
A vision system for detecting paths and moving obstacles for the blind

J. José, M. Farrajota, J.M.F. Rodrigues, J.M.H. du Buf

Vision Laboratory, Institute for Systems and Robotics (ISR),

University of the Algarve (FCT and ISE), Faro, Portugal

{jjose, jrodrig, dubuf}@ualg.pt and elsio_farrajota@hotmail.com

Abstract1— In this paper we present a monocular vision

system for a navigation aid. The system assists blind

persons in following paths and sidewalks, and it alerts

the user to moving obstacles which may be on collision

course. Path borders and the vanishing point are de-

tected by edges and an adapted Hough transform. Opti-

cal flow is detected by using a hierarchical, multi-scale

tree structure with annotated keypoints. The tree struc-

ture also allows to segregate moving objects, indicating

where on the path the objects are. Moreover, the centre

of the object relative to the vanishing point indicates

whether an object is approaching or not.

I. INTRODUCTION

Navigation of blind people is very arduous because

they must use the white cane for obstacle detection

while following the front sides of houses and shops,

meanwhile memorising all locations they are becom-

ing familiar with. In a new, unfamiliar setting they

completely depend on people passing by to ask for a

certain shop or the closest post office. Crossing a

street is a challenge, after which they may be again

disoriented. In a society in which very sophisticated

technology is available, from tracking GPS-RFID

equipped containers in an area of hundreds of meters

to GPS-GIS car navigation to Bluetooth emitting the

sound of movie trailers to mobile phones in front of

cinemas, one can question what it may cost to provide

the blind with the most elementary technology to

make life a little bit easier. This technology may not

replace the cane, but should complement it: alert the

user to obstacles a few metres away and provide guid-

ance for going to a specific location in town or in a

shopping centre.

Different approaches exist to help the visually im-

paired. One system for obstacle avoidance is based on

a hemispherical ultrasound sensor array [1]. It can

detect obstacles in front and unimpeded directions are

obtained via range values at consecutive times. The

system comprises an ARM9 embedded system, the

sensor array, an orientation tracker and a set of pager

motors. Talking Points is an urban orientation system

Acknowledgements: This research was supported by the Portu-

guese Foundation for Science and Technology (FCT), through the
pluri-annual funding of the Institute for Systems and Robotics (ISR-

Lisbon/IST) by the POS_Conhecimento Program which includes

FEDER funds, and by the FCT project SmartVision: active vision
for the blind (PTDC/EIA/73633/2006).

[5] based on electronic tags with spoken (voice) mes-

sages. These tags can be attached to many landmarks

like entrances of buildings, elevators, but also bus

stops and busses. A push-button on a hand-held device

is used to activate a tag, after which the spoken mes-

sage is made audible by the device's small loud-

speaker. iSONIC [10] is a travel aid complementing

the cane. It detects obstacles at head-height and alerts

by vibration or sound to dangerous situations, with an

algorithm to reduce confusing and unnecessary detec-

tions. iSONIC can also give information about object

colour and environmental brightness.

The Portuguese project “SmartVision: active vision

for the blind,” financed by the Portuguese Foundation

for Science and Technology, combines several tech-

nologies, GPS, GIS, Wi-Fi and computer vision, to

create a system which assists the visually impaired

navigate in- and outdoor [7]. One of its modules

serves to help the blind navigate outdoors on paths

and sidewalks. It must alert the user to possible obsta-

cles, both fixed objects and moving ones like persons

and animals which may be on collision course, and

how to avoid them.

There exist some methods to detect the borders of

paths and sidewalks, see e.g. [9]. In a previous paper

[2] we presented a detection method for paths with

fixed obstacles. The system first detects the path bor-

ders, using edge information in combination with a

tracking mask, to obtain straight lines with their slopes

and the vanishing point. Once the borders are found, a

rectangular window is defined within which two ob-

stacle detection methods are applied. The first deter-

mines the variation of the maxima and minima of the

gray levels of the pixels. The second uses the binary

edge image and searches in the vertical and horizontal

histograms for discrepancies in the number of edge

points. Together, these methods allow to detect possi-

ble obstacles with their position and size, such that the

user can be alerted and informed about the best way to

avoid them.

