18,27}.

similar. However, the result will be more robust if
we use all scales, asin the object categorisation and
recognition process (Rodrigues and du Buf, 2009b).

4 TRACKING OF OBJECTS

After thresholding, the saliency map of aframeyields
separated regions-of-interest (Rol); seeFig. 6, the 2nd
to 4th row at right. These regions can be intersected

with the regions as defined by the tree structure, in
Fig. 3 (top) shown in yellow. The regions of the den-
dritic fields of the end-stopped cells which generate
the saliency map will overlap the regions of the ax-
onic fields of the keypoint-grouping cells in the tree
structure. Hence, neighbouring keypoints are grouped
together in the Rols and their displacement vectors
after the matching process yield the optical flow of
segregated image regions, i.e., where an individua
object or a combination of connected (sub)objects is
or are moving. In order to discard very small opti-
cal flow due to the camera’'s motion (not significant
egomotion; see above) and to obtain more robust re-
sults, optical flow vectors are only computed if at at
least four scales the matched keypoints in successive
frames have displacement vectors with alength which
is bigger than one pixel.

Figure 6 (top) showsamontage of a sequence with
a moving robot car (at left) and the tracked optical
flow vectors (at right): in white for A = 6 and in red
for A = 27. Rows 2 to 4 show frames with the robot
car segregated in a box (at left) and the correspond-
ing saliency maps (at right). The bottom row shows
zooms of two frames with flow vectors at scale A = 9.

Figure 7 shows two more sequences with moving
persons. The top sequence shows amoving person far
away, with the bounding box and tracked motion (ar-
rows). The bottom sequence shows a person at close
range, in which case the different motions of the dif-
ferent body parts can be distinguished, also the mo-
tion of the shadow. The bottom sequence illustrates
areal application: detecting and tracking moving ob-
stacles on paths and sidewalks, which isfor a naviga-
tion aid for the blind in the context of the SmartVision
project. In this case the optical flow is complemented
by the borders of the path and their intersection in the
vanishing point, and the tracking of the centre of the
bounding box relative to the vanishing point can be
used to detect if the obstacle is approaching or not,
for obstacle avoidence.

5 CONCLUSIONS

In a previous paper we have shown that keypoint
scale-space provides very useful information for con-
structing saliency mapsfor Focus-of-Attention (FOA),
and that faces can be detected by grouping facial land-
marks defined by keypoints at eyes, nose and mouth
(Rodrigues and du Buf, 2006). We have also shown
that line/edge scale-space provides very useful infor-
mation for face and object recognition (Rodrigues
and du Buf, 2009b). Obviously, object detection and



Figure 6: Top: a sequence with a moving robot car (left)
and combined optical flow vectors (right), in white at afine
scaleand in red at a coarse scale. Rows 2 to 4 show frames
with the robot car segregated in a box (left) and the cor-
responding saliency maps (right). The bottom row shows
zooms of optical flow vectors at scaleA = 9.

recognition are related processes, with a seamlessin-
tegration in the where and what pathways. However,

Figure 7: Two sequences with moving persons. The per-
sons have been segregated (bounding box) and tracked (top
sequence; arrows), and differently moving body parts have
been detected, including shadows (bottom sequence).

there is no (known) dichotomy in the sense that key-
points are only used in the where pathway and lines
and edges only in the what pathway.

In this paper we showed that keypoint detection
can be complemented by keypoint annotation, and
that annotated keypoints in a hierarchical tree struc-
ture can be used for keypoint matching in order to
obtain optical flow. In addition, since local clusters
of keypoints are mostly related to individual moving
objects, object segregation can be achieved and ob-
jects can be tracked. Aswritten before, cortical areas
MT and MST areinvolved in optical flow and egomo-
tion, but recent results obtained with fMRI showed no
clear neura activity in their ventral (what) and dor-
sal (where) subregions, but elevated activity in be-
tween the subregions (Smith et al., 2006). This might
indicate that optical flow a MT level is processed
separately or involves both pathways. The fact that
optical flow can be used to obtain object segrega-



tion, as demonstrated here, in addition to our previous
experiments concerning saliency maps for FOA and
face detection, in all cases only using keypoint scale
space, would indicate some “preference” of the dorsal
(where) pathway for keypoints. Thisideais strength-
ened by the fact that area MT also plays a role in
the motion-aftereffect illusion (Kohn and Movshon,
2003), which is tightly related to motion adaptation
and prediction. Therefore, motion prediction might
play avery important role in the dorsal pathway, not
only where objects are now but also where they are
expected next. Such predictions tied to objects may
lead to much more efficient processing, for exam-
ple in robot vision, because most image regions can
be skipped. Nevertheless, robot vision also requires
some sort of “arousal” system for spotting new or un-
expected moving objects.

Having a model for matching keypoints in con-
secutive time frames for optical flow, the same prin-
ciple can be applied to stereo (disparity), matching
left and right frames. Since information of one of the
two framesisalready availablefor optical flow, there-
quired additional CPU timewill belimited, especially
if only the distance of moving objectsis necessary, for
example to detect objects which may be on collision
course, with and without egomoation. In general, how-
ever, disparity can be used for obtaining a 3D sketch
of an entire scene, plus the 3D structure of individual
objects in the scene which may complement the (2D)
line/edge scale space for object recognition. More-
over, optical flow and disparity can be combined to
obtain more robust object segregations.

Keypoints can complement the line/edge coding
in attributing depth, not only to vertical lines and
edges but also line and edge junctions. This results
in asort of 3D “wireframe” representation as used in
modelling solid objects in computer graphics. The
fact that projections from left and right eyes are very
closein the cortical hypercolumns and that many sim-
ple and complex cells are aso disparity tuned sug-
gests that our visual system processes 3D objects in
the same way, probably simplifying 3D object recog-
nition.
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