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Abstract
Electronic Health Records (EHRs) play a crucial role in shaping predictive aremodels,
yet they encounter challenges such as significant data gaps and class imbalances. Tra-
ditional GraphNeural Network (GNN) approaches have limitations in fully leveraging
neighbourhood data or demanding intensive computational requirements for regular-
isation. To address this challenge, we introduce CliqueFluxNet, a novel framework
that innovatively constructs a patient similarity graph to maximise cliques, thereby
highlighting strong inter-patient connections. At the heart of CliqueFluxNet lies its
stochastic edge fluxing strategy— a dynamic process involving random edge addition
and removal during training. This strategy aims to enhance themodel’s generalisability
and mitigate overfitting. Our empirical analysis, conducted on MIMIC-III and eICU
datasets, focuses on the tasks of mortality and readmission prediction. It demonstrates
significant progress in representation learning, particularly in scenarios with limited
data availability. Qualitative assessments further underscore CliqueFluxNet’s effec-
tiveness in extracting meaningful EHR representations, solidifying its potential for
advancing GNN applications in healthcare analytics.

Keywords Electronic health records · Graph neural network · Representation
learning · Semi-supervised learning

1 Introduction

Electronic Health Records (EHRs) are digital records of patient information collected
and stored during medical encounters, such as demographics, diagnoses, and med-
ications [1–3]. EHRs can provide longitudinal patient records that capture disease
progression and treatment outcomes over time [4]. EHRs have been widely used for
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various applications in clinical research [5–7], large-scale observational studies [8],
and clinical decision support systems [9–12]. However, EHRs also pose significant
challenges for data modelling and analysis. One challenge is the high rate of missing
and irregularly sampled data, which may result from different data collection practices
and protocols in healthcare settings [13, 14]. For example, in the Medical Informa-
tion Mart for Intensive Care (MIMIC-III) dataset, a widely used open-access EHR
dataset, more than 80% of the data are missing [15, 16]. Another challenge is the class
imbalance and under-representation of certain patient groups based on their diagnoses,
which may affect the model performance and generalisability for these groups [17].
Therefore, there is a need for learning EHR representations that can handle missing
and irregular data, and account for class imbalance and under-representation. Such
representations could enable better use of EHR data for clinical research and decision
support systems.

EHR data have a complex and rich hierarchical structure that reflects multiple levels
of information and relationships among them.For example, a patientmayhavemultiple
visits over time, each visit may have multiple diagnoses, and each diagnosis may be
associated with multiple medications or procedures. This hierarchical structure can
provide valuable information for data analysis and prediction tasks, as it can capture
the temporal and causal dependencies among the data elements [18]. However, most of
the current machine learning models represent data in a tabular format, which flattens
the hierarchical structure and disregards the inherent semantics of the data [19]. As
a result, they might not be suitable for modelling nested or sequential data, such as
visits, diagnoses, medications, and procedures [19].

To overcome this limitation, some recent studies have exploited non-tabular data
formats, such as graphs or sequences, to model the hierarchical structure of EHRs
using deep learning techniques, such as graph neural networks (GNNs) or recurrent
neural networks (RNNs) [20, 21]. These studies claim to outperform tabular models
for some tasks or datasets, by learning better representations of the EHR data while
preserving some relational hierarchical properties [20, 22, 23]. However, these stud-
ies also have some limitations or challenges, such as computational complexity and
generalisability [24]. For example, some studies rely on predefined ontologies which
are not always available or applicable to different EHR data sources [25], while others
use attention-based transformers to learn weights of the connections [21, 26], which
could be computationally expensive [21] and not generalisable for data with high rates
of missing data [26]. Therefore, there is still room for improvement in learning EHR
representations that can capture the hierarchical structure of EHRs while addressing
these challenges.

In this study, we introduce CliqueFluxNet, a novel graph-based model for EHRs
designed to robustly and generatively capture patient data patterns. CliqueFluxNet
innovatively constructs graphs from patient encounters, e.g., a single admission or
visit to the ICU, emphasising clinical similarities without relying on fixed vocab-
ularies or ontologies. A core feature of our model is the strategic use of maximal
cliques, which enables the discovery of intricate relationships within the graph and
enhances the network’s ability to identify nuanced patient similarities. This approach
is inspired by studies demonstrating that clique-based models can efficiently learn
when we have smaller training sets [27]. Furthermore, CliqueFluxNet employs an
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adaptive edge-weighting scheme based on these clique connections, combined with a
sampling and aggregation mechanism, to effectively learn embeddings from neigh-
bouring patient nodes. To enhance generalisability and prevent overfitting, especially
in sparse data scenarios, our model incorporates Edge Flux, which is a randomisation
strategy during training, adjusting edges to reflect potentially unobserved similarities.
This comprehensive methodology, tested extensively on large-scale EHR datasets,
demonstrates the superiority of CliqueFluxNet in predicting critical patient outcomes
such as mortality and readmission. The clinical relevance of the learned embeddings
and weights further underscores the practical implications of CliqueFluxNet in health-
care analytics, making it a valuable tool for accurate and reliable patient care decisions.

