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7 Abstract In this paper we present a new model for

8 invariant object categorization and recognition. It is based

9 on explicit multi-scale features: lines, edges and keypoints

10 are extracted from responses of simple, complex and end-

11 stopped cells in cortical area V1, and keypoints are used to

12 construct saliency maps for Focus-of-Attention. The model

13 is a functional but dichotomous one, because keypoints are

14 employed to model the ‘‘where’’ data stream, with dynamic

15 routing of features from V1 to higher areas to obtain trans-

16 lation, rotation and size invariance, whereas lines and edges

17 are employed in the ‘‘what’’ stream for object categorization

18 and recognition. Furthermore, both the ‘‘where’’ and ‘‘what’’

19 pathways are dynamic in that information at coarse scales is

20 employed first, after which information at progressively

21 finer scales is added in order to refine the processes, i.e., both

22 the dynamic feature routing and the categorization level.

23 The construction of group and object templates, which are

24 thought to be available in the prefrontal cortex with ‘‘what’’

25 and ‘‘where’’ components in PF46d and PF46v, is also

26 illustrated. The model was tested in the framework of an

27 integrated and biologically plausible architecture.

28

29 Keywords Categorization � Recognition �
30 Dynamic routing � Cortical architecture
31

32Introduction

33Object detection, segregation, categorization, and recog-

34nition are linked processes which cannot be completely

35sequential; they must be done in parallel, at least partially,

36and therefore they are overlapping; Rensink (2000). These

37processes are achieved in the ventral ‘‘what’’ and dorsal

38‘‘where’’ pathways, Deco and Rolls (2004), with bottom-up

39feature extractions in areas V1, V2, V4, and IT1 (what) in

40parallel with top-down attention from PP via MT to V2 and

41V1 (where). The latter is steered by possible object tem-

42plates in memory, i.e., in prefrontal cortex with a ‘‘what’’

43component in PF46v and a ‘‘where’’ component in PF46d.

44The Deco and Rolls model can explain invariance and

45attention besides the facts that cells at higher cortical areas

46have bigger receptive fields and that they are coding more

47complex patterns. However, their model is based on

48responses of simple cells in V1, whereas we are aiming at

49functional feature extractions in V1 and beyond. Although

50many image and object features are represented implicitly

51by simple cells, we apply explicit feature extractions:

52multi-scale line, edge and keypoint representations on the

53basis of cortical simple, complex and end-stopped cells;

54Rodrigues and du Buf (2006, 2008). The ultimate goal is to

55integrate feature extractions into a cortical architecture.

56We are studying three related problems: when, where

57and how does categorization take place. The ‘‘when’’

58problem allows for two hypotheses. The easy one is to

59assume that categorization occurs after recognition; Rie-

60senhuber and Poggio (2000): if specific neurons respond in

61the case of recognizing dog-1, dog-2, and dog-3, a group-

62ing cell can combine all responses: a dog. This view is too
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63 simplistic, because the system must collect evidence for a

64 specific object or object group in order to select possible

65 templates in memory. For example, when we glance a

66 portrait made by Arcimbaldo, the famous, sixteenth-cen-

67 tury Italian painter, our first reaction is ‘‘a face!’’, but then

68 follows ‘‘fruits?’’ and finally ‘‘the cheek is an apple!’’

69 When categorization occurs before recognition, Grill-

70 Spector and Kanwisher (2005), the ‘‘where’’ problem is, at

71 least partly, solved: it must take place at a very high level,

72 with access to object templates in memory, and just before

73 recognition. In fact, recognition can be seen as a last cat-

74 egorization step. Therefore, the ‘‘how’’ problem can be

75 solved by taking into account feature extractions in V1 and

76 beyond and the propagation of features to higher cortical

77 areas. During the past years, we concentrated on the

78 extraction of low-level primitives: lines, edges and key-

79 points, all multi-scale, see, e.g., Rodrigues and du Buf

80 (2004, 2006, 2008). We showed that keypoint scale space

81 provides ideal information for constructing saliency maps

82 for Focus-of-Attention (FoA), and that the grouping of

83 keypoints at different scales is robust for face detection;

84 Rodrigues and du Buf (2006). Therefore, keypoints and

85 FoA are thought to provide major cornerstones for the

86 ‘‘where’’ system. In parallel, we showed that the multi-

87 scale line/edge representation provides ideal information

88 for object and face recognition, Rodrigues and du Buf

89 (2008), i.e., in the ‘‘what’’ system. However, detection in

90 the fast ‘‘where’’ pathway (a face!) must be linked with

91 categorization and recognition in the slower ‘‘what’’ path-

92 way (whose face?). The balance between the use of lines/

93 edges and keypoints in the two pathways is still an open

94 question.

95 A less open question concerns the use of features

96 detected at different scales: information at coarse scales

97 propagates first to higher areas, after which information at

98 progressively finer scales arrives there; Bar (2004). This

99 probably implies that coarse-scale information is used for a

100 first, fast, but rough categorization, after which categori-

101 zation is refined using information at progressively finer

102 scales until an object is recognized. Bar (2003) proposed

103 that a first categorization is based on a lowpass-filtered

104 image of the object, but a smeared blob lacks structure. In

105 our own experiments, Rodrigues and du Buf (2008), we

106 therefore applied a different approach: after segregation,

107 the coarse-scale line/edge representation of the outline is

108 used for pre-categorization, after which all information is

109 used for final categorization and recognition.

110 Any 3D object can lead to an infinite number of

111 different projected images on the retinae due to varia-

112 tions in position, distance, lighting, and other factors

113 including rotation and deformation. The ability to iden-

114 tify objects despite all possible transformations is central

115 to visual object recognition. However, this still is a

116poorly understood mechanism, Cox et al. (2005), and

117transform-tolerant recognition remains a major problem

118in the development of artificial vision systems. In our

119brain, transform-invariant object recognition is automatic

120and robust, but it ultimately depends on experience; Tarr

121(2005). Recent findings, e.g., Cox et al. (2005), even

122support the idea that visual representations in the brain

123are plastic and largely a product of our visual environ-

124ment and that invariant object representations are not

125rigid nor finalized—they are continually evolving enti-

126ties, ready to adapt to changes in the environment. This

127idea complicates the classical idea of static representa-

128tions in which only two but related problems need to be

129solved: (1) partial invariance to reasonable transforma-

130tions like 2D rotation in the case of any canonical object

131view, which is addressed in this paper and (2) the total

132number of (3D) canonical object views that must be

133stored in memory. However, also plasticity can be

134explored at the two levels, in this paper in the form of

135dynamic routing for obtaining partial invariance to rea-

136sonable transformations.

137There are several approaches to biological object rec-

138ognition. Here, we focus briefly on approaches which, to

139some degree, are related to our own approach and

140architecture. Olshausen et al. (1993) described a model

141that relies on a set of control neurons, which dynamically

142modify the synaptic strengths of intracortical connections

143such that information from a windowed region of the

144primary cortex is selectively routed to higher cortical

145areas. Local spatial relationships (i.e. topography) within

146the attentional window are preserved as information is

147routed through the cortex. This enables attended objects

148to be represented in higher areas within an object-cen-

149tered reference frame that is position and size invariant.

150Olshausen et al. hypothesize that the pulvinar (at the

151posterior part of the thalamus) may provide the control

152signals for routing information through the cortex. In

153preattentive mode, the control neurons receive their input

154from a low-level ‘‘saliency map’’ representing potentially

155interesting regions of a scene. During the pattern-recog-

156nition phase, control neurons are driven by the interaction

157between top-down (memory) and bottom-up (retinal

158input) sources.

159In Rensink’s (2000) triadic architecture, early preatten-

160tive processes feed both an attentional system concerned

161with coherent objects, and a non-attentional system con-

162cerned with scene gist and spatial layout. Instead of oper-

163ating sequentially, the latter two subsystems operate

164concurrently for providing a context that can guide the

165allocation of attention. In this view, attention is no longer a

166central gateway through which all information must pass,

167but just one system that operates concurrently with several

168other (sub)systems. Furthermore, a scene is experienced via
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169 a ‘‘virtual representation’’ in which object representations

170 are formed in a ‘‘just-in-time’’ fashion, only existing as

171 long as they are needed.

