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Abstract1— In this paper we present a monocular vision 

system for a navigation aid. The system assists blind 

persons in following paths and sidewalks, and it alerts 

the user to moving obstacles which may be on collision 

course.  Path borders and the vanishing point are de-

tected by edges and an adapted Hough transform. Opti-

cal flow is detected by using a hierarchical, multi-scale 

tree structure with annotated keypoints. The tree struc-

ture also allows to segregate moving objects, indicating 

where on the path the objects are. Moreover, the centre 

of the object relative to the vanishing point indicates 

whether an object is approaching or not. 

I. INTRODUCTION 

Navigation of blind people is very arduous because 

they must use the white cane for obstacle detection 

while following the front sides of houses and shops, 

meanwhile memorising all locations they are becom-

ing familiar with. In a new, unfamiliar setting they 

completely depend on people passing by to ask for a 

certain shop or the closest post office. Crossing a 

street is a challenge, after which they may be again 

disoriented. In a society in which very sophisticated 

technology is available, from tracking GPS-RFID 

equipped containers in an area of hundreds of meters 

to GPS-GIS car navigation to Bluetooth emitting the 

sound of movie trailers to mobile phones in front of 

cinemas, one can question what it may cost to provide 

the blind with the most elementary technology to 

make life a little bit easier. This technology may not 

replace the cane, but should complement it: alert the 

user to obstacles a few metres away and provide guid-

ance for going to a specific location in town or in a 

shopping centre. 

Different approaches exist to help the visually im-

paired. One system for obstacle avoidance is based on 

a hemispherical ultrasound sensor array [1]. It can 

detect obstacles in front and unimpeded directions are 

obtained via range values at consecutive times. The 

system comprises an ARM9 embedded system, the 

sensor array, an orientation tracker and a set of pager 

motors. Talking Points is an urban orientation system 
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[5] based on electronic tags with spoken (voice) mes-

sages. These tags can be attached to many landmarks 

like entrances of buildings, elevators, but also bus 

stops and busses. A push-button on a hand-held device 

is used to activate a tag, after which the spoken mes-

sage is made audible by the device's small loud-

speaker. iSONIC [10] is a travel aid complementing 

the cane. It detects obstacles at head-height and alerts 

by vibration or sound to dangerous situations, with an 

algorithm to reduce confusing and unnecessary detec-

tions. iSONIC can also give information about object 

colour and environmental brightness. 

The Portuguese project “SmartVision: active vision 

for the blind,” financed by the Portuguese Foundation 

for Science and Technology, combines several tech-

nologies, GPS, GIS, Wi-Fi and computer vision, to 

create a system which assists the visually impaired 

navigate in- and outdoor [7]. One of its modules 

serves to help the blind navigate outdoors on paths 

and sidewalks. It must alert the user to possible obsta-

cles, both fixed objects and moving ones like persons 

and animals which may be on collision course, and 

how to avoid them. 

There exist some methods to detect the borders of 

paths and sidewalks, see e.g. [9]. In a previous paper 

[2] we presented a detection method for paths with 

fixed obstacles. The system first detects the path bor-

ders, using edge information in combination with a 

tracking mask, to obtain straight lines with their slopes 

and the vanishing point. Once the borders are found, a 

rectangular window is defined within which two ob-

stacle detection methods are applied. The first deter-

mines the variation of the maxima and minima of the 

gray levels of the pixels. The second uses the binary 

edge image and searches in the vertical and horizontal 

histograms for discrepancies in the number of edge 

points. Together, these methods allow to detect possi-

ble obstacles with their position and size, such that the 

user can be alerted and informed about the best way to 

avoid them. 

 In this paper we present an improved method for 

border detection, which is faster and more robust, and 

focus on moving objects on the path which may be on 

collision course.    

  In Section 2 we present path detection and in Sec-

tion 3 the detection of moving objects. Section 4 is 

devoted to tracking moving objects on the path which 

may be on collision course, and we conclude with a 

discussion in Section 5. 
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II. PATH DETECTION  

In the SmartVision project, a stereo camera (Bum-

blebee 2 from Point Grey Research Inc.) is fixed to the 

chest of the blind, at a height of about 1.5 m from the 

ground. Results presented here were obtained by using 

only the right-side camera, and the system performs 

equally well using a normal, inexpensive webcam 

with about the same resolution. The resolution must 

be sufficient to resolve textures of the pavements 

related to possible obstacles like holes and loose 

stones [2] with a minimum size of about 10 cm at a 

distance of 3 to 5 m from the camera (the first metres 

are not covered because of the height of the camera; 

this area is covered by the cane swayed by the user).  