The primary contributions of our work are as follows:

• We introduce CliqueFluxNet, an inductive model that merges graph-based topo-
logical learning in EHRs through clique-based weighted computation. The dual
approach of sampling and aggregating patient features from neighbouring nodes
showcases a unique fusion of machine learning and healthcare informatics.

• The model includes a randomisation strategy during training, addressing potential
unobserved similarities and preventing overfitting; enhancing its application in
diverse healthcare analytics scenarios.

• Through rigorous testing across various scenarios, including mortality and read-
mission predictions on extensive EHR datasets, CliqueFluxNet demonstrates
superior performance over existing state-of-the-art graph-based models. This is
particularly notable in scenarios with limited training data, a common challenge
in healthcare informatics. Our results highlight CliqueFluxNet’s robustness and
versatility, setting new benchmarks in EHR data analysis.

We begin by reviewing related work in Section2, followed by a detailed exposition
of our methodology in Section3. Section4 presents our experimental results, show-
casing the efficacy of CliqueFluxNet. Finally, Section5 concludes with a discussion
on the implications of our findings and potential avenues for future research.

2 RelatedWorks

This section provides a summary of relatedworks in representation learning andGNNs
for EHR applications.

2.1 GNNs

In deep learning research, a key focus is extending neural networks to process graph
data [28–30]. Two notable architectures within GNNs are the Graph Convolutional
Network (GCN) [28] andGraphAttentionNetwork (GAT) [31, 32].WhileGCNgener-
alises Convolutional Neural Networks (CNNs) to handle graph-structured inputs, GAT
exploits attention framework to learn local features by assigning varied importance
to nodes and attending to their neighbourhood features. Contemporarily, GraphSAGE
introduced [29] focuses on inductive learning by sampling and aggregating informa-
tion from the local neighbourhood of each node. It samples a fixed-size neighbourhood
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around each node, aggregates information from the sampled nodes, and then learns
embeddings for the target node. On a different front, Deep Graph Infomax (DGI)
[33] represents an unsupervised approach for learning graph representations through
local–global information maximisation.

2.2 Learning EHR Representations

Learning EHR representations has sparked broad interest within the research commu-
nity,with numerous studies exploring variousmethods of embeddingmedical concepts
[22, 34–37]. For instance, [38, 39] employed transformer-based models [40], integrat-
ing BERT [41] into their proposed models for medical records [38–40]. Conversely,
a handful of works have delved into learning graphical representations of EHRs.
For example, Multilevel Medical Embedding (MiME) [25] derived visit representa-
tions from the visit structure, surpassing a range of bag-of-features methods. Despite
MiME’s promising results, the proposed approach is challenging to generalise, as it
relies on a predefined external medical ontology to learn relationships across medical
codes.

To overcome the limitation observed in MiME, Choi et al. combined the GCN [26]
with a transformer to develop a graph-based representationmodel forEHRs.To address
the challenge of transformers in effectively learning attention parameters, the authors
integrated a predefined conditional probabilitymatrix, derived from encounter records,
to guide the attention derivation and regularisation process. The authors computed this
matrix based on the co-occurrence relationship among medical concepts (diagnosis,
treatments, and labs), which is later used to apply weights to the edges. Although this
method surpassed baselines, relying on a predefined conditional probability in scenar-
ios with high rates of missing data renders the strict definition of such probabilities
and hierarchies non-generalisable. To address this limitation, Variational Graph Neu-
ral Network (VGNN) [21] was introduced by adding variational regularisation in its
encoder-decoder graph network, enablingmore generalised structural learningwithout
predefined rules. While VGNN demonstrates enhanced performance across various
prediction tasks, its approach is hampered by higher computational complexity.

3 Preliminaries

We briefly introduce the preliminaries of Graph Networks in this section.