172 The laterally interconnected synergetically self-orga-

173 nizing map (LISSOM), Miikkulainen et al. (2005), consists

174 of a ‘‘family’’ of computational models which aim to rep-

175 licate the detailed development of the visual cortex. The

176 model can explain invariant (only size and viewpoint)

177 detection of objects like faces. Hamker (2005) presented a

178 feature-based computational model for invariant (but only

179 translation) object detection in complex backgrounds

180 (natural scenes) driven by attention in V4 and IT.

181 The collaboration called ‘‘Detection and Recognition of

182 Objects in the Visual Cortex’’ integrates effort at several

183 laboratories, aiming at a quantitative, hierarchical recog-

184 nition model. The integrated architecture, like our own,

185 reflects the general organization of the visual cortex in a

186 stack of layers from V1 to IT to PF cortex; Serre and

187 Riesenhuber (2004). Walther et al. (2005) are extending the

188 basic recognition model by integrating a saliency-based

189 and essentially bottom-up attentional model.

190 Deco and Rolls (2004) presented an invariant model that

191 incorporates feedback-biasing effects of top-down atten-

192 tional mechanisms in a hierarchically organized set of

193 cortical areas with convergent feed forward connectivity,

194 reciprocal feedback connections and local area competi-

195 tion. The model displays space-based and object-based

196 covert visual search by using attentional top-down feed-

197 back from either the PP or the IT cortical modules, with

198 interactions between the ventral and dorsal data streams

199 occurring in V1 and V2. Deco and Rolls (2005) described a

200 computational framework and showed how an attentional

201 state held in short-term memory in PF cortex can, by top-

202 down processing, influence the ventral and dorsal data

203 streams in different cortical areas. Stringer et al. (2006)

204 showed that invariant object recognition can be based on

205 spatio-temporal continuity (during object translation and

206 rotation) with ‘‘continuous transformation (CT) learning,’’

207 which operates by mapping spatially similar input patterns

208 to the same postsynaptic neurons in a competitive neural

209 network system.

210 The goal of this paper is to show that low-level pro-

211 cessing in terms of multi-scale feature extractions (key-

212 points, lines and edges) can be extended to higher-level

213 processing: invariance in object categorization and recog-

214 nition. We present a new model for obtaining 2D transla-

215 tion, rotation and size invariance by dynamic mapping of

216 saliency maps based on multi-scale keypoint information.

217 In addition, we present an integrated architecture in which

218 coarse-scale information is used for a first but rough cat-

219 egorization, after which additional information at finer

220 scales is used to refine categorization until objects are

221 identified. As a consequence, extended models can cover

222more cognitive aspects in the near future. For example,

223processes like the learning of new objects or new, unex-

224pected views of known objects will become subject to

225explicit modeling.

226The rest of this paper is organized as follows: the next

227section deals with multi-scale feature extraction: lines,

228edges and keypoints plus the construction of saliency maps.

229Invariant categorization and recognition by dynamic rout-

230ing, the construction of group templates and experimental

231results are presented in Section ‘‘Invariant object catego-

232rization and recognition’’. Section ‘‘The creation of group

233templates’’ concerns an integrated cortical architecture for

234the invariant categorization and recognition model. In the

235‘‘Discussion’’ Section we discuss our approach and lines

236for future research. Mathematical formulations of the

237methods are provided in Appendix.

238Lines, edges, keypoints and saliency maps

239In order to explain the object categorization/recognition

240model, it is necessary to illustrate how our visual system can

241reconstruct, more or less, the input image. Image recon-

242struction can be based on one lowpass filter plus a complete

243set of bandpass-wavelet filters, such that the frequency

244domain is evenly covered. This concept is the basis of many

245image coding schemes. It could also be used in the visual

246cortex because simple cells in V1 are often modeled by

247complex Gabor wavelets. These are bandpass filters, Heit-

248ger et al. (1992), and lowpass information can be available

249through special retinal ganglion cells with photoreceptive

250dendrites which are not (in)directly connected to rods and

251cones, the main photoreceptors; Berson (2003). Activities

252of all cells could be combined by summing them in one cell

253layer that would provide a reconstruction or brightness map.

254But this creates a paradox: it is necessary to create yet

255another observer of this map in our brain.

256The solution is simple: instead of summing all cell

257activities, we can assume that the visual system extracts

258lines and edges from simple- and complex-cell responses,

259which is necessary for object recognition, and that

260responding ‘‘line cells’’ are interpreted symbolically by a

261Gaussian cross-profile which is coupled to the scale of the

262underlying simple and complex cells. ‘‘Edge cells’’ are

263interpreted similarly, but with a bipolar, Gaussian-trun-

264cated error function profile (Rodrigues and du Buf 2008).

265Responses of even and odd simple cells, corresponding

266to the real and imaginary parts of a Gabor filter, are

267denoted by Rs
E and Rs

O, s being the scale given by k, the

268wavelength of the Gabor filters, in pixels (we assume that

269all different cells in the model can exist at all pixel posi-

270tions). Responses of complex cells are modeled by the

271modulus Cs. For a detailed formulae see Appendix.

Cogn Process

123
Journal : Large 10339 Dispatch : 18-5-2009 Pages : 19

Article No. : 262
h LE h TYPESET

MS Code : COGPRO-D-07-00012 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

272 The basic scheme for line and edge detection is based on

273 responses of simple cells: a positive (negative) line is

274 detected where RE shows a local maximum (minimum) and

275 RO shows a zero crossing. In the case of edges the even and

276 odd responses are swapped. This gives four possibilities for

277 positive and negative events. For an improved, detailed

278 scheme see Rodrigues and du Buf (2008) and Section ‘‘Cell

279 models and multi-scale feature extraction’’ in Appendix.

280 Figure 1 (top row) shows lines and edges detected at

281 eight scales k = {4; 8; 12; 16; 20; 24; 28; 32}. Different

282 levels of gray, from white to black, are used to show the

283 events: positive/negative lines and positive/negative edges,

284 respectively. As can be seen in Fig. 1, at fine scales many

285 small events have been detected, whereas at coarser scales

286 more global structures remain that convey a ‘‘sketchy’’

287 impression. Similar representations can be obtained by

288 other multi-scale approaches; Lindeberg (1994). The mid-

289 dle row shows, from left to right, the input image, lowpass

290 information, symbolic line and edge interpretations at a

291 fine and a coarse scale, and the reconstructed image

292 (see Section ‘‘Reconstruction model’’ in Appendix). Sum-

293 marizing, the multi-scale line/edge interpretation with

294 unipolar line and bipolar edge cross-profiles allows

295 reconstructing the input image, and exactly the same rep-

296 resentation will be used in the object categorization/

297 recognition process.

298 Another important part of the model is based on

299 responses of end-stopped cells in V1, which are very fuzzy

300 and require optimized inhibition processes in order to

301 detect keypoints at singularities. Recently, the original,

302 single-scale model by Heitger et al. (1992) has been further

303stabilized and extended to arbitrary scale, and the multi-

304scale keypoint representation has been used to detect facial

305landmarks and faces; Rodrigues and du Buf (2005). There

306are two types of end-stopped cells: single and double.

307Responses of these are denoted by Ss and Ds, which cor-

308respond to the first and second derivatives of the responses

309of complex cells Cs. A final keypoint map Ks at scale s is

310obtained by combining local maxima of responses of single

311and double end-stopped cells after applying tangential and

312radial inhibition; see Rodrigues and du Buf (2006) for

313details, also Section ‘‘Cell models and multi-scale feature

314extraction’’ in Appendix. The bottom row in Fig. 1 shows

315detected keypoints (white diamonds) at fine (left) and

316coarse (right) scales superimposed on the darkened input

317image (at the same scales as used in the top row).