Detection of path borders is based on: (A) defining a 

Path Detection Window       where we will search 

for the borders in each frame; (B) some pre-processing 

of the frame to detect the important edges and to build 

an Adapted Hough Space (AHS); and (C) the highest 

values in the AHS yield the borders.  

A. Path Detection Window PDW 

Let         denote an input frame with fixed width 

   and height   . Let HL denote the horizon line close 

to the middle of the frame. If the camera is exactly in 

the horizontal position, then HL =   /2. If the camera 

points lower or higher, HL will be higher or lower, 

respectively; see Fig. 1. The borders of the path or 

sidewalk are normally the most continuous and 

straight lines in the lower half of the frame, delimited 

by HL. 

 

                     

 
Figure 1. From left to right: camera pointing down, 

horizontally aligned, and pointing up. The Path Detec-

tion Window is highlighted in the images. 

 

Because of perspective projection, the left and right 

borders of the path and many other straight structures 

intersect at the vanishing point VP. Since the horizon-

tal camera alignment is not fixed but varies over time 

when the user walks, we use the VP in order to deter-

mine the line:        . Consequently, the path 

detection window is defined by           with 

         and           , if the top-left pixel of 

each frame is the origin of the coordinate system. 

Different PDWs are illustrated in Fig. 1. 

The value of HL is computed dynamically, by aver-

aging the values of the previous five frames: for    , 

i.e., frame number i which still must be analysed, 

             
   
        . This cannot be done in the 

case of the first five frames, for which we use 

        . This is not a problem because the first 

frames are mainly used for system initialisation and a 

frame rate of 5 fps implies only one second. 

B. Adapted Hough Space AHS 

The Canny edge detector and an adapted version of 

the Hough transform are applied to      for the detec-

tion of the borders and the vanishing point. In order to 

reduce CPU time, only gray-scale information is proc-

essed after resizing the window to a width of 300 

pixels using bilinear interpolation, maintaining the 

aspect ratio. Then two iterations of a 3x3 smoothing 

filter are applied in order to suppress noise. 

The Canny [3] edge detector is applied with   
   , which defines the size of the Gaussian filter, in 

combination with          and        which are 

the low and high thresholds for hysteresis edge track-

ing. The result is a binary edge image          , of 

width        and height              , with 

            and           , and with the extrapo-

lated horizontal line (vanishing point) at    
           . Figure 2 (left) shows one original frame 

together with the resized and lowpass-filtered PDW 

(top-right) and detected edges (bottom-right). 

 

 

 
Figure 2. Left: one original frame. Right: resized 

PDW after low-pass filtering (top) and the binary edge 

image    (bottom). 

 

The borders of paths and sidewalks are usually 

found to the left and to the right, assuming that the 

path or sidewalk is in the camera’s field of view; see 

e.g. Fig. 4. We use the Hough transform [12], where 

                 , to search for lines in the 

left and right halves of the PDW for border candi-

dates, also assuming that candidates intersect at a 

vanishing point.  

As we want to check straight lines in the two halves 

of the window using polar coordinates, we use a dif-

ferent reference point. Let           
 
 , see Fig. 3 

(top), be the new origin at the bottom-centre of image 

  , where     is related to    by               

and     is related to    by                , with 

             and                     .  



The Hough transform is applied to    , yielding the 

Adapted Hough Space           with             
and        , and                        . 
For            we apply        , and for 

            we apply        , in order to adjust 

the interval to polar coordinates such that no lines are 

repeated or missed. 

 

Figure 3. Top: PDW with detected edges and coor-

dinate systems. Middle: AHS with zoomed areas (at 

bottom). The left and right borders are marked in red 

and green, respectively.  

 

Since we have “mirrored” lines for   and     for 

the same values of  , we only calculate the lines for 

           for the right border, which we denote by 

       
     

 
 
   Similarly, the lines for   

           are computed for the left border, 

         
     

 
 
   because of the     mirror axis.  