3.1 GNNs

GNNs are advanced neural architectures specifically designed for processing data
structured in graph form [42]. These networks are characterised by their unique ability
to capture the complex relationships inherent in graph data. Central to a GNN is its
representation of graph data as (X,A): X ∈ R

N×F is the node feature matrix for
N nodes, each with F features, and A ∈ R

N×N represents the adjacency matrix,
encapsulating the inter-node connections. In a GNN, each layer is designed to refine

123



Journal of Healthcare Informatics Research (2024) 8:555–575 559

and elevate the node features. Starting from the initial feature representationX = H(0),
a GNN layer processes the current feature matrix H(l−1) ∈ R

N×F along with A to
produce an evolved feature representation H(l) ∈ R

N×F , as described by:

H(l) = f (H(l−1), A). (1)

Among the diverseGNNarchitectures, theGCNstands out as a prominent transduc-
tive GNN encoder, E . The GCN updates node features via a sophisticated layer-wise
rule:

E(X,A) = σ

(
D̂

− 1
2 ÂD̂

− 1
2X�

)
(2)

Here, σ denotes the ReLU activation function. The matrix Â = A + IN is an
enhanced adjacency matrix, augmented with self-loops via an N × N identity matrix
IN . The degree matrix D̂i i = ∑

j Âi j and the transformation matrix � ∈ R
F×F ′

work in tandem to dynamically update each node’s features through the learning
process, typically optimised via a back-propagation algorithm minimising a chosen
loss function (e.g., cross-entropy loss) [28].

3.2 Cliques in Graphs

To better understand the components of the proposed work, we provide an overview
of important terminology and definitions in graph and GNN theory.

Definition 1 Provided a graph G = (V,E) with V nodes and E edges, a clique is a
subset C ∈ V in which every node is adjacent to all other nodes in the set, (v, v′) ∈
E,∀v, v′ ∈ C [43].

Definition 2 In a graph, a maximal clique cannot be expanded by incorporating one
more neighbouring node without affecting the clique’s connectedness [44].

Listing Maximal Cliques The Bron-Kerbosch method [45] has been used in this work
to list maximal cliques. This method operates bymanaging three distinct sets of nodes:
Q, P , and R. Here, nodes in set Q are candidates for removal from the clique, while
set P contains potential candidates to augment clique R. Set R represents the evolving
clique under construction. In each recursive call, the method selects a node v in P to
join the clique R, and when the recursive call returns v is pushed to Q. R is returned
as a maximal clique when P and Q are both empty.

4 Methodology

This section describes the proposedCliqueFluxNet framework for EHR representation
learning in detail. Figure1 presents a visual depiction of the framework’s architecture,
offering a clear overview of its components and interactions.
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1. Prepare EHR Matrix

Matrix X

ID Flu INR ..... Albumin Antibiotic

10021 1 2.0 ..... N/A 1

.... .... N/A ..... 3.5 0

50012 0 N/A ..... 3.2 1

2. Cosine Similarity-based Graph
Construction

6. Patient Outcome Prediction

N x F

4. Sampling Neighbors and Edge
Fluxing

5. Aggregating Feature Information from
Neighboring Patients

Mortality Prediction
21%

3. Finding Maximal Cliques & Weight
Allocation

Fig. 1 Overview of the proposed model, CliqueFluxNet. Starting with a prepared EHR matrix, our model
starts a graph construction based on the cosine similarity between encounters. Finding maximal cliques
and weight allocation are conducted using Bron-Kerbosch algorithm. Steps 4 (pink arrows) and 5 (yellow
arrows) represent the node sampling and feature aggregation, where random edge deletion and addition
(in red) are conducted throughout the training. Directed edges introduced in steps 4 and 5 of the process
serve solely to illustrate sampling and aggregation procedures in graph representation learning. Lastly, the
patient outcome predictions are based on the learnt aggregated representations. Edge deletion and addition
are shown in red. Best viewed in colour

4.1 Overview of CliqueFluxNet

Assuming we are provided with a set of encounters that are represented by a feature
matrix,X ∈ R

N×F where N is the number of patients and F is the feature dimensions,
we outline CliqueFluxNet as follows:

1. CliqueFluxNet begins by constructing a graph from encounters, represented byX,
using cosine similarities between encounters. This graph construction is pivotal
for understanding the complex relationships in the EHR data.

2. The Bron-Kerbosch algorithm is applied to list all maximal cliques within this
graph, a crucial step that allows our model to focus on strongly connected nodes.
This process updates the adjacency matrix A, enabling an intricate representation
of patient encounters based on their clique membership.

3. The proposed method frames patient outcome prediction as a node classification
problem.We derive high-level representations for each encounter using an encoder
E(X,A), leveraging mean-pooling layers to perform this transformation.

4. During training, we introduce a graph randomisation strategy, Edge Flux, adding
or deleting edges randomly to accommodate potential unobserved similarities.
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This step ensures the robustness and adaptability of our model to various EHR
data scenarios.