318A saliency map for ‘‘driving’’ FoA—for details see

319Rodrigues and du Buf (2006)—can be obtained by sum-

320ming keypoints over all scales. This provides a retinotopic

321(neighborhood-preserving) projection by grouping cells,

322and regions surrounding the peaks can be created by

323assuming that each keypoint has a certain Region-of-

324Influence, the size of which is coupled to the scale (size) of

325the underlying simple and complex cells. Keypoints which

326are stable over many scales will result in large and distinct

327peaks: at centers of objects (coarse scales), at important

328sub-structures (medium scales) and at contour landmarks

329(fine scales). The height of the peaks provides information

330about their relative importance. In other words, since

331keypoints are related to local image complexity, such a

332saliency map (SM) provides information for directing

333attention to image regions which are worth to be

Fig. 1 Top: multi-scale line/edge detection in the case of a mug with,

from left to right, fine to coarse scales. Middle: mug input image

(at left) and reconstruction (at right) by combining lowpass

information (second) and symbolic line/edge interpretations at a

few scales (third and fourth images). Bottom: multi-scale keypoint

representation of the mug with, from left to right, fine to coarse scales
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334 scrutinized, for example by steering the eyes in covert

335 attention. This data stream is data-driven and bottom-up,

336 and it can be combined with top-down processing from IT

337 cortex in order to actively probe the presence of objects in

338 the visual field; Deco and Rolls (2004). Examples of sal-

339 iency maps can be seen in Figs. 4 and 5 (see also Section

340 ‘‘Focus-of-Attention by saliency maps’’ in Appendix).

341 Before using the features in object recognition (next

342 section) it makes sense to discuss whether they are robust

343 enough against noise, i.e., whether they change position,

344 appear or disappear after adding synthetic noise to object

345 images or in real-world conditions under different illumi-

346 nations and objects are seen against complex backgrounds.

347 In our earlier experiments on multi-scale keypoints, Ro-

348 drigues and du Buf (2006), and on multi-scale lines and

349 edges, Rodrigues and du Buf (2008), we showed that

350 extracted features at coarse scales are very stable. How-

351 ever, at fine scales, especially at the finest scales with k of

352 the simple cells equal to a few pixels, significant changes

353 are expected and they do occur. The same problem we

354 encounter when trying to read a text which is too small: we

355 automatically shorten the distance such that the text

356 becomes bigger and our simple cells can resolve detail. In

357 robot vision part of the solution is to measure the distance

358 by the vergence of the stereo camera in combination with

359 changing the zoom factor of the two lens systems. In our

360 earlier experiments, Rodrigues and du Buf (2006, 2008),

361 we explored other solutions for feature stabilization at fine

362 scales: (a) non-classical receptive-field inhibition and (b)

363 micro-scale stabilization. Micro-scale stabilization, i.e.,

364 keeping features that do not change in five of eight con-

365 secutive scales with Dk = 1, proved to be the best method

366 to apply to the entire scale space. In this case only a very

367 few events may change position, but then only one pixel

368 away. When measuring co-occurrences of features in input

369 objects and templates stored in memory (next section) we

370 therefore apply positional relaxation by using grouping

371 cells with a certain dendritic field size, and micro-scale

372 stabilization is applied to all features.

373 Invariant object categorization and recognition

374 To exemplify the model for invariant object categorization

375 and recognition we selected eight groups of objects: dogs,

376 horses, cows, apples, pears, tomatoes, cups, and cars, each

377 with ten different images. The selected images were used at

378 three levels: four types of objects (animals, fruits, cars,

379 cups) for pre-categorization. Two of those were subdivided

380 into three types (animals: horses, cows, dogs; fruits:

381 tomatoes, pears, apples) for categorization. Final recogni-

382 tion concerns the identification of each individual object

383 (e.g., horse number 3).

384In our experiments we used the ETH-80 database,

385Leibe and Schiele (2003), in which all images are cropped

386such that they contain only one object, centered, against a

38720% background. The views of all objects are also nor-

388malized, i.e., all animals with the head to the left (in

389Fig. 6 marked by white triangle). In order to test invariant

390processing, a set of modified input images was created by

391manipulations like translations, rotations, and zooms,

392including deformations (e.g., the head of a horse moved

393up or down relative to the body). We created 64 addi-

394tional input images of the most distinct objects: 20

395manipulated horse images (horses were used as a special

396test case for recognition); 6 dogs, 6 cows, 4 tomatoes, 4

397pears and 4 apples, plus 10 cars and 10 cups. Figure 6

398shows in neighboring left-right columns normalized

399objects and examples of modified objects. An exception is

400the top line which shows different manipulations: the

401normalized horse (marked by white triangle) with the

402head more down, bigger, and rotated and scaled against a

403white background. In what follows it is important to keep

404in mind that templates in memory are always based on

405original, normalized objects in the database, against which

406modified objects will be tested.

407The creation of group templates

408Good object templates in memory—both line/edge maps

409and saliency maps—are fundamental for obtaining good

410recognition results, but at the same time group templates

411must be generic enough to represent only one category for

412(pre-) categorization. Different line/edge templates with

413increasing detail are used in pre-categorization, categori-

414zation and final object recognition, but also different sal-

415iency maps in the dynamic routing for invariance (see next

416section).

417The data structure of a template for each group has

418three components (at each scale): (a) the peaks of the

419saliency map (PSM), (b) the central keypoint (CKP) and

420(c) the line and edge information. For recognition and

421categorization we used the entire original and normalized

422objects, but for pre-categorization we used the segregated

423images extracted from the normalized objects (see Ro-

424drigues and du Buf (2008) for how to extract the segre-

425gated information from the original image); Fig. 4c shows

426one example, a horse, in this case from an un-normalized

427image.

428In order to create the group templates for pre-categori-

429zation (animal, fruit, car, cup), the saliency maps of the

430normalized objects in the database were selected randomly:

431for each group we summed half of the SMs, i.e., 5 SMs in

432the case of the 10 cups and cars, and 15 SMs in the case of

433animal (or fruit) with 10 images each of dogs, horses, and

434cows (or apples, pears and tomatoes). The resulting peaks
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435 (PSM) were obtained by non-maximum suppression and

436 thresholding of the summed SMs. In case of the second

437 categorization of animals and fruits, the same procedure

438 was followed: five randomly selected SMs of horses, dogs

439 and cows, and of apples, pears, and tomatoes. For final

440 recognition the same procedure was used for each object

441 individually, because we only have a single view of each

442 object.

443 Essentially the same procedure was applied to the line/

444 edge maps: random selections of images and logical

445 combinations of event maps (for details see Rodrigues and

446 du Buf (2008) and Section ‘‘Template data structure’’ in

447 Appendix); binary events for pre-categorization (from the

448 segregated images) and for categorization (from the origi-

449 nal images), but considering events with type and polarity

450 for final recognition.

451 It should be stressed that templates were always con-

452 structed on the basis of noise-free images. This is not to say

453 that we expect serious problems, because micro-scale sta-

454 bilization is applied to all features in combination with

455 positional relaxation by grouping cells with a certain den-

456 dritic field size. As a matter of fact, group templates are

457 always influenced by size and position variations due to

458 approximate object normalizations: no two apples are

459 exactly equal in size and position, nor are apples, pears,

460 and tomatoes. Furthermore, our experimental results with

461 local and global feature matching showed that sporadic

462 feature variations are completely irrelevant. More relevant

463 is the question how we can construct a system which is

464 capable to construct (group) templates on the basis of un-

465 normalized object views covering a certain size and

466 viewpoint variation. By definition, such a system can cope

467 with noise; both noise due to imaging conditions and to

468 object variations. The goal in the near future is that the

469 entire process will be implemented and tested in a com-

470 pletely dynamic way, including the integration of newly

471 categorized or recognized objects into the (group)

472 templates.

473 Rows 1 and 2 of Fig. 5 show the templates used in pre-

474 categorization with, from left to right, saliency map, sig-

475 nificant peaks and line/edge map at k = 32 (one of three

476 scales used) for the animal, fruit, car and cup groups. Rows

477 3 to 5 show the same for categorization (k = 8 for the line/

478 edge maps, one of eight scales used) with, from left to

479 right: horse, cow, dog, tomato, pear and apple group tem-

480 plates. The bottom row shows two individual object tem-

481 plates used in recognition, i.e., two examples of the ten

482 different horses, with the line/edge map at k = 4 (one of

483 eight scales used). In Summary, Fig. 5 shows the template

484 information in memory on the basis of normalized objects

485 against which modified objects will be matched. Appendix,

486 Section ‘‘Template data structure’’ summarizes the tem-

487 plate data structures.