 In this paper we present an improved method for

border detection, which is faster and more robust, and

focus on moving objects on the path which may be on

collision course.

 In Section 2 we present path detection and in Sec-

tion 3 the detection of moving objects. Section 4 is

devoted to tracking moving objects on the path which

may be on collision course, and we conclude with a

discussion in Section 5.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sapientia

https://core.ac.uk/display/61500006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:%7bjjose,%20jrodrig,%20dubuf%7d@ualg.pt
mailto:elsio_farrajota@hotmail.com

II. PATH DETECTION

In the SmartVision project, a stereo camera (Bum-

blebee 2 from Point Grey Research Inc.) is fixed to the

chest of the blind, at a height of about 1.5 m from the

ground. Results presented here were obtained by using

only the right-side camera, and the system performs

equally well using a normal, inexpensive webcam

with about the same resolution. The resolution must

be sufficient to resolve textures of the pavements

related to possible obstacles like holes and loose

stones [2] with a minimum size of about 10 cm at a

distance of 3 to 5 m from the camera (the first metres

are not covered because of the height of the camera;

this area is covered by the cane swayed by the user).

Detection of path borders is based on: (A) defining a

Path Detection Window where we will search

for the borders in each frame; (B) some pre-processing

of the frame to detect the important edges and to build

an Adapted Hough Space (AHS); and (C) the highest

values in the AHS yield the borders.

A. Path Detection Window PDW

Let denote an input frame with fixed width

 and height . Let HL denote the horizon line close

to the middle of the frame. If the camera is exactly in

the horizontal position, then HL = /2. If the camera

points lower or higher, HL will be higher or lower,

respectively; see Fig. 1. The borders of the path or

sidewalk are normally the most continuous and

straight lines in the lower half of the frame, delimited

by HL.

Figure 1. From left to right: camera pointing down,

horizontally aligned, and pointing up. The Path Detec-

tion Window is highlighted in the images.

Because of perspective projection, the left and right

borders of the path and many other straight structures

intersect at the vanishing point VP. Since the horizon-

tal camera alignment is not fixed but varies over time

when the user walks, we use the VP in order to deter-

mine the line: . Consequently, the path

detection window is defined by with

 and , if the top-left pixel of

each frame is the origin of the coordinate system.

Different PDWs are illustrated in Fig. 1.

The value of HL is computed dynamically, by aver-

aging the values of the previous five frames: for ,

i.e., frame number i which still must be analysed,

 . This cannot be done in the

case of the first five frames, for which we use

 . This is not a problem because the first

frames are mainly used for system initialisation and a

frame rate of 5 fps implies only one second.

B. Adapted Hough Space AHS

The Canny edge detector and an adapted version of

the Hough transform are applied to for the detec-

tion of the borders and the vanishing point. In order to

reduce CPU time, only gray-scale information is proc-

essed after resizing the window to a width of 300

pixels using bilinear interpolation, maintaining the

aspect ratio. Then two iterations of a 3x3 smoothing

filter are applied in order to suppress noise.

The Canny [3] edge detector is applied with
 , which defines the size of the Gaussian filter, in

combination with and which are

the low and high thresholds for hysteresis edge track-

ing. The result is a binary edge image , of

width and height , with

 and , and with the extrapo-

lated horizontal line (vanishing point) at
 . Figure 2 (left) shows one original frame

together with the resized and lowpass-filtered PDW

(top-right) and detected edges (bottom-right).

Figure 2. Left: one original frame. Right: resized

PDW after low-pass filtering (top) and the binary edge

image (bottom).

The borders of paths and sidewalks are usually

found to the left and to the right, assuming that the

path or sidewalk is in the camera’s field of view; see

e.g. Fig. 4. We use the Hough transform [12], where

 , to search for lines in the

left and right halves of the PDW for border candi-

dates, also assuming that candidates intersect at a

vanishing point.