5. Finally, the training objective is defined using a binary cross-entropy loss function,
optimising the network’s ability to predict patient outcomes accurately.

4.2 Notations

We refer to the constructed graph as G, which is shown as (X,A), where X ∈ R
N×F

indicates the matrix of node features with N nodes and F features per node, and
A ∈ R

N×N is the adjacency matrix, which corresponds to the similarities between
patient nodes. Nodes must be assigned to one of the y target classes. Moreover, we
assume directed and unweighted graphs, i.e., Ai j = 0 if there is no edge between
nodes j and i and Ai j = 1 otherwise.

4.3 CliqueFluxNet

A set of N encounters, represented as X = {�x1, �x2, . . . , �xN }, is provided as input,
where �xi ∈ R

F represents the features of the i-th encounter. The relational information
between these encounters,A ∈ R

N×N , is not provided as input, as EHR datasets often
do not contain this information [25]. The proposed framework first constructs the graph
using the set of encounter features based on cosine similarity [46] among encounters.
We formally define cosine similarity, k(�xi , �x j ), between two encounters represented
by their feature vectors �xi and �x j , as follows:

k(�xi , �x j ) = �xi · �x�
j

‖�xi‖ · ‖�x j‖ (3)

where the symbol · denotes the dot product of the feature vectors, with� representing
the transpose operation. Additionally, |�xi | and |�x j | represent the Euclidean norms of
vectors �xi and �x j , respectively. Two encounters are connected by an edge if the cosine
similarity between them is greater than 0.85.

Subsequently, the proposed framework lists maximal cliques from the constructed
graph in different hops to learn useful representations, as used by [27, 47]. The Bron-
Kerbosch method [45] is used to obtain all maximal cliques in the graph. Then, the
adjacency matrix is updated such that Ai j = c indicates encounters j and i belong to
a (c+1)-clique. This allows the framework to focus on nodes with strong connections
while aggregating information from the neighbouring nodes.

Having constructed the patient encounter graph and allocated weights to different
edges in a neighbourhood, we frame the patient outcome prediction task as a node

classification problem. We learn an encoder, E(X,A) =
{ �h1, �h2, . . . , �hN

}
, such that

�hi ∈ R
F ′
represents high-level representations for the i-th encounter and E : RN×N ×

R
N×F → R

N×F ′
. Finally, these representations corresponding to patient encounters

can be used for outcome prediction problems.
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This work employs an encoder that is built on the mean-pooling (MP) [29], defined
as follows:

MP(X,A) = σ
(
D̂

−1
ÂX�

)
, (4)

where σ denotes the ReLU activation, Â is enhanced adjacency matrix, D̂ is
degree matrix, and � represents the trainable transformation matrix as described in
Section3.1.

The encoder is a two-layered mean-pooling as described below:

E(X,A) = MP2(MP1(X,A),A). (5)

Each MP layer generates 16-dimensional features (F ′ = 16). During training, we
employ an Edge Flux strategy where the input graph is deformed by stochastically
adding or deleting edges in order to account for potential similarities that might not
be observed in the EHR. As per Edge Flux, for each pair of nodes (i, j), the updated
adjacency matrix A′ is given by:

A′
i j =

⎧⎪⎨
⎪⎩
1 with probability padd if Ai j = 0,

0 with probability pdelete if Ai j = 1,

Ai j otherwise.

(6)

Here padd is the probability of adding an edge where there is none and pdelete is the
probability of deleting an existing edge.

Edge Flux can be applied once per training epoch to introduce randomness into
the graph structure. For the training objective, we use a standard binary cross-entropy
(BCE) loss between the target and predicted labels:

L = − 1

N

N∑
i=1

(
ŷi log (yi ) + (

1 − ŷi
)
log (1 − yi )

)
, (7)

where ŷi is the network’s predicted label and yi is the ground-truth label.

4.4 Datasets and Preprocessing

4.4.1 Datasets

The proposed framework is evaluated on two publicly available large EHR datasets:
MIMIC-III and eICU.

MIMIC-III MIMIC-III [15] is a freely accessible de-identified database contain-
ing data for adult patients (aged 16 or older) hospitalised in critical care units. This
dataset was collected between 2001 and 2012 at Beth Israel Deaconess Medical
Centre (BIDMC) in the United States. This dataset contains information regarding
demographics, patient outcomes, and vital signs, as well as medical procedures and
medications. More details can be found in [15].
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EICU The Philips eICUCollaborative Research Dataset [48] is a multi-centre dataset
that includes 200,859 patient encounters for 139,367 unique patients hospitalised
between 2014 and 2015 to one of 335 units at 208 hospitals across the United States.
eICU has been used for many healthcare research applications, particularly for studies
investigating the development and validation of models across multiple centres [49,
50].