488Categorization and recognition by dynamic routing

489For each object/template pair to be matched (categorization

490or recognition) a grouping cell, with its dendritic field (DF)

491in the SM, is positioned at the central keypoint (CKP) that

492represents the entire object/template at very coarse scales

493(Fig. 2a); this cell triggers the matching process (such

494central keypoints at coarse scales are always located at or

495close to an object’s centroid; see Figs. 4 and 6 in Rodrigues

496and du Buf (2006)). The invariant method consists of steps

497a–f as follows:

498(a) a) Central keypoints at very coarse scales of an input

499object and a template are made to coincide (Fig. 2b; T

500stands for translation). This can be seen as a transla-

501tion of all keypoints (SM peaks) of the object to the

502ones of the template (or vice versa), but in reality

503there is no translation: only a dynamic routing by a

504hierarchy of grouping cells with DFs in intermediate

505neural layers such that the response of the central

506grouping cell of the template is maximum.

507(b) The same routing principle of step (a) is applied to the

508two most significant SM peaks (from all scales), one

509of the input object and one of the template. Again,

510grouping cells at those peaks and with DFs in the

(c) (d)

(b)(a)

Fig. 2 Dynamic routing principle: a keypoints in scale space plus the

central keypoint (CKP) at the coarsest scale, b the routing represen-

tation using the CKP and the highest saliency map peak (SMP) for the

initial routing with translation (T), rotation (R) and scaling (S). The

routing of saliency map peaks of an input object to those of a template

in memory (c) is also applied to line edge events (d)
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511 intermediate layers serve to link the peaks by

512 dynamic routing, but this time for compensating

513 rotation and size (Fig. 2b; R and S). The resulting

514 routing (translation, rotation and size projection) is

515 then applied to all significant peaks (Fig. 2c) because

516 they belong to a single object/template pair.

517 Figure 3 illustrates the above two steps. At top-left,

518 central keypoints of template and input object excitate cells

519 at intermediate levels through axonic fields, spreading

520 activations in separate top-down (solid circle) and bottom-

521 up (open circle) trees. This enables grouping cells at all

522 levels to combine the top-down and bottom-up activations

523 (shown in red). Once this first routing has been established,

524 it is propagated laterally to routing cells at all levels. Using

525similar cell structures, most significant peaks in SMs are

526used to refine the routing (Fig. 3 top-right in green and

527bottom-left in blue). In the Discussion this process is also

528called ‘‘anchoring.’’

529(c) All other significant SM peaks of the input object and

530the template are tested in order to check whether

531sufficient coinciding pairs exist for a match. To this

532end another hierarchy of grouping cells is used: from

533many local ones with a relatively small DF to cover

534small differences in position due to object deforma-

535tions, etc., to one global one with a DF that covers the

536entire object/template. Instead of only summing

537activities in the DFs, these grouping cells can be

538inhibited if one input (peak amplitude of object, say)

Fig. 3 Dynamic routing

scheme with spreading and

grouping: at top-left, central

keypoints of template and input

object excitate cells at

intermediate levels through

axonic fields, spreading

activations in separate top-down

(solid circle) and bottom-up

(open circle) trees. Top-right

and bottom-left: similar cell

structures are used for the most

significant peaks in SMs in

order to refine the routing.

Bottom-right: only the

remaining activated cells are

used for the routing
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539 is less than half of the other input (in this case of the

540 template).

541 (d) If the global grouping of corresponding pairs of

542 significant peaks is above a threshold (half of the

543 maximum peak in the SM), the invariant match is

544 positive. If not, this does not automatically mean that

545 input object and template are different: the dynamic

546 routing established in step (b) may be wrong. Steps

547 (b-c) are then repeated by inhibiting the most

548 significant peak of the object and selecting the next

549 biggest peak.

550 (e) If no global match can be achieved, this means that

551 the input object does not correspond to the template or

552 that the view of the object (deformation, rotation or

553 size) is not represented by the template. In this case

554 the same processing is applied using all other

555 templates in memory until the ones are found which

556 could match. Although this process is simulated

557 sequentially in our experiments, in reality this could

558 be done in parallel by means of associative memory;

559 Rehn and Sommer (2006).

560 (f) Up to here, only saliency maps were used to find

561 possibly matching templates, but mainly for dynamic

562 routing which virtually ‘‘superimposes’’ the input

563 object and templates. In this step the dynamic routing

564 of keypoints is also applied to the multi-scale line/

565 edge representations in order to check whether an

566 object and a template really correspond (Fig. 2d).

567 Again, this is done by many grouping cells with small

568 DFs (local correlation of line/edge events) and one

569 with a big DF (global object/template correlation); see

570 Rodrigues and du Buf (2008). The use of the small

571DFs can be seen as a relaxation: two edges of object

572and template count for a match if they are at the same

573position but also if they are very close to each other.

574The size of the DFs is coupled to the size of

575underlying complex cells.

576
577The template information used in step (f) depends on the

578categorization level. In the case of the first, coarse, pre-

579categorization (f.1), only line/edge events (Fig. 4d) at three

580coarse scales of the segregated, binary object (Fig. 4c) are

581used, because (a) segregation must be done before cate-

582gorization and (b) coarse-scale information propagates first

583from V1 to higher cortical areas; Bar et al. (2006). Global

584groupings of lines and edges are compared over all possi-

585bly matching templates, scale by scale, and then summed

586over the three scales, and the template with the maximum

587sum is selected (winner-takes-all). Figure 4f shows a pro-

588jected and matching line/edge map after dynamic routing.

589In the case of the subsequent finer categorization (f.2), the

590process is similar, but now we use line/edge events at all

591eight scales obtained from the object itself instead of from

592the binary segregation. Figure 4g and h show projected

593peaks and the line/edge map used in categorization. Final

594recognition (f.3) differs from categorization (f.2) in that

595line and edge events are treated separately: object lines

596must match template lines and edges must match edges.

597This involves three additional layers of grouping cells, two

598for local co-occurrences of lines and edges and one global.

599Figure 4i and j show projected peaks and the line/edge map

600used in recognition. See Rodrigues and du Buf (2008)

601for complete explanations of the matching processes in

602the case of using only normalized object views, also

Fig. 4 Invariant categorization and recognition steps: a Saliency map

of modified horse8, b SM peaks, c segregated object and d line/edge

coding of segregated object at k = 24. e, f SM peaks and line/edge map

of normalized horse8 (after dynamic routing) in pre-categorization. g, h

The same with line/edge map at k = 8 in categorization. i, j The same

with line/edge map at k = 4 in final recognition. Input object and

matching object (used only in recognition) are shown in Fig. 6 (marked

by a black and white corner triangle)

Cogn Process

123
Journal : Large 10339 Dispatch : 18-5-2009 Pages : 19

Article No. : 262
h LE h TYPESET

MS Code : COGPRO-D-07-00012 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

603 Appendix, Sections ‘‘Dynamic routing’’ and ‘‘Similarity

604 between objects and templates’’.

605 Results

606 The results obtained were quite good: from the 64 modified

607 input images, pre-categorization (animal, fruit, car, and

608 cup) failed in 12 cases. Of the remaining 52 images, cat-

609 egorization (animal: horse, cow, dog; fruit: tomato, pear,

610 apple) failed in 8 cases. Recognition failed for 4 of the 44

611 remaining images. The final recognition rate is therefore

612 62.5%. However, the above numbers are not definitive

613 because they concern a first test of the concept and many

614 errors can be explained. For example, some image

615 manipulations were too extreme and we could have

616 selected less extreme manipulations.

617 As for our previous results obtained with only normal-

618 ized objects, Rodrigues and du Buf (2008), categorization

619 errors occurred mainly for apples and tomatoes, which can

620 be explained by the fact that the shapes are very similar and

621 no color information has been used. In pre-categorization

622 some fruits were categorized as cups. This mainly con-

623 cerned pears and can be explained by the tapered-elliptical

624 shape in combination with size variations, such that key-

625 points and line/edge events of input pears can coincide with

626 those of the cups-group template (Fig. 5 top-right). As

627 expected, especially in the case of recognition, problems

628 occurred with extreme size variations. The scales used

629 (k = [4, 32]) are related to the size of the objects and the

630 level of detail that can be represented. Figure 6 (middle

631 three images in the fourth column) shows the smallest

632 objects that could be dealt with by using these scales. The

633 image at bottom-right proved too extreme (all modified

634 objects shown on the bottom line were not correctly cate-

635 gorized or recognized).