As we want to check straight lines in the two halves

of the window using polar coordinates, we use a dif-

ferent reference point. Let

 , see Fig. 3

(top), be the new origin at the bottom-centre of image

 , where is related to by

and is related to by , with

 and .

The Hough transform is applied to , yielding the

Adapted Hough Space with
and , and .
For we apply , and for

 we apply , in order to adjust

the interval to polar coordinates such that no lines are

repeated or missed.

Figure 3. Top: PDW with detected edges and coor-

dinate systems. Middle: AHS with zoomed areas (at

bottom). The left and right borders are marked in red

and green, respectively.

Since we have “mirrored” lines for and for

the same values of , we only calculate the lines for

 for the right border, which we denote by

 Similarly, the lines for

 are computed for the left border,

 because of the mirror axis.

For we use and

 . For we use

 and the same as for

 . This means that corresponds to

a vertical line with and , and

 has the same but . For

obtaining the maximal number of pixels on the pro-

jected lines and , we increment by 1 the

and compute the corresponding and for

 . For we increment by 1

the , with , and calculate the

corresponding

.

The space is filled by checking the pixels in

from top to bottom: left-to-right for the right border

 and right-to-left for the left border (). As

for the normal Hough space, is a histogram which

is used to count the co-occurrences of aligned pixels

in the binary edge map . However, there are two

differences.

First, vertical and horizontal lines in the image can-

not be borders of a path or sidewalk (see e.g. Fig. 1).

Hence, we restrict the Hough space to
 such that vertical and al-

most vertical lines in the intervals and

 are ignored; the same is done for hori-

zontal and almost horizontal lines in the interval

 This yields a reduction of CPU time of

about 30%.

Second, longer sequences of edge pixels count more

than short sequences or not-connected edge-pixels. To

this purpose we use a counter P which can be in-

creased or reset. When we check each pixel in for

a projected line and find the 1st ON pixel,

and the corresponding bin will increment

by 1. If the 2nd pixel following the first ON pixel is

also ON, will be incremented by 2, and is

incremented by =3, and so on. If a next pixel is OFF,

the variable is reset to 0 and is not

changed. In other words, a run of n connected edge

pixels has P values of 1, 3, 5, 7, etc., or
 , with , and the run will contribute to the

relevant bin.

The final value of the bin is the sum of

the value(s) of all sequences of ON pixel(s):

 , with the number of se-

quence(s) of ON pixel(s) and each sequence having at

least one ON pixel.

An is shown in Fig. 3 (middle) together with

magnified regions (bottom). The left and right borders

are marked in red and green, respectively, also in the

edge map (top).

C. Path borders

Until here we explained the computation of , but

only during the initialisation phase of the first 5

frames. After the initialisation phase, for optimisation

and accuracy purposes, we will not check the entire

 space. Each border (, both left and right, is

stored during the initialisation in the array ,

with the frame number.

After the fifth frame (), we already have five

pairs of points in , which define two regions in .

These regions indicate where in the next border

positions are expected. The regions are limited by the

minima and , and by the maxima

 and , in the left and the right halves of

 .

In frames , we look for the highest value(s) in

 in the regions between and

 , and between and

 , on the left and on the right side, respec-

tively, with and . This procedure is

applied for all always considering the borders

found in the previous five frames.

In the two regions as defined above we look for the

highest values in . We start by checking the

highest value, and then the 2nd highest value. If the

2nd highest value represents a border which is more

similar to the border of the previous frame, we still

check the 3rd highest value and so on. If a next high-

est value does not correspond to a border which is

more similar to the border of the previous frame, the

search is terminated and the best match is selected.

Borders are considered more similar if the intersec-

tion of the new candidates () and the intersection

of the borders of the previous frame () have a

smaller distance d, with

 .

In this search, all combinations of left and right bor-

der candidates are considered. If in the left or right

regions where the values are checked there is no

maximum which corresponds to at least one sequence

of at least 10 connected ON pixels, the border is con-

sidered not found for that side. In this case, the aver-

age of the last 5 borders found is used:

 and

 on the corre-

sponding side. Figure 4 shows the results of path and

border detection in the case of two image sequences.