4.4.2 Preprocessing

We adopt the preprocessing method proposed by [26] to derive EHR representations
fromboth theMIMIC and eICUdatasets. To preprocess theMIMIC and eICUdatasets,
we exclude encounters lasting less than 24h and remove duplicate treatment codes
(e.g., medications administered repeatedly). Additionally, we omit lab results due to
their potential fluctuation over time in an ICU setting (e.g., blood pH level). As a
result, we retained 50, 391 encounters from MIMIC and 41, 026 encounters from
eICU. Utilising CliqueFluxNet, we obtain representations for each encounter, which
we then apply to predict patient outcomes. Throughout this study, we overlook the
time-series aspect of EHRs and concentrate on individual encounters. Table 1 presents
the statistical breakdown of the datasets employed for training and evaluating Clique-
FluxNet.

In our data preprocessing pipeline, we handle missing values using a combination
of filtering and imputation techniques. We process the EHRs as follows:

• Filtering: We filter out encounters with a duration exceeding a specified threshold
(e.g., 24h) to focus on relevant data points.

• Imputation: In scenarioswheremissing values are encountered, we exploitedmean
imputation for numerical features and mode imputation for categorical features.

4.5 Baselines and Experimental Settings

4.5.1 Baselines

To evaluate our model in downstream prediction tasks, we compare its performance
concerning multiple baselines, including state-of-the-art graph learning models on
EHRs:

Table 1 Statistical
characteristics of the
preprocessed datasets used to
train and evaluate the model for
both the mortality and
readmission tasks

Dataset MIMIC eICU

Avg. # of diagnosis per visit 11.5 6.5

Avg. # of treatment per visit 4.5 5.0

# of Positives (Readmission) N/A 7,051

# of Positives (Mortality) 5,377 2,983

# of Encounters 50,391 41,026
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• RandomForest (RF): an ensemble of decision trees where each tree is built based
on data samples from training sets with replacement [51].

• Multi-Layer Perceptron (MLP): a model that uses a stack of linear layers with
ReLUactivation after each layer, with the exception of the final one,where softmax
activation is used to make the predictions [52].

• Graph Convolutional Transformer (GCT): a graph-based model that uses a
Transformer to learn the representation of EHRs. The model leverages conditional
probabilities resulting from the correlation between medical concepts to guide
regularisation of the attention [26].

• VGNN: an encoder-decoder graph network with variational regularisation to learn
the similarities among patient nodes [21].

4.5.2 Prediction Tasks

We train and evaluate CliqueFluxNet and baseline models in predicting two main
tasks.

• Mortality prediction: We train models using patient encounter data to predict
a binary outcome indicating mortality. This task is evaluated on both eICU and
MIMIC datasets.

• Readmission prediction: Using the patient encounter data, we evaluate the base-
line models in predicting whether each patient will be readmitted to the ICU again
during the same hospital stay. This task is only evaluated on the eICU dataset.

4.5.3 Training Setup

We train CliqueFluxNet using Adam optimiser with a fixed learning rate of 0.001,
batch size of 128 and cross-entropy loss for 250 epochs. The area under the Precision-
Recall curve (AUPRC) [53] is used as a performance metric. The choice of AUPRC as
a metric stems from the imbalanced nature of the patient outcomes in EHR datasets.
We evaluate the proposed framework on four different train, validation and test splits:
{(70% : 15% : 15%), (40% : 30% : 30%), (30% : 35% : 35%), and (20% : 40% :
40%)}. These splits are used to evaluate the proposed framework on both data-rich
and data-scarce scenarios. Note that patients used for training are not involved in
validation or testing across all experimental settings. We employ the best AUPRC
over the validation datasets to select the model configuration final evaluation. The
performance evaluation is repeated 5 times by randomly sampling training, validation,
and test sets.

5 Results

5.1 Predictive Performance

Figure2 portrays the training dynamics of the proposed CliqueFluxNet framework,
trained for mortality prediction on both the MIMIC-III and eICU datasets using a
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Fig. 2 AUPRC and loss during training of CliqueFluxNet on the MIMIC (left) and eICU (right) datasets

70%:15%:15% split. Examination of this figure underscores the framework’s ability
to effectively train for the designated tasks, as indicated by the diminishing training
and validation losses with training progression.