636 It should be emphasized that the method can be applied

637 to images which contain multiple objects. Although our

638 visual system has a limited ‘‘bandwidth’’ and can test only

639 one object at any time Rensink (2000), this problem can be

640 solved by sequential processing of all detected and segre-

641 gated objects. However, if object segregation and recog-

642 nition are coupled processes, we are left with a typical

643 chicken-or-egg problem, unless the process is controlled

644 by, e.g., the gist system (see Discussion). Finally, it should

645 be mentioned that dynamic routing of keypoints (signifi-

646 cant peaks in saliency maps) and line/edge events in

647 intermediate neural layers has consequences for the mini-

648 mum number of canonical object views in memory, i.e., the

649 number of templates. If a horse template has the head to the

650 left and the legs down, but an input horse has been rotated

651 (2D) by 180 degrees such that the head is to the right and

652 the legs are up, dynamic routing will not be possible

653 because there will be a crossing point in the routing at some

654neural layer. In this case a separate template is necessary.

655In addition, recognition in the case of 3D rotation may

656require more templates because of asymmetrical patterns of

657a horse’s fell on its left and right flanks.

658Integrating the architecture

659The invariant object categorization and recognition model

660must be integrated into a cortical architecture, where the

661first task is to get the gist of the scene by a rapid but global

662classification; Oliva and Torralba (2006). After this all the

663objects can be analyzed, but sequentially, i.e., only one

664object at any time; Rensink (2000). Individual objects are

665analyzed in a multi-level recognition process, Grill-Spector

666and Kanwisher (2005), and interesting positions to be ana-

667lyzed after the gist stage are stored in a ‘‘waiting list’’

668(normally, this is modeled by sequential processing of most-

669to-less-important peaks in a saliency map, simulating eye

670movements and fixation points, with inhibition of returns to

671already analyzed positions; Prime and Ward (2006).

672Objects can be categorized or recognized at different

673levels, and some objects do need several processing levels

674before recognition is achieved. For example, in the case of

675a horse called Ted recognition can be achieved after three

676levels: animal, horse, Ted. However, this is a very rigid

677scheme in which all horses need to go through all levels. If

678Ted’s fell is very characteristic, and no other known object,

679animal or car. etc., displays a similar pattern, Ted could be

680recognized instantaneously by using other information

681channels, for example, devoted to color and/or texture. But

682such channels are not yet implemented and our model is

683restricted to multi-scale line/edge and keypoint represen-

684tations. Nevertheless, also in our model an object can be

685recognized at an early level, if a measure for correspon-

686dence—a match with one template in memory—is much

687bigger than a threshold level and correspondence measures

688of all other templates are much smaller than the threshold.

689Figure 7 shows in a ‘‘features and blocks’’ fashion the

690generalized architecture, where each block represents the

691type of feature involved (and scales), as well as the pro-

692cessing done at the different stages. The blocks are dis-

693played in a sequential way with early processing at the top

694and later processing toward the bottom. Only three levels

695are shown (1, 2 and n), but n is variable. At each level,

696three templates are shown (A, B and N), but N is variable

697and a function of the level. Features are indicated by SM

698(saliency map), LE (line-edge code), and LE repr. (sym-

699bolic line/edge representation), the latter two with an

700indication of the scales used (All scales or LF meaning

701coarse scales only). The arrows show the information flow,

702the circles indicate activations, and dashed arrows repre-

703sent feedback loops. If a template cannot reach a global
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704 match (NO), its output will be blocked (X) and cannot

705 reach the MAX block; this is done to prevent the system

706 from selecting some arbitrary template when no template

707 can match. Blocks marked ‘‘thr’’ perform thresholding,

708 with four options: a very low value (\\\) implies the

709 creation of a new template; a very high value ([[[) means

710 final object recognition; if the value is not very much lower

711 than the threshold (\), which means that more information

712 is required to select the correct template, a feedback loop is

713activated (to the rightmost column of blocks, via FoA, in

714order to select more line/edge scales); if the value is not

715very much higher than the threshold ([), a specific tem-

716plate has been selected and this (group) template activates

717(selects) related (group) templates at the next level.

718The heptagonal symbols between the LE and SM blocks

719of all templates represent comparisons (local and global

720correlations or matchings) between input and template

721features: line/edge events (LE) at categorization levels or

Fig. 5 Template data structure, showing only a single scale for each

group. Top two lines: group templates for pre-categorization (animal,

fruit, car and cup) at k = 32. Middle three lines: the same for

categorization (horse, cow, dog, tomato, pear and apple) at k = 8.

Bottom line: templates for final recognition, examples of two different

horses at k = 4
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722 their symbolic representations (LErepr.) at the final rec-

723 ognition level. A comparison is only activated when a

724 global match occurs, and after the dynamic routing of

725 events as explained before. In the rightmost column of

726 blocks, the following abbreviations are used: LF refers to

727 the coarsest scales, AllF—to many scales (coarse, medium

728 and fine) but in octave intervals, AllF to more scales with

729 sub-octave intervals, and AllF ? to the maximum number

730 of scales with the smallest intervals. Instead of using only

731 four selections, the number of scales is dynamic, i.e., more

732 scales will be selected and used until the information

733 provided by new scales becomes redundant.

734 With respect to visual pathways, the ‘‘where’’ path is

735 more related to the detection, segregation, FoA and object-

736 representation blocks in the rightmost column in Fig. 7,

737 whereas the ‘‘what’’ path consists not only of the other

738blocks, but also the object-representation block. With

739respect to cortical areas involved, a strict attribution of the

740functional blocks to areas is still speculative, but a likely

741attribution is the following: simple, complex and end-stop-

742ped cells are located in area V1 (Olshausen and Field (2005).

743Line, edge and keypoint extractions also occur in V1, and

744possibly also in V2. More complex object representations, at

745least of important objects like faces, are established in V4,

746Chelazzi et al. (2001), and in IT, Zoccolan et al. (2005). FoA

747processing may start at the LGN level (before the cortex!)

748but is most pronounced in V4 and beyond Chelazzi et al.

749(2001), and figure-ground segregation may be achieved in

750V2, at least at the level of local occlusions; Qiu and von der

751Heydt (2005). Saliency maps may be present in MT, Born

752and Bradley (2005), and in PP, Deco and Rolls (2004), and

753global matching using templates in IT. Templates of groups

Fig. 6 Examples of objects used for categorization and recognition, with neighboring left-right columns showing the normalized and examples

of modified objects
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754 and objects are stored—or at least available—at PF46

755 (orbitofrontal cortex); Miller (2000).

756 Discussion

757 There are many properties of a real-world scene that can be

758 defined independently of the objects. For instance, a forest

759scene with trees can be described in terms of the degree of

760roughness and homogeneity of its textural components.

761Oliva and Torralba (2006) conclude that there is converg-

762ing evidence that natural scene recognition may not depend

763on recognizing objects, and that the gist does not need to be

764built on top of the processing of individual objects.

765Nevertheless, these processes are complementary. The

766initial gist can be the key for selecting the first group

Fig. 7 Generalized

architecture: blocks, features

and information flow (see text)
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767 templates to start object recognition, but at some stage the

768 objects should corroborate for the interpretation of the

769 scene, and those objects must somehow be segregated. Any

770 computational model of the cortical architecture should

771 start with a model for getting the gist (forest scene), after

772 which object recognition follows using segregated items,

773 from generic information (trees) to more detailed infor-

774 mation (tree type, leaf type). Only at the end of the entire

775 process it may be possible to specify the gist; for example,

776 a Mediterranean forest with tall pine trees.

777 Gist has not yet been implemented in our architecture,

778 because we think that segregation of complex environ-

779 ments like natural scenes and gist are well interconnected

780 processes. These processes may be based on complemen-

781 tary information channels which address motion and dis-

782 parity, but also surface properties instead of structural

783 object shape: (a) color processing in the cytochrome oxi-

784 dase blobs, which are embedded in the cortical hypercol-

785 umns with simple, complex and end-stopped cells for line,

786 edge and keypoint coding, must attribute colors to homo-

787 geneous (line/edge-free but also textured) object surfaces,

788 and (b) texture coding based on specific groupings of

789 outputs of grating cells in the case of rather periodic pat-

790 terns, or other but similar processes in the case of more

791 stochastic patterns. As shown by du Buf (2006), groupings

792 of outputs of grating cells is a straightforward, data-driven

793 and, therefore, fast bottom-up process which provides a

794 segmentation (segregation) of linear, rectangular, and

795 hexagonal textures. Therefore, a gist model, when seeing

796 an image with blue and some white above green with a

797 rather irregular pattern, may classify the scene, after suf-

798 ficient training of course, as Mediterranean outdoor,

799 thereby pre-selecting tree templates with a bias toward

800 different pine trees (tall and more round etc.).