For      we use                        and 

         
             . For        we use 

                and the same     as for   

        . This means that            corresponds to 

a vertical line with            and         , and 

             has the same     but         . For 

obtaining the maximal number of pixels on the pro-

jected lines      and       , we increment by 1 the   
 

 

and compute the corresponding       and       for 

          . For             we increment by 1 

the      , with                , and calculate the 

corresponding   
 

. 

The      space is filled by checking the pixels in     

from top to bottom: left-to-right for the right border 

       and right-to-left for the left border (      ). As 

for the normal Hough space,      is a histogram which 

is used to count the co-occurrences of aligned pixels 

in the binary edge map    . However, there are two 

differences.  

First, vertical and horizontal lines in the image can-

not be borders of a path or sidewalk (see e.g. Fig. 1). 

Hence, we restrict the Hough space to   
                      such that vertical and al-

most vertical lines in the intervals             and 

            are ignored; the same is done for hori-

zontal and almost horizontal lines in the interval  

            This yields a reduction of CPU time of 

about 30%. 

Second, longer sequences of edge pixels count more 

than short sequences or not-connected edge-pixels. To 

this purpose we use a counter P which can be in-

creased or reset. When we check each pixel in     for 

a projected line      and find the 1st ON pixel,     

and the corresponding           bin will increment 

by 1. If the 2nd pixel following the first ON pixel is 

also ON,   will be incremented by 2, and           is 

incremented by  =3, and so on. If a next pixel is OFF, 

the variable   is reset to 0 and           is not 

changed. In other words, a run of n connected edge 

pixels has P values of 1, 3, 5, 7, etc., or         
 , with     , and the run will contribute    to the 

relevant      bin.  

The final value of the           bin is the sum of 

the    value(s) of all sequences of ON pixel(s): 

               
 
   , with   the number of se-

quence(s) of ON pixel(s) and each sequence having at 

least one ON pixel. 

An      is shown in Fig. 3 (middle) together with 

magnified regions (bottom). The left and right borders 

are marked in red and green, respectively, also in the 

edge map     (top). 

C. Path borders 

Until here we explained the computation of     , but 

only during the initialisation phase of the first 5 

frames. After the initialisation phase, for optimisation 

and accuracy purposes, we will not check the entire 

     space. Each border (    , both left and right, is 

stored during the initialisation in the array        , 

with   the frame number. 

After the fifth frame (    ), we already have five 

pairs of points in  , which define two regions in     . 

These regions indicate where in        the next border 

positions are expected. The regions are limited by the 



minima          and         , and by the maxima 

         and         , in the left and the right halves of 

    . 

In frames    , we look for the highest value(s) in 

            in the regions between             and 

           , and between             and 

           , on the left and on the right side, respec-

tively, with       and      . This procedure is 

applied for all      always considering the borders 

found in the previous five frames. 

In the two regions as defined above we look for the 

highest values in       . We start by checking the 

highest value, and then the 2nd highest value. If the 

2nd highest value represents a border which is more 

similar to the border of the previous frame, we still 

check the 3rd highest value and so on. If a next high-

est value does not correspond to a border which is 

more similar to the border of the previous frame, the 

search is terminated and the best match is selected.  

Borders are considered more similar if the intersec-

tion of the new candidates (   ) and the intersection 

of the borders of the previous frame (     ) have a 

smaller distance d, with                   
  

               
     . 

In this search, all combinations of left and right bor-

der candidates are considered. If in the left or right 

regions where the      values are checked there is no 

maximum which corresponds to at least one sequence 

of at least 10 connected ON pixels, the border is con-

sidered not found for that side. In this case, the aver-

age of the last 5 borders found is used:    

    
   
         and        

   
         on the corre-

sponding side. Figure 4 shows the results of path and 

border detection in the case of two image sequences. 

III. DETECTION OF MOVING OBJECTS  

Apart from detecting path borders and possible sta-

tionary obstacles on the path, see also [2], it is neces-

sary to detect and track moving obstacles like persons 

and animals. To this purpose we use multi-scale, an-

notated, and biologically-inspired keypoints. Keypoint 

detection is based on Gabor filters [6], and provides 

important image information because keypoints code 

local image complexity. Moreover, since keypoints 

are caused by line and edge junctions, detected key-

points can be classified by the underlying vertex struc-

ture, such as K, L, T, + etc. This is very useful for 

matching problems: object recognition, stereo dispar-

ity and optical flow. 