III. DETECTION OF MOVING OBJECTS

Apart from detecting path borders and possible sta-

tionary obstacles on the path, see also [2], it is neces-

sary to detect and track moving obstacles like persons

and animals. To this purpose we use multi-scale, an-

notated, and biologically-inspired keypoints. Keypoint

detection is based on Gabor filters [6], and provides

important image information because keypoints code

local image complexity. Moreover, since keypoints

are caused by line and edge junctions, detected key-

points can be classified by the underlying vertex struc-

ture, such as K, L, T, + etc. This is very useful for

matching problems: object recognition, stereo dispar-

ity and optical flow.

The process for tracking moving objects consists of

three steps: (A) multi-scale keypoints are detected and

annotated; (B) multi-scale optical flow maps are com-

puted and objects are segregated; and (C) the regions

that enclose objects allow us to track the objects’

movements and their directions.

Figure 4. Two sequences with detected borders

(white lines), the path being highlighted.

A. Keypoint Detection and Annotation

Gabor quadrature filters provide a model of cortical

simple cells [6]. In the spatial domain (x, y) they con-

sist of a real cosine and an imaginary sine, both with a

Gaussian envelope.

Responses of even and odd simple cells, which cor-

respond to real and imaginary parts of a Gabor filter,

are obtained by convolving the input image with the

filter kernels. Responses are denoted by
 and

 , s being the scale given by the wavelength λ

(λ = 1 corresponds to 1 pixel), and j the orientation

 with the number of orientations. We

use 8 orientations, and 8 scales

equally spaced on λ = [6, 27] with .

Responses of complex cells are modelled by the

modulus which feed two types of end-

stopped cells, single and double

for details see [6]. Responses of end-stopped cells in

combination with sophisticated inhibition schemes

yield keypoint maps .

In order to classify any detected keypoint, the re-

sponses of simple cells
 and

 are analysed, but

now using orientations,

and . This means that for each Gabor

filter orientation on there are two opposite key-

point classification orientations on , e.g. a Ga-

bor filter at results in and

 .

Classifying keypoints is not trivial, because re-

sponses of simple and complex cells, which code the

underlying lines and edges at the vertices, are unreli-

able due to response interference effects [8]. This

implies that responses must be analysed in a

neighbourhood around each keypoint, and the size of

the neighbourhood must be proportional to the scale of

the cells, i.e., the size of the filter kernels.

The validation of line and edge orientations which

contribute to the vertex structure is based on an analy-

sis of the responses, both
 and

 , and consists of

three steps: (1) only responses with small variations at

three distances are considered, (2) local maxima of the

responses over orientations are filtered and the re-

maining orientations are discarded, and (3) even and

odd responses are matched in order to filter the orien-

tations which are common to both. The same process-

ing is applied at any scale s ().

In step (1), for each orientation the responses of

the simple cells on three circles around the keypoint

positions, with radii λ/2, λ and 2λ, are compared, con-

sidering also orientation intervals . The

three maximum responses in the orientation in-

terval around k and at the three radii r are detected,

and their maximum . Only responses

with small variations at the three radii are considered,

i.e., .

In step (2), the average is com-

puted and, for validation purposes, all below

 are suppressed. If there exist maximum re-

sponses for the two neighbouring orientations

 and , they will be removed if
 or . The above values were

determined by analysing simple objects like triangles,

squares and polygons.

The analysis in step (3) only concerns the matching

of equal orientations, discarding any orientation which

is not detected in the responses of both even
) and

odd (
 simple cells. Remaining orientations are

attributed to the keypoint, plus the junction type L, T,

+ etc.

In the above procedure there is only one exception:

keypoints at isolated points and blobs, especially at

very coarse scales, are also detected but they are not

caused by line/edge junctions. Such keypoints are

labeled “blob” without attributed orientations.