801 Not yet having a gist model, we simply assumed in our

802 experiments that all group templates are available at the

803 first categorization level, and that input objects are always

804 seen against a homogeneous background (i.e. already

805 segregated). At an early stage, only very coarse scales with

806 big intervals are available, then medium scales with

807 smaller intervals appear and finally the fine scales. The

808 appearance and therefore the use of scales is directly

809 related to all steps of the recognition process. The initial

810 segregation starts with coarse scales, which provide a very

811 diffuse object representation. This first segregation triggers

812 a first categorization. When medium scales appear, and

813 then fine scales, the segregation is improved and so is the

814 categorization. The same occurs with the construction of

815 the saliency map, first using keypoints detected at coarse

816 scales and improving the map by adding keypoints detected

817 at increasingly finer scales.

818 Invariance by neural routing from V1 via V2 to V4 etc.

819 is based on the recurrent network layers used in the Deco

820and Rolls (2004) model, however, with one big difference:

821instead of only using simple cells (Gabor model) we apply

822explicit feature extractions and can use specific features to

823guide the routing. As a matter of fact, the routing can be

824seen as two vessels (input object and template) throwing

825anchors toward each other: the first, big anchor is the

826central object keypoint at very coarse scales and this is

827used to ‘‘position’’ the normalized template above the

828(shifted) input object. The second anchor is the most sig-

829nificant peak of the saliency map, obtained by summing

830keypoints over many scales, and this is used to match

831rotation and size. Once ‘‘anchored together,’’ the ‘‘ropes’’

832are used to steer many more ropes that connect specific

833structures of the vessels, like bow, rail and stern, in order to

834check whether the structures are similar and the vessels are

835of the same type.

836Our ‘‘anchoring’’ method is similar to the theory

837developed by Olshausen et al. (1993), suggesting that the

838position and size of the reference frame can be set by the

839position and size of the object in the scene, assuming that

840the scene is at least roughly segmented, and that the ori-

841entation of the reference frame can be estimated from

842relatively low-level cues. The computational advantage of

843such a system is obvious: only a few views of an object

844need to be stored for recognition under different viewing

845conditions. The disadvantage, of course, is that a scene

846containing multiple objects requires serial processing, the

847system only being able to attend one object at a time. The

848same happens in our model and that of Deco and Rolls:

849dynamic routing steers the information flow by adapting

850neural interconnections in V2, etc. for some time, until

851recognition has been achieved, after which the adapted

852steering can be released for the inspection of another object

853(or region around a fixation point). Psychophysical evi-

854dence suggests that the brain, indeed, employs such a

855sequential strategy; Rensink (2000).

856An interesting aspect of models is which features—and

857therefore which image representation—are being used. In

858our own model, explicit features are used: lines, edges, and

859keypoints are detected on the basis of responses of simple,

860complex, and end-stopped cells. The existence of other

861cells with very specific functions, like bar and grating cells,

862points at explicit feature extractions with increasing com-

863plexity at higher cortical areas; Rodrigues and du Buf

864(2006); du Buf (2006). The same idea, extended with

865increasing receptive field sizes, is supported by Deco and

866Rolls (2004), however, without explicit feature extractions.

867By only using simple cells (Gabor model), higher features

868are represented implicitly: complex cells group outputs of

869simple cells and end-stopped cells group outputs of com-

870plex cells. Nevertheless, in principle—they did not test

871this—their model should also be able to achieve invariant

872object recognition by combining feedback effects of top-
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873 down attentional mechanisms in a hierarchically organized

874 set of cortical areas with convergent forward connectivity,

875 reciprocal feedback connections, and local intra-area

876 competition. As a consequence, we may say that these two

877 models are converging, but eventually the same will hap-

878 pen with other computational models; Olshausen et al.

879 (1993); Hamker (2005).

880 The templates used to illustrate the architecture were

881 built from a very small database of 80 different objects. In

882 future work the system must be extended and tested against

883 a huge number of objects with many more categorization

884 levels, thereby simulating a real application which

885 approaches the challenge that our visual system faces every

886 day. In this case, instead of having only three levels to

887 obtain object recognition (pre-categorization, categoriza-

888 tion and recognition), we will have n levels as shown in

889 Fig. 7, each level only having N elements. An input object

890 must not be compared with all the templates in the entire

891 database, nor with a significant number of group templates.

892 Part of the solution, not even mentioned until here, is to

893 apply biasing of associative memory over time, as occurs

894 in our brains: data streams in the case of frequently and

895 recently seen objects are short and fast, whereas those in

896 the case of occasionally and sparsely seen objects are

897 longer and slower.

898 Every time that an object is recognized, its features

899 could be added to all the matching templates. This way the

900 system will be able to learn by updating the database using

901 the most recent views of common objects. As discussed

902 before, this can be done by biasing associative memory, but

903 the memory itself must also be changed, for example by a

904 weighted summation of new and old features, which can be

905 fast in short-term memory but much slower in long-term

906 memory. These ideas raise some problems which are not

907 yet addressed by the present architecture: (a) for avoiding

908 overgeneralization of the groups (classes), a threshold has

909 to be implemented such that, before a class becomes too

910 generic, it can be split (shown in Fig. 7 by ‘‘\\\’’), and yet

911 the two classes which provoked that split must still be

912 generic enough for either class. (b) Objects with noise or

913 occasional variations, like changing illumination or the

914 deformation of non-rigid objects, or which are at the

915 ‘‘edge’’ between two classes, are the ones which pose most

916 problems. Therefore, their features should have a much

917 smaller weight when contributing to the templates. (c) In

918 general, different classes can have different weight factors,

919 for example as a function of the number of objects that has

920 been recognized within the class (group), creating the idea

921 of a priority-secondary (but in reality continuous) organi-

922 zation, especially if temporal modulation (frequently and

923 recently vs. occasionally and sparsely seen objects) is also

924 applied. In addition, temporal changes, not only a sudden

925change of context, can lead to an evolution of the hierarchy

926of templates: they can shift forward toward early (coarse)

927categorization or back toward late (fine) categorization. (d)

928Finally, the contributions of all features can be weighted,

929especially when additional features like disparity (3D

930shape), texture and color will be included in the system.

931Apples vary between green, yellow, orange, red, and

932brown, so only blue can be excluded, but all oranges are

933orange and tomatoes are either green or red. However, such

934rules are not fixed because yellow and orange bell peppers

935appeared next to red and green ones only a few years ago in

936the supermarkets.

937Summarizing, we presented a new model for invariant

938object categorization and recognition based on realistic

939multi-scale features which are extracted in the primary

940visual cortex. The model employs dynamic routing of

941features through the different layers to obtain 2D transla-

942tion, rotation, and size invariance. The model was tested in

943the framework of an integrated and biologically plausible

944architecture in which information at coarse scales is used

945first and information at progressively finer scales later. By

946employing feedback loops, which are known to exist in

947abundance in the visual cortex, attention information based

948on keypoints and saliency maps is used to control the

949process. The entire process is composed of different cate-

950gorization levels, recognition being the last one, with

951sequentially (but overlapping) coarse-to-fine-scale pro-

952cessing. Although not yet yielding perfect results, the

953architecture can deal with reasonable translations, rota-

954tions, and scalings. In a next step, the maximally allowable

955transformations must be determined, which depend on the

956number of neural layers used in the routing, and this will

957provide information on how many views of objects must be

958stored in memory.
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966Appendix Mathematical formulation of the model

967Cell models and multi-scale feature extraction

968of Appendix

969Gabor quadrature filters provide a model of cortical simple

970cells, Heitger et al. (1992). In the spatial domain the

971receptive field (RF) is denoted by (see also Rodrigues and

972du Buf (2006))
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gk;r;h;/ðx; yÞ ¼ exp �~x2 þ c~y2

2r2

� �

cos 2p
~x

k
þ /

� �

; ð1Þ

974974 with ~x ¼ x cos hþ y sin h and ~y ¼ y cos h� x sin h, the

975 aspect ratio c = 0.5 and r determines the size of the RF.

976 The spatial frequency is 1/k, k being the wavelength. For

977 the bandwidth r/k we use 0.56, which yields a half-

978 response width of one octave. The angle h determines the

979 orientation (we use 8 orientations), and / the symmetry.