The process for tracking moving objects consists of 

three steps: (A) multi-scale keypoints are detected and 

annotated; (B) multi-scale optical flow maps are com-

puted and objects are segregated; and (C) the regions 

that enclose objects allow us to track the objects’ 

movements and their directions.  

  

  

  

Figure 4. Two sequences with detected borders 

(white lines), the path being highlighted. 

A. Keypoint Detection and Annotation 

Gabor quadrature filters provide a model of cortical 

simple cells [6]. In the spatial domain (x, y) they con-

sist of a real cosine and an imaginary sine, both with a 

Gaussian envelope.  

Responses of even and odd simple cells, which cor-

respond to real and imaginary parts of a Gabor filter, 

are obtained by convolving the input image with the 

filter kernels. Responses are denoted by     
       and 

    
      , s being the scale given by the wavelength λ 

(λ = 1 corresponds to 1 pixel), and j the orientation 

         with    the number of orientations. We 

use 8 orientations,            and 8 scales 

equally spaced on λ = [6, 27] with     . 

Responses of complex cells are modelled by the 

modulus            which feed two types of end-

stopped cells, single           and double            

for details see [6]. Responses of end-stopped cells in 

combination with sophisticated inhibition schemes 

yield keypoint maps        .  

In order to classify any detected keypoint, the re-

sponses of simple cells     
  and     

  are analysed, but 

now using          orientations,          

and           . This means that for each Gabor 

filter orientation on       there are two opposite key-

point classification orientations on       , e.g. a Ga-

bor filter at         results in         and 

        .   

Classifying keypoints is not trivial, because re-

sponses of simple and complex cells, which code the 

underlying lines and edges at the vertices, are unreli-



able due to response interference effects [8]. This 

implies that responses must be analysed in a 

neighbourhood around each keypoint, and the size of 

the neighbourhood must be proportional to the scale of 

the cells, i.e., the size of the filter kernels. 

The validation of line and edge orientations which 

contribute to the vertex structure is based on an analy-

sis of the responses, both     
  and     

 , and consists of 

three steps: (1) only responses with small variations at 

three distances are considered, (2) local maxima of the 

responses over orientations are filtered and the re-

maining orientations are discarded, and (3) even and 

odd responses are matched in order to filter the orien-

tations which are common to both. The same process-

ing is applied at any scale s ( ). 

In step (1), for each orientation    the responses of 

the simple cells on three circles around the keypoint 

positions, with radii λ/2, λ and 2λ, are compared, con-

sidering also orientation intervals         . The 

three maximum responses      in the orientation in-

terval around k and at the three radii r are detected, 

and their maximum             . Only responses 

with small variations at the three radii are considered, 

i.e.,          .  

In step (2), the average               is com-

puted and, for validation purposes, all      below 

       are suppressed. If there exist maximum re-

sponses     for the two neighbouring orientations 

     and     , they will be removed if       
        or              . The above values were 

determined by analysing simple objects like triangles, 

squares and polygons.  

The analysis in step (3) only concerns the matching 

of equal orientations, discarding any orientation which 

is not detected in the responses of both even      
 ) and 

odd (    
   simple cells. Remaining orientations    are 

attributed to the keypoint, plus the junction type L, T, 

+ etc. 

In the above procedure there is only one exception: 

keypoints at isolated points and blobs, especially at 

very coarse scales, are also detected but they are not 

caused by line/edge junctions. Such keypoints are 

labeled “blob” without attributed orientations. 

Figure 5 illustrates responses of simple cells in the 

case of a black square in a noisy background. It shows 

two scales, λ = 6 (column 1 and 2) and λ = 15 (column 

3 and 4), only three orientations of all 8, even cells in 

columns 1 and 3 and odd cells in columns 2 and 4. 

Dark levels are negative and bright ones are positive. 

Also shown is one detected keypoint at each scale 

with (in red) the three distances λ/2, λ and 2λ at which 

the responses are tested.  

Figure 6 shows keypoint detection and annotation 

results together with optical flow. At top-left it shows 

one frame from the sequence shown in Fig. 1, and at 

top-right a combination of two successive frames. The 

second row shows keypoints detected at two scales, λ 

= 6 (left) and 15 (right). The third row shows anno-

tated keypoints at the two scales, and the fourth dis-

placement vectors between the successive frames. 