Table 2 showcases the performance comparison between CliqueFluxNet and the
baseline methods. In a standard setting with a 70%:15%:15% split, our framework

Table 2 Readmission andmortality prediction performance on eICU andMIMIC in terms of AUPRC. Bold
entries represent the best performing method in each setting

Settings Models MIMIC Mortality eICU Mortality eICU Readmission

70%:15%:15% RF [51] 0.5524±0.011 0.4992±0.005 0.4528±0.012

MLP [52] 0.5231±0.026 0.4321±0.035 0.4419±0.015

GCT [26] 0.5812±0.025 0.5733±0.026 0.4827±0.015

VGNN [21] 0.5927±0.027 0.5964±0.027 0.5795±0.017

CliqueFluxNet 0.5972±0.025 0.5939±0.026 0.5802±0.016

40%:30%:30% RF [51] 0.5124±0.022 0.4737±0.021 0.4263±0.012

MLP [52] 0.5102±0.027 0.4684±0.028 0.4271±0.015

GCT [26] 0.5672±0.023 0.5136±0.028 0.4773±0.017

VGNN [21] 0.5792±0.025 0.5515±0.026 0.4819±0.019

CliqueFluxNet 0.5952±0.025 0.5739±0.024 0.5243±0.015

30%:35%:35% RF [51] 0.5025±0.018 0.4528±0.019 0.3976±0.014

MLP [52] 0.4812±0.033 0.4326±0.030 0.3873±0.026

GCT [26] 0.5429±0.021 0.5275±0.024 0.4556±0.014

VGNN [21] 0.5629±0.026 0.5386±0.029 0.4718±0.018

CliqueFluxNet 0.5994±0.025 0.5554±0.022 0.5129±0.017

20%:40%:40% RF [51] 0.5127±0.019 0.4562±0.020 0.4248±0.012

MLP [52] 0.4364±0.028 0.4273±0.028 0.4018±0.031

GCT [26] 0.5183±0.022 0.4883±0.021 0.4882±0.013

VGNN [21] 0.5472±0.030 0.4884±0.024 0.4913±0.032

CliqueFluxNet 0.5723±0.023 0.5386±0.022 0.5202±0.014
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consistently outshone nearly all baseline approaches, yielding an impressive average
AUPRC of 0.5972 and 0.5939 for mortality prediction on the MIMIC and eICU
datasets, respectively. Notably, our framework demonstrated comparable performance
to the top-performing VGNN baseline in predicting mortality on the eICU dataset.
CliqueFluxNet also surpassed all baselines, achieving an effective AUPRC score of
0.5802 for predicting readmissions.

To evaluate the performance of the proposed framework in data-scarce scenarios,
we train baselines and the proposed framework using data splits with fewer training
examples. When decreasing the training examples to 40%, 30%, and 20% of the
available dataset, we observed a significant decline in the performance of baseline
methods. For instance, reducing the training examples from 70% to 20% results in
a relative drop of 7.67% in the average performance of VGNN, the best-performing
baseline, for MIMIC-III mortality prediction. However, CliqueFluxNet maintained a
consistent and robust performance even when the training data was reduced. In all
three tasks, the performance of CliqueFluxNet experienced a notably smaller relative
drop compared to the baseline methods. For instance, in theMIMIC-III mortality task,
CliqueFluxNet achieved a comparable AUPRC of 0.5723 even with only 20% of the
training examples. Thus, the proposed framework can be considered data-efficient and
has produced effective EHR representations, resulting in strong performance across
all experimental settings.

subsectionQualitative Analysis To underline the efficacy of CliqueFluxNet and
the quality of representations, we plot a set of t-distributed stochastic neighbour
embedding (t-SNE) plots [54] of the produced representations via CliqueFluxNet for
mortality prediction task (Fig. 4) using the MIMIC dataset and readmission prediction
task (Fig. 3) using the eICUdataset, respectively. The different colours denote different
patient classes. Note that these classes correspond to the labels of the datasets, veri-
fying the model’s discriminative power across the binary patient outcome prediction

Fig. 3 t-SNE embeddings of the patients in the eICU dataset based on raw (left) and learnt CliqueFluxNet
features (right). Yellow points represent readmitted individuals, while blue points represent not-readmitted
individuals. Best viewed in colour
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Fig. 4 t-SNE embeddings of the patients in theMIMIC dataset based on raw (left) and learnt CliqueFluxNet
features (right). Yellow points represent patientswith a positivemortality label, while green points represent
patients with a negative mortality label. Best viewed in colour

tasks. We perform further analyses to demonstrate t-SNE embeddings of the patients
based on the learnt features fromGCT andVGNNmodels. These qualitative outcomes
can be seen in the Appendix. The qualitative results demonstrate the model’s ability
to learn representations where patients with similar outcomes are close to each other
(Fig. 4).