980 We can apply a linear scaling between fmin and fmax with

981 hundreds of contiguous scales. The scale of analysis is

982 given in terms of k expressed in pixels (k = 1 corresponds

983 to 1 pixel, and images presented have a size of 256 9 256

984 pixels).

985 Responses of even Rs,i
E (x, y) (with / = 0) and odd

986 Rs,i
O (x, y) (with / = -p/2) simple cells are obtained by

987 convolving the input image with luminance distribution

988 f(x, y) with the RFs,

Rk;r;h;/ðx; yÞ ¼ f ðx; yÞ � gk;r;h;/ðx; yÞ
¼
ZZ

X

f ðu; vÞgk;r;h;/ðx� u; y� vÞdudv; ð2Þ

990990 s being the scale number were s = 1 corresponds to k & 4,

991 i the orientation (hi = ip/Nh) and Nh the number of

992 orientations (here 8). Responses of complex cells are

993 modeled by

Cs;i x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RE
s;i x; yð Þ

� �2

þ RO
s;i x; yð Þ

� �2
r

: ð3Þ

995995 There are two types of end-stopped cells (Heitger et al.

996 (1992)), single (S) and double (D). If [.]? denotes the

997 suppression of negative values, and using Ĉi ¼ cos hi and

998 Ŝi ¼ sin hi, then

Ss;iðx; yÞ
¼ Cs;i xþ dŜs;i; y� dĈs;i

� �

�
�

Cs;i x� dŜs;i; yþ dĈs;i

� �	þ
;

ð4Þ

10001000 and

Ds;iðx; yÞ ¼ Cs;i x; yð Þ � 1

2
Cs;i xþ 2dŜs;i; y� 2dĈs;i

� �




�1

2
Cs;iðx� 2dŜs;i; yþ 2dĈs;iÞ

�þ
: ð5Þ

10021002 The responses of the two cell types are obtained by

1003 Ss x; yð Þ ¼
PNh�1

i¼0 Ss;iðx; yÞ and Ds x; yð Þ ¼
PNh�1

i¼0 Ds;iðx; yÞ:
1004 The distance d is scaled linearly with the filter scale s (we

1005 use d = 0.6 s). To compute the keypoint maps, all

1006 responses of end-stopped cells along straight lines and

1007 edges are suppressed, for which tangential (T) and radial

1008 (R) inhibitions are used:

ITs x; yð Þ ¼
X

2Nh�1

i¼0




�Cs;imodNh
x; yð Þ

þCs;imodNh
xþ dĈs;i; yþ dŜs;i
� �

�þ
; ð6Þ

10101010and

IRs x; yð Þ ¼
X

2Nh�1

i¼0




Cs;imodNh
x; yð Þ � 4Cs;ðiþNh=2ÞmodNh

� xþ d

2
Ĉs;i; yþ

d

2
Ŝs;i

� ��þ
: ð7Þ

10121012Then we apply Is = Is
T
? Is

R for obtaining the end-

1013stopped maps Ks
S(x, y) = Ss(x, y) - gIs(x, y) and Ks

D(x,

1014y) = Ds(x, y) - gIs(x, y), with g & 1.0, and the combined

1015map Ks
R(x, y) = max{Ks

S(x, y), Ks
D(x, y)}. In the last step,

1016local maxima of Ks
R(x, y) in x and y are detected to obtain

1017each single point (marked white in Fig. 1, 3rd row) which

1018represents a keypoint at each scale s.

1019The line/edge maps are obtained on the basis of the

1020responses RE
s;id

ðx; yÞ and RO
s;id

ðx; yÞ, were id is the dominant

1021
orientation of C

^

s;i ¼ Cs;iðx;yÞ � b IŁs;iðx;yÞ þ IEs;iðx;yÞ
� �h iþ

;

1022i.e., the orientation with the maximum response of C
^

s;i,

1023where

ILs;i x; yð Þ ¼ Cs;i xþ dĈs;i; yþ dŜs;i
� ��

�Cs;i x� dĈs;i; y� dŜs;i
� �	þ

þ Cs;i x� dĈs;i; y� dŜs;i
� ��

�Cs;i xþ dĈs;i; yþ dŜs;i
� �	þ ð8Þ

10251025and

ICs;i x;yð Þ ¼ Cs;imodNh
xþ 2dĈs;i;yþ 2dŜs;i
� ��

� 2Cs;i x;yð ÞþCs;imodNh
x� 2dĈs;i;y� 2dŜs;i
� �	þ

ð9Þ

10271027denote lateral (L) and cross-orientation (C) inhibition,

1028which are necessary because simple and complex cells

1029respond beyond line and edge terminations, for example

1030beyond the corners of a rectangle, see Rodrigues and du

1031Buf (2008), using b & 1. At each position (x, y) for which

1032C
^

s[0, with

C
^

s ¼
X

Nh�1

i¼0

C
^

s;i; ð10Þ

10341034the event type and polarity are determined by checking the

1035responses of the simple cells RE
s;id

ðx; yÞ and RO
s;id

ðx; yÞ for a
1036local maximum (or minimum by rectification) using a

1037dendritic field size of ±k/4. Exactly the same condition
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1038 (maximum) on the basis of responses of complex cells (C
^

s)

1039 has to be checked. Finally a coinciding zero-crossing (Z.C.)

1040 in RO
s;id

ðx; yÞ or RE
s;id

ðx; yÞ, again on ±k/4, must occur.

1041 Summarizing, four event types can be detected: positive

1042 line Ls;þðC
^

s ¼ Max; RO
s;id

¼ z:c:; RE
s;id

¼ MaxÞ; negative

1043 line Ls;�ðC
^

s ¼ Max; RO
s;id

¼ z:c:; RE
s;id

¼ MinÞ; positive

1044 edge Es;þðC
^

s ¼ Max; RE
s;id

¼ z:c:; RO
s;id

¼ MaxÞ; and nega-

1045 tive edge Es;�ðC
^

s ¼ Max; RE
s;id

¼ z:c:; RO
s;id

¼ MinÞ:

1046 Reconstruction model of Appendix

1047 As explained in the Section ‘‘Lines, edges, keypoints and

1048 saliency maps’’, we can assume that the visual system

1049 extracts lines and edges for object recognition, and that

1050 responding ‘‘line cells’’ and ‘‘edge cells’’ are also inter-

1051 preted symbolically for creating a brightness representa-

1052 tion; see du Buf and Fisher (1995) and Rodrigues and du

1053 Buf (2008) for more details. The 2D line and edge repre-

1054 sentations (positive; negative ones are obtained by multi-

1055 plication by -1) were implemented on the basis of 1D

1056 cross-profiles. Using the normal definition of a Gaussian in

1057 x,

Gðx; rÞ ¼ 1

r
ffiffiffiffiffiffi

2p
p exp

�x2

2r2

� �

; ð11Þ

10591059 a generalized positive line (in 1D) is described by

1060 Ws(x) = G(x; srl) where rl defines the width of the line

1061 profile. Similarly, a generalized positive edge with width re
1062 is defined by KsðxÞ ¼ G x; sreð Þ � U x

�

sre
ffiffiffi

2
p� �

, where U(z)

1063 is the (generally complex) error function

U zð Þ ¼ 2
ffiffiffi

p
p
Z

z

0

e�t2dt: ð12Þ

10651065 For each of the four event maps Ls,±(x, y) and Es,±(x, y),

1066 the corresponding 1D profiles Ws,±(x) and Ks,±(x) are

1067 rotated to the dominant orientation id, and multiplied by the

1068 amplitude of the complex cells Cs;id x; yð Þ at the detected

1069 positions. For generating the 2D representation maps

1070 Ws,±(x, y) and Ks,±(x, y), it is necessary to interpolate

1071 values between two consecutive profiles (of neighboring

1072 cells) such that gaps are filled. In Fig. 1, the third and

1073 fourth image from left on the second row show the

1074 summation of the representations at a fine and a coarse

1075 scale. Final image reconstruction R is obtained by

Rðx; yÞ ¼ c LPðx; y; rrÞ

þ ð1� cÞ
Ns

X

Ns

s¼1

Ws;þðx; yÞ þWs;�ðx; yÞ
��

þKs;þðx; yÞ þ Ks;�ðx; yÞ
�	

ð13Þ

10771077 with LP(x, y; rr) a Gaussian-filtered lowpass image, c a

1078 coefficient which balances the lowpass component and the

1079line/edge representations, and Ns the number of scales

1080used. The rightmost image on the middle row in Fig. 1 was

1081obtained with c = 0.5, rr = 5 and Ns = 8 (k = {4; 8; 12;

108216; 20; 24; 28; 32}). Processes like the 2D interpolation of

10831D cross-profiles are speculative, but they are necessary for

1084showing 2D images; for more details see Rodrigues and du

1085Buf (2008).