 
Figure 5. Responses of simple cells. Top to bottom: 

3 orientations at two scales λ = 6 (left) and 15 (right). 

Left to right: responses of even and odd simple cells, 

plus one detected keypoint with (in red) the 3 dis-

tances at which the responses are analysed.      

B. Optical Flow  

To compute the optical flow, we do not consider 

each scale independently for two reasons: (1) non-

relevant areas of the image can be skipped because of 

the hierarchical scale structure, and (2) by applying a 

multi-scale strategy, the accuracy of keypoint match-

ing can be increased, thus increasing the accuracy of 

the overall optical flow. Therefore we apply a multi-

scale tree structure in which at the coarsest scale a root 

keypoint defines a single object, and finer scales add 

more keypoints which constitute the object’s parts and 

details. As stated before, at a very coarse level a key-

point may correspond to one big object. However, 

because of limited CPU time the coarsest scale applied 

will be λ = 27, which is a compromise between speed 

and quality of results. Hence, at the moment all key-

points at λ = 27 are considered to represent individual 

objects, although we know that several of those may 

belong to the same object. 

Each keypoint at the coarsest scale can be linked to 

one or more keypoints at one finer scale, which can be 

slightly displaced. This link is created by down-

projection using an area with the size of the filter (λ). 

This linking is repeated until the finest scale is 

reached. Hence, keypoints at a finer scale which are 

outside the “circle of influence” of keypoints at a 

coarser scale will not be relevant, thus avoiding un-

necessary computations. Figure 7 illustrates the link-

ing principle by cones.  

At any scale, each annotated keypoint of frame i can 

be compared with all annotated keypoints in frame i-1. 

However, this comparison is restricted to an area of 

radius λ in order to save time, because (1) at fine 

scales many keypoints outside the area can be skipped 

since they are not likely to match over large distances, 



and (2) at coarse scales there are less keypoints, the 

radius λ is bigger and therefore larger distances (mo-

tions) are represented there. The tree structure is built 

top-down (Fig. 7), but the matching process is bottom-

up: it starts at the finest scale because there the accu-

racy of the keypoint annotation is better. 

 
Figure 6. Keypoint annotation and matching. Top: 

one frame from the sequence shown in Fig. 1 (left) 

and two successive frames combined (right). The 

second row shows detected keypoints at scales λ = 6 

(left) and 15 (right). The third row shows annotated 

keypoints and the bottom row displacement vectors 

between the successive frames (top-right).  

 

Keypoints are matched using three similarity criteria 

with different weight factors: the distance D, the at-

tributed orientations O, and the tree correspondence C. 

The distance D serves to emphasise keypoints which 

are closer to the centre of the area. For having D=1 at 

the centre and     at radius λ, we use                  

          with d the Euclidean distance. The 

orientation error O measures the differences of the 

attributed orientations, but with a relaxation of       

of all orientations such that also small rotations are 

allowed. Similar to D, the summed differences are 

combined such that     indicates good correspon-

dence and     a lack of correspondence. Obvi-

ously, keypoints marked "blob" do not have orienta-

tions and are treated separately. Parameter C measures 

the number of matched keypoints at finer scales, i.e., 

at any scale coarser than the finest scale. The keypoint 

candidates to be matched in frame i and in the area 

with radius λ are linked in the tree to localised sets of 

keypoints at all finer scales. The number of linked 

keypoints which have been matched is divided by the 

total number of linked keypoints. Hence, parameter C 

describes the consistency of the matching at a candi-

date's position at the finer scales, thereby influencing 

the matching of the candidate at the actual scale.  

The three parameters are combined using the simi-

larity measure                          

with parameters   = 0.7 and   = 0.6. These values 

were determined empirically. The candidate keypoint 

with the highest value S in the area (λ) is selected and 

the vector between the keypoint in frame i and the 

matched one in frame i-1 is computed. The remaining 

candidates in the area can be matched to other key-

points in frame i-1, provided they are in their local 

area. Keypoints which cannot be matched are dis-

carded. Figure 6 shows, at the bottom, the vectors 

between matched keypoints at λ = 6 (left) and λ =15 

(right). Since optical flow in this example is mainly 

due to movement of the camera, it can be seen that 

there are some errors. In principle, outliers could be 

removed, but improvement of the matching process is 

still subject to ongoing research. 