Figure 5 illustrates responses of simple cells in the

case of a black square in a noisy background. It shows

two scales, λ = 6 (column 1 and 2) and λ = 15 (column

3 and 4), only three orientations of all 8, even cells in

columns 1 and 3 and odd cells in columns 2 and 4.

Dark levels are negative and bright ones are positive.

Also shown is one detected keypoint at each scale

with (in red) the three distances λ/2, λ and 2λ at which

the responses are tested.

Figure 6 shows keypoint detection and annotation

results together with optical flow. At top-left it shows

one frame from the sequence shown in Fig. 1, and at

top-right a combination of two successive frames. The

second row shows keypoints detected at two scales, λ

= 6 (left) and 15 (right). The third row shows anno-

tated keypoints at the two scales, and the fourth dis-

placement vectors between the successive frames.

Figure 5. Responses of simple cells. Top to bottom:

3 orientations at two scales λ = 6 (left) and 15 (right).

Left to right: responses of even and odd simple cells,

plus one detected keypoint with (in red) the 3 dis-

tances at which the responses are analysed.

B. Optical Flow

To compute the optical flow, we do not consider

each scale independently for two reasons: (1) non-

relevant areas of the image can be skipped because of

the hierarchical scale structure, and (2) by applying a

multi-scale strategy, the accuracy of keypoint match-

ing can be increased, thus increasing the accuracy of

the overall optical flow. Therefore we apply a multi-

scale tree structure in which at the coarsest scale a root

keypoint defines a single object, and finer scales add

more keypoints which constitute the object’s parts and

details. As stated before, at a very coarse level a key-

point may correspond to one big object. However,

because of limited CPU time the coarsest scale applied

will be λ = 27, which is a compromise between speed

and quality of results. Hence, at the moment all key-

points at λ = 27 are considered to represent individual

objects, although we know that several of those may

belong to the same object.

Each keypoint at the coarsest scale can be linked to

one or more keypoints at one finer scale, which can be

slightly displaced. This link is created by down-

projection using an area with the size of the filter (λ).

This linking is repeated until the finest scale is

reached. Hence, keypoints at a finer scale which are

outside the “circle of influence” of keypoints at a

coarser scale will not be relevant, thus avoiding un-

necessary computations. Figure 7 illustrates the link-

ing principle by cones.

At any scale, each annotated keypoint of frame i can

be compared with all annotated keypoints in frame i-1.

However, this comparison is restricted to an area of

radius λ in order to save time, because (1) at fine

scales many keypoints outside the area can be skipped

since they are not likely to match over large distances,

and (2) at coarse scales there are less keypoints, the

radius λ is bigger and therefore larger distances (mo-

tions) are represented there. The tree structure is built

top-down (Fig. 7), but the matching process is bottom-

up: it starts at the finest scale because there the accu-

racy of the keypoint annotation is better.

Figure 6. Keypoint annotation and matching. Top:

one frame from the sequence shown in Fig. 1 (left)

and two successive frames combined (right). The

second row shows detected keypoints at scales λ = 6

(left) and 15 (right). The third row shows annotated

keypoints and the bottom row displacement vectors

between the successive frames (top-right).

Keypoints are matched using three similarity criteria

with different weight factors: the distance D, the at-

tributed orientations O, and the tree correspondence C.

The distance D serves to emphasise keypoints which

are closer to the centre of the area. For having D=1 at

the centre and at radius λ, we use

 with d the Euclidean distance. The

orientation error O measures the differences of the

attributed orientations, but with a relaxation of

of all orientations such that also small rotations are

allowed. Similar to D, the summed differences are

combined such that indicates good correspon-

dence and a lack of correspondence. Obvi-

ously, keypoints marked "blob" do not have orienta-

tions and are treated separately. Parameter C measures

the number of matched keypoints at finer scales, i.e.,

at any scale coarser than the finest scale. The keypoint

candidates to be matched in frame i and in the area

with radius λ are linked in the tree to localised sets of

keypoints at all finer scales. The number of linked

keypoints which have been matched is divided by the

total number of linked keypoints. Hence, parameter C

describes the consistency of the matching at a candi-

date's position at the finer scales, thereby influencing

the matching of the candidate at the actual scale.