6 Ablation Study

An ablation study was conducted to assess the performance of CliqueFluxNet in the
absence of Edge Flux, i.e., random edge addition and deletion (CliqueFluxNet W/O
Edge Flux), as well as without maximal cliques-based edge weighting (CliqueFluxNet
W/O Clique). The results, measured in terms of AUPRC with a 40%:30%:30% data
split, are presented in Fig. 5. The analysis of this figure highlights that the removal of
EdgeFlux aswell as clique-basedweighting results in a noticeable drop in performance
across all three tasks. This confirms the importance of Edge Flux and clique-based

Fig. 5 Performance of the CliqueFluxNet in the absence of randomness and clique components in terms of
AUPRC
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weighting in regularising the training, learning generalised EHR representations, and
capturing intricate inter-patient relationships.

Upon analysing Fig. 5 alongside Table 2, it is clear that CliqueFluxNet W/O Edge
Flux outperforms all baselines except VGNN across all three tasks. Similar behaviour
is observed for CliqueFluxNetW/OClique. This further affirms the importance of both
Edge Flux and clique-based weighting in achieving better performance than VGNN
and other baselines.

7 Discussion and Conclusion

In the study, a novel graph-based topological structure rooted in patient similarity was
introduced. This structure facilitated the extraction of all maximal cliques within the
graph, thereby enabling the acquisition of high-level patient representations. Through
sampling and aggregating feature information from patients in their local neighbour-
hoods, the model was designed to flexibly capture the dynamic and heterogeneous
nature of EHRs.

The proposed model, CliqueFluxNet, underwent rigorous training and validation
using two extensive EHRs datasets, covering three distinct tasks, which included
two mortality prediction challenges and a readmission prediction task. Comparative
evaluations against robust baselines underscored the superior performance of Clique-
FluxNet, particularly evident in the AUPRC. The resilience of CliqueFluxNet stems
from its ability to sample and aggregate neighbouring patients, facilitating effective
similarity detection evenwith limited trainingdata.Acrucial aspect of the framework is
the edge-weighting component, which assigns higher weights to stronger cliques. This
enhances model robustness, especially in scenarios characterised by class imbalance
and limited training data. The flexibility, independence from predefined relationships,
and data-driven approach equip the proposed framework for handling diverse health-
care data scenarios.

Nonetheless, this study is not without its limitations. Our focus was primarily on
three patient outcomes in the MIMIC and eICU datasets, thus overlooking various
patient care scenarios where EHR representations can play an important role. Future
endeavours will entail broadening our analysis to incorporate these aspects while also
tackling the time-series nature inherent in EHRs.

In conclusion, CliqueFluxNet’s mastery of EHR representations represents a
notable advancement beyond existing state-of-the-art graph models. Its effectiveness
and resilience not only highlight its potential but also invite further exploration into
graph-based representations across diverse healthcare applications. By pushing the
boundaries of innovation in EHR analysis, CliqueFluxNet establishes a promising
precedent for advancing patient care, clinical decision-making, and medical research.
Its robust performance sets the stage for future efforts aimed at uncovering deeper
insights and improving the efficacy of patient care models.

In conclusion, our approach, CliqueFluxNet, exceeds state-of-the-art graph mod-
els in learning EHR representations. The effectiveness and resilience of our model
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may pave the way for further research in graph-based representations across diverse
healthcare applications.

Appendix A: Theoretical Justification of Random Edge Flux in GNNs

Assume a GNNmodel f , parameterised by θ , that maps graph structuresG to outputs.
The generalisation error, which measures the model’s performance on unseen data, is
defined as follows:

Generalisation Error = EG∼D[L( f (G; θ), Y )] − L( f (G train; θ),Ytrain) (A1)

where L denotes the loss function, D is the distribution of graphs, and Y are the target
outputs. Random edge deletion and addition are modelled as independent Bernoulli
processes:

P(edge deletion) = pdelete, P(edge preservation) = 1 − pdelete, (A2)

P(edge addition) = padd, P(no edge addition) = 1 − padd. (A3)

These stochastic processes introduce variability in the graph structure, aiming to
prevent overfitting by not allowing the model to rely too heavily on specific edges. To
balance model complexity and performance, we introduce a regularised loss function:

Lreg( f (G; θ),Y ) = L( f (G; θ),Y ) + λR(θ), (A4)

where R(θ) is a regularisation term that penalises complexity, and λ is a coefficient
determining the strength of regularisation. The expected smoothing effect of Random
Edge Flux is quantified as follows:

E[‖ f (G; θ) − f (G ′; θ)‖2] ≤ ε, (A5)

indicating that modifications to the graph structure should not drastically alter the
model’s output, thereby ensuring stability.Here, ε represents a small, acceptable bound
on the change in output due to graph perturbations.