 

 
Figure 7. Hierarchical scale structure; see text.  

IV. TRACKING OF OBJECTS ON COLLISION COURSE  

As mentioned above, at a very coarse scale each 

keypoint should correspond to an individual object. 

However, at the coarsest scale applied (λ = 27) this 

may not be the case and an object may create several 

keypoints. In order to determine which keypoints may 



belong to the same object we combine saliency maps 

with the multi-scale tree structure. 

Figure 8. A sequence of 4 frames (top) with saliency 

maps at left and optical flow at right, both at λ=6. 

 

A saliency map can be based on keypoints as these 

code local image complexity [6]. Such a map is cre-

ated by summing detected keypoints over all scales s, 

such that keypoints which are stable over scale inter-

vals yield high peaks, but in order to connect the indi-

vidual peaks and yield regions a relaxation area is 

applied. As applied above, the area is proportional to 

the scale and has radius λ. Here, in order to save CPU 

time, the process is simplified and saliency maps are 

created by summing responses of end-stopped cells 

[6]. Figure 8 (bottom-left) shows three examples 

scaled to the interval [0, 255], but only at scale λ =6. 

The saliency map of a frame defines, after threshold-

ing, separated regions-of-interest (RoI) and these can 

be intersected with the regions as defined by the tree 

structure (Fig. 7). Hence, neighbouring keypoints are 

grouped together in the RoIs and their displacement 

vectors after the matching process yield the optical 

flow of segregated image regions, i.e., where an indi-

vidual object or a combination of connected 

(sub)objects is or are moving. In order to discard small 

optical flow due to camera motion, optical flow vec-

tors are only computed if at at least 4 scales the 

matched keypoints in successive frames have dis-

placement vectors with a length which is bigger than 1 

pixel. 

Figure 8 (top) shows four successive frames of a se-

quence. The bottom part shows saliency maps of the 

last three frames (at left) together with optical flow 

vectors (at right), both at one fine scale. By using the 

intersections of the thresholded saliency maps and the 

areas defined by the tree structure, the optical flow 

vectors of the keypoints in segregated regions can be 

averaged, and the intersected RoIs can be approxi-

mated by curve fitting, here simplified by a rectangu-

lar bounding box. The centre of the bounding box is 

used for tracking moving objects over frames, also 

indicating where exactly the object is on the path. This 

is illustrated in Fig. 9. It shows parts of two se-

quences, and in each frame the detected path borders 

and the bounding boxes plus one combined image 

which shows the tracking of the centre of the bound-

ing box. The flow vector of the centre allows us to 

detect the lateral movements left-to-right and right-to-

left, and the distance between the centre and the van-

ishing point of the path borders indicates whether the 

object is moving towards or away from the camera. 

This is shown by the colour of the arrows in the top-

right corners of the frames: yellow means movement 

at the same distance, green means going away, but red 

indicates an approaching object such that the user can 

be alerted to be even more cautious than in the yellow 

or green cases. 

V. CONCLUSIONS 

We presented a system for detecting path borders 

and the vanishing point, together with a biologically 

inspired algorithm for optical flow based on multi-

scale keypoint annotation and matching. Moving ob-

stacles can be detected and tracked, such that the blind 

user can be alerted and informed about the approxi-

mate position on the path and whether the object is 

approaching or not. Detection of moving obstacles 

complements detection of static obstacles in front on 

the path, just beyond the reach of the white cane [2]. 



Having a reasonably fast algorithm for optical flow, 

the same algorithm can be applied to stereo disparity 

in order to also estimate the distance to objects, both 

moving and static. The algorithms will be integrated 

in the SmartVision prototype, which also employs a 

GIS with GPS, WiFi and passive as well as active 

RFID tags [4].  

The developed vision system is not unique. Re-

cently, a similar system has been developed for intel-

ligent cars, for tracking roads and lanes and for detect-

ing possible obstacles like pedestrians [11]. The basic 

concepts like borders, vanishing point and optical flow 

are the same, but the implementation is completely 

different. This is also due to the different require-

ments: a car may have a speed of 100 km/h, but blind 

persons with the white cane do not exceed 1 m/s. 

However, all CPU power of a portable computer will 

be required because the ultimate goal is to substitute a 

big part of the functionality of a normal visual system. 

 
Figure 9. Parts of two sequences with tracked moving 

objects; see text. 
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