The three parameters are combined using the simi-

larity measure

with parameters = 0.7 and = 0.6. These values

were determined empirically. The candidate keypoint

with the highest value S in the area (λ) is selected and

the vector between the keypoint in frame i and the

matched one in frame i-1 is computed. The remaining

candidates in the area can be matched to other key-

points in frame i-1, provided they are in their local

area. Keypoints which cannot be matched are dis-

carded. Figure 6 shows, at the bottom, the vectors

between matched keypoints at λ = 6 (left) and λ =15

(right). Since optical flow in this example is mainly

due to movement of the camera, it can be seen that

there are some errors. In principle, outliers could be

removed, but improvement of the matching process is

still subject to ongoing research.

Figure 7. Hierarchical scale structure; see text.

IV. TRACKING OF OBJECTS ON COLLISION COURSE

As mentioned above, at a very coarse scale each

keypoint should correspond to an individual object.

However, at the coarsest scale applied (λ = 27) this

may not be the case and an object may create several

keypoints. In order to determine which keypoints may

belong to the same object we combine saliency maps

with the multi-scale tree structure.

Figure 8. A sequence of 4 frames (top) with saliency

maps at left and optical flow at right, both at λ=6.

A saliency map can be based on keypoints as these

code local image complexity [6]. Such a map is cre-

ated by summing detected keypoints over all scales s,

such that keypoints which are stable over scale inter-

vals yield high peaks, but in order to connect the indi-

vidual peaks and yield regions a relaxation area is

applied. As applied above, the area is proportional to

the scale and has radius λ. Here, in order to save CPU

time, the process is simplified and saliency maps are

created by summing responses of end-stopped cells

[6]. Figure 8 (bottom-left) shows three examples

scaled to the interval [0, 255], but only at scale λ =6.

The saliency map of a frame defines, after threshold-

ing, separated regions-of-interest (RoI) and these can

be intersected with the regions as defined by the tree

structure (Fig. 7). Hence, neighbouring keypoints are

grouped together in the RoIs and their displacement

vectors after the matching process yield the optical

flow of segregated image regions, i.e., where an indi-

vidual object or a combination of connected

(sub)objects is or are moving. In order to discard small

optical flow due to camera motion, optical flow vec-

tors are only computed if at at least 4 scales the

matched keypoints in successive frames have dis-

placement vectors with a length which is bigger than 1

pixel.

Figure 8 (top) shows four successive frames of a se-

quence. The bottom part shows saliency maps of the

last three frames (at left) together with optical flow

vectors (at right), both at one fine scale. By using the

intersections of the thresholded saliency maps and the

areas defined by the tree structure, the optical flow

vectors of the keypoints in segregated regions can be

averaged, and the intersected RoIs can be approxi-

mated by curve fitting, here simplified by a rectangu-

lar bounding box. The centre of the bounding box is

used for tracking moving objects over frames, also

indicating where exactly the object is on the path. This

is illustrated in Fig. 9. It shows parts of two se-

quences, and in each frame the detected path borders

and the bounding boxes plus one combined image

which shows the tracking of the centre of the bound-

ing box. The flow vector of the centre allows us to

detect the lateral movements left-to-right and right-to-

left, and the distance between the centre and the van-

ishing point of the path borders indicates whether the

object is moving towards or away from the camera.

This is shown by the colour of the arrows in the top-

right corners of the frames: yellow means movement

at the same distance, green means going away, but red

indicates an approaching object such that the user can

be alerted to be even more cautious than in the yellow

or green cases.

V. CONCLUSIONS

We presented a system for detecting path borders

and the vanishing point, together with a biologically

inspired algorithm for optical flow based on multi-

scale keypoint annotation and matching. Moving ob-

stacles can be detected and tracked, such that the blind

user can be alerted and informed about the approxi-

mate position on the path and whether the object is

approaching or not. Detection of moving obstacles

complements detection of static obstacles in front on

the path, just beyond the reach of the white cane [2].

