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Abstract

Most simultaneous localisation and mapping (SLAM)
solutions were developed for navigation of non-cognitive
robots. By using a variety of sensors, the distances to walls
and other objects are determined, which are then used to
generate a map of the environment and to update the robot’s
position. When developing a cognitive robot, such a solu-
tion is not appropriate since it requires accurate sensors
and precise odometry, also lacking fundamental features
of cognition such as time and memory. In this paper we
present a SLAM solution in which such features are taken
into account and integrated. Moreover, this method does
not require precise odometry nor accurate ranging sensors.

1. Introduction

The capability of simultaneously locating a robot and
mapping its environment is an essential pre-requisite to de-
velop truly autonomous robots [3]. In order to navigate
safely in unknown environments, a robot must perceive the
environment with enough detail. In most cases that percep-
tion consists of data acquired by laser, infra-red or ultra-
sonic sensors which provide accurate distances to walls and
objects. Multi-sensor perception, in combination with accu-
rate odometry, has been shown to work well for navigation
in static environments, allowing robots to perform tasks like
transportation, guidance, search and rescue.

We, humans, can easily solve navigation and informa-
tion storage problems because of our cognitive capabilities.
In fact, we do not need to know exact distances to objects
and walls, nor how many centimeters we move each time
we take a step or how many degrees we rotate. We also
have the capability of selecting which information must be
stored and what can be forgotten or ignored. Kawamura et
al. [2] presented a biologically inspired SLAM algorithm
for egocentric navigation. Their approach is based on two
main structures called Sensory Egosphere (SES) and Land-
mark Egosphere (LES), which would correspond to Short
Term Memory (STM) and Long Term Memory (LTM), re-
spectively. The SES comprises all information close to the

robot at a certain time, and is always changing when the
robot moves. The LES comprises information close to pre-
defined landmarks. Navigation is performed by only es-
timating the direction from one landmark to another from
a hand-drawn sketch of the environment. Both time and
memory are directly linked to robot navigation. However, a
sketch of the map is already available and detection of land-
marks is achieved by detecting coloured tags which were
placed in the environment.

The method we propose in this paper is also biologically
inspired. It is a first attempt to create a model which mimics
human capability to combine spatial localisation with time
and memory, enabling it to realise cognitive tasks. Since
the goal is to mimic human cognition, the method we pro-
pose is only based on vision, without precise odometry, yet
allowing the robot to create a 2D map, to navigate, and to
locate itself.

2. Cognitive SLAM

At the moment we use only one camera (no stereo) with
pan and tilt control to acquire images of the environment.
Only two tilt angles are used: pointing a bit down for images
of the immediate surround with some detail, and straight
ahead for images with less detail further away from the
robot. We will refer to them as P1 and P2, respectively.
Both P1 and P2 images are processed for object (obstacle)
detection. The distance to objects is estimated by using a
simple interpolation function which relates each image line
to an inaccurate distance. From the information acquired
using P1, a very small binary map is created and stored in
the robot’s STM, which is used for immediate navigation.
This allows for a quick reaction in case a mobile obstacle
crosses the robot’s path. Data acquired from both P1 and P2
is also stored in a bigger map, the robot’s LTM. However,
this map is not binary; it is a buffer with object labels and
their positions. In addition, each object or obstacle detected
and stored in LTM is quantified by its degree of certainty.
An object which has been detected only once at a certain lo-
cation has a lower certainty than an object which has been
detected more often at the same location. In addition, an
object detected using P1 has a higher certainty than one de-
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tected using P2, since information from P1 is more detailed
than that from P2.

Map building in LTM is achieved through positive rein-
forcement, negative reinforcement and time-vanishing neg-
ative reinforcement. Every time an object is detected at the
same location in STM, it is positively reinforced until it has
reached a maximum value M, which defines it as a perma-
nent object and its value will not decline over time. Each
time a known object cannot be verified in the STM map,
its value is negatively reinforced, until the value becomes
zero which leads to the elimination of the object. All non-
permanent locations in the LTM map which are not updated
within a time interval T are negatively reinforced, thereby
fading in time if no positive reinforcement is received. This
process of map building allows the robot to also manage its
memory, by “forgetting” and erasing information which is
not consistent or no longer true.

In order to apply corrections of position and orientation,
the robot also processes P2 images for landmark recogni-
tion. The OpenSURF library [1] is used to perform keypoint
detection and to match landmarks contained in its “known
landmark library” (KLL). Each landmark may have multi-
ple views stored in the KLL. All images in the KLL are
taken with the camera at the same distance D such that the
robot can estimate its relative position to the recognised ob-
ject: the ratio of the diagonals of the bounding boxes which
contain the SURF keypoints in both images (P2 and KLL)
is proportional to the distance between robot and landmark.
Nevertheless, the estimate is not very accurate. When the
robot recognises a landmark, it stores the landmark’s posi-
tion and orientation in memory, i.e., the LTM map buffer.
When the robot encounters a landmark again, it corrects its
own position and orientation in the map. This way, the posi-
tion error is corrected every time the robot finds a previously
detected landmark. With this SLAM algorithm the robot is
able to navigate from landmark to landmark, also detect-
ing and avoiding obstacles. The robot also keeps a buffer
with its last 10 positions in order to avoid areas which were
previously explored while performing a task like finding a
specific landmark or returning to the start location.

All processing is done on a laptop which receives images
by Wi-Fi from a Surveyor SRV-1 robot. All movement in-
structions are given in durations, like go forward 200 ms.
It is possible to estimate the distance from the duration, but
it also depends on the state of the battery and the tracks’
adherence to the floor. A test environment was created in
a garage with six landmarks 1-6 (shoe boxes, bags, tool
boxes), 0 being the start position. Green tape on the floor
delimits the robot’s sandbox; see Fig. 1 (left). The robot
was given the task of finding the dark grey and red tool box,
numbered 6, and then returning to its initial position. This
was successfully achieved. Figure 1 (right) shows the plot-
ted LTM map buffer acquired by the robot.

3. Conclusions and Further Work
We presented a new framework for a realtime SLAM

cognitive robot, using only vision and without precise
odometry nor accurate ranging sensors. The onlya priori
knowledge consists of images of obstacles and landmarks.
Therefore, the next step is to include autonomous learn-
ing of new objects, also solving the problem of memorising
their views taken at the same distance D as used for known
objects. In addition, a path optimisation algorithm must be
included in order to improve global navigation efficiency,
such that the system mounted on a bigger robot platform
can also explore real environments like corridors etc.

The long-term goal is to integrate advanced models of
the processing in our visual system, the so-called what
and where pathways which employ multi-scale line, edge
and keypoint representations for stereo disparity, optical
flow, and invariant object categorisation and recognition [4].
In particular, saliency maps for Focus-of-Attention can be
used to steer attention to really important locations, such
that a lot of processing of trivial locations can be avoided.
The real challenge is to integrate atomic motor and vision
actions into seamless visuomotor sequences, as vision is an
active process steered by scene and object awareness and
behaviour.
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Figure 1. Sandbox with landmarks (left) and
plotted LTM after task completion (right).
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