1086Focus-of-Attention by saliency maps of Appendix

1087For modeling Focus-of-Attention (FoA) we need a map,

1088called saliency map, which indicates the most important

1089points to be analyzed (fixated); Rodrigues and du Buf

1090(2006). Activities of all keypoint cells at position (x, y) can

1091be summed over scales s by grouping cells. Each keypoint

1092has a Region-of-Interest (RoI) that can be used to pro-

1093cess—during an eye fixation—other information inside the

1094RoI. The RoI is small at fine scales and big at coarse scales.

1095This is modeled by assuming circular axonal fields of

1096keypoint cells, with a size of 3 9 3 at the finest scale

1097k = 4, but simulated by using a 2D Gaussian with rsm and

1098with linear scaling toward coarser scales. The saliency map

1099SM is obtained by

SMðx; yÞ ¼
X

Ns

s¼1

Ks x; yð Þ � Gðx; y; srsmÞ: ð14Þ

110111011102Template data structure of Appendix

1103The template data structure T depends on the type of pro-

1104cess (ty), i.e., pre-categorization (PC), categorization (C)

1105and recognition (R), and consequently also on the group of

1106objects used, Xk
ty, with k the group number. In addition, it

1107has the following elements: (a) the peaks of the saliency

1108map (PSM), (b) the central keypoint (CKP) and (c) the line

1109and edge information.

1110Prior to computing the peak (PSM) information, the

1111saliency map for each entire group was obtained by sum-

1112ming the SMs of all the elements from the group

T
ty
SM;kðx; yÞ ¼

X

n2Xty

k

SMnðx; yÞ: ð15Þ

11141114Each peak TPSM,k
ty (x, y) of the SM is a single point (see

1115e.g. Fig. 4b, e, g and i), i.e., a local maximum in x and y

1116of the TSM,k
ty map with non-maximum suppression and

1117thresholding. The central keypoint corresponds to a

1118location close to an object’s centroid ðxcty;k ; ycty;kÞ: This is

1119different for each group and for each level (ty) of

1120processing. The scale of the CKP is determined when

1121only a single keypoint exists in the entire image, which

1122only occurs at a very coarse scale, see Rodrigues and du

1123Buf (2006), and this scale may be different for each group k

1124and level of recognition ty.
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1125 Line/edge (LE) templates for each group also depend on

1126 the processing level ty. For pre-categorization, detected

1127 lines (LPC) and edges (EPC) were considered as binary

1128 events (no polarity or event type was applied) from

1129 the segregated (segr.) but normalized objects of the

1130 corresponding group, with the scales si corresponding

1131 to k = {24; 28; 32}. For categorization, LC and EC were

1132 also considered as binary events (no polarity and event

1133 type), but now from the original objects. Finally, for LR and

1134 ER we used the corresponding LE representations W± and

1135 K± (with polarity and event type). In the last two cases si
1136 corresponded to all the scales (see Table 1, rows 7–9). Line

1137 and edge information can be formalized as

T
ty
LE;si;k

ðx; yÞ ¼
X

n2Xty

k

h

L
ty
si;þ;nðx; yÞ þ E

ty
si;þ;nðx; yÞ

þ Ltysi;�;nðx; yÞ þ Ety
si;�;nðx; yÞ

i

: ð16Þ

11391139 The final template stored in memory can be summarized

1140 as

Tðx;yÞ ¼
[

4

k¼1

TPC
PSM;kðx;yÞ;TPC

CKP;kðxcPC;k ; ycPC;kÞ;TPC
LE;si;k

ðx;yÞ
n o

[

8

k¼1

TC
PSM;kðx;yÞ;

n

TC
CKP;kðxcC;k ;ycC;kÞ;TC

LE;si;k
ðx;yÞ

o

[

80

k¼1

TR
PSM;kðx;yÞ;TR

CKP;kðxcR;k ;ycR;kÞ;TR
LE;si;k

ðx;yÞ
n o

:

ð17Þ

11421142 The numbers 4, 8 and 80 in Eq. 20 correspond to the

1143 number of groups at each recognition level (ty) of the

1144 present database.

1145 Dynamic routing of Appendix

1146 The dynamic routing process is explained in detail in

1147 Section ‘‘Invariant object categorization and recognition’’.

1148 We can therefore skip the normal 2D translation, rotation

1149 and size transformations, and only explain the final step.

1150 This step serves to check whether there exist significant

1151 pairs of coinciding peaks between object and template, for

1152 which two thresholds are applied: (a) all object peaks

1153 OPSM
ty with amplitude less than half of the maximum

1154 amplitude of the template peaks TPSM,k
ty are inhibited. (b)

1155 Remaining peaks of object and templates are checked

1156 whether pairs coincide in a Gaussian window, the size (x)

1157 of which corresponds to the envelope of simple and

1158 complex cells at the middle scale used for each level ty of

1159 recognition:

#ty
k ¼

X

O
ty
PSM

\

x

T
ty
PSM;k

 !

: ð18Þ
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11611161 If #k
ty is higher then half of the sum of all SM peaks in

1162 TPSM,k
ty which passed the first threshold, i.e., #ty

k [ 1=2

1163

P

T
ty
PSM;k, a possible match can occur, and the next step is

1164 to determine the similarity between object and templates

1165 (next section) for each of the different k and ty. If the

1166 maximum similarity is not enough, object and template

1167 may be different, but first the maximum peak of the object

1168 is inhibited and a new maximum is used to test other

1169 possible combinations.

1170 Similarity between objects and templates of Appendix

1171 The similarity between an un-normalized object and a

1172 normalized template is determined every time that dynamic

1173 routing has been established, i.e. the similarity is computed

1174 for all the k’s where a possible match occurs at the same

1175 level ty. This means that the line/edge (LE) information of

1176 the object at all scales is translated, scaled and rotated

1177 (TSR), as explained in Section ‘‘Invariant object categori-

1178 zation and recognition’’ for the SM peaks. We denote this

1179 LE transformation by OLTSR,s,±
ty and OETSR,s,±

ty , where O

1180 stands for object (or T for template), L for lines and E for

1181 edges, which can be positive (?) and negative (-).

1182 For each group template, at each of the scales, a positional

1183 relaxation area (RT) was created around each responding

1184 event cell, by assuming grouping cells with a dendritic field

1185 size, again modeled by a 2D Gaussian function, coupled to

1186 the size of the underlying complex cells:

RT
ðty^ty 6¼RÞ
LE;si;k

ðx; yÞ ¼ T
ty
LE;si;k

ðx; yÞ � Gðx; y; sirÞ: ð19Þ

11881188 These grouping cells sum the occurrence of object

1189 events around template events, which can be seen as a local

1190 correlation, and then activities of all grouping cells are

1191 summed to obtain the global correlation

C
ty
si;k

¼
X

x;y

"

RT
ty
LE;si;k

ðx; yÞ

\

x;y

OL
ty
TSR;s;�ðx; yÞ þ OETSR;s;�ðx; yÞ

h i

#

:

ð20Þ

11931193 These final groupings are compared over the k templates,

1194 scale by scale, and the template with maximum response is

1195
selected, K ty

si
¼ maxk C

ty
si;k

n o

. Finally, the template with the

1196 maximum number of correspondences over the scales si is

1197
selected, K ty ¼ maxsi

P

K ty
si

n o

.

1198 This Kty is a single number, i.e. the group number of the

1199 corresponding template: 1–4 for ty = PC, 1–8 for ty = C

1200 and 1–80 for ty = R.

1201 It should be stressed that for recognition the process is

1202 the same, except that the relaxation area in Eq. 19 is

1203applied to line and edge cells (see Section ‘‘Reconstruction

1204model’’), and in Eq. 20 the events must have the same

1205position, type,and polarity, i.e.,
T

x;y;�;L=E :
1206
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