The model’s stability to structural perturbations in the graph is further defined as
follows:

If G ′ is a perturbation of G, then | f (G; θ) − f (G ′; θ)| ≤ δ, (A6)

where δ denotes a small tolerance level for changes in the model output. Both ε and
δ are positive, small quantities that ensure the model’s outputs are robust to minor
changes in the graph structure.
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Appendix B: Mathematical Justification for Clique-Enhanced Adja-
cencyMatrix

2.1 Introduction to Graph Properties and Clustering Coefficient

The clustering coefficient Ci for a node i quantifies how close its neighbours are to be
a complete clique. In a standard adjacency matrix A, where Ai j = 1 signifies an edge
between nodes i and j , the clustering coefficient for node i is defined as follows:

Ci = 2T (i)

deg(i)(deg(i) − 1)
(B7)

Here, T (i) represents the number of triangles involving node i , and deg(i) is
the degree of i , indicating the number of direct connections to i . For the modified
context, where a clique-enhanced adjacency matrix Aclique is considered, we define
the enhanced clustering coefficient C ′

i . This matrix emphasises maximal cliques and
increases T (i) for nodes within cliques. Therefore, the enhanced clustering coefficient
C ′
i is given by:

C ′
i = 2Tclique(i)

degclique(i)(degclique(i) − 1)
(B8)

where Tclique(i) accounts for the number of triangles that form part of maximal cliques
involving node i , and degclique(i) is the degree of i within the context of the clique-
enhanced graph. A higher C ′

i suggests denser local connections due to the influence
of cliques.

2.2 Impact on Feature Aggregation in GNNs

Feature aggregation in GNNs is crucial for learning node representations. The aggre-
gation for a node i at layer l + 1, considering its neighbourhoodN (i), is enhanced in
Aclique:

hl+1
i = ReLU

⎛
⎝Wl

∑
j∈N (i)

1

|N (i)|h
l
j + Blhli

⎞
⎠ (B9)

The clique-enhanced matrix enhances the neighbourhood N (i) by incorporating
clique-based connections, potentially enriching the aggregated features hl+1

i withmore
relevant information.

Appendix C: Computational Complexity

The overall computational complexity of the proposed framework is dependent on
computational complexity required for graph construction, identifying cliques, node
encoding operation, edgeflux and neighbourhood sampling operations. The graph con-
struction through pairwise cosine similarities imposes a complexity of O(n2×d), with
n and d representing the count of encounters (nodes) and their dimensional features in
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Fig. 6 Performance comparison of predictive models at various thresholds for MIMIC Mortality, eICU
Mortality, and eICU Readmission, measured by the AUPRC. Each bar represents the AUPRC score for a
specific threshold

X, respectively. The complexity to compute maximal cliques using optimised Bron–
Kerbosch algorithm is O(m + n), where m is the number of edges. Node encoding
operations, conducted by E(X,A), maintain a complexity of O(n2), approximately.
Integration of the Edge Flux strategy, i.e., modifying m edges has a complexity of
O(m). Similarly, the neighbourhood sampling to update node representations has a
complexity of O(n × d × S), where S is the number of sampled neighbours. Hence,
the overall complexity is O(n2 × d).

Appendix D: Analysis for Various Thresholds

In the comparative analysis presented for 75:15:15 setting, the bar chart illustrates the
AUPRC performance across various thresholds forMIMICMortality, eICUMortality,
and eICUReadmission. It is evident that for thresholds under 0.55, theAUPRCremains
relatively stable, suggesting a plateau in performance improvement (Fig. 6). The best
performance is observed for a threshold of 0.85 across all datasets.

4.1 Limitations

CliqueFluxNet, like many graph-based models, relies on the quality and clarity of the
connections between patient data points. In cases where the EHR data is particularly
noisy, the model may not effectively distinguish relevant patterns, which could lead to
performance degradation. Under these circumstances, CliqueFluxNet’s performance
might revert to being comparable to more traditional models like MLP, which do not
utilise the complex network-based interactions between features. We can simulate
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these noisy scenarios by using a lower threshold of 0.55 or 0.45 in CliqueFluxNet
resulting in spurious edges aswewould expect in noisy conditions.At these thresholds,
the performance of CliqueFluxNet is comparable to MLP as illustrated in Fig. 6.
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