Having a reasonably fast algorithm for optical flow,

the same algorithm can be applied to stereo disparity

in order to also estimate the distance to objects, both

moving and static. The algorithms will be integrated

in the SmartVision prototype, which also employs a

GIS with GPS, WiFi and passive as well as active

RFID tags [4].

The developed vision system is not unique. Re-

cently, a similar system has been developed for intel-

ligent cars, for tracking roads and lanes and for detect-

ing possible obstacles like pedestrians [11]. The basic

concepts like borders, vanishing point and optical flow

are the same, but the implementation is completely

different. This is also due to the different require-

ments: a car may have a speed of 100 km/h, but blind

persons with the white cane do not exceed 1 m/s.

However, all CPU power of a portable computer will

be required because the ultimate goal is to substitute a

big part of the functionality of a normal visual system.

Figure 9. Parts of two sequences with tracked moving

objects; see text.

REFERENCES

[1] B. Shin, C. Lim. “Obstacle detection and avoid-

ance system for visually impaired people”, Proc.

2nd Int. Workshop on Haptic and Audio Interac-

tion Design, Springer LNCS 4813, Seoul, South

Korea, Nov. 29-30, 2007, pp.78-85.

[2] D. Castells, J.M.F. Rodrigues, J.M.H. du Buf.

“Obstacle detection and avoidance on sidewalks”,

Proc. Int. Conf. on Computer Vision-Theory and

Applications, Angers, France, May 17-21, 2010,

Vol. 2, pp. 235-240.

[3] J. Canny. “A computational approach to edge

detection”. IEEE Trans. on Pattern Analysis and

Machine Intelligence, 679-698, 1986.

[4] J. Faria, S. Lopes, H. Fernandes, P. Martins, J.

Barroso. “Electronic white cane for blind people

navigation assistance”, Accepted for World

Automation Congress, Kobe, Japan, Sept. 19-23,

2010.

[5] J. Stewart, S. Bauman, M. Escobar, J. Hilden, K.

Bihani, M. Newman. “Accessible contextual in-

formation for urban orientation”. Proc. 10th Int.

Conf. on Ubiquitous Computing, Seoul, Korea,

Sept. 21–24, 2008, Vol. 344, pp. 332-335.

[6] J.M.F. Rodrigues, J.M.H. du Buf. “Multi-scale

keypoints in V1 and beyond: object segregation,

scale selection, saliency maps and face detection”,

BioSystems, Vol. 86, pp. 75-90, 2006.

doi:10.1016/ j.biosystems.2006.02.019.

[7] J.M.H. du Buf et al. “The SmartVision navigation

prototype for the blind”, Subm. to Int. Conf. on

Software Development for Enhancing Accessibil-

ity and Fighting Info-exclusion, Oxford, United

Kingdom, Nov. 25-26, 2010.

[8] J.M.H. du Buf. “Responses of simple cells: events,

interferences, and ambiguities.” Biol. Cybern. 68,

321–333, 1993.

[9] K. Kayama, I. Yairi, S. Igi. “Detection of sidewalk

border using camera on low-speed buggy”. Proc.

Int. Conf. on Artificial Intelligence and Applica-

tions, Innsbruck, Austria, , Feb. 13-15, 2007, pp.

262–267.

[10] L. Kim, S. Park, S. Lee, S. Ha. “An electronic

traveler aid for the blind using multiple range sen-

sors”, IEICE Electronics Express 6 (11), 794-799,

2009.

[11] N. Onkarappa, A.D. Sappa. “On-board monocu-

lar vision system pose estimation through a dense

optic flow”, Proc. Int. Conf. on Image Analysis

and Recognition, Póvoa do Varzim, Portugal,

June 21-23, 2010, Springer LNCS 6111, pp. 230-

239.
[12] R. Duda, P. Hart. “Use of the Hough transform to

detect lines and curves in pictures”. Comm.

ACM, Vol. 15 , 11-15, 1972.

